Abstract

Phantom and mouse experiments of time-domain fluorescence tomography were conducted to demonstrate the total light approach which was previously proposed by authors. The total light approach reduces the computation time to solve the forward model for light propagation. Time-resolved temporal profiles were acquired for cylindrical phantoms having single or double targets containing indocyanine green (ICG) solutions. The reconstructed images of ICG concentration reflected the true distributions of ICG concentration with a spatial resolution of about 10 mm. In vivo experiments were conducted using a mouse in which an ICG capsule was embedded beneath the skin in the abdomen. The reconstructed image of the ICG concentration again reflected the true distribution of ICG although artifacts due to autofluorescence appeared in the vicinity of the skin. The effectiveness of the total light approach was demonstrated by the phantom and mouse experiments.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. F. Massoud and S. S. Gambhir, “Molecular imaging in living subjects: seeing fundamental biological processes in a new light,” Genes Dev.17(5), 545–580 (2003).
    [CrossRef] [PubMed]
  2. S. R. Cherry, “In vivo molecular and genomic imaging: new challenges for imaging physics,” Phys. Med. Biol.49(3), R13–R48 (2004).
    [CrossRef] [PubMed]
  3. V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med.8(7), 757–761 (2002).
    [CrossRef] [PubMed]
  4. V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett.26(12), 893–895 (2001).
    [CrossRef] [PubMed]
  5. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl.15(2), R41–R93 (1999).
    [CrossRef]
  6. Y. Yamada, “Light-tissue interaction and optical imaging in biomedicine,” in Annual Review of Heat Transfer, C.-L. Tien, ed. (Begell House, 1995), Vol. 6, pp. 1–59.
  7. F. Gao, H. Zhao, and Y. Yamada, “Improvement of image quality in diffuse optical tomography by use of full time-resolved data,” Appl. Opt.41(4), 778–791 (2002).
    [CrossRef] [PubMed]
  8. X. Zhang, C. T. Badea, and G. A. Johnson, “Three-dimensional reconstruction in free-space whole-body fluorescence tomography of mice using optically reconstructed surface and atlas anatomy,” J. Biomed. Opt.14(6), 064010 (2009).
    [CrossRef] [PubMed]
  9. N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, “Free-space fluorescence molecular tomography utilizing 360° geometry projections,” Opt. Lett.32(4), 382–384 (2007).
    [CrossRef] [PubMed]
  10. M. Solomon, B. R. White, R. E. Nothdruft, W. Akers, G. Sudlow, A. T. Eggebrecht, S. Achilefu, and J. P. Culver, “Video-rate fluorescence diffuse optical tomography for in vivo sentinel lymph node imaging,” Biomed. Opt. Express2(12), 3267–3277 (2011).
    [CrossRef] [PubMed]
  11. M. S. Patterson and B. W. Pogue, “Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues,” Appl. Opt.33(10), 1963–1974 (1994).
    [CrossRef] [PubMed]
  12. D. Y. Paithankar, A. U. Chen, B. W. Pogue, M. S. Patterson, and E. M. Sevick-Muraca, “Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random media,” Appl. Opt.36(10), 2260–2272 (1997).
    [CrossRef] [PubMed]
  13. M. Freiberger, C. Clason, and H. Scharfetter, “Adaptation and focusing of optode configurations for fluorescence optical tomography by experimental design methods,” J. Biomed. Opt.15(1), 016024 (2010).
    [CrossRef] [PubMed]
  14. A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt.42(16), 3081–3094 (2003).
    [CrossRef] [PubMed]
  15. S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express15(7), 4066–4082 (2007).
    [CrossRef] [PubMed]
  16. S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum.79(6), 064302 (2008).
    [CrossRef] [PubMed]
  17. H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng.25(6), 711–732 (2009).
    [CrossRef] [PubMed]
  18. S. Lam, F. Lesage, and X. Intes, “Time Domain Fluorescent Diffuse Optical Tomography: analytical expressions,” Opt. Express13(7), 2263–2275 (2005).
    [CrossRef] [PubMed]
  19. F. Gao, H. Zhao, Y. Tanikawa, and Y. Yamada, “A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomography,” Opt. Express14(16), 7109–7124 (2006).
    [CrossRef] [PubMed]
  20. F. Gao, H. Zhao, L. Zhang, Y. Tanikawa, A. Marjono, and Y. Yamada, “A self-normalized, full time-resolved method for fluorescence diffuse optical tomography,” Opt. Express16(17), 13104–13121 (2008).
    [CrossRef] [PubMed]
  21. A. Marjono, A. Yano, S. Okawa, F. Gao, and Y. Yamada, “Total light approach of time-domain fluorescence diffuse optical tomography,” Opt. Express16(19), 15268–15285 (2008).
    [CrossRef] [PubMed]
  22. M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A.105(49), 19126–19131 (2008).
    [CrossRef] [PubMed]
  23. R. E. Nothdurft, S. V. Patwardhan, W. Akers, Y. Ye, S. Achilefu, and J. P. Culver, “In vivo fluorescence lifetime tomography,” J. Biomed. Opt.14(2), 024004 (2009).
    [CrossRef] [PubMed]
  24. D. S. Kepshire, S. L. Gibbs-Strauss, J. A. O’Hara, M. Hutchins, N. Mincu, F. Leblond, M. Khayat, H. Dehghani, S. Srinivasan, and B. W. Pogue, “Imaging of glioma tumor with endogenous fluorescence tomography,” J. Biomed. Opt.14(3), 030501 (2009).
    [CrossRef] [PubMed]
  25. F. Gao, J. Li, L. Zhang, P. Poulet, H. Zhao, and Y. Yamada, “Simultaneous fluorescence yield and lifetime tomography from time-resolved transmittances of small-animal-sized phantom,” Appl. Opt.49(16), 3163–3172 (2010).
    [CrossRef] [PubMed]
  26. A. D. Klose and A. H. Hielscher, “Fluorescence tomography with simulated data based on the equation of radiative transfer,” Opt. Lett.28(12), 1019–1021 (2003).
    [CrossRef] [PubMed]
  27. A. D. Klose, V. Ntziachristos, and A. H. Hielscher, “The inverse source problem based on the radiative transfer equation in optical molecular imaging,” J. Comput. Phys.202(1), 323–345 (2005).
    [CrossRef]
  28. F. Gao, A. Marjono, S. Okawa, and Y. Yamada, “Light Propagation for Time-Domain Fluorescence Diffuse Optical Tomography by Convolution Using Lifetime Function,” Opt. Rev.14(3), 131–138 (2007).
    [CrossRef]
  29. K. Furutsu and Y. Yamada, “Diffusion approximation for a dissipative random medium and the applications,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics50(5), 3634–3640 (1994).
    [CrossRef] [PubMed]
  30. M. Schweiger, S. R. Arridge, and D. T. Delpy, “Application of the Finite-Element Method for the Forward and Inverse Models in Optical Tomography,” J. Math. Imaging Vis.3(3), 263–283 (1993).
    [CrossRef]
  31. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, in Numerical Recipes in C (Cambridge University Press, 1988).
  32. B. Yuan, N.-G. Chen, and Q. Zhu, “Emission and absorption properties of indocyanine green in Intralipid solution,” J. Biomed. Opt.9(3), 497–503 (2004).
    [CrossRef] [PubMed]
  33. E. M. Sevik-Muraca, A. Godavarthy, J. P. Houston, A. B. Thompson, and R. Roy, “Near-Infrared Imaging with Fluorescent Contrast Agents,” in Handbook of Biomedical Fluorescence, M.-A. Mycek and B. W. Pogue, eds. (Marcel Dekker, 2003), Chap. 14, pp. 475–476.
  34. M. Y. Berezin, H. Lee, W. Akers, and S. Achilefu, “Near infrared dyes as lifetime solvatochromic probes for micropolarity measurements of biological systems,” Biophys. J.93(8), 2892–2899 (2007).
    [CrossRef] [PubMed]
  35. H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, and M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum.70(9), 3595–3602 (1999).
    [CrossRef]
  36. E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, and D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum.71(9), 3415–3427 (2000).
    [CrossRef]
  37. S. Okawa, Y. Hoshi, and Y. Yamada, “Improvement of image quality of time-domain diffuse optical tomography with lp sparsity regularization,” Biomed. Opt. Express2(12), 3334–3348 (2011).
    [CrossRef] [PubMed]
  38. T. Shimokawa, T. Kosaka, O. Yamashita, N. Hiroe, T. Amita, Y. Inoue, and M. A. Sato, “Hierarchical Bayesian estimation improves depth accuracy and spatial resolution of diffuse optical tomography,” Opt. Express20(18), 20427–20446 (2012).
    [CrossRef] [PubMed]
  39. F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications,” J. Photochem. Photobiol. B98(1), 77–94 (2010).
    [CrossRef] [PubMed]

