Abstract

Silicon photomultipliers are novel solid state photodetectors that recently became commercially available. The goal of this paper was to investigate their suitability for low light level detection in miniaturized functional near-infrared spectroscopy instruments. Two measurement modules with a footprint of 26×26 mm2 were built, and the signal-to-noise ratio was assessed for variable source-detector separations between 25 and 65 mm on phantoms with similar optical properties to those of a human head. These measurements revealed that the signal-to-noise ratio of the raw signal was superior to an empirically derived design requirement for source-detector separations up to 50 mm. An arterial arm occlusion was also performed on one of the authors in vivo, to induce reproducible hemodynamic changes which confirmed the validity of the measured signals. The proposed use of silicon photomultipliers in functional near-infrared spectroscopy bears large potential for future development of precise, yet compact and modular instruments, and affords improvements of the source-detector separation by 67% compared to the commonly used 30 mm.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Ferrari, L. Mottola, and V. Quaresima, “Principles, techniques, and limitations of near infrared spectroscopy,” Can. J. Appl. Physiol.29, 463–487 (2004).
    [CrossRef] [PubMed]
  2. M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt.12, 062104 (2007).
    [CrossRef]
  3. M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage63, 921–935 (2012).
    [CrossRef] [PubMed]
  4. B. N. Pasley and R. D. Freeman, “Neurovascular coupling,” Scholarpedia3, 5340 (2008).
    [CrossRef]
  5. A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci.20, 435–442 (1997).
    [CrossRef] [PubMed]
  6. G. Strangman, D. A. Boas, and J. P. Sutton, “Non-invasive neuroimaging using near-infrared light,” Biol. Psychiatry52, 679–693 (2002).
    [CrossRef] [PubMed]
  7. T. J. Germon, P. D. Evans, N. J. Barnett, P. Wall, A. R. Manara, and R. J. Nelson, “Cerebral near infrared spectroscopy: emitter-detector separation must be increased,” Br. J. Anaesth.82, 831–837 (1999).
    [CrossRef] [PubMed]
  8. A. Kienle and M. S. Patterson, “Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium,” J. Opt. Soc. Am. A14, 246–254 (1997).
    [CrossRef]
  9. D. Renker, “New trends on photodetectors,” Nucl. Instr. Meth. Phys. Res. A571, 1–6 (2007).
    [CrossRef]
  10. D. Renker, “Geiger-mode avalanche photodiodes, history, properties and problems,” Nucl. Instr. Meth. Phys. Res. A567, 48–56 (2006).
    [CrossRef]
  11. A. Stewart, V. Saveliev, S. Bellis, D. Herbert, P. Hughes, and J. Jackson, “Performance of 1-mm2 silicon photo-multiplier,” IEEE J. Quantum Electron.44, 157–164 (2008).
    [CrossRef]
  12. F. Braun and T. Achtnich, “Semester thesis: Design and evaluation of a modular fNIRS probe for employment in neuroimaging applications,” Eidgenössische Technische Hochschule Zürich, Institut für Biomedizinische Technik (2012), http://dx.doi.org/10.3929/ethz-a-007564212 .
  13. A. Bozkurt and B. Onaral, “Safety assessment of near infrared light emitting diodes for diffuse optical measurements,” Biomed. Eng. Online3, 9 (2004).
    [CrossRef] [PubMed]
  14. A. Krüger, S. P. Koch, J. Mehnert, C. Habermehl, S. Piper, J. Steinbrink, H. Obrig, and C. H. Schmitz, “Imaging of motor activity in freely moving subjects using a wearable NIRS imaging system,” in Biomedical Optics, OSA Technical Digest (Optical Society of America, 2012), paper BM4A.3.
  15. A. Bozkurt, A. Rosen, H. Rosen, and B. Onaral, “A portable near infrared spectroscopy system for bedside monitoring of newborn brain,” Biomed. Eng. Online4, 29 (2005).
    [CrossRef] [PubMed]
  16. C. Jäger, “Eye safety of IREDs used in lamp applications,” Application note, OSRAM Opto Semiconductors GmbH (2009).
  17. International commission on non-ionizing radiation protection (ICNIRP), “Guidelines on limits of exposure to broad-band incoherent optical radiation (0.38 to 3 μm),” Health Phys.73, 539–554 (1997).
    [PubMed]
  18. S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, and E. O. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation,” Biochim. Biophys. Acta933, 184–192 (1988).
    [CrossRef] [PubMed]
  19. A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. T. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol.40, 295–304 (1995).
    [CrossRef] [PubMed]
  20. T. Muehlemann, D. Haensse, and M. Wolf, “Wireless miniaturized in-vivo near infrared imaging,” Opt. Express16, 10323–10330 (2008).
    [CrossRef] [PubMed]

