Abstract

A handheld Smart Micromanipulation Aided Robotic-surgery Tool (SMART) micro-forceps guided by a fiber-optic common-path optical coherence tomography (CP-OCT) sensor is presented. A fiber-optic CP-OCT distance and motion sensor is integrated into the shaft of a micro-forceps. The tool tip position is manipulated longitudinally through a closed loop control using a piezoelectric motor. This novel forceps design could significantly enhance safety, efficiency and surgical outcomes. The basic grasping and peeling functions of the micro-forceps are evaluated in dry phantoms and in a biological tissue model. As compared to freehand use, targeted grasping and peeling performance assisted by active tremor compensation, significantly improves micro-forceps user performance.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. N. Riviere, J. Gangloff, and M. de Mathelin, “Robotic compensation of biological motion to enhance surgical accuracy,” Proc. IEEE94(9), 1705–1716 (2006).
    [CrossRef]
  2. K. Ikuta, T. Kato, and S. Nagata, “Development of micro-active forceps for future microsurgery,” Minim. Invasive Ther. Allied Technol.10(4-5), 209–213 (2001).
    [CrossRef] [PubMed]
  3. T. Kawai, K. Nishizawa, F. Tajima, K. Kan, M. Fujie, K. Takakura, S. Kobayashi, and T. Dohi, “Development of exchangeable microforceps for a micromanipulator system,” Adv. Robot.15(3), 301–305 (2001).
    [CrossRef]
  4. J.-P. Hubschman, J.-L. Bourges, W. Choi, A. Mozayan, A. Tsirbas, C.-J. Kim, and S.-D. Schwartz, “‘The Microhand’: a new concept of micro-forceps for ocular robotic surgery,” Nat. Eye24(2), 364–367 (2010).
    [CrossRef]
  5. X. He, M. A. Balicki, J. U. Kang, P. L. Gehlbach, J. T. Handa, R. H. Taylor, and I. I. Iordachita, “Force sensing micro-forceps with integrated fiber Bragg grating for vitreoretinal surgery,” Proc. SPIE8218, 82180W, 82180W-7 (2012).
    [CrossRef]
  6. I. Kuru, B. Gonenc, M. Balicki, J. Handa, P. Gehlbach, R. H. Taylor, and I. Iordachita, “Force sensing micro-forceps for robot assisted retinal surgery,” in Proceedings of IEEE Conference on Engineering in Medicine and Biology Society (Institute of Electrical and Electronics Engineers, San Diego, 2012), pp.1401–1404.
    [CrossRef]
  7. K. Zhang, W. Wang, J. Han, and J. U. Kang, “A surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography,” IEEE Trans. Biomed. Eng.56(9), 2318–2321 (2009).
    [CrossRef] [PubMed]
  8. J. U. Kang, J. H. Han, X. Liu, and K. Zhang, “Common-path optical coherence tomography for biomedical imaging and sensing,” J. Opt. Soc. Korea14(1), 1–13 (2010).
    [CrossRef] [PubMed]
  9. J. U. Kang, J. H. Han, X. Liu, K. Zhang, C. G. Song, and P. Gehlbach, “Endoscopic functional Fourier domain common path optical coherence tomography for microsurgery,” IEEE J. Sel. Top. Quantum Electron.16(4), 781–792 (2010).
    [CrossRef] [PubMed]
  10. C. Song, P. L. Gehlbach, and J. U. Kang, “Active tremor cancellation by a ‘smart’ handheld vitreoretinal microsurgical tool using swept source optical coherence tomography,” Opt. Express20(21), 23414–23421 (2012).
    [CrossRef] [PubMed]
  11. Y. Huang, X. Liu, C. Song, and J. U. Kang, “Motion-compensated hand-held common-path Fourier-domain optical coherence tomography probe for image-guided intervention,” Biomed. Opt. Express3(12), 3105–3118 (2012).
    [CrossRef] [PubMed]

2012 (3)

2010 (3)