2012 (1)

2011 (2)

2010 (3)

F. Gao, J. Li, L. Zhang, P. Poulet, H. Zhao, and Y. Yamada, “Simultaneous fluorescence yield and lifetime tomography from time-resolved transmittances of small-animal-sized phantom,” Appl. Opt.49(16), 3163–3172 (2010).
[CrossRef] [PubMed]

M. Freiberger, C. Clason, and H. Scharfetter, “Adaptation and focusing of optode configurations for fluorescence optical tomography by experimental design methods,” J. Biomed. Opt.15(1), 016024 (2010).
[CrossRef] [PubMed]

F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications,” J. Photochem. Photobiol. B98(1), 77–94 (2010).
[CrossRef] [PubMed]

2009 (4)

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng.25(6), 711–732 (2009).
[CrossRef] [PubMed]

X. Zhang, C. T. Badea, and G. A. Johnson, “Three-dimensional reconstruction in free-space whole-body fluorescence tomography of mice using optically reconstructed surface and atlas anatomy,” J. Biomed. Opt.14(6), 064010 (2009).
[CrossRef] [PubMed]

R. E. Nothdurft, S. V. Patwardhan, W. Akers, Y. Ye, S. Achilefu, and J. P. Culver, “In vivo fluorescence lifetime tomography,” J. Biomed. Opt.14(2), 024004 (2009).
[CrossRef] [PubMed]

D. S. Kepshire, S. L. Gibbs-Strauss, J. A. O’Hara, M. Hutchins, N. Mincu, F. Leblond, M. Khayat, H. Dehghani, S. Srinivasan, and B. W. Pogue, “Imaging of glioma tumor with endogenous fluorescence tomography,” J. Biomed. Opt.14(3), 030501 (2009).
[CrossRef] [PubMed]

2008 (4)

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum.79(6), 064302 (2008).
[CrossRef] [PubMed]

F. Gao, H. Zhao, L. Zhang, Y. Tanikawa, A. Marjono, and Y. Yamada, “A self-normalized, full time-resolved method for fluorescence diffuse optical tomography,” Opt. Express16(17), 13104–13121 (2008).
[CrossRef] [PubMed]

A. Marjono, A. Yano, S. Okawa, F. Gao, and Y. Yamada, “Total light approach of time-domain fluorescence diffuse optical tomography,” Opt. Express16(19), 15268–15285 (2008).
[CrossRef] [PubMed]

