Abstract

Miniature optical sensors that can detect blood vessels in front of advancing instruments will significantly benefit many interventional procedures. Towards this end, we developed a thin and flexible coherence-gated Doppler (CGD) fiber probe (O.D. = 0.125 mm) that can be integrated with minimally-invasive tools to provide real-time audio feedback of blood flow at precise locations in front of the probe. Coherence-gated Doppler (CGD) is a hybrid technology with features of laser Doppler flowmetry (LDF) and Doppler optical coherence tomography (DOCT). Because of its confocal optical design and coherence-gating capabilities, CGD provides higher spatial resolution than LDF. And compared to DOCT imaging systems, CGD is simpler and less costly to produce. In vivo studies of rat femoral vessels using CGD demonstrate its ability to distinguish between artery, vein and bulk movement of the surrounding soft tissue. Finally, by placing the CGD probe inside a 30-gauge needle and advancing it into the brain of an anesthetized sheep, we demonstrate that it is capable of detecting vessels in front of advancing probes during simulated stereotactic neurosurgical procedures. Using simultaneous ultrasound (US) monitoring from the surface of the brain we show that CGD can detect at-risk blood vessels up to 3 mm in front of the advancing probe. The improved spatial resolution afforded by coherence gating combined with the simplicity, minute size and robustness of the CGD probe suggest it may benefit many minimally invasive procedures and enable it to be embedded into a variety of surgical instruments.

© 2013 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Grau, R. W. Leipold, R. Conradi, E. Martin, and J. Motsch, “Efficacy of ultrasound imaging in obstetric epidural anesthesia,” J. Clin. Anesth.14(3), 169–175 (2002).
    [CrossRef] [PubMed]
  2. D. Karakitsos, N. Labropoulos, E. De Groot, A. P. Patrianakos, G. Kouraklis, J. Poularas, G. Samonis, D. A. Tsoutsos, M. M. Konstadoulakis, and A. Karabinis, “Real-time ultrasound-guided catheterisation of the internal jugular vein: a prospective comparison with the landmark technique in critical care patients,” Crit. Care10(6), R162 (2006).
    [CrossRef] [PubMed]
  3. K. Wårdell, P. Blomstedt, J. Richter, J. Antonsson, O. Eriksson, P. Zsigmond, A. T. Bergenheim, and M. I. Hariz, “Intracerebral microvascular measurements during deep brain stimulation implantation using laser Doppler perfusion monitoring,” Stereotact. Funct. Neurosurg.85(6), 279–286 (2007).
    [CrossRef] [PubMed]
  4. H. C. Eun, “Evaluation of skin blood flow by laser Doppler flowmetry,” Clin. Dermatol.13(4), 337–347 (1995).
    [CrossRef] [PubMed]
  5. K. Kijsamanmith, S. Timpawat, N. Vongsavan, and B. Matthews, “Pulpal blood flow recorded from human premolar teeth with a laser Doppler flow meter using either red or infrared light,” Arch. Oral Biol.56(7), 629–633 (2011).
    [CrossRef] [PubMed]
  6. A. L. Petoukhova, W. Steenbergen, and F. F. M. de Mul, “Path-length distribution and path-length-resolved Doppler measurements of multiply scattered photons by use of low-coherence interferometry,” Opt. Lett.26(19), 1492–1494 (2001).
    [CrossRef] [PubMed]
  7. B. Varghese, V. Rajan, T. G. Van Leeuwen, and W. Steenbergen, “In vivo optical path lengths and path length resolved doppler shifts of multiply scattered light,” Lasers Surg. Med.42(9), 852–860 (2010).
    [CrossRef] [PubMed]
  8. Z. P. Chen, T. E. Milner, S. Srinivas, X. J. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett.22(14), 1119–1121 (1997).
    [CrossRef] [PubMed]
  9. V. X. D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. C. Wilson, and I. A. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance,” Opt. Express11(7), 794–809 (2003).
    [CrossRef] [PubMed]
  10. V. Westphal, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “Real-time, high velocity-resolution color Doppler optical coherence tomography,” Opt. Lett.27(1), 34–36 (2002).
    [CrossRef] [PubMed]
  11. Z. P. Chen, Y. H. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, and R. D. Frostig, “Optical Doppler tomography,” IEEE J. Sel. Top. Quantum Electron.5(4), 1134–1142 (1999).
    [CrossRef]
  12. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003).
    [CrossRef] [PubMed]
  13. S. K. Piechnik, P. A. Chiarelli, and P. Jezzard, “Modelling vascular reactivity to investigate the basis of the relationship between cerebral blood volume and flow under CO2 manipulation,” Neuroimage39(1), 107–118 (2008).
    [CrossRef] [PubMed]
  14. V. Rajan, B. Varghese, T. G. Van Leeuwen, and W. Steenbergen, “Review of methodological developments in laser Doppler flowmetry,” Lasers Med. Sci.24(2), 269–283 (2009).
    [CrossRef] [PubMed]
  15. J. M. Gardin, C. S. Burn, W. J. Childs, and W. L. Henry, “Evaluation of blood flow velocity in the ascending aorta and main pulmonary artery of normal subjects by Doppler echocardiography,” Am. Heart J.107(2), 310–319 (1984).
    [CrossRef] [PubMed]
  16. D. Morofke, M. C. Kolios, I. A. Vitkin, and V. X. D. Yang, “Wide dynamic range detection of bidirectional flow in Doppler optical coherence tomography using a two-dimensional Kasai estimator,” Opt. Lett.32(3), 253–255 (2007).
    [CrossRef] [PubMed]