2012 (1)

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage63, 921–935 (2012).
[CrossRef] [PubMed]

2008 (3)

B. N. Pasley and R. D. Freeman, “Neurovascular coupling,” Scholarpedia3, 5340 (2008).
[CrossRef]

A. Stewart, V. Saveliev, S. Bellis, D. Herbert, P. Hughes, and J. Jackson, “Performance of 1-mm2 silicon photo-multiplier,” IEEE J. Quantum Electron.44, 157–164 (2008).
[CrossRef]

T. Muehlemann, D. Haensse, and M. Wolf, “Wireless miniaturized in-vivo near infrared imaging,” Opt. Express16, 10323–10330 (2008).
[CrossRef] [PubMed]

2007 (2)

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt.12, 062104 (2007).
[CrossRef]

D. Renker, “New trends on photodetectors,” Nucl. Instr. Meth. Phys. Res. A571, 1–6 (2007).
[CrossRef]

2006 (1)

D. Renker, “Geiger-mode avalanche photodiodes, history, properties and problems,” Nucl. Instr. Meth. Phys. Res. A567, 48–56 (2006).
[CrossRef]

2005 (1)

A. Bozkurt, A. Rosen, H. Rosen, and B. Onaral, “A portable near infrared spectroscopy system for bedside monitoring of newborn brain,” Biomed. Eng. Online4, 29 (2005).
[CrossRef] [PubMed]

2004 (2)

A. Bozkurt and B. Onaral, “Safety assessment of near infrared light emitting diodes for diffuse optical measurements,” Biomed. Eng. Online3, 9 (2004).
[CrossRef] [PubMed]

M. Ferrari, L. Mottola, and V. Quaresima, “Principles, techniques, and limitations of near infrared spectroscopy,” Can. J. Appl. Physiol.29, 463–487 (2004).
[CrossRef] [PubMed]

2002 (1)

G. Strangman, D. A. Boas, and J. P. Sutton, “Non-invasive neuroimaging using near-infrared light,” Biol. Psychiatry52, 679–693 (2002).
[CrossRef] [PubMed]

1999 (1)

T. J. Germon, P. D. Evans, N. J. Barnett, P. Wall, A. R. Manara, and R. J. Nelson, “Cerebral near infrared spectroscopy: emitter-detector separation must be increased,” Br. J. Anaesth.82, 831–837 (1999).
[CrossRef] [PubMed]

1997 (3)

A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci.20, 435–442 (1997).
[CrossRef] [PubMed]

International commission on non-ionizing radiation protection (ICNIRP), “Guidelines on limits of exposure to broad-band incoherent optical radiation (0.38 to 3 μm),” Health Phys.73, 539–554 (1997).
[PubMed]

A. Kienle and M. S. Patterson, “Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium,” J. Opt. Soc. Am. A14, 246–254 (1997).
[CrossRef]

1995 (1)

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. T. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol.40, 295–304 (1995).
[CrossRef] [PubMed]

1988 (1)

S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, and E. O. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation,” Biochim. Biophys. Acta933, 184–192 (1988).
[CrossRef] [PubMed]

Achtnich, T.

F. Braun and T. Achtnich, “Semester thesis: Design and evaluation of a modular fNIRS probe for employment in neuroimaging applications,” Eidgenössische Technische Hochschule Zürich, Institut für Biomedizinische Technik (2012), http://dx.doi.org/10.3929/ethz-a-007564212 .

Barnett, N. J.

T. J. Germon, P. D. Evans, N. J. Barnett, P. Wall, A. R. Manara, and R. J. Nelson, “Cerebral near infrared spectroscopy: emitter-detector separation must be increased,” Br. J. Anaesth.82, 831–837 (1999).
[CrossRef] [PubMed]

Bellis, S.