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A.105(49), 19126–19131 (2008).
[CrossRef] [PubMed]

2007 (4)

M. Y. Berezin, H. Lee, W. Akers, and S. Achilefu, “Near infrared dyes as lifetime solvatochromic probes for micropolarity measurements of biological systems,” Biophys. J.93(8), 2892–2899 (2007).
[CrossRef] [PubMed]

F. Gao, A. Marjono, S. Okawa, and Y. Yamada, “Light Propagation for Time-Domain Fluorescence Diffuse Optical Tomography by Convolution Using Lifetime Function,” Opt. Rev.14(3), 131–138 (2007).
[CrossRef]

N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, “Free-space fluorescence molecular tomography utilizing 360° geometry projections,” Opt. Lett.32(4), 382–384 (2007).
[CrossRef] [PubMed]

S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express15(7), 4066–4082 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (2)

A. D. Klose, V. Ntziachristos, and A. H. Hielscher, “The inverse source problem based on the radiative transfer equation in optical molecular imaging,” J. Comput. Phys.202(1), 323–345 (2005).
[CrossRef]

S. Lam, F. Lesage, and X. Intes, “Time Domain Fluorescent Diffuse Optical Tomography: analytical expressions,” Opt. Express13(7), 2263–2275 (2005).
[CrossRef] [PubMed]

2004 (2)

S. R. Cherry, “In vivo molecular and genomic imaging: new challenges for imaging physics,” Phys. Med. Biol.49(3), R13–R48 (2004).
[CrossRef] [PubMed]

B. Yuan, N.-G. Chen, and Q. Zhu, “Emission and absorption properties of indocyanine green in Intralipid solution,” J. Biomed. Opt.9(3), 497–503 (2004).
[CrossRef] [PubMed]

2003 (3)

2002 (2)

F. Gao, H. Zhao, and Y. Yamada, “Improvement of image quality in diffuse optical tomography by use of full time-resolved data,” Appl. Opt.41(4), 778–791 (2002).
[CrossRef] [PubMed]

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med.8(7), 757–761 (2002).
[CrossRef] [PubMed]

2001 (1)

2000 (1)

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, and D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum.71(9), 3415–3427 (2000).
[CrossRef]

1999 (2)

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, and M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum.70(9), 3595–3602 (1999).
[CrossRef]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl.15(2), R41–R93 (1999).
[CrossRef]

1997 (1)

1994 (2)

M. S. Patterson and B. W. Pogue, “Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues,” Appl. Opt.33(10), 1963–1974 (1994).
[CrossRef] [PubMed]

K. Furutsu and Y. Yamada, “Diffusion approximation for a dissipative random medium and the applications,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics50(5), 3634–3640 (1994).
[CrossRef] [PubMed]

1993 (1)

M. Schweiger, S. R. Arridge, and D. T. Delpy, “Application of the Finite-Element Method for the Forward and Inverse Models in Optical Tomography,” J. Math. Imaging Vis.3(3), 263–283 (1993).
[CrossRef]

Achilefu, S.

M. Solomon, B. R. White, R. E. Nothdruft, W. Akers, G. Sudlow, A. T. Eggebrecht, S. Achilefu, and J. P. Culver, “Video-rate fluorescence diffuse optical tomography for in vivo sentinel lymph node imaging,” Biomed. Opt. Express2(12), 3267–3277 (2011).
[CrossRef] [PubMed]

R. E. Nothdurft, S. V. Patwardhan, W. Akers, Y. Ye, S. Achilefu, and J. P. Culver, “In vivo fluorescence lifetime tomography,” J. Biomed. Opt.14(2), 024004 (2009).
[CrossRef] [PubMed]

M. Y. Berezin, H. Lee, W. Akers, and S. Achilefu, “Near infrared dyes as lifetime solvatochromic probes for micropolarity measurements of biological systems,” Biophys. J.93(8), 2892–2899 (2007).
[CrossRef] [PubMed]

Aikawa, E.

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A.105(49), 19126–19131 (2008).
[CrossRef] [PubMed]

Akers, W.

M. Solomon, B. R. White, R. E. Nothdruft, W. Akers, G. Sudlow, A. T. Eggebrecht, S. Achilefu, and J. P. Culver, “Video-rate fluorescence diffuse optical tomography for in vivo sentinel lymph node imaging,” Biomed. Opt. Express2(12), 3267–3277 (2011).
[CrossRef] [PubMed]

R. E. Nothdurft, S. V. Patwardhan, W. Akers, Y. Ye, S. Achilefu, and J. P. Culver, “In vivo fluorescence lifetime tomography,” J. Biomed. Opt.14(2), 024004 (2009).
[CrossRef] [PubMed]

M. Y. Berezin, H. Lee, W. Akers, and S. Achilefu, “Near infrared dyes as lifetime solvatochromic probes for micropolarity measurements of biological systems,” Biophys. J.93(8), 2892–2899 (2007).
[CrossRef] [PubMed]

Amita, T.

Arridge, S. R.

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, and D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum.71(9), 3415–3427 (2000).
[CrossRef]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl.15(2), R41–R93 (1999).
[CrossRef]

M. Schweiger, S. R. Arridge, and D. T. Delpy, “Application of the Finite-Element Method for the Forward and Inverse Models in Optical Tomography,” J. Math. Imaging Vis.3(3), 263–283 (1993).
[CrossRef]

Badea, C. T.

X. Zhang, C. T. Badea, and G. A. Johnson, “Three-dimensional reconstruction in free-space whole-body fluorescence tomography of mice using optically reconstructed surface and atlas anatomy,” J. Biomed. Opt.14(6), 064010 (2009).
[CrossRef] [PubMed]

Berezin, M. Y.