2011

K. Kijsamanmith, S. Timpawat, N. Vongsavan, and B. Matthews, “Pulpal blood flow recorded from human premolar teeth with a laser Doppler flow meter using either red or infrared light,” Arch. Oral Biol.56(7), 629–633 (2011).
[CrossRef] [PubMed]

2010

B. Varghese, V. Rajan, T. G. Van Leeuwen, and W. Steenbergen, “In vivo optical path lengths and path length resolved doppler shifts of multiply scattered light,” Lasers Surg. Med.42(9), 852–860 (2010).
[CrossRef] [PubMed]

2009

V. Rajan, B. Varghese, T. G. Van Leeuwen, and W. Steenbergen, “Review of methodological developments in laser Doppler flowmetry,” Lasers Med. Sci.24(2), 269–283 (2009).
[CrossRef] [PubMed]

2008

S. K. Piechnik, P. A. Chiarelli, and P. Jezzard, “Modelling vascular reactivity to investigate the basis of the relationship between cerebral blood volume and flow under CO2 manipulation,” Neuroimage39(1), 107–118 (2008).
[CrossRef] [PubMed]

2007

D. Morofke, M. C. Kolios, I. A. Vitkin, and V. X. D. Yang, “Wide dynamic range detection of bidirectional flow in Doppler optical coherence tomography using a two-dimensional Kasai estimator,” Opt. Lett.32(3), 253–255 (2007).
[CrossRef] [PubMed]

K. Wårdell, P. Blomstedt, J. Richter, J. Antonsson, O. Eriksson, P. Zsigmond, A. T. Bergenheim, and M. I. Hariz, “Intracerebral microvascular measurements during deep brain stimulation implantation using laser Doppler perfusion monitoring,” Stereotact. Funct. Neurosurg.85(6), 279–286 (2007).
[CrossRef] [PubMed]

2006

D. Karakitsos, N. Labropoulos, E. De Groot, A. P. Patrianakos, G. Kouraklis, J. Poularas, G. Samonis, D. A. Tsoutsos, M. M. Konstadoulakis, and A. Karabinis, “Real-time ultrasound-guided catheterisation of the internal jugular vein: a prospective comparison with the landmark technique in critical care patients,” Crit. Care10(6), R162 (2006).
[CrossRef] [PubMed]

2003

2002

V. Westphal, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “Real-time, high velocity-resolution color Doppler optical coherence tomography,” Opt. Lett.27(1), 34–36 (2002).
[CrossRef] [PubMed]

T. Grau, R. W. Leipold, R. Conradi, E. Martin, and J. Motsch, “Efficacy of ultrasound imaging in obstetric epidural anesthesia,” J. Clin. Anesth.14(3), 169–175 (2002).
[CrossRef] [PubMed]

2001

1999

Z. P. Chen, Y. H. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, and R. D. Frostig, “Optical Doppler tomography,” IEEE J. Sel. Top. Quantum Electron.5(4), 1134–1142 (1999).
[CrossRef]

1997

1995

H. C. Eun, “Evaluation of skin blood flow by laser Doppler flowmetry,” Clin. Dermatol.13(4), 337–347 (1995).
[CrossRef] [PubMed]

1984

J. M. Gardin, C. S. Burn, W. J. Childs, and W. L. Henry, “Evaluation of blood flow velocity in the ascending aorta and main pulmonary artery of normal subjects by Doppler echocardiography,” Am. Heart J.107(2), 310–319 (1984).
[CrossRef] [PubMed]

Antonsson, J.

K. Wårdell, P. Blomstedt, J. Richter, J. Antonsson, O. Eriksson, P. Zsigmond, A. T. Bergenheim, and M. I. Hariz, “Intracerebral microvascular measurements during deep brain stimulation implantation using laser Doppler perfusion monitoring,” Stereotact. Funct. Neurosurg.85(6), 279–286 (2007).
[CrossRef] [PubMed]

Bergenheim, A. T.

K. Wårdell, P. Blomstedt, J. Richter, J. Antonsson, O. Eriksson, P. Zsigmond, A. T. Bergenheim, and M. I. Hariz, “Intracerebral microvascular measurements during deep brain stimulation implantation using laser Doppler perfusion monitoring,” Stereotact. Funct. Neurosurg.85(6), 279–286 (2007).
[CrossRef] [PubMed]

Blomstedt, P.

K. Wårdell, P. Blomstedt, J. Richter, J. Antonsson, O. Eriksson, P. Zsigmond, A. T. Bergenheim, and M. I. Hariz, “Intracerebral microvascular measurements during deep brain stimulation implantation using laser Doppler perfusion monitoring,” Stereotact. Funct. Neurosurg.85(6), 279–286 (2007).
[CrossRef] [PubMed]

Burn, C. S.

J. M. Gardin, C. S. Burn, W. J. Childs, and W. L. Henry, “Evaluation of blood flow velocity in the ascending aorta and main pulmonary artery of normal subjects by Doppler echocardiography,” Am. Heart J.107(2), 310–319 (1984).
[CrossRef] [PubMed]

Chen, Z. P.

Z. P. Chen, Y. H. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, and R. D. Frostig, “Optical Doppler tomography,” IEEE J. Sel. Top. Quantum Electron.5(4), 1134–1142 (1999).
[CrossRef]

Z. P. Chen, T. E. Milner, S. Srinivas, X. J. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett.22(14), 1119–1121 (1997).
[CrossRef] [PubMed]

Chiarelli, P. A.

S. K. Piechnik, P. A. Chiarelli, and P. Jezzard, “Modelling vascular reactivity to investigate the basis of the relationship between cerebral blood volume and flow under CO2 manipulation,” Neuroimage39(1), 107–118 (2008).
[CrossRef] [PubMed]

Childs, W. J.

J. M. Gardin, C. S. Burn, W. J. Childs, and W. L. Henry, “Evaluation of blood flow velocity in the ascending aorta and main pulmonary artery of normal subjects by Doppler echocardiography,” Am. Heart J.107(2), 310–319 (1984).
[CrossRef] [PubMed]

Conradi, R.

T. Grau, R. W. Leipold, R. Conradi, E. Martin, and J. Motsch, “Efficacy of ultrasound imaging in obstetric epidural anesthesia,” J. Clin. Anesth.14(3), 169–175 (2002).
[CrossRef] [PubMed]

De Groot, E.

D. Karakitsos, N. Labropoulos, E. De Groot, A. P. Patrianakos, G. Kouraklis, J. Poularas, G. Samonis, D. A. Tsoutsos, M. M. Konstadoulakis, and A. Karabinis, “Real-time ultrasound-guided catheterisation of the internal jugular vein: a prospective comparison with the landmark technique in critical care patients,” Crit. Care10(6), R162 (2006).
[CrossRef] [PubMed]

de Mul, F. F. M.

Eriksson, O.

K. Wårdell, P. Blomstedt, J. Richter, J. Antonsson, O. Eriksson, P. Zsigmond, A. T. Bergenheim, and M. I. Hariz, “Intracerebral microvascular measurements during deep brain stimulation implantation using laser Doppler perfusion monitoring,” Stereotact. Funct. Neurosurg.85(6), 279–286 (2007).
[CrossRef] [PubMed]

Eun, H. C.

H. C. Eun, “Evaluation of skin blood flow by laser Doppler flowmetry,” Clin. Dermatol.13(4), 337–347 (1995).
[CrossRef] [PubMed]

Fercher, A. F.

Frostig, R. D.

Z. P. Chen, Y. H. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, and R. D. Frostig, “Optical Doppler tomography,” IEEE J. Sel. Top. Quantum Electron.5(4), 1134–1142 (1999).
[CrossRef]

Gardin, J. M.

J. M. Gardin, C. S. Burn, W. J. Childs, and W. L. Henry, “Evaluation of blood flow velocity in the ascending aorta and main pulmonary artery of normal subjects by Doppler echocardiography,” Am. Heart J.107(2), 310–319 (1984).
[CrossRef] [PubMed]

Gordon, M. L.

Grau, T.

T. Grau, R. W. Leipold, R. Conradi, E. Martin, and J. Motsch, “Efficacy of ultrasound imaging in obstetric epidural anesthesia,” J. Clin. Anesth.14(3), 169–175 (2002).
[CrossRef] [PubMed]

Hariz, M. I.

K. Wårdell, P. Blomstedt, J. Richter, J. Antonsson, O. Eriksson, P. Zsigmond, A. T. Bergenheim, and M. I. Hariz, “Intracerebral microvascular measurements during deep brain stimulation implantation using laser Doppler perfusion monitoring,” Stereotact. Funct. Neurosurg.85(6), 279–286 (2007).
[CrossRef] [PubMed]

Henry, W. L.

J. M. Gardin, C. S. Burn, W. J. Childs, and W. L. Henry, “Evaluation of blood flow velocity in the ascending aorta and main pulmonary artery of normal subjects by Doppler echocardiography,” Am. Heart J.107(2), 310–319 (1984).
[CrossRef] [PubMed]

Hitzenberger, C. K.

Izatt, J. A.

Jezzard, P.

S. K. Piechnik, P. A. Chiarelli, and P. Jezzard, “Modelling vascular reactivity to investigate the basis of the relationship between cerebral blood volume and flow under CO2 manipulation,” Neuroimage39(1), 107–118 (2008).
[CrossRef] [PubMed]

Karabinis, A.

D. Karakitsos, N. Labropoulos, E. De Groot, A. P. Patrianakos, G. Kouraklis, J. Poularas, G. Samonis, D. A. Tsoutsos, M. M. Konstadoulakis, and A. Karabinis, “Real-time ultrasound-guided catheterisation of the internal jugular vein: a prospective comparison with the landmark technique in critical care patients,” Crit. Care10(6), R162 (2006).
[CrossRef] [PubMed]

Karakitsos, D.

D. Karakitsos, N. Labropoulos, E. De Groot, A. P. Patrianakos, G. Kouraklis, J. Poularas, G. Samonis, D. A. Tsoutsos, M. M. Konstadoulakis, and A. Karabinis, “Real-time ultrasound-guided catheterisation of the internal jugular vein: a prospective comparison with the landmark technique in critical care patients,” Crit. Care10(6), R162 (2006).
[CrossRef] [PubMed]

Kijsamanmith, K.

K. Kijsamanmith, S. Timpawat, N. Vongsavan, and B. Matthews, “Pulpal blood flow recorded from human premolar teeth with a laser Doppler flow meter using either red or infrared light,” Arch. Oral Biol.56(7), 629–633 (2011).
[CrossRef] [PubMed]

Kolios, M. C.

Konstadoulakis, M. M.

D. Karakitsos, N. Labropoulos, E. De Groot, A. P. Patrianakos, G. Kouraklis, J. Poularas, G. Samonis, D. A. Tsoutsos, M. M. Konstadoulakis, and A. Karabinis, “Real-time ultrasound-guided catheterisation of the internal jugular vein: a prospective comparison with the landmark technique in critical care patients,” Crit. Care10(6), R162 (2006).
[CrossRef] [PubMed]

Kouraklis, G.

D. Karakitsos, N. Labropoulos, E. De Groot, A. P. Patrianakos, G. Kouraklis, J. Poularas, G. Samonis, D. A. Tsoutsos, M. M. Konstadoulakis, and A. Karabinis, “Real-time ultrasound-guided catheterisation of the internal jugular vein: a prospective comparison with the landmark technique in critical care patients,” Crit. Care10(6), R162 (2006).
[CrossRef] [PubMed]

Labropoulos, N.

D. Karakitsos, N. Labropoulos, E. De Groot, A. P. Patrianakos, G. Kouraklis, J. Poularas, G. Samonis, D. A. Tsoutsos, M. M. Konstadoulakis, and A. Karabinis, “Real-time ultrasound-guided catheterisation of the internal jugular vein: a prospective comparison with the landmark technique in critical care patients,” Crit. Care10(6), R162 (2006).
[CrossRef] [PubMed]

Leipold, R. W.

T. Grau, R. W. Leipold, R. Conradi, E. Martin, and J. Motsch, “Efficacy of ultrasound imaging in obstetric epidural anesthesia,” J. Clin. Anesth.14(3), 169–175 (2002).
[CrossRef] [PubMed]

Leitgeb, R.

Lo, S.

Malekafzali, A.

Martin, E.

T. Grau, R. W. Leipold, R. Conradi, E. Martin, and J. Motsch, “Efficacy of ultrasound imaging in obstetric epidural anesthesia,” J. Clin. Anesth.14(3), 169–175 (2002).
[CrossRef] [PubMed]

Matthews, B.

K. Kijsamanmith, S. Timpawat, N. Vongsavan, and B. Matthews, “Pulpal blood flow recorded from human premolar teeth with a laser Doppler flow meter using either red or infrared light,” Arch. Oral Biol.56(7), 629–633 (2011).
[CrossRef] [PubMed]

Milner, T. E.

Mok, A.

Morofke, D.

Motsch, J.

T. Grau, R. W. Leipold, R. Conradi, E. Martin, and J. Motsch, “Efficacy of ultrasound imaging in obstetric epidural anesthesia,” J. Clin. Anesth.14(3), 169–175 (2002).
[CrossRef] [PubMed]

Nelson, J. S.

Z. P. Chen, Y. H. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, and R. D. Frostig, “Optical Doppler tomography,” IEEE J. Sel. Top. Quantum Electron.5(4), 1134–1142 (1999).
[CrossRef]

Z. P. Chen, T. E. Milner, S. Srinivas, X. J. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett.22(14), 1119–1121 (1997).
[CrossRef] [PubMed]

Patrianakos, A. P.

D. Karakitsos, N. Labropoulos, E. De Groot, A. P. Patrianakos, G. Kouraklis, J. Poularas, G. Samonis, D. A. Tsoutsos, M. M. Konstadoulakis, and A. Karabinis, “Real-time ultrasound-guided catheterisation of the internal jugular vein: a prospective comparison with the landmark technique in critical care patients,” Crit. Care10(6), R162 (2006).
[CrossRef] [PubMed]

Pekar, J.

Petoukhova, A. L.

Piechnik, S. K.

S. K. Piechnik, P. A. Chiarelli, and P. Jezzard, “Modelling vascular reactivity to investigate the basis of the relationship between cerebral blood volume and flow under CO2 manipulation,” Neuroimage39(1), 107–118 (2008).
[CrossRef] [PubMed]

Poularas, J.

D. Karakitsos, N. Labropoulos, E. De Groot, A. P. Patrianakos, G. Kouraklis, J. Poularas, G. Samonis, D. A. Tsoutsos, M. M. Konstadoulakis, and A. Karabinis, “Real-time ultrasound-guided catheterisation of the internal jugular vein: a prospective comparison with the landmark technique in critical care patients,” Crit. Care10(6), R162 (2006).
[CrossRef] [PubMed]

Prakash, N.

Z. P. Chen, Y. H. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, and R. D. Frostig, “Optical Doppler tomography,” IEEE J. Sel. Top. Quantum Electron.5(4), 1134–1142 (1999).
[CrossRef]

Qi, B.

Rajan, V.

B. Varghese, V. Rajan, T. G. Van Leeuwen, and W. Steenbergen, “In vivo optical path lengths and path length resolved doppler shifts of multiply scattered light,” Lasers Surg. Med.42(9), 852–860 (2010).
[CrossRef] [PubMed]

V. Rajan, B. Varghese, T. G. Van Leeuwen, and W. Steenbergen, “Review of methodological developments in laser Doppler flowmetry,” Lasers Med. Sci.24(2), 269–283 (2009).
[CrossRef] [PubMed]

Richter, J.

K. Wårdell, P. Blomstedt, J. Richter, J. Antonsson, O. Eriksson, P. Zsigmond, A. T. Bergenheim, and M. I. Hariz, “Intracerebral microvascular measurements during deep brain stimulation implantation using laser Doppler perfusion monitoring,” Stereotact. Funct. Neurosurg.85(6), 279–286 (2007).
[CrossRef] [PubMed]

Rollins, A. M.

Samonis, G.

D. Karakitsos, N. Labropoulos, E. De Groot, A. P. Patrianakos, G. Kouraklis, J. Poularas, G. Samonis, D. A. Tsoutsos, M. M. Konstadoulakis, and A. Karabinis, “Real-time ultrasound-guided catheterisation of the internal jugular vein: a prospective comparison with the landmark technique in critical care patients,” Crit. Care10(6), R162 (2006).
[CrossRef] [PubMed]

Seng-Yue, E.

Srinivas, S.

Srinivas, S. M.

Z. P. Chen, Y. H. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, and R. D. Frostig, “Optical Doppler tomography,” IEEE J. Sel. Top. Quantum Electron.5(4), 1134–1142 (1999).
[CrossRef]

Steenbergen, W.

B. Varghese, V. Rajan, T. G. Van Leeuwen, and W. Steenbergen, “In vivo optical path lengths and path length resolved doppler shifts of multiply scattered light,” Lasers Surg. Med.42(9), 852–860 (2010).
[CrossRef] [PubMed]

V. Rajan, B. Varghese, T. G. Van Leeuwen, and W. Steenbergen, “Review of methodological developments in laser Doppler flowmetry,” Lasers Med. Sci.24(2), 269–283 (2009).
[CrossRef] [PubMed]

A. L. Petoukhova, W. Steenbergen, and F. F. M. de Mul, “Path-length distribution and path-length-resolved Doppler measurements of multiply scattered photons by use of low-coherence interferometry,” Opt. Lett.26(19), 1492–1494 (2001).
[CrossRef] [PubMed]

Timpawat, S.

K. Kijsamanmith, S. Timpawat, N. Vongsavan, and B. Matthews, “Pulpal blood flow recorded from human premolar teeth with a laser Doppler flow meter using either red or infrared light,” Arch. Oral Biol.56(7), 629–633 (2011).
[CrossRef] [PubMed]

Tsoutsos, D. A.

D. Karakitsos, N. Labropoulos, E. De Groot, A. P. Patrianakos, G. Kouraklis, J. Poularas, G. Samonis, D. A. Tsoutsos, M. M. Konstadoulakis, and A. Karabinis, “Real-time ultrasound-guided catheterisation of the internal jugular vein: a prospective comparison with the landmark technique in critical care patients,” Crit. Care10(6), R162 (2006).
[CrossRef] [PubMed]

van Gemert, M. J. C.

Van Leeuwen, T. G.

B. Varghese, V. Rajan, T. G. Van Leeuwen, and W. Steenbergen, “In vivo optical path lengths and path length resolved doppler shifts of multiply scattered light,” Lasers Surg. Med.42(9), 852–860 (2010).
[CrossRef] [PubMed]

V. Rajan, B. Varghese, T. G. Van Leeuwen, and W. Steenbergen, “Review of methodological developments in laser Doppler flowmetry,” Lasers Med. Sci.24(2), 269–283 (2009).
[CrossRef] [PubMed]

Varghese, B.

B. Varghese, V. Rajan, T. G. Van Leeuwen, and W. Steenbergen, “In vivo optical path lengths and path length resolved doppler shifts of multiply scattered light,” Lasers Surg. Med.42(9), 852–860 (2010).
[CrossRef] [PubMed]

V. Rajan, B. Varghese, T. G. Van Leeuwen, and W. Steenbergen, “Review of methodological developments in laser Doppler flowmetry,” Lasers Med. Sci.24(2), 269–283 (2009).
[CrossRef] [PubMed]

Vitkin, I. A.

Vongsavan, N.

K. Kijsamanmith, S. Timpawat, N. Vongsavan, and B. Matthews, “Pulpal blood flow recorded from human premolar teeth with a laser Doppler flow meter using either red or infrared light,” Arch. Oral Biol.56(7), 629–633 (2011).
[CrossRef] [PubMed]

Wang, X. J.

Wårdell, K.

K. Wårdell, P. Blomstedt, J. Richter, J. Antonsson, O. Eriksson, P. Zsigmond, A. T. Bergenheim, and M. I. Hariz, “Intracerebral microvascular measurements during deep brain stimulation implantation using laser Doppler perfusion monitoring,” Stereotact. Funct. Neurosurg.85(6), 279–286 (2007).
[CrossRef] [PubMed]

Westphal, V.

Wilson, B. C.

Yang, V. X. D.

Yazdanfar, S.

Zhao, Y. H.

Z. P. Chen, Y. H. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, and R. D. Frostig, “Optical Doppler tomography,” IEEE J. Sel. Top. Quantum Electron.5(4), 1134–1142 (1999).
[CrossRef]

Zsigmond, P.

K. Wårdell, P. Blomstedt, J. Richter, J. Antonsson, O. Eriksson, P. Zsigmond, A. T. Bergenheim, and M. I. Hariz, “Intracerebral microvascular measurements during deep brain stimulation implantation using laser Doppler perfusion monitoring,” Stereotact. Funct. Neurosurg.85(6), 279–286 (2007).
[CrossRef] [PubMed]

Am. Heart J.

J. M. Gardin, C. S. Burn, W. J. Childs, and W. L. Henry, “Evaluation of blood flow velocity in the ascending aorta and main pulmonary artery of normal subjects by Doppler echocardiography,” Am. Heart J.107(2), 310–319 (1984).
[CrossRef] [PubMed]

Arch. Oral Biol.

K. Kijsamanmith, S. Timpawat, N. Vongsavan, and B. Matthews, “Pulpal blood flow recorded from human premolar teeth with a laser Doppler flow meter using either red or infrared light,” Arch. Oral Biol.56(7), 629–633 (2011).
[CrossRef] [PubMed]

Clin. Dermatol.

H. C. Eun, “Evaluation of skin blood flow by laser Doppler flowmetry,” Clin. Dermatol.13(4), 337–347 (1995).
[CrossRef] [PubMed]

Crit. Care

D. Karakitsos, N. Labropoulos, E. De Groot, A. P. Patrianakos, G. Kouraklis, J. Poularas, G. Samonis, D. A. Tsoutsos, M. M. Konstadoulakis, and A. Karabinis, “Real-time ultrasound-guided catheterisation of the internal jugular vein: a prospective comparison with the landmark technique in critical care patients,” Crit. Care10(6), R162 (2006).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron.

Z. P. Chen, Y. H. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, and R. D. Frostig, “Optical Doppler tomography,” IEEE J. Sel. Top. Quantum Electron.5(4), 1134–1142 (1999).
[CrossRef]

J. Clin. Anesth.

T. Grau, R. W. Leipold, R. Conradi, E. Martin, and J. Motsch, “Efficacy of ultrasound imaging in obstetric epidural anesthesia,” J. Clin. Anesth.14(3), 169–175 (2002).
[CrossRef] [PubMed]

Lasers Med. Sci.

V. Rajan, B. Varghese, T. G. Van Leeuwen, and W. Steenbergen, “Review of methodological developments in laser Doppler flowmetry,” Lasers Med. Sci.24(2), 269–283 (2009).
[CrossRef] [PubMed]

Lasers Surg. Med.

B. Varghese, V. Rajan, T. G. Van Leeuwen, and W. Steenbergen, “In vivo optical path lengths and path length resolved doppler shifts of multiply scattered light,” Lasers Surg. Med.42(9), 852–860 (2010).
[CrossRef] [PubMed]

Neuroimage

S. K. Piechnik, P. A. Chiarelli, and P. Jezzard, “Modelling vascular reactivity to investigate the basis of the relationship between cerebral blood volume and flow under CO2 manipulation,” Neuroimage39(1), 107–118 (2008).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Stereotact. Funct. Neurosurg.

K. Wårdell, P. Blomstedt, J. Richter, J. Antonsson, O. Eriksson, P. Zsigmond, A. T. Bergenheim, and M. I. Hariz, “Intracerebral microvascular measurements during deep brain stimulation implantation using laser Doppler perfusion monitoring,” Stereotact. Funct. Neurosurg.85(6), 279–286 (2007).
[CrossRef] [PubMed]

Supplementary Material (3)

» Media 1: WAV (2584 KB)     
» Media 2: MP3 (240 KB)     
» Media 3: MOV (1947 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics