Abstract

We demonstrated the feasibility of a CMOS-based spectral domain OCT (SD-OCT) for versatile ophthalmic applications of imaging the corneal epithelium, limbus, ocular surface, contact lens, crystalline lens, retina, and full eye in vivo. The system was based on a single spectrometer and an alternating reference arm with four mirrors. A galvanometer scanner was used to switch the reference beam among the four mirrors, depending on the imaging application. An axial resolution of 7.7 μm in air, a scan depth of up to 37.7 mm in air, and a scan speed of up to 70,000 A-lines per second were achieved. The approach has the capability to provide high-resolution imaging of the corneal epithelium, contact lens, ocular surface, and tear meniscus. Using two reference mirrors, the zero delay lines were alternatively placed on the front cornea or on the back lens. The entire ocular anterior segment was imaged by registering and overlapping the two images. The full eye through the pupil was measured when the reference arm was switched among the four reference mirrors. After mounting a 60 D lens in the sample arm, this SD-OCT was used to image the retina, including the macula and optical nerve head. This system demonstrates versatility and simplicity for multi-purpose ophthalmic applications.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. M. V. Sarunic, S. Asrani, and J. A. Izatt, “Imaging the ocular anterior segment with real-time, full-range Fourier-domain optical coherence tomography,” Arch. Ophthalmol.126(4), 537–542 (2008).
    [CrossRef] [PubMed]
  3. H. W. Jeong, S. W. Lee, and B. M. Kim, “Spectral-domain OCT with dual illumination and interlaced detection for simultaneous anterior segment and retina imaging,” Opt. Express20(17), 19148–19159 (2012).
    [CrossRef] [PubMed]
  4. K. Bizheva, N. Hutchings, L. Sorbara, A. A. Moayed, and T. Simpson, “In vivo volumetric imaging of the human corneo-scleral limbus with spectral domain OCT,” Biomed. Opt. Express2(7), 1794–1802 (2011).
    [CrossRef] [PubMed]
  5. Y. Li, O. Tan, R. Brass, J. L. Weiss, and D. Huang, “Corneal epithelial thickness mapping by Fourier-domain optical coherence tomography in normal and keratoconic eyes,” Ophthalmology119(12), 2425–2433 (2012).
    [CrossRef] [PubMed]
  6. H. Furukawa, H. Hiro-Oka, N. Satoh, R. Yoshimura, D. Choi, M. Nakanishi, A. Igarashi, H. Ishikawa, K. Ohbayashi, and K. Shimizu, “Full-range imaging of eye accommodation by high-speed long-depth range optical frequency domain imaging,” Biomed. Opt. Express1(5), 1491–1501 (2010).
    [CrossRef] [PubMed]
  7. M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express17(17), 14880–14894 (2009).
    [CrossRef] [PubMed]
  8. B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
    [CrossRef] [PubMed]
  9. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express3(11), 2733–2751 (2012).
    [CrossRef] [PubMed]
  10. I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express17(6), 4842–4858 (2009).
    [CrossRef] [PubMed]
  11. J. Jungwirth, B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography,” J. Biomed. Opt.14(5), 050501 (2009).
    [CrossRef] [PubMed]
  12. C. Zhou, J. Wang, and S. Jiao, “Dual channel dual focus optical coherence tomography for imaging accommodation of the eye,” Opt. Express17(11), 8947–8955 (2009).
    [CrossRef] [PubMed]
  13. C. Dai, C. Zhou, S. Fan, Z. Chen, X. Chai, Q. Ren, and S. Jiao, “Optical coherence tomography for whole eye segment imaging,” Opt. Express20(6), 6109–6115 (2012).
    [CrossRef] [PubMed]
  14. C. Du, M. Shen, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Anterior segment biometry during accommodation imaged with ultralong scan depth optical coherence tomography,” Ophthalmology119(12), 2479–2485 (2012).
    [CrossRef] [PubMed]
  15. C. Du, D. Zhu, M. Shen, M. Li, M. R. Wang, and J. Wang, “Novel optical coherence tomography for imaging the entire anterior segment of the eye,” Invest Ophthalmol. Vis. Sci.52, ARVO E-Abstract 3023 (2011).
  16. M. Ruggeri, S. R. Uhlhorn, C. De Freitas, A. Ho, F. Manns, and J. M. Parel, “Imaging and full-length biometry of the eye during accommodation using spectral domain OCT with an optical switch,” Biomed. Opt. Express3(7), 1506–1520 (2012).
    [CrossRef] [PubMed]
  17. American National Standards Institute, “American national standard for safe use of lasers” (Laser Institute of America, Orlando, FL, 2000), pp. 45–49.
  18. H. Wang, Y. Pan, and A. M. Rollins, “Extending the effective imaging range of Fourier-domain optical coherence tomography using a fiber optic switch,” Opt. Lett.33(22), 2632–2634 (2008).
    [CrossRef] [PubMed]
  19. S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express2(12), 3232–3247 (2011).
    [CrossRef] [PubMed]
  20. J. Ai and L. V. Wang, “Spectral-domain optical coherence tomography: Removal of autocorrelation using an optical switch,” Appl. Phys. Lett.88(11), 111115 (2006).
    [CrossRef]
  21. M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12(11), 2404–2422 (2004).
    [CrossRef] [PubMed]
  22. M. Shen, L. Cui, C. Riley, M. R. Wang, and J. Wang, “Characterization of soft contact lens edge fitting using ultra-high resolution and ultra-long scan depth optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(7), 4091–4097 (2011).
    [CrossRef] [PubMed]
  23. C. Du, J. Wang, L. Cui, M. Shen, and Y. Yuan, “Vertical and horizontal corneal epithelial thickness profiles determined by ultrahigh resolution optical coherence tomography,” Cornea31(9), 1036–1043 (2012).
    [CrossRef] [PubMed]
  24. M. Shen, L. Cui, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Extended scan depth optical coherence tomography for evaluating ocular surface shape,” J. Biomed. Opt.16(5), 056007 (2011).
    [CrossRef] [PubMed]
  25. Y. Shao, A. Tao, H. Jiang, M. Shen, J. Zhong, F. Lu, and J. Wang, “Simultaneous real-time imaging of the ocular anterior segment including the ciliary muscle during accommodation,” Biomed. Opt. Express4(3), 466–480 (2013).
    [CrossRef] [PubMed]
  26. D. Zhu, M. Shen, H. Jiang, M. Li, M. R. Wang, Y. Wang, L. Ge, J. Qu, and J. Wang, “Broadband superluminescent diode-based ultrahigh resolution optical coherence tomography for ophthalmic imaging,” J. Biomed. Opt.16(12), 126006 (2011).
    [CrossRef] [PubMed]
  27. J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol.21(11), 1361–1367 (2003).
    [CrossRef] [PubMed]
  28. T. Schmoll, A. Unterhuber, C. Kolbitsch, T. Le, A. Stingl, and R. Leitgeb, “Precise thickness measurements of Bowman’s layer, epithelium, and tear film,” Optom. Vis. Sci.89(5), E795–E802 (2012).
    [CrossRef] [PubMed]
  29. H. Jiang, F. Abukhalil, M. Shen, G. Gregori, B. L. Lam, Y. Wang, and J. Wang, “Slit-lamp-adapted ultra-high resolution OCT for imaging the posterior segment of the eye,” Ophthalmic Surg. Lasers Imaging43(1), 76–81 (2012).
    [CrossRef] [PubMed]
  30. J. Wang, M. A. Shousha, V. L. Perez, C. L. Karp, S. H. Yoo, M. Shen, L. Cui, V. Hurmeric, C. Du, D. Zhu, Q. Chen, and M. Li, “Ultra-high resolution optical coherence tomography for imaging the anterior segment of the eye,” Ophthalmic Surg. Lasers Imaging42(4Suppl), S15–S27 (2011).
    [CrossRef] [PubMed]
  31. K. L. Schulle and D. A. Berntsen, “Repeatability of on- and off-axis eye length measurements using the lenstar,” Optom. Vis. Sci.90(1), 16–22 (2013).
    [CrossRef] [PubMed]
  32. J. Zhao, Z. Chen, Z. Zhou, L. Ding, and X. Zhou, “Evaluation of the repeatability of the Lenstar and comparison with two other non-contact biometric devices in myopes,” Clin. Exp. Optom.96(1), 92–99 (2013).
    [PubMed]
  33. J. Zhong, Y. Shao, A. Tao, H. Jiang, C. Liu, and J. Wang, “Automatic axial biometry of the whole eye using ultra-long scan depth optical coherence tomography,” Invest Ophthalmol. Vis. Sci.54, ARVO E-Abstract 1498 (2013).
  34. Y. Li, C. Lowder, X. Zhang, and D. Huang, “Anterior chamber cell grading by optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.54(1), 258–265 (2013).
    [CrossRef] [PubMed]
  35. J. J. Liu, A. Witkin, M. Adhi, I. Grulkowski, M. Kraus, C. Lu, and J. Hornegger, “Enhanced vitreal imaging of the vitreoretinal interface in normal eyes using swept-source OCT,” Invest Ophthalmol. Vis. Sci.54, ARVO E-Abstract 3167 (2013).
  36. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003).
    [CrossRef] [PubMed]
  37. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett.28(21), 2067–2069 (2003).
    [CrossRef] [PubMed]
  38. M. Pircher, B. Baumann, E. Götzinger, H. Sattmann, and C. K. Hitzenberger, “Simultaneous SLO/OCT imaging of the human retina with axial eye motion correction,” Opt. Express15(25), 16922–16932 (2007).
    [CrossRef] [PubMed]
  39. C. de Freitas, M. Ruggeri, F. Manns, A. Ho, and J. M. Parel, “In vivo measurement of the average refractive index of the human crystalline lens using optical coherence tomography,” Opt. Lett.38(2), 85–87 (2013).
    [CrossRef] [PubMed]
  40. A. Sakamoto, M. Hangai, and N. Yoshimura, “Spectral-domain optical coherence tomography with multiple B-scan averaging for enhanced imaging of retinal diseases,” Ophthalmology115(6), 1071–1078, e7 (2008).
    [CrossRef] [PubMed]
  41. Q. Chen, J. Wang, A. Tao, M. Shen, S. Jiao, and F. Lu, “Ultrahigh-resolution measurement by optical coherence tomography of dynamic tear film changes on contact lenses,” Invest. Ophthalmol. Vis. Sci.51(4), 1988–1993 (2010).
    [CrossRef] [PubMed]

2013

K. L. Schulle and D. A. Berntsen, “Repeatability of on- and off-axis eye length measurements using the lenstar,” Optom. Vis. Sci.90(1), 16–22 (2013).
[CrossRef] [PubMed]

J. Zhao, Z. Chen, Z. Zhou, L. Ding, and X. Zhou, “Evaluation of the repeatability of the Lenstar and comparison with two other non-contact biometric devices in myopes,” Clin. Exp. Optom.96(1), 92–99 (2013).
[PubMed]

J. Zhong, Y. Shao, A. Tao, H. Jiang, C. Liu, and J. Wang, “Automatic axial biometry of the whole eye using ultra-long scan depth optical coherence tomography,” Invest Ophthalmol. Vis. Sci.54, ARVO E-Abstract 1498 (2013).

Y. Li, C. Lowder, X. Zhang, and D. Huang, “Anterior chamber cell grading by optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.54(1), 258–265 (2013).
[CrossRef] [PubMed]

J. J. Liu, A. Witkin, M. Adhi, I. Grulkowski, M. Kraus, C. Lu, and J. Hornegger, “Enhanced vitreal imaging of the vitreoretinal interface in normal eyes using swept-source OCT,” Invest Ophthalmol. Vis. Sci.54, ARVO E-Abstract 3167 (2013).

C. de Freitas, M. Ruggeri, F. Manns, A. Ho, and J. M. Parel, “In vivo measurement of the average refractive index of the human crystalline lens using optical coherence tomography,” Opt. Lett.38(2), 85–87 (2013).
[CrossRef] [PubMed]

Y. Shao, A. Tao, H. Jiang, M. Shen, J. Zhong, F. Lu, and J. Wang, “Simultaneous real-time imaging of the ocular anterior segment including the ciliary muscle during accommodation,” Biomed. Opt. Express4(3), 466–480 (2013).
[CrossRef] [PubMed]

2012

C. Dai, C. Zhou, S. Fan, Z. Chen, X. Chai, Q. Ren, and S. Jiao, “Optical coherence tomography for whole eye segment imaging,” Opt. Express20(6), 6109–6115 (2012).
[CrossRef] [PubMed]

M. Ruggeri, S. R. Uhlhorn, C. De Freitas, A. Ho, F. Manns, and J. M. Parel, “Imaging and full-length biometry of the eye during accommodation using spectral domain OCT with an optical switch,” Biomed. Opt. Express3(7), 1506–1520 (2012).
[CrossRef] [PubMed]

H. W. Jeong, S. W. Lee, and B. M. Kim, “Spectral-domain OCT with dual illumination and interlaced detection for simultaneous anterior segment and retina imaging,” Opt. Express20(17), 19148–19159 (2012).
[CrossRef] [PubMed]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express3(11), 2733–2751 (2012).
[CrossRef] [PubMed]

T. Schmoll, A. Unterhuber, C. Kolbitsch, T. Le, A. Stingl, and R. Leitgeb, “Precise thickness measurements of Bowman’s layer, epithelium, and tear film,” Optom. Vis. Sci.89(5), E795–E802 (2012).
[CrossRef] [PubMed]

H. Jiang, F. Abukhalil, M. Shen, G. Gregori, B. L. Lam, Y. Wang, and J. Wang, “Slit-lamp-adapted ultra-high resolution OCT for imaging the posterior segment of the eye,” Ophthalmic Surg. Lasers Imaging43(1), 76–81 (2012).
[CrossRef] [PubMed]

C. Du, J. Wang, L. Cui, M. Shen, and Y. Yuan, “Vertical and horizontal corneal epithelial thickness profiles determined by ultrahigh resolution optical coherence tomography,” Cornea31(9), 1036–1043 (2012).
[CrossRef] [PubMed]

Y. Li, O. Tan, R. Brass, J. L. Weiss, and D. Huang, “Corneal epithelial thickness mapping by Fourier-domain optical coherence tomography in normal and keratoconic eyes,” Ophthalmology119(12), 2425–2433 (2012).
[CrossRef] [PubMed]

C. Du, M. Shen, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Anterior segment biometry during accommodation imaged with ultralong scan depth optical coherence tomography,” Ophthalmology119(12), 2479–2485 (2012).
[CrossRef] [PubMed]

2011

C. Du, D. Zhu, M. Shen, M. Li, M. R. Wang, and J. Wang, “Novel optical coherence tomography for imaging the entire anterior segment of the eye,” Invest Ophthalmol. Vis. Sci.52, ARVO E-Abstract 3023 (2011).

D. Zhu, M. Shen, H. Jiang, M. Li, M. R. Wang, Y. Wang, L. Ge, J. Qu, and J. Wang, “Broadband superluminescent diode-based ultrahigh resolution optical coherence tomography for ophthalmic imaging,” J. Biomed. Opt.16(12), 126006 (2011).
[CrossRef] [PubMed]

M. Shen, L. Cui, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Extended scan depth optical coherence tomography for evaluating ocular surface shape,” J. Biomed. Opt.16(5), 056007 (2011).
[CrossRef] [PubMed]

J. Wang, M. A. Shousha, V. L. Perez, C. L. Karp, S. H. Yoo, M. Shen, L. Cui, V. Hurmeric, C. Du, D. Zhu, Q. Chen, and M. Li, “Ultra-high resolution optical coherence tomography for imaging the anterior segment of the eye,” Ophthalmic Surg. Lasers Imaging42(4Suppl), S15–S27 (2011).
[CrossRef] [PubMed]

M. Shen, L. Cui, C. Riley, M. R. Wang, and J. Wang, “Characterization of soft contact lens edge fitting using ultra-high resolution and ultra-long scan depth optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(7), 4091–4097 (2011).
[CrossRef] [PubMed]

K. Bizheva, N. Hutchings, L. Sorbara, A. A. Moayed, and T. Simpson, “In vivo volumetric imaging of the human corneo-scleral limbus with spectral domain OCT,” Biomed. Opt. Express2(7), 1794–1802 (2011).
[CrossRef] [PubMed]

S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express2(12), 3232–3247 (2011).
[CrossRef] [PubMed]

2010

2009

2008

M. V. Sarunic, S. Asrani, and J. A. Izatt, “Imaging the ocular anterior segment with real-time, full-range Fourier-domain optical coherence tomography,” Arch. Ophthalmol.126(4), 537–542 (2008).
[CrossRef] [PubMed]

A. Sakamoto, M. Hangai, and N. Yoshimura, “Spectral-domain optical coherence tomography with multiple B-scan averaging for enhanced imaging of retinal diseases,” Ophthalmology115(6), 1071–1078, e7 (2008).
[CrossRef] [PubMed]

H. Wang, Y. Pan, and A. M. Rollins, “Extending the effective imaging range of Fourier-domain optical coherence tomography using a fiber optic switch,” Opt. Lett.33(22), 2632–2634 (2008).
[CrossRef] [PubMed]

2007

2006

J. Ai and L. V. Wang, “Spectral-domain optical coherence tomography: Removal of autocorrelation using an optical switch,” Appl. Phys. Lett.88(11), 111115 (2006).
[CrossRef]

2004

2003

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Abukhalil, F.

H. Jiang, F. Abukhalil, M. Shen, G. Gregori, B. L. Lam, Y. Wang, and J. Wang, “Slit-lamp-adapted ultra-high resolution OCT for imaging the posterior segment of the eye,” Ophthalmic Surg. Lasers Imaging43(1), 76–81 (2012).
[CrossRef] [PubMed]

Adhi, M.

J. J. Liu, A. Witkin, M. Adhi, I. Grulkowski, M. Kraus, C. Lu, and J. Hornegger, “Enhanced vitreal imaging of the vitreoretinal interface in normal eyes using swept-source OCT,” Invest Ophthalmol. Vis. Sci.54, ARVO E-Abstract 3167 (2013).

Ai, J.

J. Ai and L. V. Wang, “Spectral-domain optical coherence tomography: Removal of autocorrelation using an optical switch,” Appl. Phys. Lett.88(11), 111115 (2006).
[CrossRef]

Asrani, S.

M. V. Sarunic, S. Asrani, and J. A. Izatt, “Imaging the ocular anterior segment with real-time, full-range Fourier-domain optical coherence tomography,” Arch. Ophthalmol.126(4), 537–542 (2008).
[CrossRef] [PubMed]

Barry, S.

Baumann, B.

Berntsen, D. A.

K. L. Schulle and D. A. Berntsen, “Repeatability of on- and off-axis eye length measurements using the lenstar,” Optom. Vis. Sci.90(1), 16–22 (2013).
[CrossRef] [PubMed]

Bizheva, K.

Bouma, B. E.

Brass, R.

Y. Li, O. Tan, R. Brass, J. L. Weiss, and D. Huang, “Corneal epithelial thickness mapping by Fourier-domain optical coherence tomography in normal and keratoconic eyes,” Ophthalmology119(12), 2425–2433 (2012).
[CrossRef] [PubMed]

Cable, A. E.

Cense, B.

Chai, X.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, Q.

J. Wang, M. A. Shousha, V. L. Perez, C. L. Karp, S. H. Yoo, M. Shen, L. Cui, V. Hurmeric, C. Du, D. Zhu, Q. Chen, and M. Li, “Ultra-high resolution optical coherence tomography for imaging the anterior segment of the eye,” Ophthalmic Surg. Lasers Imaging42(4Suppl), S15–S27 (2011).
[CrossRef] [PubMed]

Q. Chen, J. Wang, A. Tao, M. Shen, S. Jiao, and F. Lu, “Ultrahigh-resolution measurement by optical coherence tomography of dynamic tear film changes on contact lenses,” Invest. Ophthalmol. Vis. Sci.51(4), 1988–1993 (2010).
[CrossRef] [PubMed]

Chen, Z.

J. Zhao, Z. Chen, Z. Zhou, L. Ding, and X. Zhou, “Evaluation of the repeatability of the Lenstar and comparison with two other non-contact biometric devices in myopes,” Clin. Exp. Optom.96(1), 92–99 (2013).
[PubMed]

C. Dai, C. Zhou, S. Fan, Z. Chen, X. Chai, Q. Ren, and S. Jiao, “Optical coherence tomography for whole eye segment imaging,” Opt. Express20(6), 6109–6115 (2012).
[CrossRef] [PubMed]

Chia, N.

Choi, D.

Cui, L.

C. Du, J. Wang, L. Cui, M. Shen, and Y. Yuan, “Vertical and horizontal corneal epithelial thickness profiles determined by ultrahigh resolution optical coherence tomography,” Cornea31(9), 1036–1043 (2012).
[CrossRef] [PubMed]

M. Shen, L. Cui, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Extended scan depth optical coherence tomography for evaluating ocular surface shape,” J. Biomed. Opt.16(5), 056007 (2011).
[CrossRef] [PubMed]

M. Shen, L. Cui, C. Riley, M. R. Wang, and J. Wang, “Characterization of soft contact lens edge fitting using ultra-high resolution and ultra-long scan depth optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(7), 4091–4097 (2011).
[CrossRef] [PubMed]

J. Wang, M. A. Shousha, V. L. Perez, C. L. Karp, S. H. Yoo, M. Shen, L. Cui, V. Hurmeric, C. Du, D. Zhu, Q. Chen, and M. Li, “Ultra-high resolution optical coherence tomography for imaging the anterior segment of the eye,” Ophthalmic Surg. Lasers Imaging42(4Suppl), S15–S27 (2011).
[CrossRef] [PubMed]

Dai, C.

de Boer, J. F.

de Castro, A.

de Freitas, C.

Ding, L.

J. Zhao, Z. Chen, Z. Zhou, L. Ding, and X. Zhou, “Evaluation of the repeatability of the Lenstar and comparison with two other non-contact biometric devices in myopes,” Clin. Exp. Optom.96(1), 92–99 (2013).
[PubMed]

Du, C.

C. Du, J. Wang, L. Cui, M. Shen, and Y. Yuan, “Vertical and horizontal corneal epithelial thickness profiles determined by ultrahigh resolution optical coherence tomography,” Cornea31(9), 1036–1043 (2012).
[CrossRef] [PubMed]

C. Du, M. Shen, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Anterior segment biometry during accommodation imaged with ultralong scan depth optical coherence tomography,” Ophthalmology119(12), 2479–2485 (2012).
[CrossRef] [PubMed]

C. Du, D. Zhu, M. Shen, M. Li, M. R. Wang, and J. Wang, “Novel optical coherence tomography for imaging the entire anterior segment of the eye,” Invest Ophthalmol. Vis. Sci.52, ARVO E-Abstract 3023 (2011).

J. Wang, M. A. Shousha, V. L. Perez, C. L. Karp, S. H. Yoo, M. Shen, L. Cui, V. Hurmeric, C. Du, D. Zhu, Q. Chen, and M. Li, “Ultra-high resolution optical coherence tomography for imaging the anterior segment of the eye,” Ophthalmic Surg. Lasers Imaging42(4Suppl), S15–S27 (2011).
[CrossRef] [PubMed]

Duker, J.

Duker, J. S.

Fan, S.

Fercher, A.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J.

Fujimoto, J. G.

Furukawa, H.

Ge, L.

D. Zhu, M. Shen, H. Jiang, M. Li, M. R. Wang, Y. Wang, L. Ge, J. Qu, and J. Wang, “Broadband superluminescent diode-based ultrahigh resolution optical coherence tomography for ophthalmic imaging,” J. Biomed. Opt.16(12), 126006 (2011).
[CrossRef] [PubMed]

Gora, M.

Gorczynska, I.

Götzinger, E.

J. Jungwirth, B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography,” J. Biomed. Opt.14(5), 050501 (2009).
[CrossRef] [PubMed]

M. Pircher, B. Baumann, E. Götzinger, H. Sattmann, and C. K. Hitzenberger, “Simultaneous SLO/OCT imaging of the human retina with axial eye motion correction,” Opt. Express15(25), 16922–16932 (2007).
[CrossRef] [PubMed]

Gregori, G.

H. Jiang, F. Abukhalil, M. Shen, G. Gregori, B. L. Lam, Y. Wang, and J. Wang, “Slit-lamp-adapted ultra-high resolution OCT for imaging the posterior segment of the eye,” Ophthalmic Surg. Lasers Imaging43(1), 76–81 (2012).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Grulkowski, I.

Hangai, M.

A. Sakamoto, M. Hangai, and N. Yoshimura, “Spectral-domain optical coherence tomography with multiple B-scan averaging for enhanced imaging of retinal diseases,” Ophthalmology115(6), 1071–1078, e7 (2008).
[CrossRef] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hiro-Oka, H.

Hitzenberger, C.

Hitzenberger, C. K.

J. Jungwirth, B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography,” J. Biomed. Opt.14(5), 050501 (2009).
[CrossRef] [PubMed]

M. Pircher, B. Baumann, E. Götzinger, H. Sattmann, and C. K. Hitzenberger, “Simultaneous SLO/OCT imaging of the human retina with axial eye motion correction,” Opt. Express15(25), 16922–16932 (2007).
[CrossRef] [PubMed]

Ho, A.

Hornegger, J.

J. J. Liu, A. Witkin, M. Adhi, I. Grulkowski, M. Kraus, C. Lu, and J. Hornegger, “Enhanced vitreal imaging of the vitreoretinal interface in normal eyes using swept-source OCT,” Invest Ophthalmol. Vis. Sci.54, ARVO E-Abstract 3167 (2013).

Huang, D.

Y. Li, C. Lowder, X. Zhang, and D. Huang, “Anterior chamber cell grading by optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.54(1), 258–265 (2013).
[CrossRef] [PubMed]

Y. Li, O. Tan, R. Brass, J. L. Weiss, and D. Huang, “Corneal epithelial thickness mapping by Fourier-domain optical coherence tomography in normal and keratoconic eyes,” Ophthalmology119(12), 2425–2433 (2012).
[CrossRef] [PubMed]

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Huber, R.

Hurmeric, V.

J. Wang, M. A. Shousha, V. L. Perez, C. L. Karp, S. H. Yoo, M. Shen, L. Cui, V. Hurmeric, C. Du, D. Zhu, Q. Chen, and M. Li, “Ultra-high resolution optical coherence tomography for imaging the anterior segment of the eye,” Ophthalmic Surg. Lasers Imaging42(4Suppl), S15–S27 (2011).
[CrossRef] [PubMed]

Hutchings, N.

Igarashi, A.

Ishikawa, H.

Izatt, J. A.

M. V. Sarunic, S. Asrani, and J. A. Izatt, “Imaging the ocular anterior segment with real-time, full-range Fourier-domain optical coherence tomography,” Arch. Ophthalmol.126(4), 537–542 (2008).
[CrossRef] [PubMed]

Jayaraman, V.

Jeong, H. W.

Jiang, H.

Y. Shao, A. Tao, H. Jiang, M. Shen, J. Zhong, F. Lu, and J. Wang, “Simultaneous real-time imaging of the ocular anterior segment including the ciliary muscle during accommodation,” Biomed. Opt. Express4(3), 466–480 (2013).
[CrossRef] [PubMed]

J. Zhong, Y. Shao, A. Tao, H. Jiang, C. Liu, and J. Wang, “Automatic axial biometry of the whole eye using ultra-long scan depth optical coherence tomography,” Invest Ophthalmol. Vis. Sci.54, ARVO E-Abstract 1498 (2013).

H. Jiang, F. Abukhalil, M. Shen, G. Gregori, B. L. Lam, Y. Wang, and J. Wang, “Slit-lamp-adapted ultra-high resolution OCT for imaging the posterior segment of the eye,” Ophthalmic Surg. Lasers Imaging43(1), 76–81 (2012).
[CrossRef] [PubMed]

D. Zhu, M. Shen, H. Jiang, M. Li, M. R. Wang, Y. Wang, L. Ge, J. Qu, and J. Wang, “Broadband superluminescent diode-based ultrahigh resolution optical coherence tomography for ophthalmic imaging,” J. Biomed. Opt.16(12), 126006 (2011).
[CrossRef] [PubMed]

Jiang, J.

Jiao, S.

Jungwirth, J.

J. Jungwirth, B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography,” J. Biomed. Opt.14(5), 050501 (2009).
[CrossRef] [PubMed]

Kaluzny, B. J.

Karnowski, K.

Karp, C. L.

J. Wang, M. A. Shousha, V. L. Perez, C. L. Karp, S. H. Yoo, M. Shen, L. Cui, V. Hurmeric, C. Du, D. Zhu, Q. Chen, and M. Li, “Ultra-high resolution optical coherence tomography for imaging the anterior segment of the eye,” Ophthalmic Surg. Lasers Imaging42(4Suppl), S15–S27 (2011).
[CrossRef] [PubMed]

Kim, B. M.

Ko, T.

Kolbitsch, C.

T. Schmoll, A. Unterhuber, C. Kolbitsch, T. Le, A. Stingl, and R. Leitgeb, “Precise thickness measurements of Bowman’s layer, epithelium, and tear film,” Optom. Vis. Sci.89(5), E795–E802 (2012).
[CrossRef] [PubMed]

Kowalczyk, A.

Kraus, M.

J. J. Liu, A. Witkin, M. Adhi, I. Grulkowski, M. Kraus, C. Lu, and J. Hornegger, “Enhanced vitreal imaging of the vitreoretinal interface in normal eyes using swept-source OCT,” Invest Ophthalmol. Vis. Sci.54, ARVO E-Abstract 3167 (2013).

Lam, B. L.

H. Jiang, F. Abukhalil, M. Shen, G. Gregori, B. L. Lam, Y. Wang, and J. Wang, “Slit-lamp-adapted ultra-high resolution OCT for imaging the posterior segment of the eye,” Ophthalmic Surg. Lasers Imaging43(1), 76–81 (2012).
[CrossRef] [PubMed]

Le, T.

T. Schmoll, A. Unterhuber, C. Kolbitsch, T. Le, A. Stingl, and R. Leitgeb, “Precise thickness measurements of Bowman’s layer, epithelium, and tear film,” Optom. Vis. Sci.89(5), E795–E802 (2012).
[CrossRef] [PubMed]

Lee, S. W.

Leitgeb, R.

T. Schmoll, A. Unterhuber, C. Kolbitsch, T. Le, A. Stingl, and R. Leitgeb, “Precise thickness measurements of Bowman’s layer, epithelium, and tear film,” Optom. Vis. Sci.89(5), E795–E802 (2012).
[CrossRef] [PubMed]

R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003).
[CrossRef] [PubMed]

Li, M.

C. Du, M. Shen, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Anterior segment biometry during accommodation imaged with ultralong scan depth optical coherence tomography,” Ophthalmology119(12), 2479–2485 (2012).
[CrossRef] [PubMed]

D. Zhu, M. Shen, H. Jiang, M. Li, M. R. Wang, Y. Wang, L. Ge, J. Qu, and J. Wang, “Broadband superluminescent diode-based ultrahigh resolution optical coherence tomography for ophthalmic imaging,” J. Biomed. Opt.16(12), 126006 (2011).
[CrossRef] [PubMed]

C. Du, D. Zhu, M. Shen, M. Li, M. R. Wang, and J. Wang, “Novel optical coherence tomography for imaging the entire anterior segment of the eye,” Invest Ophthalmol. Vis. Sci.52, ARVO E-Abstract 3023 (2011).

J. Wang, M. A. Shousha, V. L. Perez, C. L. Karp, S. H. Yoo, M. Shen, L. Cui, V. Hurmeric, C. Du, D. Zhu, Q. Chen, and M. Li, “Ultra-high resolution optical coherence tomography for imaging the anterior segment of the eye,” Ophthalmic Surg. Lasers Imaging42(4Suppl), S15–S27 (2011).
[CrossRef] [PubMed]

M. Shen, L. Cui, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Extended scan depth optical coherence tomography for evaluating ocular surface shape,” J. Biomed. Opt.16(5), 056007 (2011).
[CrossRef] [PubMed]

Li, Y.

Y. Li, C. Lowder, X. Zhang, and D. Huang, “Anterior chamber cell grading by optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.54(1), 258–265 (2013).
[CrossRef] [PubMed]

Y. Li, O. Tan, R. Brass, J. L. Weiss, and D. Huang, “Corneal epithelial thickness mapping by Fourier-domain optical coherence tomography in normal and keratoconic eyes,” Ophthalmology119(12), 2425–2433 (2012).
[CrossRef] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Liu, C.

J. Zhong, Y. Shao, A. Tao, H. Jiang, C. Liu, and J. Wang, “Automatic axial biometry of the whole eye using ultra-long scan depth optical coherence tomography,” Invest Ophthalmol. Vis. Sci.54, ARVO E-Abstract 1498 (2013).

Liu, J. J.

J. J. Liu, A. Witkin, M. Adhi, I. Grulkowski, M. Kraus, C. Lu, and J. Hornegger, “Enhanced vitreal imaging of the vitreoretinal interface in normal eyes using swept-source OCT,” Invest Ophthalmol. Vis. Sci.54, ARVO E-Abstract 3167 (2013).

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express3(11), 2733–2751 (2012).
[CrossRef] [PubMed]

Lowder, C.

Y. Li, C. Lowder, X. Zhang, and D. Huang, “Anterior chamber cell grading by optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.54(1), 258–265 (2013).
[CrossRef] [PubMed]

Lu, C.

J. J. Liu, A. Witkin, M. Adhi, I. Grulkowski, M. Kraus, C. Lu, and J. Hornegger, “Enhanced vitreal imaging of the vitreoretinal interface in normal eyes using swept-source OCT,” Invest Ophthalmol. Vis. Sci.54, ARVO E-Abstract 3167 (2013).

Lu, C. D.

Lu, F.

Y. Shao, A. Tao, H. Jiang, M. Shen, J. Zhong, F. Lu, and J. Wang, “Simultaneous real-time imaging of the ocular anterior segment including the ciliary muscle during accommodation,” Biomed. Opt. Express4(3), 466–480 (2013).
[CrossRef] [PubMed]

Q. Chen, J. Wang, A. Tao, M. Shen, S. Jiao, and F. Lu, “Ultrahigh-resolution measurement by optical coherence tomography of dynamic tear film changes on contact lenses,” Invest. Ophthalmol. Vis. Sci.51(4), 1988–1993 (2010).
[CrossRef] [PubMed]

Manns, F.

Marcos, S.

Moayed, A. A.

Nakanishi, M.

Ohbayashi, K.

Ortiz, S.

Pan, Y.

Parel, J. M.

Park, B. H.

Perez, V. L.

J. Wang, M. A. Shousha, V. L. Perez, C. L. Karp, S. H. Yoo, M. Shen, L. Cui, V. Hurmeric, C. Du, D. Zhu, Q. Chen, and M. Li, “Ultra-high resolution optical coherence tomography for imaging the anterior segment of the eye,” Ophthalmic Surg. Lasers Imaging42(4Suppl), S15–S27 (2011).
[CrossRef] [PubMed]

Pérez-Merino, P.

Pierce, M. C.

Pircher, M.

J. Jungwirth, B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography,” J. Biomed. Opt.14(5), 050501 (2009).
[CrossRef] [PubMed]

M. Pircher, B. Baumann, E. Götzinger, H. Sattmann, and C. K. Hitzenberger, “Simultaneous SLO/OCT imaging of the human retina with axial eye motion correction,” Opt. Express15(25), 16922–16932 (2007).
[CrossRef] [PubMed]

Potsaid, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Qu, J.

D. Zhu, M. Shen, H. Jiang, M. Li, M. R. Wang, Y. Wang, L. Ge, J. Qu, and J. Wang, “Broadband superluminescent diode-based ultrahigh resolution optical coherence tomography for ophthalmic imaging,” J. Biomed. Opt.16(12), 126006 (2011).
[CrossRef] [PubMed]

Ren, Q.

Riley, C.

M. Shen, L. Cui, C. Riley, M. R. Wang, and J. Wang, “Characterization of soft contact lens edge fitting using ultra-high resolution and ultra-long scan depth optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(7), 4091–4097 (2011).
[CrossRef] [PubMed]

Rollins, A. M.

Ruggeri, M.

Sakamoto, A.

A. Sakamoto, M. Hangai, and N. Yoshimura, “Spectral-domain optical coherence tomography with multiple B-scan averaging for enhanced imaging of retinal diseases,” Ophthalmology115(6), 1071–1078, e7 (2008).
[CrossRef] [PubMed]

Sarunic, M. V.

M. V. Sarunic, S. Asrani, and J. A. Izatt, “Imaging the ocular anterior segment with real-time, full-range Fourier-domain optical coherence tomography,” Arch. Ophthalmol.126(4), 537–542 (2008).
[CrossRef] [PubMed]

Satoh, N.

Sattmann, H.

Schmoll, T.

T. Schmoll, A. Unterhuber, C. Kolbitsch, T. Le, A. Stingl, and R. Leitgeb, “Precise thickness measurements of Bowman’s layer, epithelium, and tear film,” Optom. Vis. Sci.89(5), E795–E802 (2012).
[CrossRef] [PubMed]

Schulle, K. L.

K. L. Schulle and D. A. Berntsen, “Repeatability of on- and off-axis eye length measurements using the lenstar,” Optom. Vis. Sci.90(1), 16–22 (2013).
[CrossRef] [PubMed]

Schuman, J. S.

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Shao, Y.

J. Zhong, Y. Shao, A. Tao, H. Jiang, C. Liu, and J. Wang, “Automatic axial biometry of the whole eye using ultra-long scan depth optical coherence tomography,” Invest Ophthalmol. Vis. Sci.54, ARVO E-Abstract 1498 (2013).

Y. Shao, A. Tao, H. Jiang, M. Shen, J. Zhong, F. Lu, and J. Wang, “Simultaneous real-time imaging of the ocular anterior segment including the ciliary muscle during accommodation,” Biomed. Opt. Express4(3), 466–480 (2013).
[CrossRef] [PubMed]

Shen, M.

Y. Shao, A. Tao, H. Jiang, M. Shen, J. Zhong, F. Lu, and J. Wang, “Simultaneous real-time imaging of the ocular anterior segment including the ciliary muscle during accommodation,” Biomed. Opt. Express4(3), 466–480 (2013).
[CrossRef] [PubMed]

C. Du, J. Wang, L. Cui, M. Shen, and Y. Yuan, “Vertical and horizontal corneal epithelial thickness profiles determined by ultrahigh resolution optical coherence tomography,” Cornea31(9), 1036–1043 (2012).
[CrossRef] [PubMed]

C. Du, M. Shen, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Anterior segment biometry during accommodation imaged with ultralong scan depth optical coherence tomography,” Ophthalmology119(12), 2479–2485 (2012).
[CrossRef] [PubMed]

H. Jiang, F. Abukhalil, M. Shen, G. Gregori, B. L. Lam, Y. Wang, and J. Wang, “Slit-lamp-adapted ultra-high resolution OCT for imaging the posterior segment of the eye,” Ophthalmic Surg. Lasers Imaging43(1), 76–81 (2012).
[CrossRef] [PubMed]

D. Zhu, M. Shen, H. Jiang, M. Li, M. R. Wang, Y. Wang, L. Ge, J. Qu, and J. Wang, “Broadband superluminescent diode-based ultrahigh resolution optical coherence tomography for ophthalmic imaging,” J. Biomed. Opt.16(12), 126006 (2011).
[CrossRef] [PubMed]

J. Wang, M. A. Shousha, V. L. Perez, C. L. Karp, S. H. Yoo, M. Shen, L. Cui, V. Hurmeric, C. Du, D. Zhu, Q. Chen, and M. Li, “Ultra-high resolution optical coherence tomography for imaging the anterior segment of the eye,” Ophthalmic Surg. Lasers Imaging42(4Suppl), S15–S27 (2011).
[CrossRef] [PubMed]

C. Du, D. Zhu, M. Shen, M. Li, M. R. Wang, and J. Wang, “Novel optical coherence tomography for imaging the entire anterior segment of the eye,” Invest Ophthalmol. Vis. Sci.52, ARVO E-Abstract 3023 (2011).

M. Shen, L. Cui, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Extended scan depth optical coherence tomography for evaluating ocular surface shape,” J. Biomed. Opt.16(5), 056007 (2011).
[CrossRef] [PubMed]

M. Shen, L. Cui, C. Riley, M. R. Wang, and J. Wang, “Characterization of soft contact lens edge fitting using ultra-high resolution and ultra-long scan depth optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(7), 4091–4097 (2011).
[CrossRef] [PubMed]

Q. Chen, J. Wang, A. Tao, M. Shen, S. Jiao, and F. Lu, “Ultrahigh-resolution measurement by optical coherence tomography of dynamic tear film changes on contact lenses,” Invest. Ophthalmol. Vis. Sci.51(4), 1988–1993 (2010).
[CrossRef] [PubMed]

Shimizu, K.

Shousha, M. A.

J. Wang, M. A. Shousha, V. L. Perez, C. L. Karp, S. H. Yoo, M. Shen, L. Cui, V. Hurmeric, C. Du, D. Zhu, Q. Chen, and M. Li, “Ultra-high resolution optical coherence tomography for imaging the anterior segment of the eye,” Ophthalmic Surg. Lasers Imaging42(4Suppl), S15–S27 (2011).
[CrossRef] [PubMed]

Siedlecki, D.

Simpson, T.

Sorbara, L.

Srinivasan, V.

Stingl, A.

T. Schmoll, A. Unterhuber, C. Kolbitsch, T. Le, A. Stingl, and R. Leitgeb, “Precise thickness measurements of Bowman’s layer, epithelium, and tear film,” Optom. Vis. Sci.89(5), E795–E802 (2012).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Szkulmowski, M.

Szlag, D.

Tan, O.

Y. Li, O. Tan, R. Brass, J. L. Weiss, and D. Huang, “Corneal epithelial thickness mapping by Fourier-domain optical coherence tomography in normal and keratoconic eyes,” Ophthalmology119(12), 2425–2433 (2012).
[CrossRef] [PubMed]

Tao, A.

J. Zhong, Y. Shao, A. Tao, H. Jiang, C. Liu, and J. Wang, “Automatic axial biometry of the whole eye using ultra-long scan depth optical coherence tomography,” Invest Ophthalmol. Vis. Sci.54, ARVO E-Abstract 1498 (2013).

Y. Shao, A. Tao, H. Jiang, M. Shen, J. Zhong, F. Lu, and J. Wang, “Simultaneous real-time imaging of the ocular anterior segment including the ciliary muscle during accommodation,” Biomed. Opt. Express4(3), 466–480 (2013).
[CrossRef] [PubMed]

Q. Chen, J. Wang, A. Tao, M. Shen, S. Jiao, and F. Lu, “Ultrahigh-resolution measurement by optical coherence tomography of dynamic tear film changes on contact lenses,” Invest. Ophthalmol. Vis. Sci.51(4), 1988–1993 (2010).
[CrossRef] [PubMed]

Tearney, G. J.

Uhlhorn, S. R.

Unterhuber, A.

T. Schmoll, A. Unterhuber, C. Kolbitsch, T. Le, A. Stingl, and R. Leitgeb, “Precise thickness measurements of Bowman’s layer, epithelium, and tear film,” Optom. Vis. Sci.89(5), E795–E802 (2012).
[CrossRef] [PubMed]

Wang, H.

Wang, J.

J. Zhong, Y. Shao, A. Tao, H. Jiang, C. Liu, and J. Wang, “Automatic axial biometry of the whole eye using ultra-long scan depth optical coherence tomography,” Invest Ophthalmol. Vis. Sci.54, ARVO E-Abstract 1498 (2013).

Y. Shao, A. Tao, H. Jiang, M. Shen, J. Zhong, F. Lu, and J. Wang, “Simultaneous real-time imaging of the ocular anterior segment including the ciliary muscle during accommodation,” Biomed. Opt. Express4(3), 466–480 (2013).
[CrossRef] [PubMed]

C. Du, J. Wang, L. Cui, M. Shen, and Y. Yuan, “Vertical and horizontal corneal epithelial thickness profiles determined by ultrahigh resolution optical coherence tomography,” Cornea31(9), 1036–1043 (2012).
[CrossRef] [PubMed]

H. Jiang, F. Abukhalil, M. Shen, G. Gregori, B. L. Lam, Y. Wang, and J. Wang, “Slit-lamp-adapted ultra-high resolution OCT for imaging the posterior segment of the eye,” Ophthalmic Surg. Lasers Imaging43(1), 76–81 (2012).
[CrossRef] [PubMed]

C. Du, M. Shen, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Anterior segment biometry during accommodation imaged with ultralong scan depth optical coherence tomography,” Ophthalmology119(12), 2479–2485 (2012).
[CrossRef] [PubMed]

J. Wang, M. A. Shousha, V. L. Perez, C. L. Karp, S. H. Yoo, M. Shen, L. Cui, V. Hurmeric, C. Du, D. Zhu, Q. Chen, and M. Li, “Ultra-high resolution optical coherence tomography for imaging the anterior segment of the eye,” Ophthalmic Surg. Lasers Imaging42(4Suppl), S15–S27 (2011).
[CrossRef] [PubMed]

D. Zhu, M. Shen, H. Jiang, M. Li, M. R. Wang, Y. Wang, L. Ge, J. Qu, and J. Wang, “Broadband superluminescent diode-based ultrahigh resolution optical coherence tomography for ophthalmic imaging,” J. Biomed. Opt.16(12), 126006 (2011).
[CrossRef] [PubMed]

C. Du, D. Zhu, M. Shen, M. Li, M. R. Wang, and J. Wang, “Novel optical coherence tomography for imaging the entire anterior segment of the eye,” Invest Ophthalmol. Vis. Sci.52, ARVO E-Abstract 3023 (2011).

M. Shen, L. Cui, C. Riley, M. R. Wang, and J. Wang, “Characterization of soft contact lens edge fitting using ultra-high resolution and ultra-long scan depth optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(7), 4091–4097 (2011).
[CrossRef] [PubMed]

M. Shen, L. Cui, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Extended scan depth optical coherence tomography for evaluating ocular surface shape,” J. Biomed. Opt.16(5), 056007 (2011).
[CrossRef] [PubMed]

Q. Chen, J. Wang, A. Tao, M. Shen, S. Jiao, and F. Lu, “Ultrahigh-resolution measurement by optical coherence tomography of dynamic tear film changes on contact lenses,” Invest. Ophthalmol. Vis. Sci.51(4), 1988–1993 (2010).
[CrossRef] [PubMed]

C. Zhou, J. Wang, and S. Jiao, “Dual channel dual focus optical coherence tomography for imaging accommodation of the eye,” Opt. Express17(11), 8947–8955 (2009).
[CrossRef] [PubMed]

Wang, L. V.

J. Ai and L. V. Wang, “Spectral-domain optical coherence tomography: Removal of autocorrelation using an optical switch,” Appl. Phys. Lett.88(11), 111115 (2006).
[CrossRef]

Wang, M. R.

C. Du, M. Shen, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Anterior segment biometry during accommodation imaged with ultralong scan depth optical coherence tomography,” Ophthalmology119(12), 2479–2485 (2012).
[CrossRef] [PubMed]

C. Du, D. Zhu, M. Shen, M. Li, M. R. Wang, and J. Wang, “Novel optical coherence tomography for imaging the entire anterior segment of the eye,” Invest Ophthalmol. Vis. Sci.52, ARVO E-Abstract 3023 (2011).

D. Zhu, M. Shen, H. Jiang, M. Li, M. R. Wang, Y. Wang, L. Ge, J. Qu, and J. Wang, “Broadband superluminescent diode-based ultrahigh resolution optical coherence tomography for ophthalmic imaging,” J. Biomed. Opt.16(12), 126006 (2011).
[CrossRef] [PubMed]

M. Shen, L. Cui, C. Riley, M. R. Wang, and J. Wang, “Characterization of soft contact lens edge fitting using ultra-high resolution and ultra-long scan depth optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(7), 4091–4097 (2011).
[CrossRef] [PubMed]

M. Shen, L. Cui, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Extended scan depth optical coherence tomography for evaluating ocular surface shape,” J. Biomed. Opt.16(5), 056007 (2011).
[CrossRef] [PubMed]

Wang, Y.

H. Jiang, F. Abukhalil, M. Shen, G. Gregori, B. L. Lam, Y. Wang, and J. Wang, “Slit-lamp-adapted ultra-high resolution OCT for imaging the posterior segment of the eye,” Ophthalmic Surg. Lasers Imaging43(1), 76–81 (2012).
[CrossRef] [PubMed]

D. Zhu, M. Shen, H. Jiang, M. Li, M. R. Wang, Y. Wang, L. Ge, J. Qu, and J. Wang, “Broadband superluminescent diode-based ultrahigh resolution optical coherence tomography for ophthalmic imaging,” J. Biomed. Opt.16(12), 126006 (2011).
[CrossRef] [PubMed]

Weiss, J. L.

Y. Li, O. Tan, R. Brass, J. L. Weiss, and D. Huang, “Corneal epithelial thickness mapping by Fourier-domain optical coherence tomography in normal and keratoconic eyes,” Ophthalmology119(12), 2425–2433 (2012).
[CrossRef] [PubMed]

Witkin, A.

J. J. Liu, A. Witkin, M. Adhi, I. Grulkowski, M. Kraus, C. Lu, and J. Hornegger, “Enhanced vitreal imaging of the vitreoretinal interface in normal eyes using swept-source OCT,” Invest Ophthalmol. Vis. Sci.54, ARVO E-Abstract 3167 (2013).

Wojtkowski, M.

Yoo, S. H.

J. Wang, M. A. Shousha, V. L. Perez, C. L. Karp, S. H. Yoo, M. Shen, L. Cui, V. Hurmeric, C. Du, D. Zhu, Q. Chen, and M. Li, “Ultra-high resolution optical coherence tomography for imaging the anterior segment of the eye,” Ophthalmic Surg. Lasers Imaging42(4Suppl), S15–S27 (2011).
[CrossRef] [PubMed]

Yoshimura, N.

A. Sakamoto, M. Hangai, and N. Yoshimura, “Spectral-domain optical coherence tomography with multiple B-scan averaging for enhanced imaging of retinal diseases,” Ophthalmology115(6), 1071–1078, e7 (2008).
[CrossRef] [PubMed]

Yoshimura, R.

Yuan, Y.

C. Du, J. Wang, L. Cui, M. Shen, and Y. Yuan, “Vertical and horizontal corneal epithelial thickness profiles determined by ultrahigh resolution optical coherence tomography,” Cornea31(9), 1036–1043 (2012).
[CrossRef] [PubMed]

Zhang, X.

Y. Li, C. Lowder, X. Zhang, and D. Huang, “Anterior chamber cell grading by optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.54(1), 258–265 (2013).
[CrossRef] [PubMed]

Zhao, J.

J. Zhao, Z. Chen, Z. Zhou, L. Ding, and X. Zhou, “Evaluation of the repeatability of the Lenstar and comparison with two other non-contact biometric devices in myopes,” Clin. Exp. Optom.96(1), 92–99 (2013).
[PubMed]

Zhong, J.

J. Zhong, Y. Shao, A. Tao, H. Jiang, C. Liu, and J. Wang, “Automatic axial biometry of the whole eye using ultra-long scan depth optical coherence tomography,” Invest Ophthalmol. Vis. Sci.54, ARVO E-Abstract 1498 (2013).

Y. Shao, A. Tao, H. Jiang, M. Shen, J. Zhong, F. Lu, and J. Wang, “Simultaneous real-time imaging of the ocular anterior segment including the ciliary muscle during accommodation,” Biomed. Opt. Express4(3), 466–480 (2013).
[CrossRef] [PubMed]

Zhou, C.

Zhou, X.

J. Zhao, Z. Chen, Z. Zhou, L. Ding, and X. Zhou, “Evaluation of the repeatability of the Lenstar and comparison with two other non-contact biometric devices in myopes,” Clin. Exp. Optom.96(1), 92–99 (2013).
[PubMed]

Zhou, Z.

J. Zhao, Z. Chen, Z. Zhou, L. Ding, and X. Zhou, “Evaluation of the repeatability of the Lenstar and comparison with two other non-contact biometric devices in myopes,” Clin. Exp. Optom.96(1), 92–99 (2013).
[PubMed]

Zhu, D.

C. Du, M. Shen, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Anterior segment biometry during accommodation imaged with ultralong scan depth optical coherence tomography,” Ophthalmology119(12), 2479–2485 (2012).
[CrossRef] [PubMed]

C. Du, D. Zhu, M. Shen, M. Li, M. R. Wang, and J. Wang, “Novel optical coherence tomography for imaging the entire anterior segment of the eye,” Invest Ophthalmol. Vis. Sci.52, ARVO E-Abstract 3023 (2011).

J. Wang, M. A. Shousha, V. L. Perez, C. L. Karp, S. H. Yoo, M. Shen, L. Cui, V. Hurmeric, C. Du, D. Zhu, Q. Chen, and M. Li, “Ultra-high resolution optical coherence tomography for imaging the anterior segment of the eye,” Ophthalmic Surg. Lasers Imaging42(4Suppl), S15–S27 (2011).
[CrossRef] [PubMed]

D. Zhu, M. Shen, H. Jiang, M. Li, M. R. Wang, Y. Wang, L. Ge, J. Qu, and J. Wang, “Broadband superluminescent diode-based ultrahigh resolution optical coherence tomography for ophthalmic imaging,” J. Biomed. Opt.16(12), 126006 (2011).
[CrossRef] [PubMed]

M. Shen, L. Cui, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Extended scan depth optical coherence tomography for evaluating ocular surface shape,” J. Biomed. Opt.16(5), 056007 (2011).
[CrossRef] [PubMed]

Appl. Phys. Lett.

J. Ai and L. V. Wang, “Spectral-domain optical coherence tomography: Removal of autocorrelation using an optical switch,” Appl. Phys. Lett.88(11), 111115 (2006).
[CrossRef]

Arch. Ophthalmol.

M. V. Sarunic, S. Asrani, and J. A. Izatt, “Imaging the ocular anterior segment with real-time, full-range Fourier-domain optical coherence tomography,” Arch. Ophthalmol.126(4), 537–542 (2008).
[CrossRef] [PubMed]

Biomed. Opt. Express

H. Furukawa, H. Hiro-Oka, N. Satoh, R. Yoshimura, D. Choi, M. Nakanishi, A. Igarashi, H. Ishikawa, K. Ohbayashi, and K. Shimizu, “Full-range imaging of eye accommodation by high-speed long-depth range optical frequency domain imaging,” Biomed. Opt. Express1(5), 1491–1501 (2010).
[CrossRef] [PubMed]

K. Bizheva, N. Hutchings, L. Sorbara, A. A. Moayed, and T. Simpson, “In vivo volumetric imaging of the human corneo-scleral limbus with spectral domain OCT,” Biomed. Opt. Express2(7), 1794–1802 (2011).
[CrossRef] [PubMed]

S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express2(12), 3232–3247 (2011).
[CrossRef] [PubMed]

M. Ruggeri, S. R. Uhlhorn, C. De Freitas, A. Ho, F. Manns, and J. M. Parel, “Imaging and full-length biometry of the eye during accommodation using spectral domain OCT with an optical switch,” Biomed. Opt. Express3(7), 1506–1520 (2012).
[CrossRef] [PubMed]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express3(11), 2733–2751 (2012).
[CrossRef] [PubMed]

Y. Shao, A. Tao, H. Jiang, M. Shen, J. Zhong, F. Lu, and J. Wang, “Simultaneous real-time imaging of the ocular anterior segment including the ciliary muscle during accommodation,” Biomed. Opt. Express4(3), 466–480 (2013).
[CrossRef] [PubMed]

Clin. Exp. Optom.

J. Zhao, Z. Chen, Z. Zhou, L. Ding, and X. Zhou, “Evaluation of the repeatability of the Lenstar and comparison with two other non-contact biometric devices in myopes,” Clin. Exp. Optom.96(1), 92–99 (2013).
[PubMed]

Cornea

C. Du, J. Wang, L. Cui, M. Shen, and Y. Yuan, “Vertical and horizontal corneal epithelial thickness profiles determined by ultrahigh resolution optical coherence tomography,” Cornea31(9), 1036–1043 (2012).
[CrossRef] [PubMed]

Invest Ophthalmol. Vis. Sci.

J. Zhong, Y. Shao, A. Tao, H. Jiang, C. Liu, and J. Wang, “Automatic axial biometry of the whole eye using ultra-long scan depth optical coherence tomography,” Invest Ophthalmol. Vis. Sci.54, ARVO E-Abstract 1498 (2013).

J. J. Liu, A. Witkin, M. Adhi, I. Grulkowski, M. Kraus, C. Lu, and J. Hornegger, “Enhanced vitreal imaging of the vitreoretinal interface in normal eyes using swept-source OCT,” Invest Ophthalmol. Vis. Sci.54, ARVO E-Abstract 3167 (2013).

C. Du, D. Zhu, M. Shen, M. Li, M. R. Wang, and J. Wang, “Novel optical coherence tomography for imaging the entire anterior segment of the eye,” Invest Ophthalmol. Vis. Sci.52, ARVO E-Abstract 3023 (2011).

Invest. Ophthalmol. Vis. Sci.

M. Shen, L. Cui, C. Riley, M. R. Wang, and J. Wang, “Characterization of soft contact lens edge fitting using ultra-high resolution and ultra-long scan depth optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(7), 4091–4097 (2011).
[CrossRef] [PubMed]

Y. Li, C. Lowder, X. Zhang, and D. Huang, “Anterior chamber cell grading by optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.54(1), 258–265 (2013).
[CrossRef] [PubMed]

Q. Chen, J. Wang, A. Tao, M. Shen, S. Jiao, and F. Lu, “Ultrahigh-resolution measurement by optical coherence tomography of dynamic tear film changes on contact lenses,” Invest. Ophthalmol. Vis. Sci.51(4), 1988–1993 (2010).
[CrossRef] [PubMed]

J. Biomed. Opt.

M. Shen, L. Cui, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Extended scan depth optical coherence tomography for evaluating ocular surface shape,” J. Biomed. Opt.16(5), 056007 (2011).
[CrossRef] [PubMed]

J. Jungwirth, B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography,” J. Biomed. Opt.14(5), 050501 (2009).
[CrossRef] [PubMed]

D. Zhu, M. Shen, H. Jiang, M. Li, M. R. Wang, Y. Wang, L. Ge, J. Qu, and J. Wang, “Broadband superluminescent diode-based ultrahigh resolution optical coherence tomography for ophthalmic imaging,” J. Biomed. Opt.16(12), 126006 (2011).
[CrossRef] [PubMed]

Nat. Biotechnol.

J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol.21(11), 1361–1367 (2003).
[CrossRef] [PubMed]

Ophthalmic Surg. Lasers Imaging

H. Jiang, F. Abukhalil, M. Shen, G. Gregori, B. L. Lam, Y. Wang, and J. Wang, “Slit-lamp-adapted ultra-high resolution OCT for imaging the posterior segment of the eye,” Ophthalmic Surg. Lasers Imaging43(1), 76–81 (2012).
[CrossRef] [PubMed]

J. Wang, M. A. Shousha, V. L. Perez, C. L. Karp, S. H. Yoo, M. Shen, L. Cui, V. Hurmeric, C. Du, D. Zhu, Q. Chen, and M. Li, “Ultra-high resolution optical coherence tomography for imaging the anterior segment of the eye,” Ophthalmic Surg. Lasers Imaging42(4Suppl), S15–S27 (2011).
[CrossRef] [PubMed]

Ophthalmology

C. Du, M. Shen, M. Li, D. Zhu, M. R. Wang, and J. Wang, “Anterior segment biometry during accommodation imaged with ultralong scan depth optical coherence tomography,” Ophthalmology119(12), 2479–2485 (2012).
[CrossRef] [PubMed]

Y. Li, O. Tan, R. Brass, J. L. Weiss, and D. Huang, “Corneal epithelial thickness mapping by Fourier-domain optical coherence tomography in normal and keratoconic eyes,” Ophthalmology119(12), 2425–2433 (2012).
[CrossRef] [PubMed]

A. Sakamoto, M. Hangai, and N. Yoshimura, “Spectral-domain optical coherence tomography with multiple B-scan averaging for enhanced imaging of retinal diseases,” Ophthalmology115(6), 1071–1078, e7 (2008).
[CrossRef] [PubMed]

Opt. Express

R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003).
[CrossRef] [PubMed]

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express17(6), 4842–4858 (2009).
[CrossRef] [PubMed]

C. Zhou, J. Wang, and S. Jiao, “Dual channel dual focus optical coherence tomography for imaging accommodation of the eye,” Opt. Express17(11), 8947–8955 (2009).
[CrossRef] [PubMed]

M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express17(17), 14880–14894 (2009).
[CrossRef] [PubMed]

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

H. W. Jeong, S. W. Lee, and B. M. Kim, “Spectral-domain OCT with dual illumination and interlaced detection for simultaneous anterior segment and retina imaging,” Opt. Express20(17), 19148–19159 (2012).
[CrossRef] [PubMed]

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12(11), 2404–2422 (2004).
[CrossRef] [PubMed]

M. Pircher, B. Baumann, E. Götzinger, H. Sattmann, and C. K. Hitzenberger, “Simultaneous SLO/OCT imaging of the human retina with axial eye motion correction,” Opt. Express15(25), 16922–16932 (2007).
[CrossRef] [PubMed]

C. Dai, C. Zhou, S. Fan, Z. Chen, X. Chai, Q. Ren, and S. Jiao, “Optical coherence tomography for whole eye segment imaging,” Opt. Express20(6), 6109–6115 (2012).
[CrossRef] [PubMed]

Opt. Lett.

Optom. Vis. Sci.

T. Schmoll, A. Unterhuber, C. Kolbitsch, T. Le, A. Stingl, and R. Leitgeb, “Precise thickness measurements of Bowman’s layer, epithelium, and tear film,” Optom. Vis. Sci.89(5), E795–E802 (2012).
[CrossRef] [PubMed]

K. L. Schulle and D. A. Berntsen, “Repeatability of on- and off-axis eye length measurements using the lenstar,” Optom. Vis. Sci.90(1), 16–22 (2013).
[CrossRef] [PubMed]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Other

American National Standards Institute, “American national standard for safe use of lasers” (Laser Institute of America, Orlando, FL, 2000), pp. 45–49.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

The schematic of the SD-OCT system. SLD: superluminescent diode laser; FC: fiber coupler; PC: polarization controller; DC: dispersion compensator; L1 to L5: lenses; CL1-3: collimating lenses; M1-4: refractive mirror; GM: galvanometer mirror; DG: diffraction grating; CMOS: complementary metal-oxide-semiconductor transistor camera. For the Badal targeting system, see Fig. 2.

Fig. 2
Fig. 2

Badal system alternatively switching between the far and near visual targets. f = focus; LCD = liquid-crystal display.

Fig. 3
Fig. 3

(A): Spectrum of the light source used in this OCT system. (B): Point spread function at an imaging depth of 0.5 mm. The measured axial resolution is 7.7 μm in air.

Fig. 4
Fig. 4

Measured sensitivity at different imaging depths. One full eye image (A, B and C) is from an emmetrope, and another full eye image (D, E, F and G) is from a subject with a short axial length. (A) and (D): Combined images of the first and second reference mirror positions; (B) and (E): Image of the third reference mirror position; (C) and (F): Image of the fourth reference mirror position. Note the flipped retina was visible in the image of the Mirror 3 position (E). A normally oriented retina existed which was almost invisible (due to the SNR drop) in the image of the Mirror 4 position (F). (G): Combined images of the third and fourth mirror positions from the subject with the short axial length, showing the normally oriented retina. M1-4: refractive mirror position; OPD: optical path difference. The transverse line artifacts were observed in the image, and the sources of these artifacts may be due to the parasitic reflection in the system. Bars = 1 mm in air.

Fig. 5
Fig. 5

Images of the cornea at the center (A) and limbus (B); (C) and (D) were imaged after inserting one contact lens. The lens edge was clearly visualized. EP = epithelium; BW = Bowman’s layer. CL = contact lens. Bars = 0.25 mm in air.

Fig. 6
Fig. 6

OCT image of the entire cornea and its thickness map. (A): Cross-sectional image of the entire cornea in a normal eye. (B): Thickness map of total cornea with a diameter of 14 mm. Bars = 0.5 mm in air.

Fig. 7
Fig. 7

Analysis of the entire ocular surface for one subject. (A). Cross-sectional image of the ocular surface at the horizontal meridian; (B). Sagittal height of the ocular surface. Bars = 0.5 mm in air.

Fig. 8
Fig. 8

Cross-sectional image of the upper and lower tear menisci. LTM = lower tear meniscus; UTM = upper tear meniscus. LL = lower lid; UL = upper lid. Bars = 0.5 mm in air.

Fig. 9
Fig. 9

An image of the full anterior segment from a 27-year-old subject. (A). The combined anterior segment image by overlapping two images. (B). The longitudinal reflectivity profiles of the entire anterior segment. The transverse line artifacts were observed in the image, and the sources of these artifacts may be due to the parasitic reflection in the system. Bars = 1 mm in air.

Fig. 10
Fig. 10

The entire anterior segment images of a 27-year-old subject under relaxed (A) and 6.00 D accommodative stimulus (B). Note: the pupil contracted, and the lens thickness increased after the accommodation. The transverse line artifacts were observed in these images, and the sources of these artifacts may be due to the parasitic reflection in the system. Bars = 1 mm in air.

Fig. 11
Fig. 11

Full eye imaging in different refractive error subjects. (A). Emmetrope; (B) and (C): Hyperope; (D): Myope; (E): Subject with an intraocular lens (IOL). The transverse line artifacts were observed in these images, and the sources of these artifacts may be due to the parasitic reflection in the system. Note the normally oriented retina in (B) and (C) was visible in the combined images obtained with the Mirror 3 and 4 positions. The flipped retina was also visible in the image of the Mirror 3 position due to placement of the zero-delay line inside the eye (bottom of the image). M1-4: refractive mirror position; AL: Axial length. Bars = 1 mm in air.

Fig. 12
Fig. 12

Different structural layers, including the retina nerve fiber layer (RNFL), ganglion cell layer (GCL) + inner plexiform layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer (ONL), and retinal pigment epithelium (RPE) + choriocapillaries, were identified in the macular image. Bars = 0.5 mm.

Fig. 13
Fig. 13

(A). En face view image of the optic nerve head (ONH) obtained with SD-OCT; (B). Cross-sectional OCT image of the ONH. Bars = 0.5 mm in air.

Metrics