M. Y. Berezin, H. Lee, W. Akers, and S. Achilefu, “Near infrared dyes as lifetime solvatochromic probes for micropolarity measurements of biological systems,” Biophys. J.93(8), 2892–2899 (2007).
[CrossRef] [PubMed]

Boas, D. A.

Bouman, C. A.

Bremer, C.

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med.8(7), 757–761 (2002).
[CrossRef] [PubMed]

Carpenter, C. M.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng.25(6), 711–732 (2009).
[CrossRef] [PubMed]

Chen, A. U.

Chen, N.-G.

B. Yuan, N.-G. Chen, and Q. Zhu, “Emission and absorption properties of indocyanine green in Intralipid solution,” J. Biomed. Opt.9(3), 497–503 (2004).
[CrossRef] [PubMed]

Cherry, S. R.

S. R. Cherry, “In vivo molecular and genomic imaging: new challenges for imaging physics,” Phys. Med. Biol.49(3), R13–R48 (2004).
[CrossRef] [PubMed]

Clason, C.

M. Freiberger, C. Clason, and H. Scharfetter, “Adaptation and focusing of optode configurations for fluorescence optical tomography by experimental design methods,” J. Biomed. Opt.15(1), 016024 (2010).
[CrossRef] [PubMed]

Culver, J. P.

Davis, S. C.

F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications,” J. Photochem. Photobiol. B98(1), 77–94 (2010).
[CrossRef] [PubMed]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng.25(6), 711–732 (2009).
[CrossRef] [PubMed]

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum.79(6), 064302 (2008).
[CrossRef] [PubMed]

S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express15(7), 4066–4082 (2007).
[CrossRef] [PubMed]

de Kleine, R. H.

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A.105(49), 19126–19131 (2008).
[CrossRef] [PubMed]

Dehghani, H.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng.25(6), 711–732 (2009).
[CrossRef] [PubMed]

D. S. Kepshire, S. L. Gibbs-Strauss, J. A. O’Hara, M. Hutchins, N. Mincu, F. Leblond, M. Khayat, H. Dehghani, S. Srinivasan, and B. W. Pogue, “Imaging of glioma tumor with endogenous fluorescence tomography,” J. Biomed. Opt.14(3), 030501 (2009).
[CrossRef] [PubMed]

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum.79(6), 064302 (2008).
[CrossRef] [PubMed]

S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express15(7), 4066–4082 (2007).
[CrossRef] [PubMed]

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, and D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum.71(9), 3415–3427 (2000).
[CrossRef]

Deliolanis, N.

Delpy, D. T.

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, and D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum.71(9), 3415–3427 (2000).
[CrossRef]

M. Schweiger, S. R. Arridge, and D. T. Delpy, “Application of the Finite-Element Method for the Forward and Inverse Models in Optical Tomography,” J. Math. Imaging Vis.3(3), 263–283 (1993).
[CrossRef]

Eames, M. E.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng.25(6), 711–732 (2009).
[CrossRef] [PubMed]

Eda, H.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, and M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum.70(9), 3595–3602 (1999).
[CrossRef]

Eggebrecht, A. T.

Freiberger, M.

M. Freiberger, C. Clason, and H. Scharfetter, “Adaptation and focusing of optode configurations for fluorescence optical tomography by experimental design methods,” J. Biomed. Opt.15(1), 016024 (2010).
[CrossRef] [PubMed]

Furutsu, K.

K. Furutsu and Y. Yamada, “Diffusion approximation for a dissipative random medium and the applications,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics50(5), 3634–3640 (1994).
[CrossRef] [PubMed]

Gambhir, S. S.

T. F. Massoud and S. S. Gambhir, “Molecular imaging in living subjects: seeing fundamental biological processes in a new light,” Genes Dev.17(5), 545–580 (2003).
[CrossRef] [PubMed]

Gao, F.

Gibbs-Strauss, S. L.

D. S. Kepshire, S. L. Gibbs-Strauss, J. A. O’Hara, M. Hutchins, N. Mincu, F. Leblond, M. Khayat, H. Dehghani, S. Srinivasan, and B. W. Pogue, “Imaging of glioma tumor with endogenous fluorescence tomography,” J. Biomed. Opt.14(3), 030501 (2009).
[CrossRef] [PubMed]

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum.79(6), 064302 (2008).
[CrossRef] [PubMed]

Hebden, J. C.

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, and D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum.71(9), 3415–3427 (2000).
[CrossRef]

Hielscher, A. H.

A. D. Klose, V. Ntziachristos, and A. H. Hielscher, “The inverse source problem based on the radiative transfer equation in optical molecular imaging,” J. Comput. Phys.202(1), 323–345 (2005).
[CrossRef]

A. D. Klose and A. H. Hielscher, “Fluorescence tomography with simulated data based on the equation of radiative transfer,” Opt. Lett.28(12), 1019–1021 (2003).
[CrossRef] [PubMed]

Hillman, E. M. C.

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, and D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum.71(9), 3415–3427 (2000).
[CrossRef]

Hiroe, N.

Hoshi, Y.

Hutchins, M.

D. S. Kepshire, S. L. Gibbs-Strauss, J. A. O’Hara, M. Hutchins, N. Mincu, F. Leblond, M. Khayat, H. Dehghani, S. Srinivasan, and B. W. Pogue, “Imaging of glioma tumor with endogenous fluorescence tomography,” J. Biomed. Opt.14(3), 030501 (2009).
[CrossRef] [PubMed]

Hyde, D.

Inoue, Y.

Intes, X.

