Abstract

In femtosecond laser ophthalmic surgery tissue dissection is achieved by photodisruption based on laser induced optical breakdown. In order to minimize collateral damage to the eye laser surgery systems should be optimized towards the lowest possible energy threshold for photodisruption. However, optical aberrations of the eye and the laser system distort the irradiance distribution from an ideal profile which causes a rise in breakdown threshold energy even if great care is taken to minimize the aberrations of the system during design and alignment. In this study we used a water chamber with an achromatic focusing lens and a scattering sample as eye model and determined breakdown threshold in single pulse plasma transmission loss measurements. Due to aberrations, the precise lower limit for breakdown threshold irradiance in water is still unknown. Here we show that the threshold energy can be substantially reduced when using adaptive optics to improve the irradiance distribution by spatial beam shaping. We found that for initial aberrations with a root-mean-square wave front error of only one third of the wavelength the threshold energy can still be reduced by a factor of three if the aberrations are corrected to the diffraction limit by adaptive optics. The transmitted pulse energy is reduced by 17% at twice the threshold. Furthermore, the gas bubble motions after breakdown for pulse trains at 5 kilohertz repetition rate show a more transverse direction in the corrected case compared to the more spherical distribution without correction. Our results demonstrate how both applied and transmitted pulse energy could be reduced during ophthalmic surgery when correcting for aberrations. As a consequence, the risk of retinal damage by transmitted energy and the extent of collateral damage to the focal volume could be minimized accordingly when using adaptive optics in fs-laser surgery.

© 2013 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. K. Soong and J. B. Malta, “Femtosecond lasers in ophthalmology,” Am. J. Ophthalmol.147(2), 189–197.e2 (2009).
    [CrossRef] [PubMed]
  2. C. P. Cain, R. J. Thomas, G. D. Noojin, D. J. Stolarski, P. K. Kennedy, G. D. Buffington, and B. A. Rockwell, “Sub-50-fs laser retinal damage thresholds in primate eyes with group velocity dispersion, self-focusing and low-density plasmas,” Graefes Arch. Clin. Exp. Ophthalmol.243(2), 101–112 (2005).
    [CrossRef] [PubMed]
  3. T. O. Salmon and C. van de Pol, “Normal-eye Zernike coefficients and root-mean-square wavefront errors,” J. Cataract Refract. Surg.32(12), 2064–2074 (2006).
    [CrossRef] [PubMed]
  4. A. Vogel, K. Nahen, D. Theisen, R. Birngruber, R. J. Thomas, and B. A. Rockwell, “Influence of optical aberrations on laser-induced plasma formation in water and their consequences for intraocular photodisruption,” Appl. Opt.38(16), 3636–3643 (1999).
    [CrossRef] [PubMed]
  5. Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron.33(2), 127–137 (1997).
    [CrossRef]
  6. A. Roorda, “Adaptive optics for studying visual function: a comprehensive review,” J. Vis.11(7), 1–21 (2011).
    [PubMed]
  7. A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81(8), 1015–1047 (2005).
    [CrossRef]
  8. J. H. Marburger, “Self-focusing: theory,” Prog. Quantum Electron.4, 35–110 (1975).
    [CrossRef]
  9. M. J. Soileau, W. E. Williams, and N. Mansour, “Laser-induced damage and the role of self-focusing,” Opt. Eng.28(10), 281133 (1989).
    [CrossRef]
  10. F. Docchio, C. A. Sacchi, and J. Marshall, “Experimental investigation of optical breakdown thresholds in ocular media under single pulse irradiation with different pulse durations,” Lasers Ophthalmol.1, 83–93 (1986).
  11. P. K. Kennedy, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. I. Theory,” IEEE J. Quantum Electron.31(12), 2241–2249 (1995).
    [CrossRef]
  12. A. Roorda, “Applications of adaptive optics scanning laser ophthalmoscopy,” Optom. Vis. Sci.87(4), 260–268 (2010).
    [PubMed]
  13. D. R. Williams, “Imaging single cells in the living retina,” Vision Res.51(13), 1379–1396 (2011).
    [CrossRef] [PubMed]
  14. M. Pircher and R. J. Zawadzki, “Combining adaptive optics with optical coherence tomography: unveiling the cellular structure of the human retina,” Expert Rev. Ophthalmol.2(6), 1019–1035 (2007).
    [CrossRef]
  15. P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci.87(12), 930–941 (2010).
    [CrossRef] [PubMed]
  16. N. Sanner, N. Huot, E. Audouard, C. Larat, J.-P. Huignard, and B. Loiseaux, “Programmable focal spot shaping of amplified femtosecond laser pulses,” Opt. Lett.30(12), 1479–1481 (2005).
    [CrossRef] [PubMed]
  17. D. X. Hammer, E. D. Jansen, M. Frenz, G. D. Noojin, R. J. Thomas, J. Noack, A. Vogel, B. A. Rockwell, and A. J. Welch, “Shielding properties of laser-induced breakdown in water for pulse durations from 5 ns to 125 fs,” Appl. Opt.36(22), 5630–5640 (1997).
    [CrossRef] [PubMed]
  18. A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. (Berl.)68(2), 271–280 (1999).
    [CrossRef]
  19. C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol.12(11), 1784–1794 (2001).
    [CrossRef]
  20. C. H. Fan, J. Sun, and J. P. Longtin, “Plasma absorption of femtosecond laser pulses in dielectrics,” J. Heat Transfer124(2), 275–283 (2002).
    [CrossRef]
  21. S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater.1(4), 217–224 (2002).
    [CrossRef] [PubMed]
  22. T. Juhasz, G. A. Kastis, C. Suárez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med.19(1), 23–31 (1996).
    [CrossRef] [PubMed]
  23. N. Tinne, S. Schumacher, V. Nuzzo, C. L. Arnold, H. Lubatschowski, and T. Ripken, “Interaction dynamics of spatially separated cavitation bubbles in water,” J. Biomed. Opt.15(6), 068003 (2010).
    [CrossRef] [PubMed]
  24. A. Gómez-Vieyra, A. Dubra, D. Malacara-Hernández, and D. R. Williams, “First-order design of off-axis reflective ophthalmic adaptive optics systems using afocal telescopes,” Opt. Express17(21), 18906–18919 (2009).
    [CrossRef] [PubMed]
  25. H. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A18(3), 497–506 (2001).
    [CrossRef] [PubMed]
  26. A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhöfer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B77(1), 25–30 (2003).
    [CrossRef]
  27. A. Vogel, M. R. C. Capon, M. N. Asiyo-Vogel, and R. Birngruber, “Intraocular photodisruption with picosecond and nanosecond laser pulses: tissue effects in cornea, lens, and retina,” Invest. Ophthalmol. Vis. Sci.35(7), 3032–3044 (1994).
    [PubMed]
  28. C. L. Arnold, A. Heisterkamp, W. Ertmer, and H. Lubatschowski, “Computational model for nonlinear plasma formation in high NA micromachining of transparent materials and biological cells,” Opt. Express15(16), 10303–10317 (2007).
    [CrossRef] [PubMed]
  29. E. T. J. Nibbering, M. A. Franco, B. S. Prade, G. Grillon, C. Le Blanc, and A. Mysyrowicz, “Measurement of the nonlinear refractive index of transparent materials by spectral analysis after nonlinear propagation,” Opt. Commun.119(5-6), 479–484 (1995).
    [CrossRef]
  30. C. B. Schaffer, N. Nishimura, E. N. Glezer, A. M.-T. Kim, and E. Mazur, “Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express10(3), 196–203 (2002).
    [CrossRef] [PubMed]
  31. P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron.21(3), 155–248 (1997).
    [CrossRef]
  32. C. Tse, M. J. Zohdy, J. Y. Ye, T. B. Norris, L. P. Balogh, K. W. Hollman, and M. O’Donnell, “Acoustic detection of controlled laser-induced microbubble creation in gelatin,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control52(11), 1962–1969 (2005).
    [CrossRef] [PubMed]
  33. A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev.103(2), 577–644 (2003).
    [CrossRef] [PubMed]
  34. A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett.100(3), 038102 (2008).
    [CrossRef] [PubMed]
  35. G. Maatz, A. Heisterkamp, H. Lubatschowski, S. Barcikowski, C. Fallnich, H. Welling, and W. Ertmer, “Chemical and physical side effects at application of ultrashort laser pulses for intrastromal refractive surgery,” J. Opt. A2(1), 59–64 (2000).
    [CrossRef]
  36. J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption, coefficients, and energy density,” IEEE J. Quantum Electron.35(8), 1156–1167 (1999).
    [CrossRef]
  37. L. A. Crum, “Acoustic cavitation series: part five rectified diffusion,” Ultrasonics22(5), 215–223 (1984).
    [CrossRef]
  38. J. Y. Ye, G. Chang, T. B. Norris, C. Tse, M. J. Zohdy, K. W. Hollman, M. O’Donnell, and J. R. Baker., “Trapping cavitation bubbles with a self-focused laser beam,” Opt. Lett.29(18), 2136–2138 (2004).
    [CrossRef] [PubMed]
  39. M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1986), Chap. 8.
  40. K. Tsiglifis and N. A. Pelekasis, “Nonlinear oscillations and collapse of elongated bubbles subject to weak viscous effects: effect of internal overpressure,” Phys. Fluids19(7), 072106 (2007).
    [CrossRef]
  41. F. Fankhauser and S. Kwasniewska, “Laser vitreolysis,” Ophthalmologica216(2), 73–84 (2002).
    [CrossRef] [PubMed]