J. U. Kang, J. H. Han, X. Liu, K. Zhang, C. G. Song, and P. Gehlbach, “Endoscopic functional Fourier domain common path optical coherence tomography for microsurgery,” IEEE J. Sel. Top. Quantum Electron.16(4), 781–792 (2010).
[CrossRef] [PubMed]

J. U. Kang, J. H. Han, X. Liu, and K. Zhang, “Common-path optical coherence tomography for biomedical imaging and sensing,” J. Opt. Soc. Korea14(1), 1–13 (2010).
[CrossRef] [PubMed]

J.-P. Hubschman, J.-L. Bourges, W. Choi, A. Mozayan, A. Tsirbas, C.-J. Kim, and S.-D. Schwartz, “‘The Microhand’: a new concept of micro-forceps for ocular robotic surgery,” Nat. Eye24(2), 364–367 (2010).
[CrossRef]

2009 (1)

K. Zhang, W. Wang, J. Han, and J. U. Kang, “A surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography,” IEEE Trans. Biomed. Eng.56(9), 2318–2321 (2009).
[CrossRef] [PubMed]

2006 (1)

C. N. Riviere, J. Gangloff, and M. de Mathelin, “Robotic compensation of biological motion to enhance surgical accuracy,” Proc. IEEE94(9), 1705–1716 (2006).
[CrossRef]

2001 (2)

K. Ikuta, T. Kato, and S. Nagata, “Development of micro-active forceps for future microsurgery,” Minim. Invasive Ther. Allied Technol.10(4-5), 209–213 (2001).
[CrossRef] [PubMed]

T. Kawai, K. Nishizawa, F. Tajima, K. Kan, M. Fujie, K. Takakura, S. Kobayashi, and T. Dohi, “Development of exchangeable microforceps for a micromanipulator system,” Adv. Robot.15(3), 301–305 (2001).
[CrossRef]

Balicki, M. A.

X. He, M. A. Balicki, J. U. Kang, P. L. Gehlbach, J. T. Handa, R. H. Taylor, and I. I. Iordachita, “Force sensing micro-forceps with integrated fiber Bragg grating for vitreoretinal surgery,” Proc. SPIE8218, 82180W, 82180W-7 (2012).
[CrossRef]

Bourges, J.-L.

J.-P. Hubschman, J.-L. Bourges, W. Choi, A. Mozayan, A. Tsirbas, C.-J. Kim, and S.-D. Schwartz, “‘The Microhand’: a new concept of micro-forceps for ocular robotic surgery,” Nat. Eye24(2), 364–367 (2010).
[CrossRef]

Choi, W.

J.-P. Hubschman, J.-L. Bourges, W. Choi, A. Mozayan, A. Tsirbas, C.-J. Kim, and S.-D. Schwartz, “‘The Microhand’: a new concept of micro-forceps for ocular robotic surgery,” Nat. Eye24(2), 364–367 (2010).
[CrossRef]

de Mathelin, M.

C. N. Riviere, J. Gangloff, and M. de Mathelin, “Robotic compensation of biological motion to enhance surgical accuracy,” Proc. IEEE94(9), 1705–1716 (2006).
[CrossRef]

Dohi, T.

T. Kawai, K. Nishizawa, F. Tajima, K. Kan, M. Fujie, K. Takakura, S. Kobayashi, and T. Dohi, “Development of exchangeable microforceps for a micromanipulator system,” Adv. Robot.15(3), 301–305 (2001).
[CrossRef]

Fujie, M.

T. Kawai, K. Nishizawa, F. Tajima, K. Kan, M. Fujie, K. Takakura, S. Kobayashi, and T. Dohi, “Development of exchangeable microforceps for a micromanipulator system,” Adv. Robot.15(3), 301–305 (2001).
[CrossRef]

Gangloff, J.

C. N. Riviere, J. Gangloff, and M. de Mathelin, “Robotic compensation of biological motion to enhance surgical accuracy,” Proc. IEEE94(9), 1705–1716 (2006).
[CrossRef]

Gehlbach, P.

J. U. Kang, J. H. Han, X. Liu, K. Zhang, C. G. Song, and P. Gehlbach, “Endoscopic functional Fourier domain common path optical coherence tomography for microsurgery,” IEEE J. Sel. Top. Quantum Electron.16(4), 781–792 (2010).
[CrossRef] [PubMed]

Gehlbach, P. L.

C. Song, P. L. Gehlbach, and J. U. Kang, “Active tremor cancellation by a ‘smart’ handheld vitreoretinal microsurgical tool using swept source optical coherence tomography,” Opt. Express20(21), 23414–23421 (2012).
[CrossRef] [PubMed]

X. He, M. A. Balicki, J. U. Kang, P. L. Gehlbach, J. T. Handa, R. H. Taylor, and I. I. Iordachita, “Force sensing micro-forceps with integrated fiber Bragg grating for vitreoretinal surgery,” Proc. SPIE8218, 82180W, 82180W-7 (2012).
[CrossRef]

Han, J.

K. Zhang, W. Wang, J. Han, and J. U. Kang, “A surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography,” IEEE Trans. Biomed. Eng.56(9), 2318–2321 (2009).
[CrossRef] [PubMed]

Han, J. H.

J. U. Kang, J. H. Han, X. Liu, and K. Zhang, “Common-path optical coherence tomography for biomedical imaging and sensing,” J. Opt. Soc. Korea14(1), 1–13 (2010).
[CrossRef] [PubMed]

J. U. Kang, J. H. Han, X. Liu, K. Zhang, C. G. Song, and P. Gehlbach, “Endoscopic functional Fourier domain common path optical coherence tomography for microsurgery,” IEEE J. Sel. Top. Quantum Electron.16(4), 781–792 (2010).
[CrossRef] [PubMed]

Handa, J. T.

X. He, M. A. Balicki, J. U. Kang, P. L. Gehlbach, J. T. Handa, R. H. Taylor, and I. I. Iordachita, “Force sensing micro-forceps with integrated fiber Bragg grating for vitreoretinal surgery,” Proc. SPIE8218, 82180W, 82180W-7 (2012).
[CrossRef]

He, X.

X. He, M. A. Balicki, J. U. Kang, P. L. Gehlbach, J. T. Handa, R. H. Taylor, and I. I. Iordachita, “Force sensing micro-forceps with integrated fiber Bragg grating for vitreoretinal surgery,” Proc. SPIE8218, 82180W, 82180W-7 (2012).
[CrossRef]

Huang, Y.

Hubschman, J.-P.

J.-P. Hubschman, J.-L. Bourges, W. Choi, A. Mozayan, A. Tsirbas, C.-J. Kim, and S.-D. Schwartz, “‘The Microhand’: a new concept of micro-forceps for ocular robotic surgery,” Nat. Eye24(2), 364–367 (2010).
[CrossRef]

Ikuta, K.

K. Ikuta, T. Kato, and S. Nagata, “Development of micro-active forceps for future microsurgery,” Minim. Invasive Ther. Allied Technol.10(4-5), 209–213 (2001).
[CrossRef] [PubMed]

Iordachita, I. I.

X. He, M. A. Balicki, J. U. Kang, P. L. Gehlbach, J. T. Handa, R. H. Taylor, and I. I. Iordachita, “Force sensing micro-forceps with integrated fiber Bragg grating for vitreoretinal surgery,” Proc. SPIE8218, 82180W, 82180W-7 (2012).
[CrossRef]

Kan, K.

T. Kawai, K. Nishizawa, F. Tajima, K. Kan, M. Fujie, K. Takakura, S. Kobayashi, and T. Dohi, “Development of exchangeable microforceps for a micromanipulator system,” Adv. Robot.15(3), 301–305 (2001).
[CrossRef]

Kang, J. U.

X. He, M. A. Balicki, J. U. Kang, P. L. Gehlbach, J. T. Handa, R. H. Taylor, and I. I. Iordachita, “Force sensing micro-forceps with integrated fiber Bragg grating for vitreoretinal surgery,” Proc. SPIE8218, 82180W, 82180W-7 (2012).
[CrossRef]

Y. Huang, X. Liu, C. Song, and J. U. Kang, “Motion-compensated hand-held common-path Fourier-domain optical coherence tomography probe for image-guided intervention,” Biomed. Opt. Express3(12), 3105–3118 (2012).
[CrossRef] [PubMed]

C. Song, P. L. Gehlbach, and J. U. Kang, “Active tremor cancellation by a ‘smart’ handheld vitreoretinal microsurgical tool using swept source optical coherence tomography,” Opt. Express20(21), 23414–23421 (2012).
[CrossRef] [PubMed]

J. U. Kang, J. H. Han, X. Liu, K. Zhang, C. G. Song, and P. Gehlbach, “Endoscopic functional Fourier domain common path optical coherence tomography for microsurgery,” IEEE J. Sel. Top. Quantum Electron.16(4), 781–792 (2010).
[CrossRef] [PubMed]

J. U. Kang, J. H. Han, X. Liu, and K. Zhang, “Common-path optical coherence tomography for biomedical imaging and sensing,” J. Opt. Soc. Korea14(1), 1–13 (2010).
[CrossRef] [PubMed]

K. Zhang, W. Wang, J. Han, and J. U. Kang, “A surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography,” IEEE Trans. Biomed. Eng.56(9), 2318–2321 (2009).
[CrossRef] [PubMed]

Kato, T.

K. Ikuta, T. Kato, and S. Nagata, “Development of micro-active forceps for future microsurgery,” Minim. Invasive Ther. Allied Technol.10(4-5), 209–213 (2001).
[CrossRef] [PubMed]

Kawai, T.

T. Kawai, K. Nishizawa, F. Tajima, K. Kan, M. Fujie, K. Takakura, S. Kobayashi, and T. Dohi, “Development of exchangeable microforceps for a micromanipulator system,” Adv. Robot.15(3), 301–305 (2001).
[CrossRef]

Kim, C.-J.

J.-P. Hubschman, J.-L. Bourges, W. Choi, A. Mozayan, A. Tsirbas, C.-J. Kim, and S.-D. Schwartz, “‘The Microhand’: a new concept of micro-forceps for ocular robotic surgery,” Nat. Eye24(2), 364–367 (2010).
[CrossRef]

Kobayashi, S.

T. Kawai, K. Nishizawa, F. Tajima, K. Kan, M. Fujie, K. Takakura, S. Kobayashi, and T. Dohi, “Development of exchangeable microforceps for a micromanipulator system,” Adv. Robot.15(3), 301–305 (2001).
[CrossRef]

Liu, X.

Mozayan, A.

J.-P. Hubschman, J.-L. Bourges, W. Choi, A. Mozayan, A. Tsirbas, C.-J. Kim, and S.-D. Schwartz, “‘The Microhand’: a new concept of micro-forceps for ocular robotic surgery,” Nat. Eye24(2), 364–367 (2010).
[CrossRef]

Nagata, S.

K. Ikuta, T. Kato, and S. Nagata, “Development of micro-active forceps for future microsurgery,” Minim. Invasive Ther. Allied Technol.10(4-5), 209–213 (2001).
[CrossRef] [PubMed]

Nishizawa, K.

T. Kawai, K. Nishizawa, F. Tajima, K. Kan, M. Fujie, K. Takakura, S. Kobayashi, and T. Dohi, “Development of exchangeable microforceps for a micromanipulator system,” Adv. Robot.15(3), 301–305 (2001).
[CrossRef]

Riviere, C. N.

C. N. Riviere, J. Gangloff, and M. de Mathelin, “Robotic compensation of biological motion to enhance surgical accuracy,” Proc. IEEE94(9), 1705–1716 (2006).
[CrossRef]

Schwartz, S.-D.

J.-P. Hubschman, J.-L. Bourges, W. Choi, A. Mozayan, A. Tsirbas, C.-J. Kim, and S.-D. Schwartz, “‘The Microhand’: a new concept of micro-forceps for ocular robotic surgery,” Nat. Eye24(2), 364–367 (2010).
[CrossRef]

Song, C.

Song, C. G.

J. U. Kang, J. H. Han, X. Liu, K. Zhang, C. G. Song, and P. Gehlbach, “Endoscopic functional Fourier domain common path optical coherence tomography for microsurgery,” IEEE J. Sel. Top. Quantum Electron.16(4), 781–792 (2010).
[CrossRef] [PubMed]

Tajima, F.

T. Kawai, K. Nishizawa, F. Tajima, K. Kan, M. Fujie, K. Takakura, S. Kobayashi, and T. Dohi, “Development of exchangeable microforceps for a micromanipulator system,” Adv. Robot.15(3), 301–305 (2001).
[CrossRef]

Takakura, K.

T. Kawai, K. Nishizawa, F. Tajima, K. Kan, M. Fujie, K. Takakura, S. Kobayashi, and T. Dohi, “Development of exchangeable microforceps for a micromanipulator system,” Adv. Robot.15(3), 301–305 (2001).
[CrossRef]

Taylor, R. H.

X. He, M. A. Balicki, J. U. Kang, P. L. Gehlbach, J. T. Handa, R. H. Taylor, and I. I. Iordachita, “Force sensing micro-forceps with integrated fiber Bragg grating for vitreoretinal surgery,” Proc. SPIE8218, 82180W, 82180W-7 (2012).
[CrossRef]

Tsirbas, A.

J.-P. Hubschman, J.-L. Bourges, W. Choi, A. Mozayan, A. Tsirbas, C.-J. Kim, and S.-D. Schwartz, “‘The Microhand’: a new concept of micro-forceps for ocular robotic surgery,” Nat. Eye24(2), 364–367 (2010).
[CrossRef]

Wang, W.

K. Zhang, W. Wang, J. Han, and J. U. Kang, “A surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography,” IEEE Trans. Biomed. Eng.56(9), 2318–2321 (2009).
[CrossRef] [PubMed]

Zhang, K.

J. U. Kang, J. H. Han, X. Liu, and K. Zhang, “Common-path optical coherence tomography for biomedical imaging and sensing,” J. Opt. Soc. Korea14(1), 1–13 (2010).
[CrossRef] [PubMed]

J. U. Kang, J. H. Han, X. Liu, K. Zhang, C. G. Song, and P. Gehlbach, “Endoscopic functional Fourier domain common path optical coherence tomography for microsurgery,” IEEE J. Sel. Top. Quantum Electron.16(4), 781–792 (2010).
[CrossRef] [PubMed]

K. Zhang, W. Wang, J. Han, and J. U. Kang, “A surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography,” IEEE Trans. Biomed. Eng.56(9), 2318–2321 (2009).
[CrossRef] [PubMed]

Adv. Robot. (1)

T. Kawai, K. Nishizawa, F. Tajima, K. Kan, M. Fujie, K. Takakura, S. Kobayashi, and T. Dohi, “Development of exchangeable microforceps for a micromanipulator system,” Adv. Robot.15(3), 301–305 (2001).
[CrossRef]

Biomed. Opt. Express (1)

IEEE J. Sel. Top. Quantum Electron. (1)

J. U. Kang, J. H. Han, X. Liu, K. Zhang, C. G. Song, and P. Gehlbach, “Endoscopic functional Fourier domain common path optical coherence tomography for microsurgery,” IEEE J. Sel. Top. Quantum Electron.16(4), 781–792 (2010).
[CrossRef] [PubMed]

IEEE Trans. Biomed. Eng. (1)

K. Zhang, W. Wang, J. Han, and J. U. Kang, “A surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography,” IEEE Trans. Biomed. Eng.56(9), 2318–2321 (2009).
[CrossRef] [PubMed]

J. Opt. Soc. Korea (1)

Minim. Invasive Ther. Allied Technol. (1)

K. Ikuta, T. Kato, and S. Nagata, “Development of micro-active forceps for future microsurgery,” Minim. Invasive Ther. Allied Technol.10(4-5), 209–213 (2001).
[CrossRef] [PubMed]

Nat. Eye (1)

J.-P. Hubschman, J.-L. Bourges, W. Choi, A. Mozayan, A. Tsirbas, C.-J. Kim, and S.-D. Schwartz, “‘The Microhand’: a new concept of micro-forceps for ocular robotic surgery,” Nat. Eye24(2), 364–367 (2010).
[CrossRef]

Opt. Express (1)

Proc. IEEE (1)

C. N. Riviere, J. Gangloff, and M. de Mathelin, “Robotic compensation of biological motion to enhance surgical accuracy,” Proc. IEEE94(9), 1705–1716 (2006).
[CrossRef]

Proc. SPIE (1)

X. He, M. A. Balicki, J. U. Kang, P. L. Gehlbach, J. T. Handa, R. H. Taylor, and I. I. Iordachita, “Force sensing micro-forceps with integrated fiber Bragg grating for vitreoretinal surgery,” Proc. SPIE8218, 82180W, 82180W-7 (2012).
[CrossRef]

Other (1)

I. Kuru, B. Gonenc, M. Balicki, J. Handa, P. Gehlbach, R. H. Taylor, and I. Iordachita, “Force sensing micro-forceps for robot assisted retinal surgery,” in Proceedings of IEEE Conference on Engineering in Medicine and Biology Society (Institute of Electrical and Electronics Engineers, San Diego, 2012), pp.1401–1404.
[CrossRef]

Supplementary Material (2)

» Media 1: MPG (3650 KB)     
» Media 2: MPG (4288 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Handheld SMART micro-forceps for microsurgery. (a) CAD cross-sectional image AF: Alcon forceps, FH: front holder, BH: back holder, J: joint, T: tail, PM: piezoelectric motor. (b) Photo image of the implemented SMART micro-forceps prototype. (c) Handheld SMART micro-forceps. (d) A magnified view of optical fiber attached to the finger of the micro-forceps (b), (e) The asymmetric configuration of two fingers, i and o: inside and outside of the fingers, h: height error during grasping, red line (optical fiber), full line (open grasp), dotted line (closed grasp).

Fig. 2
Fig. 2

Schematic of the SMART micro-forceps based on CP SS-OCT operating at the center wavelength of 1060 nm and feedback control scheme at an update speed of 500 Hz.

Fig. 3
Fig. 3

Comparison of tool tip position relative to the target surface during freehand grasp (blue line) and SMART assisted grasp (red line) using a dry phantom (white paper). (a) Two attempts to grasp starting from a defined offset height of 1000 µm for 10 seconds. The arrows indicate the tip moment during grasp events. (b) The Fourier analysis of the two tip movement graphs, (a). (c) Real-time video image (Media 1) showing freehand grasp attempts and SMART assisted grasp attempts on a thick white paper.

Fig. 4
Fig. 4

Height histogram and RMSE of SMART micro-forceps in terms of grasp mode and grasp duration. (a) Height data analysis of the freehand, SMART assisted and in fixed position (two grasps for 10 seconds and one during 1 second) averaged from 5 data sets. (b) Height comparison according to three different durations of SMART assisted grasp, which are averaged from 10 data sets; 1 second and 5 second grasps indicate sustained grasping every 5 seconds; 10 second grasp indicates that the grasp was sustained over 10 seconds.

Fig. 5
Fig. 5

Comparison of freehand peeling (blue line) and SMART assisted peeling (red line) on the egg shell. (a) Continuous attempts to peel the membrane at a defined offset height of 500 µm. Each arrow indicates the moment of a grasp and the black arrow indicates a next attempt. (b) The Fourier analysis of two height signals, (a). (c) Real-time video image (Media 2) shows a comparison between freehand and SMART assisted peeling of a thin egg membrane.

Metrics