Ito, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, and M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum.70(9), 3595–3602 (1999).
[CrossRef]

Jiang, S.

Jiang, S. S.

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum.79(6), 064302 (2008).
[CrossRef] [PubMed]

Johnson, G. A.

X. Zhang, C. T. Badea, and G. A. Johnson, “Three-dimensional reconstruction in free-space whole-body fluorescence tomography of mice using optically reconstructed surface and atlas anatomy,” J. Biomed. Opt.14(6), 064010 (2009).
[CrossRef] [PubMed]

Kepshire, D. S.

D. S. Kepshire, S. L. Gibbs-Strauss, J. A. O’Hara, M. Hutchins, N. Mincu, F. Leblond, M. Khayat, H. Dehghani, S. Srinivasan, and B. W. Pogue, “Imaging of glioma tumor with endogenous fluorescence tomography,” J. Biomed. Opt.14(3), 030501 (2009).
[CrossRef] [PubMed]

Khayat, M.

D. S. Kepshire, S. L. Gibbs-Strauss, J. A. O’Hara, M. Hutchins, N. Mincu, F. Leblond, M. Khayat, H. Dehghani, S. Srinivasan, and B. W. Pogue, “Imaging of glioma tumor with endogenous fluorescence tomography,” J. Biomed. Opt.14(3), 030501 (2009).
[CrossRef] [PubMed]

Kirsch, D. G.

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A.105(49), 19126–19131 (2008).
[CrossRef] [PubMed]

Klose, A. D.

A. D. Klose, V. Ntziachristos, and A. H. Hielscher, “The inverse source problem based on the radiative transfer equation in optical molecular imaging,” J. Comput. Phys.202(1), 323–345 (2005).
[CrossRef]

A. D. Klose and A. H. Hielscher, “Fluorescence tomography with simulated data based on the equation of radiative transfer,” Opt. Lett.28(12), 1019–1021 (2003).
[CrossRef] [PubMed]

Kosaka, T.

Lam, S.

Lasser, T.

Leblond, F.

F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications,” J. Photochem. Photobiol. B98(1), 77–94 (2010).
[CrossRef] [PubMed]

D. S. Kepshire, S. L. Gibbs-Strauss, J. A. O’Hara, M. Hutchins, N. Mincu, F. Leblond, M. Khayat, H. Dehghani, S. Srinivasan, and B. W. Pogue, “Imaging of glioma tumor with endogenous fluorescence tomography,” J. Biomed. Opt.14(3), 030501 (2009).
[CrossRef] [PubMed]

Lee, H.

M. Y. Berezin, H. Lee, W. Akers, and S. Achilefu, “Near infrared dyes as lifetime solvatochromic probes for micropolarity measurements of biological systems,” Biophys. J.93(8), 2892–2899 (2007).
[CrossRef] [PubMed]

Lesage, F.

Leussler, C.

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum.79(6), 064302 (2008).
[CrossRef] [PubMed]

Li, J.

Marjono, A.

Massoud, T. F.

T. F. Massoud and S. S. Gambhir, “Molecular imaging in living subjects: seeing fundamental biological processes in a new light,” Genes Dev.17(5), 545–580 (2003).
[CrossRef] [PubMed]

Mazurkewitz, P.

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum.79(6), 064302 (2008).
[CrossRef] [PubMed]

Millane, R. P.

Milstein, A. B.

Mincu, N.

D. S. Kepshire, S. L. Gibbs-Strauss, J. A. O’Hara, M. Hutchins, N. Mincu, F. Leblond, M. Khayat, H. Dehghani, S. Srinivasan, and B. W. Pogue, “Imaging of glioma tumor with endogenous fluorescence tomography,” J. Biomed. Opt.14(3), 030501 (2009).
[CrossRef] [PubMed]

Niedre, M. J.

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A.105(49), 19126–19131 (2008).
[CrossRef] [PubMed]

Nothdruft, R. E.

Nothdurft, R. E.

R. E. Nothdurft, S. V. Patwardhan, W. Akers, Y. Ye, S. Achilefu, and J. P. Culver, “In vivo fluorescence lifetime tomography,” J. Biomed. Opt.14(2), 024004 (2009).
[CrossRef] [PubMed]

Ntziachristos, V.

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A.105(49), 19126–19131 (2008).
[CrossRef] [PubMed]

N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, “Free-space fluorescence molecular tomography utilizing 360° geometry projections,” Opt. Lett.32(4), 382–384 (2007).
[CrossRef] [PubMed]

A. D. Klose, V. Ntziachristos, and A. H. Hielscher, “The inverse source problem based on the radiative transfer equation in optical molecular imaging,” J. Comput. Phys.202(1), 323–345 (2005).
[CrossRef]

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med.8(7), 757–761 (2002).
[CrossRef] [PubMed]

V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett.26(12), 893–895 (2001).
[CrossRef] [PubMed]

O’Hara, J. A.

D. S. Kepshire, S. L. Gibbs-Strauss, J. A. O’Hara, M. Hutchins, N. Mincu, F. Leblond, M. Khayat, H. Dehghani, S. Srinivasan, and B. W. Pogue, “Imaging of glioma tumor with endogenous fluorescence tomography,” J. Biomed. Opt.14(3), 030501 (2009).
[CrossRef] [PubMed]

Oda, I.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, and M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum.70(9), 3595–3602 (1999).
[CrossRef]

Oda, M.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, and M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum.70(9), 3595–3602 (1999).
[CrossRef]

Oh, S.

Oikawa, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, and M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum.70(9), 3595–3602 (1999).
[CrossRef]

Okawa, S.

Paithankar, D. Y.

Patterson, M. S.

Patwardhan, S. V.

R. E. Nothdurft, S. V. Patwardhan, W. Akers, Y. Ye, S. Achilefu, and J. P. Culver, “In vivo fluorescence lifetime tomography,” J. Biomed. Opt.14(2), 024004 (2009).
[CrossRef] [PubMed]

Paulsen, K. D.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng.25(6), 711–732 (2009).
[CrossRef] [PubMed]

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum.79(6), 064302 (2008).
[CrossRef] [PubMed]

S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express15(7), 4066–4082 (2007).
[CrossRef] [PubMed]

Pogue, B. W.

F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications,” J. Photochem. Photobiol. B98(1), 77–94 (2010).
[CrossRef] [PubMed]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng.25(6), 711–732 (2009).
[CrossRef] [PubMed]

D. S. Kepshire, S. L. Gibbs-Strauss, J. A. O’Hara, M. Hutchins, N. Mincu, F. Leblond, M. Khayat, H. Dehghani, S. Srinivasan, and B. W. Pogue, “Imaging of glioma tumor with endogenous fluorescence tomography,” J. Biomed. Opt.14(3), 030501 (2009).
[CrossRef] [PubMed]

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum.79(6), 064302 (2008).
[CrossRef] [PubMed]

S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express15(7), 4066–4082 (2007).
[CrossRef] [PubMed]

D. Y. Paithankar, A. U. Chen, B. W. Pogue, M. S. Patterson, and E. M. Sevick-Muraca, “Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random media,” Appl. Opt.36(10), 2260–2272 (1997).
[CrossRef] [PubMed]

M. S. Patterson and B. W. Pogue, “Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues,” Appl. Opt.33(10), 1963–1974 (1994).
[CrossRef] [PubMed]

Poulet, P.

Ripoll, J.

Sassaroli, A.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, and M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum.70(9), 3595–3602 (1999).
[CrossRef]

Sato, M. A.

Scharfetter, H.

M. Freiberger, C. Clason, and H. Scharfetter, “Adaptation and focusing of optode configurations for fluorescence optical tomography by experimental design methods,” J. Biomed. Opt.15(1), 016024 (2010).
[CrossRef] [PubMed]

Schmidt, F. E. W.

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, and D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum.71(9), 3415–3427 (2000).
[CrossRef]

Schweiger, M.

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, and D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum.71(9), 3415–3427 (2000).
[CrossRef]

M. Schweiger, S. R. Arridge, and D. T. Delpy, “Application of the Finite-Element Method for the Forward and Inverse Models in Optical Tomography,” J. Math. Imaging Vis.3(3), 263–283 (1993).
[CrossRef]

Sevick-Muraca, E. M.

Shimokawa, T.

Solomon, M.

Soubret, A.

Springett, R.

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum.79(6), 064302 (2008).
[CrossRef] [PubMed]

Srinivasan, S.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng.25(6), 711–732 (2009).
[CrossRef] [PubMed]

D. S. Kepshire, S. L. Gibbs-Strauss, J. A. O’Hara, M. Hutchins, N. Mincu, F. Leblond, M. Khayat, H. Dehghani, S. Srinivasan, and B. W. Pogue, “Imaging of glioma tumor with endogenous fluorescence tomography,” J. Biomed. Opt.14(3), 030501 (2009).
[CrossRef] [PubMed]

Sudlow, G.

Takada, M.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, and M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum.70(9), 3595–3602 (1999).
[CrossRef]

Tamura, M.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, and M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum.70(9), 3595–3602 (1999).
[CrossRef]

Tanikawa, Y.

Tsuchiya, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, and M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum.70(9), 3595–3602 (1999).
[CrossRef]

Tsunazawa, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, and M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum.70(9), 3595–3602 (1999).
[CrossRef]

Tung, C. H.

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med.8(7), 757–761 (2002).
[CrossRef] [PubMed]

Tuttle, S. B.

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum.79(6), 064302 (2008).
[CrossRef] [PubMed]

Valdés, P. A.

F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications,” J. Photochem. Photobiol. B98(1), 77–94 (2010).
[CrossRef] [PubMed]

Wada, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, and M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum.70(9), 3595–3602 (1999).
[CrossRef]

Wang, J.

Webb, K. J.

Weissleder, R.

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A.105(49), 19126–19131 (2008).
[CrossRef] [PubMed]

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med.8(7), 757–761 (2002).
[CrossRef] [PubMed]

V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett.26(12), 893–895 (2001).
[CrossRef] [PubMed]

White, B. R.

Yalavarthy, P. K.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng.25(6), 711–732 (2009).
[CrossRef] [PubMed]

Yamada, Y.

S. Okawa, Y. Hoshi, and Y. Yamada, “Improvement of image quality of time-domain diffuse optical tomography with lp sparsity regularization,” Biomed. Opt. Express2(12), 3334–3348 (2011).
[CrossRef] [PubMed]

F. Gao, J. Li, L. Zhang, P. Poulet, H. Zhao, and Y. Yamada, “Simultaneous fluorescence yield and lifetime tomography from time-resolved transmittances of small-animal-sized phantom,” Appl. Opt.49(16), 3163–3172 (2010).
[CrossRef] [PubMed]

A. Marjono, A. Yano, S. Okawa, F. Gao, and Y. Yamada, “Total light approach of time-domain fluorescence diffuse optical tomography,” Opt. Express16(19), 15268–15285 (2008).
[CrossRef] [PubMed]

F. Gao, H. Zhao, L. Zhang, Y. Tanikawa, A. Marjono, and Y. Yamada, “A self-normalized, full time-resolved method for fluorescence diffuse optical tomography,” Opt. Express16(17), 13104–13121 (2008).
[CrossRef] [PubMed]

F. Gao, A. Marjono, S. Okawa, and Y. Yamada, “Light Propagation for Time-Domain Fluorescence Diffuse Optical Tomography by Convolution Using Lifetime Function,” Opt. Rev.14(3), 131–138 (2007).
[CrossRef]

F. Gao, H. Zhao, Y. Tanikawa, and Y. Yamada, “A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomography,” Opt. Express14(16), 7109–7124 (2006).
[CrossRef] [PubMed]

F. Gao, H. Zhao, and Y. Yamada, “Improvement of image quality in diffuse optical tomography by use of full time-resolved data,” Appl. Opt.41(4), 778–791 (2002).
[CrossRef] [PubMed]

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, and M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum.70(9), 3595–3602 (1999).
[CrossRef]

K. Furutsu and Y. Yamada, “Diffusion approximation for a dissipative random medium and the applications,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics50(5), 3634–3640 (1994).
[CrossRef] [PubMed]

Yamashita, O.

Yamashita, Y.

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, and M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum.70(9), 3595–3602 (1999).
[CrossRef]

Yano, A.

Ye, Y.

R. E. Nothdurft, S. V. Patwardhan, W. Akers, Y. Ye, S. Achilefu, and J. P. Culver, “In vivo fluorescence lifetime tomography,” J. Biomed. Opt.14(2), 024004 (2009).
[CrossRef] [PubMed]

Yuan, B.

B. Yuan, N.-G. Chen, and Q. Zhu, “Emission and absorption properties of indocyanine green in Intralipid solution,” J. Biomed. Opt.9(3), 497–503 (2004).
[CrossRef] [PubMed]

Zhang, L.

Zhang, Q.

Zhang, X.

X. Zhang, C. T. Badea, and G. A. Johnson, “Three-dimensional reconstruction in free-space whole-body fluorescence tomography of mice using optically reconstructed surface and atlas anatomy,” J. Biomed. Opt.14(6), 064010 (2009).
[CrossRef] [PubMed]

Zhao, H.

Zhu, Q.

B. Yuan, N.-G. Chen, and Q. Zhu, “Emission and absorption properties of indocyanine green in Intralipid solution,” J. Biomed. Opt.9(3), 497–503 (2004).
[CrossRef] [PubMed]

Appl. Opt. (5)

Biomed. Opt. Express (2)

Biophys. J. (1)

M. Y. Berezin, H. Lee, W. Akers, and S. Achilefu, “Near infrared dyes as lifetime solvatochromic probes for micropolarity measurements of biological systems,” Biophys. J.93(8), 2892–2899 (2007).
[CrossRef] [PubMed]

Commun. Numer. Methods Eng. (1)

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng.25(6), 711–732 (2009).
[CrossRef] [PubMed]

Genes Dev. (1)

T. F. Massoud and S. S. Gambhir, “Molecular imaging in living subjects: seeing fundamental biological processes in a new light,” Genes Dev.17(5), 545–580 (2003).
[CrossRef] [PubMed]

Inverse Probl. (1)

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl.15(2), R41–R93 (1999).
[CrossRef]

J. Biomed. Opt. (5)

X. Zhang, C. T. Badea, and G. A. Johnson, “Three-dimensional reconstruction in free-space whole-body fluorescence tomography of mice using optically reconstructed surface and atlas anatomy,” J. Biomed. Opt.14(6), 064010 (2009).
[CrossRef] [PubMed]

M. Freiberger, C. Clason, and H. Scharfetter, “Adaptation and focusing of optode configurations for fluorescence optical tomography by experimental design methods,” J. Biomed. Opt.15(1), 016024 (2010).
[CrossRef] [PubMed]

B. Yuan, N.-G. Chen, and Q. Zhu, “Emission and absorption properties of indocyanine green in Intralipid solution,” J. Biomed. Opt.9(3), 497–503 (2004).
[CrossRef] [PubMed]

R. E. Nothdurft, S. V. Patwardhan, W. Akers, Y. Ye, S. Achilefu, and J. P. Culver, “In vivo fluorescence lifetime tomography,” J. Biomed. Opt.14(2), 024004 (2009).
[CrossRef] [PubMed]

D. S. Kepshire, S. L. Gibbs-Strauss, J. A. O’Hara, M. Hutchins, N. Mincu, F. Leblond, M. Khayat, H. Dehghani, S. Srinivasan, and B. W. Pogue, “Imaging of glioma tumor with endogenous fluorescence tomography,” J. Biomed. Opt.14(3), 030501 (2009).
[CrossRef] [PubMed]

J. Comput. Phys. (1)

A. D. Klose, V. Ntziachristos, and A. H. Hielscher, “The inverse source problem based on the radiative transfer equation in optical molecular imaging,” J. Comput. Phys.202(1), 323–345 (2005).
[CrossRef]

J. Math. Imaging Vis. (1)

M. Schweiger, S. R. Arridge, and D. T. Delpy, “Application of the Finite-Element Method for the Forward and Inverse Models in Optical Tomography,” J. Math. Imaging Vis.3(3), 263–283 (1993).
[CrossRef]

J. Photochem. Photobiol. B (1)

F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications,” J. Photochem. Photobiol. B98(1), 77–94 (2010).
[CrossRef] [PubMed]

Nat. Med. (1)

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med.8(7), 757–761 (2002).
[CrossRef] [PubMed]

Opt. Express (6)

Opt. Lett. (3)

Opt. Rev. (1)

F. Gao, A. Marjono, S. Okawa, and Y. Yamada, “Light Propagation for Time-Domain Fluorescence Diffuse Optical Tomography by Convolution Using Lifetime Function,” Opt. Rev.14(3), 131–138 (2007).
[CrossRef]

Phys. Med. Biol. (1)

S. R. Cherry, “In vivo molecular and genomic imaging: new challenges for imaging physics,” Phys. Med. Biol.49(3), R13–R48 (2004).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

K. Furutsu and Y. Yamada, “Diffusion approximation for a dissipative random medium and the applications,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics50(5), 3634–3640 (1994).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A.105(49), 19126–19131 (2008).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (3)

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum.79(6), 064302 (2008).
[CrossRef] [PubMed]

H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, and M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum.70(9), 3595–3602 (1999).
[CrossRef]

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, and D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum.71(9), 3415–3427 (2000).
[CrossRef]

Other (3)

E. M. Sevik-Muraca, A. Godavarthy, J. P. Houston, A. B. Thompson, and R. Roy, “Near-Infrared Imaging with Fluorescent Contrast Agents,” in Handbook of Biomedical Fluorescence, M.-A. Mycek and B. W. Pogue, eds. (Marcel Dekker, 2003), Chap. 14, pp. 475–476.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, in Numerical Recipes in C (Cambridge University Press, 1988).

Y. Yamada, “Light-tissue interaction and optical imaging in biomedicine,” in Annual Review of Heat Transfer, C.-L. Tien, ed. (Begell House, 1995), Vol. 6, pp. 1–59.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Concept of fluorescence tomography. It consists of measurements of the excitation and fluorescence emission light and image reconstruction process by solving the inversion problem.

Fig. 2
Fig. 2

Absorption and emission spectra of ICG mixed in Intralipid.

Fig. 3
Fig. 3

Schematics of the picosecond time-resolved measurement system [35]. Long pass filter for measurement of emission light was removed for measurement of excitation light. Arrangement of the long pass filter in this figure was for mouse experiment. For phantom experiment the long pass filter was attached on the phantom surface.

Fig. 4
Fig. 4

The transmission spectrum of the long pass filter IR-82 as well as the excitation wavelength and the wavelength range of emission light.

Fig. 5
Fig. 5

Schematics of the phantoms. The long pass filter was attached on the phantom surface, and its position was shifted according to the measurement of the excitation or emission light. The long pass filters were placed on the detector plane only when measuring the emission light.

Fig. 6
Fig. 6

Experimental setup for mouse experiments.

Fig. 7
Fig. 7

(a) Picture of an anesthetized mouse fixed in a mouse holder, (b) size of the mouse holder and position of the ICG capsule embedded in the mouse abdomen with the measurement plane indicated by a vertical line, (c) arrangement of the source and detector fiber bundles; 8 source fiber bundles (S1 to S8) and 8 detector fiber bundles (D1 to D8) were alternatively attached onto the surface of the mouse holder with an equal spacing, (d) size of the ICG capsule containing 1 μM ICG mixed in a Intralipid solution.

Fig. 8
Fig. 8

Measured temporal profiles of the excitation and emission light, Γx(rb,t) and Γm(rb,t), respectively, together with the calculated zero-lifetime emission and total light, Γ*m(rb,t) and ΓT(rb,t), respectively, for the case of phantom No. 3. (a) and (b) are for the cases of the detectors close to and far from the source, respectively.

Fig. 9
Fig. 9

The reconstructed images of ICG concentration for the ten phantoms listed in Table 1. The unit of the color bars is [μM].

Fig. 10
Fig. 10

(a) The arrangement of the source and detector fiber bundles, and the measured temporal profiles of (b) the excitation, (c) fluorescence emission, (d) zero lifetime emission and (e) total light.

Fig. 11
Fig. 11

Reconstructed image of ICG concentration for mouse experiment. The unit of the color bar is [μM].

Tables (1)

Tables Icon

Table 1 Summary of 10 phantoms used in the experiments

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

[ (D(r))+ μ a (r)+εN(r)+ 1 c t ] Φ x (r,t)= q x (r,t),
[ (D(r))+ μ a (r)+ 1 c t ] Φ m (r,t)=γεN(r) 0 Φ x (r, t ) 1 τ exp{(t t )/τ} d t ,
[ (D(r))+ μ a (r)+ 1 c t ] Φ m * (r,t)=γεN(r) Φ x (r, t ),
Φ m (r,t)= 0 Φ m * (r, t ) 1 τ exp{(t t )/τ} d t .
Φ T (r,t)= Φ x (r,t)+ 1 γ Φ m * (r,t).
[ (D(r))+ μ a (r)+ 1 c t ] Φ T (r,t)= q x (r,t).
D( r b ) n Φ v ( r b ,t)= 1 2A Φ v ( r b ,t),  (ν=x,m,T),
R f =1.440 n 2 +0.710 n 1 +0.668+0.0636n,
Φ v (r,t)=0  for t0,  (ν=x,m,T).
Γ ν ( r b ,t)=D( r b ) n Φ v ( r b ,t),  (ν=x,m,T).
Γ ν ( r b ,t)= 1 2A Φ v ( r b ,t),  (ν=x,m,T).
<t( r b ) > ν = 0 t Γ ν ( r b ,t)dt 0 Γ ν ( r b ,t)dt ,  (ν=x,T).
M ν F ν ( χ k )= J ν ( χ k )δ χ k   (ν=x,T),
δ χ k j+1 =δ χ k j + [ h (j) J ν (j) ( χ k )δ χ k j ] J ν (j) ( χ k ) 2 [ J ν (j) ( χ k ) ] T , (ν=x,T),
<t>=<t > m <t > IRF ,

Metrics