2011 (2)

A. Roorda, “Adaptive optics for studying visual function: a comprehensive review,” J. Vis.11(7), 1–21 (2011).
[PubMed]

D. R. Williams, “Imaging single cells in the living retina,” Vision Res.51(13), 1379–1396 (2011).
[CrossRef] [PubMed]

2010 (3)

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci.87(12), 930–941 (2010).
[CrossRef] [PubMed]

A. Roorda, “Applications of adaptive optics scanning laser ophthalmoscopy,” Optom. Vis. Sci.87(4), 260–268 (2010).
[PubMed]

N. Tinne, S. Schumacher, V. Nuzzo, C. L. Arnold, H. Lubatschowski, and T. Ripken, “Interaction dynamics of spatially separated cavitation bubbles in water,” J. Biomed. Opt.15(6), 068003 (2010).
[CrossRef] [PubMed]

2009 (2)

2008 (1)

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett.100(3), 038102 (2008).
[CrossRef] [PubMed]

2007 (3)

K. Tsiglifis and N. A. Pelekasis, “Nonlinear oscillations and collapse of elongated bubbles subject to weak viscous effects: effect of internal overpressure,” Phys. Fluids19(7), 072106 (2007).
[CrossRef]

M. Pircher and R. J. Zawadzki, “Combining adaptive optics with optical coherence tomography: unveiling the cellular structure of the human retina,” Expert Rev. Ophthalmol.2(6), 1019–1035 (2007).
[CrossRef]

C. L. Arnold, A. Heisterkamp, W. Ertmer, and H. Lubatschowski, “Computational model for nonlinear plasma formation in high NA micromachining of transparent materials and biological cells,” Opt. Express15(16), 10303–10317 (2007).
[CrossRef] [PubMed]

2006 (1)

T. O. Salmon and C. van de Pol, “Normal-eye Zernike coefficients and root-mean-square wavefront errors,” J. Cataract Refract. Surg.32(12), 2064–2074 (2006).
[CrossRef] [PubMed]

2005 (4)

C. P. Cain, R. J. Thomas, G. D. Noojin, D. J. Stolarski, P. K. Kennedy, G. D. Buffington, and B. A. Rockwell, “Sub-50-fs laser retinal damage thresholds in primate eyes with group velocity dispersion, self-focusing and low-density plasmas,” Graefes Arch. Clin. Exp. Ophthalmol.243(2), 101–112 (2005).
[CrossRef] [PubMed]

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81(8), 1015–1047 (2005).
[CrossRef]

C. Tse, M. J. Zohdy, J. Y. Ye, T. B. Norris, L. P. Balogh, K. W. Hollman, and M. O’Donnell, “Acoustic detection of controlled laser-induced microbubble creation in gelatin,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control52(11), 1962–1969 (2005).
[CrossRef] [PubMed]

N. Sanner, N. Huot, E. Audouard, C. Larat, J.-P. Huignard, and B. Loiseaux, “Programmable focal spot shaping of amplified femtosecond laser pulses,” Opt. Lett.30(12), 1479–1481 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (2)

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev.103(2), 577–644 (2003).
[CrossRef] [PubMed]

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhöfer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B77(1), 25–30 (2003).
[CrossRef]

2002 (4)

F. Fankhauser and S. Kwasniewska, “Laser vitreolysis,” Ophthalmologica216(2), 73–84 (2002).
[CrossRef] [PubMed]

C. B. Schaffer, N. Nishimura, E. N. Glezer, A. M.-T. Kim, and E. Mazur, “Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express10(3), 196–203 (2002).
[CrossRef] [PubMed]

C. H. Fan, J. Sun, and J. P. Longtin, “Plasma absorption of femtosecond laser pulses in dielectrics,” J. Heat Transfer124(2), 275–283 (2002).
[CrossRef]