A. Stewart, V. Saveliev, S. Bellis, D. Herbert, P. Hughes, and J. Jackson, “Performance of 1-mm2 silicon photo-multiplier,” IEEE J. Quantum Electron.44, 157–164 (2008).
[CrossRef]

Boas, D. A.

G. Strangman, D. A. Boas, and J. P. Sutton, “Non-invasive neuroimaging using near-infrared light,” Biol. Psychiatry52, 679–693 (2002).
[CrossRef] [PubMed]

Bozkurt, A.

A. Bozkurt, A. Rosen, H. Rosen, and B. Onaral, “A portable near infrared spectroscopy system for bedside monitoring of newborn brain,” Biomed. Eng. Online4, 29 (2005).
[CrossRef] [PubMed]

A. Bozkurt and B. Onaral, “Safety assessment of near infrared light emitting diodes for diffuse optical measurements,” Biomed. Eng. Online3, 9 (2004).
[CrossRef] [PubMed]

Braun, F.

F. Braun and T. Achtnich, “Semester thesis: Design and evaluation of a modular fNIRS probe for employment in neuroimaging applications,” Eidgenössische Technische Hochschule Zürich, Institut für Biomedizinische Technik (2012), http://dx.doi.org/10.3929/ethz-a-007564212 .

Chance, B.

A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci.20, 435–442 (1997).
[CrossRef] [PubMed]

Clemence, M.

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. T. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol.40, 295–304 (1995).
[CrossRef] [PubMed]

Cope, M.

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. T. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol.40, 295–304 (1995).
[CrossRef] [PubMed]

S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, and E. O. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation,” Biochim. Biophys. Acta933, 184–192 (1988).
[CrossRef] [PubMed]

Delpy, D. T.

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. T. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol.40, 295–304 (1995).
[CrossRef] [PubMed]

S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, and E. O. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation,” Biochim. Biophys. Acta933, 184–192 (1988).
[CrossRef] [PubMed]

Duncan, A.

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. T. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol.40, 295–304 (1995).
[CrossRef] [PubMed]

Elwell, C. E.

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. T. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol.40, 295–304 (1995).
[CrossRef] [PubMed]

Evans, P. D.

T. J. Germon, P. D. Evans, N. J. Barnett, P. Wall, A. R. Manara, and R. J. Nelson, “Cerebral near infrared spectroscopy: emitter-detector separation must be increased,” Br. J. Anaesth.82, 831–837 (1999).
[CrossRef] [PubMed]

Ferrari, M.

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage63, 921–935 (2012).
[CrossRef] [PubMed]

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt.12, 062104 (2007).
[CrossRef]

M. Ferrari, L. Mottola, and V. Quaresima, “Principles, techniques, and limitations of near infrared spectroscopy,” Can. J. Appl. Physiol.29, 463–487 (2004).
[CrossRef] [PubMed]

Freeman, R. D.

B. N. Pasley and R. D. Freeman, “Neurovascular coupling,” Scholarpedia3, 5340 (2008).
[CrossRef]

Germon, T. J.

T. J. Germon, P. D. Evans, N. J. Barnett, P. Wall, A. R. Manara, and R. J. Nelson, “Cerebral near infrared spectroscopy: emitter-detector separation must be increased,” Br. J. Anaesth.82, 831–837 (1999).
[CrossRef] [PubMed]

Habermehl, C.

A. Krüger, S. P. Koch, J. Mehnert, C. Habermehl, S. Piper, J. Steinbrink, H. Obrig, and C. H. Schmitz, “Imaging of motor activity in freely moving subjects using a wearable NIRS imaging system,” in Biomedical Optics, OSA Technical Digest (Optical Society of America, 2012), paper BM4A.3.

Haensse, D.

Herbert, D.

A. Stewart, V. Saveliev, S. Bellis, D. Herbert, P. Hughes, and J. Jackson, “Performance of 1-mm2 silicon photo-multiplier,” IEEE J. Quantum Electron.44, 157–164 (2008).
[CrossRef]

Hughes, P.

A. Stewart, V. Saveliev, S. Bellis, D. Herbert, P. Hughes, and J. Jackson, “Performance of 1-mm2 silicon photo-multiplier,” IEEE J. Quantum Electron.44, 157–164 (2008).
[CrossRef]

Jackson, J.

A. Stewart, V. Saveliev, S. Bellis, D. Herbert, P. Hughes, and J. Jackson, “Performance of 1-mm2 silicon photo-multiplier,” IEEE J. Quantum Electron.44, 157–164 (2008).
[CrossRef]

Jäger, C.

C. Jäger, “Eye safety of IREDs used in lamp applications,” Application note, OSRAM Opto Semiconductors GmbH (2009).

Kienle, A.

Koch, S. P.

A. Krüger, S. P. Koch, J. Mehnert, C. Habermehl, S. Piper, J. Steinbrink, H. Obrig, and C. H. Schmitz, “Imaging of motor activity in freely moving subjects using a wearable NIRS imaging system,” in Biomedical Optics, OSA Technical Digest (Optical Society of America, 2012), paper BM4A.3.

Krüger, A.

A. Krüger, S. P. Koch, J. Mehnert, C. Habermehl, S. Piper, J. Steinbrink, H. Obrig, and C. H. Schmitz, “Imaging of motor activity in freely moving subjects using a wearable NIRS imaging system,” in Biomedical Optics, OSA Technical Digest (Optical Society of America, 2012), paper BM4A.3.

Manara, A. R.

T. J. Germon, P. D. Evans, N. J. Barnett, P. Wall, A. R. Manara, and R. J. Nelson, “Cerebral near infrared spectroscopy: emitter-detector separation must be increased,” Br. J. Anaesth.82, 831–837 (1999).
[CrossRef] [PubMed]

Meek, J. H.

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. T. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol.40, 295–304 (1995).
[CrossRef] [PubMed]

Mehnert, J.

A. Krüger, S. P. Koch, J. Mehnert, C. Habermehl, S. Piper, J. Steinbrink, H. Obrig, and C. H. Schmitz, “Imaging of motor activity in freely moving subjects using a wearable NIRS imaging system,” in Biomedical Optics, OSA Technical Digest (Optical Society of America, 2012), paper BM4A.3.

Mottola, L.

M. Ferrari, L. Mottola, and V. Quaresima, “Principles, techniques, and limitations of near infrared spectroscopy,” Can. J. Appl. Physiol.29, 463–487 (2004).
[CrossRef] [PubMed]

Muehlemann, T.

Nelson, R. J.

T. J. Germon, P. D. Evans, N. J. Barnett, P. Wall, A. R. Manara, and R. J. Nelson, “Cerebral near infrared spectroscopy: emitter-detector separation must be increased,” Br. J. Anaesth.82, 831–837 (1999).
[CrossRef] [PubMed]

Obrig, H.

A. Krüger, S. P. Koch, J. Mehnert, C. Habermehl, S. Piper, J. Steinbrink, H. Obrig, and C. H. Schmitz, “Imaging of motor activity in freely moving subjects using a wearable NIRS imaging system,” in Biomedical Optics, OSA Technical Digest (Optical Society of America, 2012), paper BM4A.3.

Onaral, B.

A. Bozkurt, A. Rosen, H. Rosen, and B. Onaral, “A portable near infrared spectroscopy system for bedside monitoring of newborn brain,” Biomed. Eng. Online4, 29 (2005).
[CrossRef] [PubMed]

A. Bozkurt and B. Onaral, “Safety assessment of near infrared light emitting diodes for diffuse optical measurements,” Biomed. Eng. Online3, 9 (2004).
[CrossRef] [PubMed]

Pasley, B. N.

B. N. Pasley and R. D. Freeman, “Neurovascular coupling,” Scholarpedia3, 5340 (2008).
[CrossRef]

Patterson, M. S.

Piper, S.

A. Krüger, S. P. Koch, J. Mehnert, C. Habermehl, S. Piper, J. Steinbrink, H. Obrig, and C. H. Schmitz, “Imaging of motor activity in freely moving subjects using a wearable NIRS imaging system,” in Biomedical Optics, OSA Technical Digest (Optical Society of America, 2012), paper BM4A.3.

Quaresima, V.

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage63, 921–935 (2012).
[CrossRef] [PubMed]

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt.12, 062104 (2007).
[CrossRef]

M. Ferrari, L. Mottola, and V. Quaresima, “Principles, techniques, and limitations of near infrared spectroscopy,” Can. J. Appl. Physiol.29, 463–487 (2004).
[CrossRef] [PubMed]

Renker, D.

D. Renker, “New trends on photodetectors,” Nucl. Instr. Meth. Phys. Res. A571, 1–6 (2007).
[CrossRef]

D. Renker, “Geiger-mode avalanche photodiodes, history, properties and problems,” Nucl. Instr. Meth. Phys. Res. A567, 48–56 (2006).
[CrossRef]

Reynolds, E. O.

S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, and E. O. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation,” Biochim. Biophys. Acta933, 184–192 (1988).
[CrossRef] [PubMed]

Rosen, A.

A. Bozkurt, A. Rosen, H. Rosen, and B. Onaral, “A portable near infrared spectroscopy system for bedside monitoring of newborn brain,” Biomed. Eng. Online4, 29 (2005).
[CrossRef] [PubMed]

Rosen, H.

A. Bozkurt, A. Rosen, H. Rosen, and B. Onaral, “A portable near infrared spectroscopy system for bedside monitoring of newborn brain,” Biomed. Eng. Online4, 29 (2005).
[CrossRef] [PubMed]

Saveliev, V.

A. Stewart, V. Saveliev, S. Bellis, D. Herbert, P. Hughes, and J. Jackson, “Performance of 1-mm2 silicon photo-multiplier,” IEEE J. Quantum Electron.44, 157–164 (2008).
[CrossRef]

Schmitz, C. H.

A. Krüger, S. P. Koch, J. Mehnert, C. Habermehl, S. Piper, J. Steinbrink, H. Obrig, and C. H. Schmitz, “Imaging of motor activity in freely moving subjects using a wearable NIRS imaging system,” in Biomedical Optics, OSA Technical Digest (Optical Society of America, 2012), paper BM4A.3.

Steinbrink, J.

A. Krüger, S. P. Koch, J. Mehnert, C. Habermehl, S. Piper, J. Steinbrink, H. Obrig, and C. H. Schmitz, “Imaging of motor activity in freely moving subjects using a wearable NIRS imaging system,” in Biomedical Optics, OSA Technical Digest (Optical Society of America, 2012), paper BM4A.3.

Stewart, A.

A. Stewart, V. Saveliev, S. Bellis, D. Herbert, P. Hughes, and J. Jackson, “Performance of 1-mm2 silicon photo-multiplier,” IEEE J. Quantum Electron.44, 157–164 (2008).
[CrossRef]

Strangman, G.

G. Strangman, D. A. Boas, and J. P. Sutton, “Non-invasive neuroimaging using near-infrared light,” Biol. Psychiatry52, 679–693 (2002).
[CrossRef] [PubMed]

Sutton, J. P.

G. Strangman, D. A. Boas, and J. P. Sutton, “Non-invasive neuroimaging using near-infrared light,” Biol. Psychiatry52, 679–693 (2002).
[CrossRef] [PubMed]

Tyszczuk, L.

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. T. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol.40, 295–304 (1995).
[CrossRef] [PubMed]

Villringer, A.

A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci.20, 435–442 (1997).
[CrossRef] [PubMed]

Wall, P.

T. J. Germon, P. D. Evans, N. J. Barnett, P. Wall, A. R. Manara, and R. J. Nelson, “Cerebral near infrared spectroscopy: emitter-detector separation must be increased,” Br. J. Anaesth.82, 831–837 (1999).
[CrossRef] [PubMed]

Wolf, M.

T. Muehlemann, D. Haensse, and M. Wolf, “Wireless miniaturized in-vivo near infrared imaging,” Opt. Express16, 10323–10330 (2008).
[CrossRef] [PubMed]

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt.12, 062104 (2007).
[CrossRef]

Wray, S.

S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, and E. O. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation,” Biochim. Biophys. Acta933, 184–192 (1988).
[CrossRef] [PubMed]

Wyatt, J. S.

S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, and E. O. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation,” Biochim. Biophys. Acta933, 184–192 (1988).
[CrossRef] [PubMed]

Biochim. Biophys. Acta (1)

S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, and E. O. Reynolds, “Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation,” Biochim. Biophys. Acta933, 184–192 (1988).
[CrossRef] [PubMed]

Biol. Psychiatry (1)

G. Strangman, D. A. Boas, and J. P. Sutton, “Non-invasive neuroimaging using near-infrared light,” Biol. Psychiatry52, 679–693 (2002).
[CrossRef] [PubMed]

Biomed. Eng. Online (2)

A. Bozkurt, A. Rosen, H. Rosen, and B. Onaral, “A portable near infrared spectroscopy system for bedside monitoring of newborn brain,” Biomed. Eng. Online4, 29 (2005).
[CrossRef] [PubMed]

A. Bozkurt and B. Onaral, “Safety assessment of near infrared light emitting diodes for diffuse optical measurements,” Biomed. Eng. Online3, 9 (2004).
[CrossRef] [PubMed]

Br. J. Anaesth. (1)

T. J. Germon, P. D. Evans, N. J. Barnett, P. Wall, A. R. Manara, and R. J. Nelson, “Cerebral near infrared spectroscopy: emitter-detector separation must be increased,” Br. J. Anaesth.82, 831–837 (1999).
[CrossRef] [PubMed]

Can. J. Appl. Physiol. (1)

M. Ferrari, L. Mottola, and V. Quaresima, “Principles, techniques, and limitations of near infrared spectroscopy,” Can. J. Appl. Physiol.29, 463–487 (2004).
[CrossRef] [PubMed]

Health Phys. (1)

International commission on non-ionizing radiation protection (ICNIRP), “Guidelines on limits of exposure to broad-band incoherent optical radiation (0.38 to 3 μm),” Health Phys.73, 539–554 (1997).
[PubMed]

IEEE J. Quantum Electron. (1)

A. Stewart, V. Saveliev, S. Bellis, D. Herbert, P. Hughes, and J. Jackson, “Performance of 1-mm2 silicon photo-multiplier,” IEEE J. Quantum Electron.44, 157–164 (2008).
[CrossRef]

J. Biomed. Opt. (1)

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt.12, 062104 (2007).
[CrossRef]

J. Opt. Soc. Am. A (1)

Neuroimage (1)

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage63, 921–935 (2012).
[CrossRef] [PubMed]

Nucl. Instr. Meth. Phys. Res. A (2)

D. Renker, “New trends on photodetectors,” Nucl. Instr. Meth. Phys. Res. A571, 1–6 (2007).
[CrossRef]

D. Renker, “Geiger-mode avalanche photodiodes, history, properties and problems,” Nucl. Instr. Meth. Phys. Res. A567, 48–56 (2006).
[CrossRef]

Opt. Express (1)

Phys. Med. Biol. (1)

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. T. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol.40, 295–304 (1995).
[CrossRef] [PubMed]

Scholarpedia (1)

B. N. Pasley and R. D. Freeman, “Neurovascular coupling,” Scholarpedia3, 5340 (2008).
[CrossRef]

Trends Neurosci. (1)

A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci.20, 435–442 (1997).
[CrossRef] [PubMed]

Other (3)

C. Jäger, “Eye safety of IREDs used in lamp applications,” Application note, OSRAM Opto Semiconductors GmbH (2009).

F. Braun and T. Achtnich, “Semester thesis: Design and evaluation of a modular fNIRS probe for employment in neuroimaging applications,” Eidgenössische Technische Hochschule Zürich, Institut für Biomedizinische Technik (2012), http://dx.doi.org/10.3929/ethz-a-007564212 .

A. Krüger, S. P. Koch, J. Mehnert, C. Habermehl, S. Piper, J. Steinbrink, H. Obrig, and C. H. Schmitz, “Imaging of motor activity in freely moving subjects using a wearable NIRS imaging system,” in Biomedical Optics, OSA Technical Digest (Optical Society of America, 2012), paper BM4A.3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

A: the proposed fNIRS module besides a 2-€ coin. B: SiPM readout circuitry (TIA: transimpedance amplifier, LPF: low-pass filter). C: block diagram of the module (GUI: graphical user interface, μC: microcontroller, ADC: analog-digital converter, DAC: digital-analog converter).

Fig. 2
Fig. 2

Top: mean SNR (± SD) vs. SDS, measured at two phantoms (A and B). The dashed (solid) line shows the empirically derived minimal SNR for 680 (850) nm. *: data from TIA output. Bottom: changes in hemodynamics during three arterial occlusions (gray areas).

Tables (1)

Tables Icon

Table 1 Optical Coefficients [mm−1] of the Human Forehead and the Two Used Phantomsa

Metrics