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater.1(4), 217–224 (2002).
[CrossRef] [PubMed]

2001 (2)

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol.12(11), 1784–1794 (2001).
[CrossRef]

H. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A18(3), 497–506 (2001).
[CrossRef] [PubMed]

2000 (1)

G. Maatz, A. Heisterkamp, H. Lubatschowski, S. Barcikowski, C. Fallnich, H. Welling, and W. Ertmer, “Chemical and physical side effects at application of ultrashort laser pulses for intrastromal refractive surgery,” J. Opt. A2(1), 59–64 (2000).
[CrossRef]

1999 (3)

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption, coefficients, and energy density,” IEEE J. Quantum Electron.35(8), 1156–1167 (1999).
[CrossRef]

A. Vogel, K. Nahen, D. Theisen, R. Birngruber, R. J. Thomas, and B. A. Rockwell, “Influence of optical aberrations on laser-induced plasma formation in water and their consequences for intraocular photodisruption,” Appl. Opt.38(16), 3636–3643 (1999).
[CrossRef] [PubMed]

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. (Berl.)68(2), 271–280 (1999).
[CrossRef]

1997 (3)

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron.33(2), 127–137 (1997).
[CrossRef]

D. X. Hammer, E. D. Jansen, M. Frenz, G. D. Noojin, R. J. Thomas, J. Noack, A. Vogel, B. A. Rockwell, and A. J. Welch, “Shielding properties of laser-induced breakdown in water for pulse durations from 5 ns to 125 fs,” Appl. Opt.36(22), 5630–5640 (1997).
[CrossRef] [PubMed]

P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron.21(3), 155–248 (1997).
[CrossRef]

1996 (1)

T. Juhasz, G. A. Kastis, C. Suárez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med.19(1), 23–31 (1996).
[CrossRef] [PubMed]

1995 (2)

P. K. Kennedy, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. I. Theory,” IEEE J. Quantum Electron.31(12), 2241–2249 (1995).
[CrossRef]

E. T. J. Nibbering, M. A. Franco, B. S. Prade, G. Grillon, C. Le Blanc, and A. Mysyrowicz, “Measurement of the nonlinear refractive index of transparent materials by spectral analysis after nonlinear propagation,” Opt. Commun.119(5-6), 479–484 (1995).
[CrossRef]

1994 (1)

A. Vogel, M. R. C. Capon, M. N. Asiyo-Vogel, and R. Birngruber, “Intraocular photodisruption with picosecond and nanosecond laser pulses: tissue effects in cornea, lens, and retina,” Invest. Ophthalmol. Vis. Sci.35(7), 3032–3044 (1994).
[PubMed]

1989 (1)

M. J. Soileau, W. E. Williams, and N. Mansour, “Laser-induced damage and the role of self-focusing,” Opt. Eng.28(10), 281133 (1989).
[CrossRef]

1986 (1)

F. Docchio, C. A. Sacchi, and J. Marshall, “Experimental investigation of optical breakdown thresholds in ocular media under single pulse irradiation with different pulse durations,” Lasers Ophthalmol.1, 83–93 (1986).

1984 (1)

L. A. Crum, “Acoustic cavitation series: part five rectified diffusion,” Ultrasonics22(5), 215–223 (1984).
[CrossRef]

1975 (1)

J. H. Marburger, “Self-focusing: theory,” Prog. Quantum Electron.4, 35–110 (1975).
[CrossRef]

Aragón, J. L.

Arnold, C. L.

N. Tinne, S. Schumacher, V. Nuzzo, C. L. Arnold, H. Lubatschowski, and T. Ripken, “Interaction dynamics of spatially separated cavitation bubbles in water,” J. Biomed. Opt.15(6), 068003 (2010).
[CrossRef] [PubMed]

C. L. Arnold, A. Heisterkamp, W. Ertmer, and H. Lubatschowski, “Computational model for nonlinear plasma formation in high NA micromachining of transparent materials and biological cells,” Opt. Express15(16), 10303–10317 (2007).
[CrossRef] [PubMed]

Artal, P.

Asiyo-Vogel, M. N.

A. Vogel, M. R. C. Capon, M. N. Asiyo-Vogel, and R. Birngruber, “Intraocular photodisruption with picosecond and nanosecond laser pulses: tissue effects in cornea, lens, and retina,” Invest. Ophthalmol. Vis. Sci.35(7), 3032–3044 (1994).
[PubMed]

Audouard, E.

Baker, J. R.

Balogh, L. P.

C. Tse, M. J. Zohdy, J. Y. Ye, T. B. Norris, L. P. Balogh, K. W. Hollman, and M. O’Donnell, “Acoustic detection of controlled laser-induced microbubble creation in gelatin,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control52(11), 1962–1969 (2005).
[CrossRef] [PubMed]

Barcikowski, S.

G. Maatz, A. Heisterkamp, H. Lubatschowski, S. Barcikowski, C. Fallnich, H. Welling, and W. Ertmer, “Chemical and physical side effects at application of ultrashort laser pulses for intrastromal refractive surgery,” J. Opt. A2(1), 59–64 (2000).
[CrossRef]

Birngruber, R.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. (Berl.)68(2), 271–280 (1999).
[CrossRef]

A. Vogel, K. Nahen, D. Theisen, R. Birngruber, R. J. Thomas, and B. A. Rockwell, “Influence of optical aberrations on laser-induced plasma formation in water and their consequences for intraocular photodisruption,” Appl. Opt.38(16), 3636–3643 (1999).
[CrossRef] [PubMed]

A. Vogel, M. R. C. Capon, M. N. Asiyo-Vogel, and R. Birngruber, “Intraocular photodisruption with picosecond and nanosecond laser pulses: tissue effects in cornea, lens, and retina,” Invest. Ophthalmol. Vis. Sci.35(7), 3032–3044 (1994).
[PubMed]

Bor, Z.

T. Juhasz, G. A. Kastis, C. Suárez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med.19(1), 23–31 (1996).
[CrossRef] [PubMed]

Brodeur, A.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol.12(11), 1784–1794 (2001).
[CrossRef]

Bron, W. E.

T. Juhasz, G. A. Kastis, C. Suárez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med.19(1), 23–31 (1996).
[CrossRef] [PubMed]

Buffington, G. D.

C. P. Cain, R. J. Thomas, G. D. Noojin, D. J. Stolarski, P. K. Kennedy, G. D. Buffington, and B. A. Rockwell, “Sub-50-fs laser retinal damage thresholds in primate eyes with group velocity dispersion, self-focusing and low-density plasmas,” Graefes Arch. Clin. Exp. Ophthalmol.243(2), 101–112 (2005).
[CrossRef] [PubMed]

Busch, S.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. (Berl.)68(2), 271–280 (1999).
[CrossRef]

Cain, C. P.

C. P. Cain, R. J. Thomas, G. D. Noojin, D. J. Stolarski, P. K. Kennedy, G. D. Buffington, and B. A. Rockwell, “Sub-50-fs laser retinal damage thresholds in primate eyes with group velocity dispersion, self-focusing and low-density plasmas,” Graefes Arch. Clin. Exp. Ophthalmol.243(2), 101–112 (2005).
[CrossRef] [PubMed]

Capon, M. R. C.

A. Vogel, M. R. C. Capon, M. N. Asiyo-Vogel, and R. Birngruber, “Intraocular photodisruption with picosecond and nanosecond laser pulses: tissue effects in cornea, lens, and retina,” Invest. Ophthalmol. Vis. Sci.35(7), 3032–3044 (1994).
[PubMed]

Carroll, J.

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci.87(12), 930–941 (2010).
[CrossRef] [PubMed]

Chang, G.

Cook, K.

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron.33(2), 127–137 (1997).
[CrossRef]

Crum, L. A.

L. A. Crum, “Acoustic cavitation series: part five rectified diffusion,” Ultrasonics22(5), 215–223 (1984).
[CrossRef]

Docchio, F.

F. Docchio, C. A. Sacchi, and J. Marshall, “Experimental investigation of optical breakdown thresholds in ocular media under single pulse irradiation with different pulse durations,” Lasers Ophthalmol.1, 83–93 (1986).

Dubis, A. M.

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci.87(12), 930–941 (2010).
[CrossRef] [PubMed]

Dubra, A.

Duncan, J. L.

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci.87(12), 930–941 (2010).
[CrossRef] [PubMed]

Ertmer, W.

C. L. Arnold, A. Heisterkamp, W. Ertmer, and H. Lubatschowski, “Computational model for nonlinear plasma formation in high NA micromachining of transparent materials and biological cells,” Opt. Express15(16), 10303–10317 (2007).
[CrossRef] [PubMed]

G. Maatz, A. Heisterkamp, H. Lubatschowski, S. Barcikowski, C. Fallnich, H. Welling, and W. Ertmer, “Chemical and physical side effects at application of ultrashort laser pulses for intrastromal refractive surgery,” J. Opt. A2(1), 59–64 (2000).
[CrossRef]

Fallnich, C.

G. Maatz, A. Heisterkamp, H. Lubatschowski, S. Barcikowski, C. Fallnich, H. Welling, and W. Ertmer, “Chemical and physical side effects at application of ultrashort laser pulses for intrastromal refractive surgery,” J. Opt. A2(1), 59–64 (2000).
[CrossRef]

Fan, C. H.

C. H. Fan, J. Sun, and J. P. Longtin, “Plasma absorption of femtosecond laser pulses in dielectrics,” J. Heat Transfer124(2), 275–283 (2002).
[CrossRef]

Fankhauser, F.

F. Fankhauser and S. Kwasniewska, “Laser vitreolysis,” Ophthalmologica216(2), 73–84 (2002).
[CrossRef] [PubMed]

Feng, Q.

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron.33(2), 127–137 (1997).
[CrossRef]

Franco, M. A.

E. T. J. Nibbering, M. A. Franco, B. S. Prade, G. Grillon, C. Le Blanc, and A. Mysyrowicz, “Measurement of the nonlinear refractive index of transparent materials by spectral analysis after nonlinear propagation,” Opt. Commun.119(5-6), 479–484 (1995).
[CrossRef]

Freidank, S.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett.100(3), 038102 (2008).
[CrossRef] [PubMed]

Frenz, M.

Glezer, E. N.

Godara, P.

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci.87(12), 930–941 (2010).
[CrossRef] [PubMed]

Gómez-Vieyra, A.

Grillon, G.

E. T. J. Nibbering, M. A. Franco, B. S. Prade, G. Grillon, C. Le Blanc, and A. Mysyrowicz, “Measurement of the nonlinear refractive index of transparent materials by spectral analysis after nonlinear propagation,” Opt. Commun.119(5-6), 479–484 (1995).
[CrossRef]

Hammer, D. X.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. (Berl.)68(2), 271–280 (1999).
[CrossRef]

P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron.21(3), 155–248 (1997).
[CrossRef]

D. X. Hammer, E. D. Jansen, M. Frenz, G. D. Noojin, R. J. Thomas, J. Noack, A. Vogel, B. A. Rockwell, and A. J. Welch, “Shielding properties of laser-induced breakdown in water for pulse durations from 5 ns to 125 fs,” Appl. Opt.36(22), 5630–5640 (1997).
[CrossRef] [PubMed]

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron.33(2), 127–137 (1997).
[CrossRef]

Heisterkamp, A.

C. L. Arnold, A. Heisterkamp, W. Ertmer, and H. Lubatschowski, “Computational model for nonlinear plasma formation in high NA micromachining of transparent materials and biological cells,” Opt. Express15(16), 10303–10317 (2007).
[CrossRef] [PubMed]

G. Maatz, A. Heisterkamp, H. Lubatschowski, S. Barcikowski, C. Fallnich, H. Welling, and W. Ertmer, “Chemical and physical side effects at application of ultrashort laser pulses for intrastromal refractive surgery,” J. Opt. A2(1), 59–64 (2000).
[CrossRef]

Hofer, H.

Hollman, K. W.

C. Tse, M. J. Zohdy, J. Y. Ye, T. B. Norris, L. P. Balogh, K. W. Hollman, and M. O’Donnell, “Acoustic detection of controlled laser-induced microbubble creation in gelatin,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control52(11), 1962–1969 (2005).
[CrossRef] [PubMed]

J. Y. Ye, G. Chang, T. B. Norris, C. Tse, M. J. Zohdy, K. W. Hollman, M. O’Donnell, and J. R. Baker., “Trapping cavitation bubbles with a self-focused laser beam,” Opt. Lett.29(18), 2136–2138 (2004).
[CrossRef] [PubMed]

Huignard, J.-P.

Hunt, A. J.

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhöfer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B77(1), 25–30 (2003).
[CrossRef]

Huot, N.

Hüttman, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81(8), 1015–1047 (2005).
[CrossRef]

Jansen, E. D.

Joglekar, A. P.

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhöfer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B77(1), 25–30 (2003).
[CrossRef]

Juhasz, T.

T. Juhasz, G. A. Kastis, C. Suárez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med.19(1), 23–31 (1996).
[CrossRef] [PubMed]

Kastis, G. A.

T. Juhasz, G. A. Kastis, C. Suárez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med.19(1), 23–31 (1996).
[CrossRef] [PubMed]

Kennedy, P. K.

C. P. Cain, R. J. Thomas, G. D. Noojin, D. J. Stolarski, P. K. Kennedy, G. D. Buffington, and B. A. Rockwell, “Sub-50-fs laser retinal damage thresholds in primate eyes with group velocity dispersion, self-focusing and low-density plasmas,” Graefes Arch. Clin. Exp. Ophthalmol.243(2), 101–112 (2005).
[CrossRef] [PubMed]

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron.33(2), 127–137 (1997).
[CrossRef]

P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron.21(3), 155–248 (1997).
[CrossRef]

P. K. Kennedy, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. I. Theory,” IEEE J. Quantum Electron.31(12), 2241–2249 (1995).
[CrossRef]

Kim, A. M.-T.

Kwasniewska, S.

F. Fankhauser and S. Kwasniewska, “Laser vitreolysis,” Ophthalmologica216(2), 73–84 (2002).
[CrossRef] [PubMed]

Larat, C.

Le Blanc, C.

E. T. J. Nibbering, M. A. Franco, B. S. Prade, G. Grillon, C. Le Blanc, and A. Mysyrowicz, “Measurement of the nonlinear refractive index of transparent materials by spectral analysis after nonlinear propagation,” Opt. Commun.119(5-6), 479–484 (1995).
[CrossRef]

Linz, N.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett.100(3), 038102 (2008).
[CrossRef] [PubMed]

Liu, H.

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhöfer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B77(1), 25–30 (2003).
[CrossRef]

Loiseaux, B.

Longtin, J. P.

C. H. Fan, J. Sun, and J. P. Longtin, “Plasma absorption of femtosecond laser pulses in dielectrics,” J. Heat Transfer124(2), 275–283 (2002).
[CrossRef]

Lubatschowski, H.

N. Tinne, S. Schumacher, V. Nuzzo, C. L. Arnold, H. Lubatschowski, and T. Ripken, “Interaction dynamics of spatially separated cavitation bubbles in water,” J. Biomed. Opt.15(6), 068003 (2010).
[CrossRef] [PubMed]

C. L. Arnold, A. Heisterkamp, W. Ertmer, and H. Lubatschowski, “Computational model for nonlinear plasma formation in high NA micromachining of transparent materials and biological cells,” Opt. Express15(16), 10303–10317 (2007).
[CrossRef] [PubMed]

G. Maatz, A. Heisterkamp, H. Lubatschowski, S. Barcikowski, C. Fallnich, H. Welling, and W. Ertmer, “Chemical and physical side effects at application of ultrashort laser pulses for intrastromal refractive surgery,” J. Opt. A2(1), 59–64 (2000).
[CrossRef]

Maatz, G.

G. Maatz, A. Heisterkamp, H. Lubatschowski, S. Barcikowski, C. Fallnich, H. Welling, and W. Ertmer, “Chemical and physical side effects at application of ultrashort laser pulses for intrastromal refractive surgery,” J. Opt. A2(1), 59–64 (2000).
[CrossRef]

Malacara-Hernández, D.

Malta, J. B.

H. K. Soong and J. B. Malta, “Femtosecond lasers in ophthalmology,” Am. J. Ophthalmol.147(2), 189–197.e2 (2009).
[CrossRef] [PubMed]

Mansour, N.

M. J. Soileau, W. E. Williams, and N. Mansour, “Laser-induced damage and the role of self-focusing,” Opt. Eng.28(10), 281133 (1989).
[CrossRef]

Marburger, J. H.

J. H. Marburger, “Self-focusing: theory,” Prog. Quantum Electron.4, 35–110 (1975).
[CrossRef]

Marshall, J.

F. Docchio, C. A. Sacchi, and J. Marshall, “Experimental investigation of optical breakdown thresholds in ocular media under single pulse irradiation with different pulse durations,” Lasers Ophthalmol.1, 83–93 (1986).

Mazur, E.

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater.1(4), 217–224 (2002).
[CrossRef] [PubMed]

C. B. Schaffer, N. Nishimura, E. N. Glezer, A. M.-T. Kim, and E. Mazur, “Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express10(3), 196–203 (2002).
[CrossRef] [PubMed]

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol.12(11), 1784–1794 (2001).
[CrossRef]

Meyhöfer, E.

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhöfer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B77(1), 25–30 (2003).
[CrossRef]

Moloney, J. V.

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron.33(2), 127–137 (1997).
[CrossRef]

Mourou, G.

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhöfer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B77(1), 25–30 (2003).
[CrossRef]

Mysyrowicz, A.

E. T. J. Nibbering, M. A. Franco, B. S. Prade, G. Grillon, C. Le Blanc, and A. Mysyrowicz, “Measurement of the nonlinear refractive index of transparent materials by spectral analysis after nonlinear propagation,” Opt. Commun.119(5-6), 479–484 (1995).
[CrossRef]

Nahen, K.

A. Vogel, K. Nahen, D. Theisen, R. Birngruber, R. J. Thomas, and B. A. Rockwell, “Influence of optical aberrations on laser-induced plasma formation in water and their consequences for intraocular photodisruption,” Appl. Opt.38(16), 3636–3643 (1999).
[CrossRef] [PubMed]

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. (Berl.)68(2), 271–280 (1999).
[CrossRef]

Newell, A. C.

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron.33(2), 127–137 (1997).
[CrossRef]

Nibbering, E. T. J.

E. T. J. Nibbering, M. A. Franco, B. S. Prade, G. Grillon, C. Le Blanc, and A. Mysyrowicz, “Measurement of the nonlinear refractive index of transparent materials by spectral analysis after nonlinear propagation,” Opt. Commun.119(5-6), 479–484 (1995).
[CrossRef]

Nishimura, N.

Noack, J.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81(8), 1015–1047 (2005).
[CrossRef]

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. (Berl.)68(2), 271–280 (1999).
[CrossRef]

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption, coefficients, and energy density,” IEEE J. Quantum Electron.35(8), 1156–1167 (1999).
[CrossRef]

D. X. Hammer, E. D. Jansen, M. Frenz, G. D. Noojin, R. J. Thomas, J. Noack, A. Vogel, B. A. Rockwell, and A. J. Welch, “Shielding properties of laser-induced breakdown in water for pulse durations from 5 ns to 125 fs,” Appl. Opt.36(22), 5630–5640 (1997).
[CrossRef] [PubMed]

Noojin, G. D.

C. P. Cain, R. J. Thomas, G. D. Noojin, D. J. Stolarski, P. K. Kennedy, G. D. Buffington, and B. A. Rockwell, “Sub-50-fs laser retinal damage thresholds in primate eyes with group velocity dispersion, self-focusing and low-density plasmas,” Graefes Arch. Clin. Exp. Ophthalmol.243(2), 101–112 (2005).
[CrossRef] [PubMed]

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. (Berl.)68(2), 271–280 (1999).
[CrossRef]

D. X. Hammer, E. D. Jansen, M. Frenz, G. D. Noojin, R. J. Thomas, J. Noack, A. Vogel, B. A. Rockwell, and A. J. Welch, “Shielding properties of laser-induced breakdown in water for pulse durations from 5 ns to 125 fs,” Appl. Opt.36(22), 5630–5640 (1997).
[CrossRef] [PubMed]

Norris, T. B.

C. Tse, M. J. Zohdy, J. Y. Ye, T. B. Norris, L. P. Balogh, K. W. Hollman, and M. O’Donnell, “Acoustic detection of controlled laser-induced microbubble creation in gelatin,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control52(11), 1962–1969 (2005).
[CrossRef] [PubMed]

J. Y. Ye, G. Chang, T. B. Norris, C. Tse, M. J. Zohdy, K. W. Hollman, M. O’Donnell, and J. R. Baker., “Trapping cavitation bubbles with a self-focused laser beam,” Opt. Lett.29(18), 2136–2138 (2004).
[CrossRef] [PubMed]

Nuzzo, V.

N. Tinne, S. Schumacher, V. Nuzzo, C. L. Arnold, H. Lubatschowski, and T. Ripken, “Interaction dynamics of spatially separated cavitation bubbles in water,” J. Biomed. Opt.15(6), 068003 (2010).
[CrossRef] [PubMed]

O’Donnell, M.

C. Tse, M. J. Zohdy, J. Y. Ye, T. B. Norris, L. P. Balogh, K. W. Hollman, and M. O’Donnell, “Acoustic detection of controlled laser-induced microbubble creation in gelatin,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control52(11), 1962–1969 (2005).
[CrossRef] [PubMed]

J. Y. Ye, G. Chang, T. B. Norris, C. Tse, M. J. Zohdy, K. W. Hollman, M. O’Donnell, and J. R. Baker., “Trapping cavitation bubbles with a self-focused laser beam,” Opt. Lett.29(18), 2136–2138 (2004).
[CrossRef] [PubMed]

Paltauf, G.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett.100(3), 038102 (2008).
[CrossRef] [PubMed]

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81(8), 1015–1047 (2005).
[CrossRef]

Parlitz, U.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. (Berl.)68(2), 271–280 (1999).
[CrossRef]

Pelekasis, N. A.

K. Tsiglifis and N. A. Pelekasis, “Nonlinear oscillations and collapse of elongated bubbles subject to weak viscous effects: effect of internal overpressure,” Phys. Fluids19(7), 072106 (2007).
[CrossRef]

Pircher, M.

M. Pircher and R. J. Zawadzki, “Combining adaptive optics with optical coherence tomography: unveiling the cellular structure of the human retina,” Expert Rev. Ophthalmol.2(6), 1019–1035 (2007).
[CrossRef]

Prade, B. S.

E. T. J. Nibbering, M. A. Franco, B. S. Prade, G. Grillon, C. Le Blanc, and A. Mysyrowicz, “Measurement of the nonlinear refractive index of transparent materials by spectral analysis after nonlinear propagation,” Opt. Commun.119(5-6), 479–484 (1995).
[CrossRef]

Ripken, T.

N. Tinne, S. Schumacher, V. Nuzzo, C. L. Arnold, H. Lubatschowski, and T. Ripken, “Interaction dynamics of spatially separated cavitation bubbles in water,” J. Biomed. Opt.15(6), 068003 (2010).
[CrossRef] [PubMed]

Rockwell, B. A.

C. P. Cain, R. J. Thomas, G. D. Noojin, D. J. Stolarski, P. K. Kennedy, G. D. Buffington, and B. A. Rockwell, “Sub-50-fs laser retinal damage thresholds in primate eyes with group velocity dispersion, self-focusing and low-density plasmas,” Graefes Arch. Clin. Exp. Ophthalmol.243(2), 101–112 (2005).
[CrossRef] [PubMed]

A. Vogel, K. Nahen, D. Theisen, R. Birngruber, R. J. Thomas, and B. A. Rockwell, “Influence of optical aberrations on laser-induced plasma formation in water and their consequences for intraocular photodisruption,” Appl. Opt.38(16), 3636–3643 (1999).
[CrossRef] [PubMed]

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. (Berl.)68(2), 271–280 (1999).
[CrossRef]

P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron.21(3), 155–248 (1997).
[CrossRef]

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron.33(2), 127–137 (1997).
[CrossRef]

D. X. Hammer, E. D. Jansen, M. Frenz, G. D. Noojin, R. J. Thomas, J. Noack, A. Vogel, B. A. Rockwell, and A. J. Welch, “Shielding properties of laser-induced breakdown in water for pulse durations from 5 ns to 125 fs,” Appl. Opt.36(22), 5630–5640 (1997).
[CrossRef] [PubMed]

Roorda, A.

A. Roorda, “Adaptive optics for studying visual function: a comprehensive review,” J. Vis.11(7), 1–21 (2011).
[PubMed]

A. Roorda, “Applications of adaptive optics scanning laser ophthalmoscopy,” Optom. Vis. Sci.87(4), 260–268 (2010).
[PubMed]

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci.87(12), 930–941 (2010).
[CrossRef] [PubMed]

Sacchi, C. A.

F. Docchio, C. A. Sacchi, and J. Marshall, “Experimental investigation of optical breakdown thresholds in ocular media under single pulse irradiation with different pulse durations,” Lasers Ophthalmol.1, 83–93 (1986).

Salmon, T. O.

T. O. Salmon and C. van de Pol, “Normal-eye Zernike coefficients and root-mean-square wavefront errors,” J. Cataract Refract. Surg.32(12), 2064–2074 (2006).
[CrossRef] [PubMed]

Sanner, N.

Schaffer, C. B.

C. B. Schaffer, N. Nishimura, E. N. Glezer, A. M.-T. Kim, and E. Mazur, “Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express10(3), 196–203 (2002).
[CrossRef] [PubMed]

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol.12(11), 1784–1794 (2001).
[CrossRef]

Schumacher, S.

N. Tinne, S. Schumacher, V. Nuzzo, C. L. Arnold, H. Lubatschowski, and T. Ripken, “Interaction dynamics of spatially separated cavitation bubbles in water,” J. Biomed. Opt.15(6), 068003 (2010).
[CrossRef] [PubMed]

Singer, B.

Soileau, M. J.

M. J. Soileau, W. E. Williams, and N. Mansour, “Laser-induced damage and the role of self-focusing,” Opt. Eng.28(10), 281133 (1989).
[CrossRef]

Soong, H. K.

H. K. Soong and J. B. Malta, “Femtosecond lasers in ophthalmology,” Am. J. Ophthalmol.147(2), 189–197.e2 (2009).
[CrossRef] [PubMed]

Spooner, G. J.

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhöfer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B77(1), 25–30 (2003).
[CrossRef]

Stolarski, D. J.

C. P. Cain, R. J. Thomas, G. D. Noojin, D. J. Stolarski, P. K. Kennedy, G. D. Buffington, and B. A. Rockwell, “Sub-50-fs laser retinal damage thresholds in primate eyes with group velocity dispersion, self-focusing and low-density plasmas,” Graefes Arch. Clin. Exp. Ophthalmol.243(2), 101–112 (2005).
[CrossRef] [PubMed]

Suárez, C.

T. Juhasz, G. A. Kastis, C. Suárez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med.19(1), 23–31 (1996).
[CrossRef] [PubMed]

Sun, J.

C. H. Fan, J. Sun, and J. P. Longtin, “Plasma absorption of femtosecond laser pulses in dielectrics,” J. Heat Transfer124(2), 275–283 (2002).
[CrossRef]

Sundaram, S. K.

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater.1(4), 217–224 (2002).
[CrossRef] [PubMed]

Theisen, D.

A. Vogel, K. Nahen, D. Theisen, R. Birngruber, R. J. Thomas, and B. A. Rockwell, “Influence of optical aberrations on laser-induced plasma formation in water and their consequences for intraocular photodisruption,” Appl. Opt.38(16), 3636–3643 (1999).
[CrossRef] [PubMed]

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. (Berl.)68(2), 271–280 (1999).
[CrossRef]

Thomas, R. J.

Thompson, C. R.

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron.33(2), 127–137 (1997).
[CrossRef]

Tinne, N.

N. Tinne, S. Schumacher, V. Nuzzo, C. L. Arnold, H. Lubatschowski, and T. Ripken, “Interaction dynamics of spatially separated cavitation bubbles in water,” J. Biomed. Opt.15(6), 068003 (2010).
[CrossRef] [PubMed]

Tse, C.

C. Tse, M. J. Zohdy, J. Y. Ye, T. B. Norris, L. P. Balogh, K. W. Hollman, and M. O’Donnell, “Acoustic detection of controlled laser-induced microbubble creation in gelatin,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control52(11), 1962–1969 (2005).
[CrossRef] [PubMed]

J. Y. Ye, G. Chang, T. B. Norris, C. Tse, M. J. Zohdy, K. W. Hollman, M. O’Donnell, and J. R. Baker., “Trapping cavitation bubbles with a self-focused laser beam,” Opt. Lett.29(18), 2136–2138 (2004).
[CrossRef] [PubMed]

Tsiglifis, K.

K. Tsiglifis and N. A. Pelekasis, “Nonlinear oscillations and collapse of elongated bubbles subject to weak viscous effects: effect of internal overpressure,” Phys. Fluids19(7), 072106 (2007).
[CrossRef]

van de Pol, C.

T. O. Salmon and C. van de Pol, “Normal-eye Zernike coefficients and root-mean-square wavefront errors,” J. Cataract Refract. Surg.32(12), 2064–2074 (2006).
[CrossRef] [PubMed]

Venugopalan, V.

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev.103(2), 577–644 (2003).
[CrossRef] [PubMed]

Vogel, A.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett.100(3), 038102 (2008).
[CrossRef] [PubMed]

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81(8), 1015–1047 (2005).
[CrossRef]

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev.103(2), 577–644 (2003).
[CrossRef] [PubMed]

A. Vogel, K. Nahen, D. Theisen, R. Birngruber, R. J. Thomas, and B. A. Rockwell, “Influence of optical aberrations on laser-induced plasma formation in water and their consequences for intraocular photodisruption,” Appl. Opt.38(16), 3636–3643 (1999).
[CrossRef] [PubMed]

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. (Berl.)68(2), 271–280 (1999).
[CrossRef]

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption, coefficients, and energy density,” IEEE J. Quantum Electron.35(8), 1156–1167 (1999).
[CrossRef]

D. X. Hammer, E. D. Jansen, M. Frenz, G. D. Noojin, R. J. Thomas, J. Noack, A. Vogel, B. A. Rockwell, and A. J. Welch, “Shielding properties of laser-induced breakdown in water for pulse durations from 5 ns to 125 fs,” Appl. Opt.36(22), 5630–5640 (1997).
[CrossRef] [PubMed]

A. Vogel, M. R. C. Capon, M. N. Asiyo-Vogel, and R. Birngruber, “Intraocular photodisruption with picosecond and nanosecond laser pulses: tissue effects in cornea, lens, and retina,” Invest. Ophthalmol. Vis. Sci.35(7), 3032–3044 (1994).
[PubMed]

Welch, A. J.

Welling, H.

G. Maatz, A. Heisterkamp, H. Lubatschowski, S. Barcikowski, C. Fallnich, H. Welling, and W. Ertmer, “Chemical and physical side effects at application of ultrashort laser pulses for intrastromal refractive surgery,” J. Opt. A2(1), 59–64 (2000).
[CrossRef]

Williams, D. R.

Williams, W. E.

M. J. Soileau, W. E. Williams, and N. Mansour, “Laser-induced damage and the role of self-focusing,” Opt. Eng.28(10), 281133 (1989).
[CrossRef]

Wright, E. M.

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron.33(2), 127–137 (1997).
[CrossRef]

Ye, J. Y.

C. Tse, M. J. Zohdy, J. Y. Ye, T. B. Norris, L. P. Balogh, K. W. Hollman, and M. O’Donnell, “Acoustic detection of controlled laser-induced microbubble creation in gelatin,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control52(11), 1962–1969 (2005).
[CrossRef] [PubMed]

J. Y. Ye, G. Chang, T. B. Norris, C. Tse, M. J. Zohdy, K. W. Hollman, M. O’Donnell, and J. R. Baker., “Trapping cavitation bubbles with a self-focused laser beam,” Opt. Lett.29(18), 2136–2138 (2004).
[CrossRef] [PubMed]

Zawadzki, R. J.

M. Pircher and R. J. Zawadzki, “Combining adaptive optics with optical coherence tomography: unveiling the cellular structure of the human retina,” Expert Rev. Ophthalmol.2(6), 1019–1035 (2007).
[CrossRef]

Zohdy, M. J.

C. Tse, M. J. Zohdy, J. Y. Ye, T. B. Norris, L. P. Balogh, K. W. Hollman, and M. O’Donnell, “Acoustic detection of controlled laser-induced microbubble creation in gelatin,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control52(11), 1962–1969 (2005).
[CrossRef] [PubMed]

J. Y. Ye, G. Chang, T. B. Norris, C. Tse, M. J. Zohdy, K. W. Hollman, M. O’Donnell, and J. R. Baker., “Trapping cavitation bubbles with a self-focused laser beam,” Opt. Lett.29(18), 2136–2138 (2004).
[CrossRef] [PubMed]

Am. J. Ophthalmol. (1)

H. K. Soong and J. B. Malta, “Femtosecond lasers in ophthalmology,” Am. J. Ophthalmol.147(2), 189–197.e2 (2009).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. (Berl.) (1)

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. (Berl.)68(2), 271–280 (1999).
[CrossRef]

Appl. Phys. B (2)

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81(8), 1015–1047 (2005).
[CrossRef]

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhöfer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B77(1), 25–30 (2003).
[CrossRef]

Chem. Rev. (1)

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev.103(2), 577–644 (2003).
[CrossRef] [PubMed]

Expert Rev. Ophthalmol. (1)

M. Pircher and R. J. Zawadzki, “Combining adaptive optics with optical coherence tomography: unveiling the cellular structure of the human retina,” Expert Rev. Ophthalmol.2(6), 1019–1035 (2007).
[CrossRef]

Graefes Arch. Clin. Exp. Ophthalmol. (1)

C. P. Cain, R. J. Thomas, G. D. Noojin, D. J. Stolarski, P. K. Kennedy, G. D. Buffington, and B. A. Rockwell, “Sub-50-fs laser retinal damage thresholds in primate eyes with group velocity dispersion, self-focusing and low-density plasmas,” Graefes Arch. Clin. Exp. Ophthalmol.243(2), 101–112 (2005).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (3)

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron.33(2), 127–137 (1997).
[CrossRef]

P. K. Kennedy, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. I. Theory,” IEEE J. Quantum Electron.31(12), 2241–2249 (1995).
[CrossRef]

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption, coefficients, and energy density,” IEEE J. Quantum Electron.35(8), 1156–1167 (1999).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

C. Tse, M. J. Zohdy, J. Y. Ye, T. B. Norris, L. P. Balogh, K. W. Hollman, and M. O’Donnell, “Acoustic detection of controlled laser-induced microbubble creation in gelatin,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control52(11), 1962–1969 (2005).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

A. Vogel, M. R. C. Capon, M. N. Asiyo-Vogel, and R. Birngruber, “Intraocular photodisruption with picosecond and nanosecond laser pulses: tissue effects in cornea, lens, and retina,” Invest. Ophthalmol. Vis. Sci.35(7), 3032–3044 (1994).
[PubMed]

J. Biomed. Opt. (1)

N. Tinne, S. Schumacher, V. Nuzzo, C. L. Arnold, H. Lubatschowski, and T. Ripken, “Interaction dynamics of spatially separated cavitation bubbles in water,” J. Biomed. Opt.15(6), 068003 (2010).
[CrossRef] [PubMed]

J. Cataract Refract. Surg. (1)

T. O. Salmon and C. van de Pol, “Normal-eye Zernike coefficients and root-mean-square wavefront errors,” J. Cataract Refract. Surg.32(12), 2064–2074 (2006).
[CrossRef] [PubMed]

J. Heat Transfer (1)

C. H. Fan, J. Sun, and J. P. Longtin, “Plasma absorption of femtosecond laser pulses in dielectrics,” J. Heat Transfer124(2), 275–283 (2002).
[CrossRef]

J. Opt. A (1)

G. Maatz, A. Heisterkamp, H. Lubatschowski, S. Barcikowski, C. Fallnich, H. Welling, and W. Ertmer, “Chemical and physical side effects at application of ultrashort laser pulses for intrastromal refractive surgery,” J. Opt. A2(1), 59–64 (2000).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Vis. (1)

A. Roorda, “Adaptive optics for studying visual function: a comprehensive review,” J. Vis.11(7), 1–21 (2011).
[PubMed]

Lasers Ophthalmol. (1)

F. Docchio, C. A. Sacchi, and J. Marshall, “Experimental investigation of optical breakdown thresholds in ocular media under single pulse irradiation with different pulse durations,” Lasers Ophthalmol.1, 83–93 (1986).

Lasers Surg. Med. (1)

T. Juhasz, G. A. Kastis, C. Suárez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med.19(1), 23–31 (1996).
[CrossRef] [PubMed]

Meas. Sci. Technol. (1)

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol.12(11), 1784–1794 (2001).
[CrossRef]

Nat. Mater. (1)

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater.1(4), 217–224 (2002).
[CrossRef] [PubMed]

Ophthalmologica (1)

F. Fankhauser and S. Kwasniewska, “Laser vitreolysis,” Ophthalmologica216(2), 73–84 (2002).
[CrossRef] [PubMed]

Opt. Commun. (1)

E. T. J. Nibbering, M. A. Franco, B. S. Prade, G. Grillon, C. Le Blanc, and A. Mysyrowicz, “Measurement of the nonlinear refractive index of transparent materials by spectral analysis after nonlinear propagation,” Opt. Commun.119(5-6), 479–484 (1995).
[CrossRef]

Opt. Eng. (1)

M. J. Soileau, W. E. Williams, and N. Mansour, “Laser-induced damage and the role of self-focusing,” Opt. Eng.28(10), 281133 (1989).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Optom. Vis. Sci. (2)

A. Roorda, “Applications of adaptive optics scanning laser ophthalmoscopy,” Optom. Vis. Sci.87(4), 260–268 (2010).
[PubMed]

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci.87(12), 930–941 (2010).
[CrossRef] [PubMed]

Phys. Fluids (1)

K. Tsiglifis and N. A. Pelekasis, “Nonlinear oscillations and collapse of elongated bubbles subject to weak viscous effects: effect of internal overpressure,” Phys. Fluids19(7), 072106 (2007).
[CrossRef]

Phys. Rev. Lett. (1)

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett.100(3), 038102 (2008).
[CrossRef] [PubMed]

Prog. Quantum Electron. (2)

P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron.21(3), 155–248 (1997).
[CrossRef]

J. H. Marburger, “Self-focusing: theory,” Prog. Quantum Electron.4, 35–110 (1975).
[CrossRef]

Ultrasonics (1)

L. A. Crum, “Acoustic cavitation series: part five rectified diffusion,” Ultrasonics22(5), 215–223 (1984).
[CrossRef]

Vision Res. (1)

D. R. Williams, “Imaging single cells in the living retina,” Vision Res.51(13), 1379–1396 (2011).
[CrossRef] [PubMed]

Other (1)

M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1986), Chap. 8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics