Abstract

5-ALA-induced protoporphyrin IX (PpIX) fluorescence enables to guiding in intra-operative surgical glioma resection. However at present, it has yet to be shown that this method is able to identify infiltrative component of glioma. In extracted tumor tissues we measured a two-peaked emission in low grade gliomas and in the infiltrative component of glioblastomas due to multiple photochemical states of PpIX. The second emission peak appearing at 620 nm (shifted by 14 nm from the main peak at 634 nm) limits the sensibility of current methods to measured PpIX concentration. We propose new measured parameters, by taking into consideration the two-peaked emission, to overcome these limitations in sensitivity. These parameters clearly distinguish the solid component of glioblastomas from low grade gliomas and infiltrative component of glioblastomas.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Weissleder and M. J. Pittet, “Imaging in the era of molecular oncology,” Nature452(7187), 580–589 (2008).
    [CrossRef] [PubMed]
  2. P. A. Valdés, F. Leblond, A. Kim, B. T. Harris, B. C. Wilson, X. Fan, T. D. Tosteson, A. Hartov, S. Ji, K. Erkmen, N. E. Simmons, K. D. Paulsen, and D. W. Roberts, “Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker,” J. Neurosurg.115(1), 11–17 (2011).
    [CrossRef] [PubMed]
  3. S. Utsuki, H. Oka, S. Sato, S. Suzuki, S. Shimizu, S. Tanaka, and K. Fujii, “Possibility of using laser spectroscopy for the intraoperative detection of nonfluorescing brain tumors and the boundaries of brain tumor infiltrates,” J. Neurosurg.104(4), 618–620 (2006).
    [CrossRef] [PubMed]
  4. P. A. Valdés, A. Kim, M. Brantsch, C. Niu, Z. B. Moses, T. D. Tosteson, B. C. Wilson, K. D. Paulsen, D. W. Roberts, and B. T. Harris, “δ-aminolevulinic acid-induced protoporphyrin IX concentration correlates with histopathologic markers of malignancy in human gliomas: the need for quantitative fluorescence-guided resection to identify regions of increasing malignancy,” Neuro-oncol.13(8), 846–856 (2011).
    [CrossRef] [PubMed]
  5. W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, H. J. Reulen, and ALA-Glioma Study Group, “Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial,” Lancet Oncol.7(5), 392–401 (2006).
    [CrossRef] [PubMed]
  6. N. Haj-Hosseini, J. Richter, S. Andersson-Engels, and K. Wårdell, “Optical touch pointer for fluorescence guided glioblastoma resection using 5-aminolevulinic acid,” Lasers Surg. Med.42(1), 9–14 (2010).
    [CrossRef] [PubMed]
  7. A. Kim, M. Khurana, Y. Moriyama, and B. C. Wilson, “Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements,” J. Biomed. Opt.15(6), 067006 (2010).
    [CrossRef] [PubMed]
  8. T. B. Melø and G. Reisaeter, “The physicochemical state of protoporphyrin IX in aqueous solution investigated by fluorescence and light scattering,” Biophys. Chem.25(1), 99–104 (1986).
    [CrossRef] [PubMed]
  9. G. I. Lozovaya, Z. Masinovsky, and A. A. Sivash, “Protoporphyrin IX as a possible ancient photosensitizer: spectral and photochemical studies,” Orig. Life Evol. Biosph.20(3-4), 321–330 (1990).
    [CrossRef]
  10. T. Ando, E. Kobayashi, H. Liao, T. Maruyama, Y. Muragaki, H. Iseki, O. Kubo, and I. Sakuma, “Precise comparison of protoporphyrin IX fluorescence spectra with pathological results for brain tumor tissue identification,” Brain Tumor Pathol.28(1), 43–51 (2011).
    [CrossRef] [PubMed]
  11. P. A. Valdés, A. Kim, F. Leblond, O. M. Conde, B. T. Harris, K. D. Paulsen, B. C. Wilson, and D. W. Roberts, “Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low- and high-grade glioma surgery,” J. Biomed. Opt.16(11), 116007 (2011).
    [CrossRef] [PubMed]
  12. J. S. Dysart and M. S. Patterson, “Photobleaching kinetics, photoproduct formation, and dose estimation during ALA induced PpIX PDT of MLL cells under well oxygenated and hypoxic conditions,” Photochem. Photobiol. Sci.5(1), 73–81 (2006).
    [CrossRef] [PubMed]
  13. A. Johansson, G. Palte, O. Schnell, J.-C. Tonn, J. Herms, and H. Stepp, “5-Aminolevulinic acid-induced protoporphyrin IX levels in tissue of human malignant brain tumors,” Photochem. Photobiol.86(6), 1373–1378 (2010).
    [CrossRef] [PubMed]
  14. J. Qin and R. Lu, “Measurement of the absorption and scattering properties of turbid liquid foods using hyperspectral imaging,” Appl. Spectrosc.61(4), 388–396 (2007).
    [CrossRef] [PubMed]
  15. M. B. Ericson, S. Grapengiesser, F. Gudmundson, A. M. Wennberg, O. Larkö, J. Moan, and A. Rosén, “A spectroscopic study of the photobleaching of protoporphyrin IX in solution,” Lasers Med. Sci.18(1), 56–62 (2003).
    [CrossRef] [PubMed]
  16. G. A. Wagnières, W. M. Star, and B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol.68(5), 603–632 (1998).
    [PubMed]
  17. N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,” Neoplasia2(1/2), 89–117 (2000).
    [CrossRef] [PubMed]
  18. A. Ziegler, M. von Kienlin, M. Décorps, and C. Rémy, “High glycolytic activity in rat glioma demonstrated in vivo by correlation peak 1H magnetic resonance imaging,” Cancer Res.61(14), 5595–5600 (2001).
    [PubMed]
  19. B. C. Wilson, M. Olivo, and G. Singh, “Subcellular localization of Photofrin and aminolevulinic acid and photodynamic cross-resistance in vitro in radiation-induced fibrosarcoma cells sensitive or resistant to photofrin-mediated photodynamic therapy,” Photochem. Photobiol.65(1), 166–176 (1997).
    [CrossRef] [PubMed]
  20. S. M. Wu, Q. G. Ren, M. O. Zhou, Q. Peng, and J. Y. Chen, “Protoporphyrin IX production and its photodynamic effects on glioma cells, neuroblastoma cells and normal cerebellar granule cells in vitro with 5-aminolevulinic acid and its hexylester,” Cancer Lett.200(2), 123–131 (2003).
    [CrossRef] [PubMed]
  21. E. G. Mik, J. Stap, M. Sinaasappel, J. F. Beek, J. A. Aten, T. G. van Leeuwen, and C. Ince, “Mitochondrial PO2 measured by delayed fluorescence of endogenous protoporphyrin IX,” Nat. Methods3(11), 939–945 (2006).
    [CrossRef] [PubMed]
  22. D. Arosio, F. Ricci, L. Marchetti, R. Gualdani, L. Albertazzi, and F. Beltram, “Simultaneous intracellular chloride and pH measurements using a GFP-based sensor,” Nat. Methods7(7), 516–518 (2010).
    [CrossRef] [PubMed]

2011

P. A. Valdés, F. Leblond, A. Kim, B. T. Harris, B. C. Wilson, X. Fan, T. D. Tosteson, A. Hartov, S. Ji, K. Erkmen, N. E. Simmons, K. D. Paulsen, and D. W. Roberts, “Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker,” J. Neurosurg.115(1), 11–17 (2011).
[CrossRef] [PubMed]

P. A. Valdés, A. Kim, M. Brantsch, C. Niu, Z. B. Moses, T. D. Tosteson, B. C. Wilson, K. D. Paulsen, D. W. Roberts, and B. T. Harris, “δ-aminolevulinic acid-induced protoporphyrin IX concentration correlates with histopathologic markers of malignancy in human gliomas: the need for quantitative fluorescence-guided resection to identify regions of increasing malignancy,” Neuro-oncol.13(8), 846–856 (2011).
[CrossRef] [PubMed]

T. Ando, E. Kobayashi, H. Liao, T. Maruyama, Y. Muragaki, H. Iseki, O. Kubo, and I. Sakuma, “Precise comparison of protoporphyrin IX fluorescence spectra with pathological results for brain tumor tissue identification,” Brain Tumor Pathol.28(1), 43–51 (2011).
[CrossRef] [PubMed]

P. A. Valdés, A. Kim, F. Leblond, O. M. Conde, B. T. Harris, K. D. Paulsen, B. C. Wilson, and D. W. Roberts, “Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low- and high-grade glioma surgery,” J. Biomed. Opt.16(11), 116007 (2011).
[CrossRef] [PubMed]

2010

A. Johansson, G. Palte, O. Schnell, J.-C. Tonn, J. Herms, and H. Stepp, “5-Aminolevulinic acid-induced protoporphyrin IX levels in tissue of human malignant brain tumors,” Photochem. Photobiol.86(6), 1373–1378 (2010).
[CrossRef] [PubMed]

N. Haj-Hosseini, J. Richter, S. Andersson-Engels, and K. Wårdell, “Optical touch pointer for fluorescence guided glioblastoma resection using 5-aminolevulinic acid,” Lasers Surg. Med.42(1), 9–14 (2010).
[CrossRef] [PubMed]

A. Kim, M. Khurana, Y. Moriyama, and B. C. Wilson, “Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements,” J. Biomed. Opt.15(6), 067006 (2010).
[CrossRef] [PubMed]

D. Arosio, F. Ricci, L. Marchetti, R. Gualdani, L. Albertazzi, and F. Beltram, “Simultaneous intracellular chloride and pH measurements using a GFP-based sensor,” Nat. Methods7(7), 516–518 (2010).
[CrossRef] [PubMed]

2008

R. Weissleder and M. J. Pittet, “Imaging in the era of molecular oncology,” Nature452(7187), 580–589 (2008).
[CrossRef] [PubMed]

2007

2006

E. G. Mik, J. Stap, M. Sinaasappel, J. F. Beek, J. A. Aten, T. G. van Leeuwen, and C. Ince, “Mitochondrial PO2 measured by delayed fluorescence of endogenous protoporphyrin IX,” Nat. Methods3(11), 939–945 (2006).
[CrossRef] [PubMed]

W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, H. J. Reulen, and ALA-Glioma Study Group, “Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial,” Lancet Oncol.7(5), 392–401 (2006).
[CrossRef] [PubMed]

S. Utsuki, H. Oka, S. Sato, S. Suzuki, S. Shimizu, S. Tanaka, and K. Fujii, “Possibility of using laser spectroscopy for the intraoperative detection of nonfluorescing brain tumors and the boundaries of brain tumor infiltrates,” J. Neurosurg.104(4), 618–620 (2006).
[CrossRef] [PubMed]

J. S. Dysart and M. S. Patterson, “Photobleaching kinetics, photoproduct formation, and dose estimation during ALA induced PpIX PDT of MLL cells under well oxygenated and hypoxic conditions,” Photochem. Photobiol. Sci.5(1), 73–81 (2006).
[CrossRef] [PubMed]

2003

M. B. Ericson, S. Grapengiesser, F. Gudmundson, A. M. Wennberg, O. Larkö, J. Moan, and A. Rosén, “A spectroscopic study of the photobleaching of protoporphyrin IX in solution,” Lasers Med. Sci.18(1), 56–62 (2003).
[CrossRef] [PubMed]

S. M. Wu, Q. G. Ren, M. O. Zhou, Q. Peng, and J. Y. Chen, “Protoporphyrin IX production and its photodynamic effects on glioma cells, neuroblastoma cells and normal cerebellar granule cells in vitro with 5-aminolevulinic acid and its hexylester,” Cancer Lett.200(2), 123–131 (2003).
[CrossRef] [PubMed]

2001

A. Ziegler, M. von Kienlin, M. Décorps, and C. Rémy, “High glycolytic activity in rat glioma demonstrated in vivo by correlation peak 1H magnetic resonance imaging,” Cancer Res.61(14), 5595–5600 (2001).
[PubMed]

2000

N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,” Neoplasia2(1/2), 89–117 (2000).
[CrossRef] [PubMed]

1998

G. A. Wagnières, W. M. Star, and B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol.68(5), 603–632 (1998).
[PubMed]

1997

B. C. Wilson, M. Olivo, and G. Singh, “Subcellular localization of Photofrin and aminolevulinic acid and photodynamic cross-resistance in vitro in radiation-induced fibrosarcoma cells sensitive or resistant to photofrin-mediated photodynamic therapy,” Photochem. Photobiol.65(1), 166–176 (1997).
[CrossRef] [PubMed]

1990

G. I. Lozovaya, Z. Masinovsky, and A. A. Sivash, “Protoporphyrin IX as a possible ancient photosensitizer: spectral and photochemical studies,” Orig. Life Evol. Biosph.20(3-4), 321–330 (1990).
[CrossRef]

1986

T. B. Melø and G. Reisaeter, “The physicochemical state of protoporphyrin IX in aqueous solution investigated by fluorescence and light scattering,” Biophys. Chem.25(1), 99–104 (1986).
[CrossRef] [PubMed]

Albertazzi, L.

D. Arosio, F. Ricci, L. Marchetti, R. Gualdani, L. Albertazzi, and F. Beltram, “Simultaneous intracellular chloride and pH measurements using a GFP-based sensor,” Nat. Methods7(7), 516–518 (2010).
[CrossRef] [PubMed]

Andersson-Engels, S.

N. Haj-Hosseini, J. Richter, S. Andersson-Engels, and K. Wårdell, “Optical touch pointer for fluorescence guided glioblastoma resection using 5-aminolevulinic acid,” Lasers Surg. Med.42(1), 9–14 (2010).
[CrossRef] [PubMed]

Ando, T.

T. Ando, E. Kobayashi, H. Liao, T. Maruyama, Y. Muragaki, H. Iseki, O. Kubo, and I. Sakuma, “Precise comparison of protoporphyrin IX fluorescence spectra with pathological results for brain tumor tissue identification,” Brain Tumor Pathol.28(1), 43–51 (2011).
[CrossRef] [PubMed]

Arosio, D.

D. Arosio, F. Ricci, L. Marchetti, R. Gualdani, L. Albertazzi, and F. Beltram, “Simultaneous intracellular chloride and pH measurements using a GFP-based sensor,” Nat. Methods7(7), 516–518 (2010).
[CrossRef] [PubMed]

Aten, J. A.

E. G. Mik, J. Stap, M. Sinaasappel, J. F. Beek, J. A. Aten, T. G. van Leeuwen, and C. Ince, “Mitochondrial PO2 measured by delayed fluorescence of endogenous protoporphyrin IX,” Nat. Methods3(11), 939–945 (2006).
[CrossRef] [PubMed]

Beek, J. F.

E. G. Mik, J. Stap, M. Sinaasappel, J. F. Beek, J. A. Aten, T. G. van Leeuwen, and C. Ince, “Mitochondrial PO2 measured by delayed fluorescence of endogenous protoporphyrin IX,” Nat. Methods3(11), 939–945 (2006).
[CrossRef] [PubMed]

Beltram, F.

D. Arosio, F. Ricci, L. Marchetti, R. Gualdani, L. Albertazzi, and F. Beltram, “Simultaneous intracellular chloride and pH measurements using a GFP-based sensor,” Nat. Methods7(7), 516–518 (2010).
[CrossRef] [PubMed]

Brantsch, M.

P. A. Valdés, A. Kim, M. Brantsch, C. Niu, Z. B. Moses, T. D. Tosteson, B. C. Wilson, K. D. Paulsen, D. W. Roberts, and B. T. Harris, “δ-aminolevulinic acid-induced protoporphyrin IX concentration correlates with histopathologic markers of malignancy in human gliomas: the need for quantitative fluorescence-guided resection to identify regions of increasing malignancy,” Neuro-oncol.13(8), 846–856 (2011).
[CrossRef] [PubMed]

Chen, J. Y.

S. M. Wu, Q. G. Ren, M. O. Zhou, Q. Peng, and J. Y. Chen, “Protoporphyrin IX production and its photodynamic effects on glioma cells, neuroblastoma cells and normal cerebellar granule cells in vitro with 5-aminolevulinic acid and its hexylester,” Cancer Lett.200(2), 123–131 (2003).
[CrossRef] [PubMed]

Conde, O. M.

P. A. Valdés, A. Kim, F. Leblond, O. M. Conde, B. T. Harris, K. D. Paulsen, B. C. Wilson, and D. W. Roberts, “Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low- and high-grade glioma surgery,” J. Biomed. Opt.16(11), 116007 (2011).
[CrossRef] [PubMed]

Décorps, M.

A. Ziegler, M. von Kienlin, M. Décorps, and C. Rémy, “High glycolytic activity in rat glioma demonstrated in vivo by correlation peak 1H magnetic resonance imaging,” Cancer Res.61(14), 5595–5600 (2001).
[PubMed]

Dysart, J. S.

J. S. Dysart and M. S. Patterson, “Photobleaching kinetics, photoproduct formation, and dose estimation during ALA induced PpIX PDT of MLL cells under well oxygenated and hypoxic conditions,” Photochem. Photobiol. Sci.5(1), 73–81 (2006).
[CrossRef] [PubMed]

Ericson, M. B.

M. B. Ericson, S. Grapengiesser, F. Gudmundson, A. M. Wennberg, O. Larkö, J. Moan, and A. Rosén, “A spectroscopic study of the photobleaching of protoporphyrin IX in solution,” Lasers Med. Sci.18(1), 56–62 (2003).
[CrossRef] [PubMed]

Erkmen, K.

P. A. Valdés, F. Leblond, A. Kim, B. T. Harris, B. C. Wilson, X. Fan, T. D. Tosteson, A. Hartov, S. Ji, K. Erkmen, N. E. Simmons, K. D. Paulsen, and D. W. Roberts, “Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker,” J. Neurosurg.115(1), 11–17 (2011).
[CrossRef] [PubMed]

Fan, X.

P. A. Valdés, F. Leblond, A. Kim, B. T. Harris, B. C. Wilson, X. Fan, T. D. Tosteson, A. Hartov, S. Ji, K. Erkmen, N. E. Simmons, K. D. Paulsen, and D. W. Roberts, “Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker,” J. Neurosurg.115(1), 11–17 (2011).
[CrossRef] [PubMed]

Fujii, K.

S. Utsuki, H. Oka, S. Sato, S. Suzuki, S. Shimizu, S. Tanaka, and K. Fujii, “Possibility of using laser spectroscopy for the intraoperative detection of nonfluorescing brain tumors and the boundaries of brain tumor infiltrates,” J. Neurosurg.104(4), 618–620 (2006).
[CrossRef] [PubMed]

Grapengiesser, S.

M. B. Ericson, S. Grapengiesser, F. Gudmundson, A. M. Wennberg, O. Larkö, J. Moan, and A. Rosén, “A spectroscopic study of the photobleaching of protoporphyrin IX in solution,” Lasers Med. Sci.18(1), 56–62 (2003).
[CrossRef] [PubMed]

Gualdani, R.

D. Arosio, F. Ricci, L. Marchetti, R. Gualdani, L. Albertazzi, and F. Beltram, “Simultaneous intracellular chloride and pH measurements using a GFP-based sensor,” Nat. Methods7(7), 516–518 (2010).
[CrossRef] [PubMed]

Gudmundson, F.

M. B. Ericson, S. Grapengiesser, F. Gudmundson, A. M. Wennberg, O. Larkö, J. Moan, and A. Rosén, “A spectroscopic study of the photobleaching of protoporphyrin IX in solution,” Lasers Med. Sci.18(1), 56–62 (2003).
[CrossRef] [PubMed]

Haj-Hosseini, N.

N. Haj-Hosseini, J. Richter, S. Andersson-Engels, and K. Wårdell, “Optical touch pointer for fluorescence guided glioblastoma resection using 5-aminolevulinic acid,” Lasers Surg. Med.42(1), 9–14 (2010).
[CrossRef] [PubMed]

Harris, B. T.

P. A. Valdés, F. Leblond, A. Kim, B. T. Harris, B. C. Wilson, X. Fan, T. D. Tosteson, A. Hartov, S. Ji, K. Erkmen, N. E. Simmons, K. D. Paulsen, and D. W. Roberts, “Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker,” J. Neurosurg.115(1), 11–17 (2011).
[CrossRef] [PubMed]

P. A. Valdés, A. Kim, F. Leblond, O. M. Conde, B. T. Harris, K. D. Paulsen, B. C. Wilson, and D. W. Roberts, “Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low- and high-grade glioma surgery,” J. Biomed. Opt.16(11), 116007 (2011).
[CrossRef] [PubMed]

P. A. Valdés, A. Kim, M. Brantsch, C. Niu, Z. B. Moses, T. D. Tosteson, B. C. Wilson, K. D. Paulsen, D. W. Roberts, and B. T. Harris, “δ-aminolevulinic acid-induced protoporphyrin IX concentration correlates with histopathologic markers of malignancy in human gliomas: the need for quantitative fluorescence-guided resection to identify regions of increasing malignancy,” Neuro-oncol.13(8), 846–856 (2011).
[CrossRef] [PubMed]

Hartov, A.

P. A. Valdés, F. Leblond, A. Kim, B. T. Harris, B. C. Wilson, X. Fan, T. D. Tosteson, A. Hartov, S. Ji, K. Erkmen, N. E. Simmons, K. D. Paulsen, and D. W. Roberts, “Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker,” J. Neurosurg.115(1), 11–17 (2011).
[CrossRef] [PubMed]

Herms, J.

A. Johansson, G. Palte, O. Schnell, J.-C. Tonn, J. Herms, and H. Stepp, “5-Aminolevulinic acid-induced protoporphyrin IX levels in tissue of human malignant brain tumors,” Photochem. Photobiol.86(6), 1373–1378 (2010).
[CrossRef] [PubMed]

Ince, C.

E. G. Mik, J. Stap, M. Sinaasappel, J. F. Beek, J. A. Aten, T. G. van Leeuwen, and C. Ince, “Mitochondrial PO2 measured by delayed fluorescence of endogenous protoporphyrin IX,” Nat. Methods3(11), 939–945 (2006).
[CrossRef] [PubMed]

Iseki, H.

T. Ando, E. Kobayashi, H. Liao, T. Maruyama, Y. Muragaki, H. Iseki, O. Kubo, and I. Sakuma, “Precise comparison of protoporphyrin IX fluorescence spectra with pathological results for brain tumor tissue identification,” Brain Tumor Pathol.28(1), 43–51 (2011).
[CrossRef] [PubMed]

Ji, S.

P. A. Valdés, F. Leblond, A. Kim, B. T. Harris, B. C. Wilson, X. Fan, T. D. Tosteson, A. Hartov, S. Ji, K. Erkmen, N. E. Simmons, K. D. Paulsen, and D. W. Roberts, “Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker,” J. Neurosurg.115(1), 11–17 (2011).
[CrossRef] [PubMed]

Johansson, A.

A. Johansson, G. Palte, O. Schnell, J.-C. Tonn, J. Herms, and H. Stepp, “5-Aminolevulinic acid-induced protoporphyrin IX levels in tissue of human malignant brain tumors,” Photochem. Photobiol.86(6), 1373–1378 (2010).
[CrossRef] [PubMed]

Khurana, M.

A. Kim, M. Khurana, Y. Moriyama, and B. C. Wilson, “Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements,” J. Biomed. Opt.15(6), 067006 (2010).
[CrossRef] [PubMed]

Kim, A.

P. A. Valdés, A. Kim, F. Leblond, O. M. Conde, B. T. Harris, K. D. Paulsen, B. C. Wilson, and D. W. Roberts, “Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low- and high-grade glioma surgery,” J. Biomed. Opt.16(11), 116007 (2011).
[CrossRef] [PubMed]

P. A. Valdés, F. Leblond, A. Kim, B. T. Harris, B. C. Wilson, X. Fan, T. D. Tosteson, A. Hartov, S. Ji, K. Erkmen, N. E. Simmons, K. D. Paulsen, and D. W. Roberts, “Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker,” J. Neurosurg.115(1), 11–17 (2011).
[CrossRef] [PubMed]

P. A. Valdés, A. Kim, M. Brantsch, C. Niu, Z. B. Moses, T. D. Tosteson, B. C. Wilson, K. D. Paulsen, D. W. Roberts, and B. T. Harris, “δ-aminolevulinic acid-induced protoporphyrin IX concentration correlates with histopathologic markers of malignancy in human gliomas: the need for quantitative fluorescence-guided resection to identify regions of increasing malignancy,” Neuro-oncol.13(8), 846–856 (2011).
[CrossRef] [PubMed]

A. Kim, M. Khurana, Y. Moriyama, and B. C. Wilson, “Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements,” J. Biomed. Opt.15(6), 067006 (2010).
[CrossRef] [PubMed]

Kobayashi, E.

T. Ando, E. Kobayashi, H. Liao, T. Maruyama, Y. Muragaki, H. Iseki, O. Kubo, and I. Sakuma, “Precise comparison of protoporphyrin IX fluorescence spectra with pathological results for brain tumor tissue identification,” Brain Tumor Pathol.28(1), 43–51 (2011).
[CrossRef] [PubMed]

Kubo, O.

T. Ando, E. Kobayashi, H. Liao, T. Maruyama, Y. Muragaki, H. Iseki, O. Kubo, and I. Sakuma, “Precise comparison of protoporphyrin IX fluorescence spectra with pathological results for brain tumor tissue identification,” Brain Tumor Pathol.28(1), 43–51 (2011).
[CrossRef] [PubMed]

Larkö, O.

M. B. Ericson, S. Grapengiesser, F. Gudmundson, A. M. Wennberg, O. Larkö, J. Moan, and A. Rosén, “A spectroscopic study of the photobleaching of protoporphyrin IX in solution,” Lasers Med. Sci.18(1), 56–62 (2003).
[CrossRef] [PubMed]

Leblond, F.

P. A. Valdés, F. Leblond, A. Kim, B. T. Harris, B. C. Wilson, X. Fan, T. D. Tosteson, A. Hartov, S. Ji, K. Erkmen, N. E. Simmons, K. D. Paulsen, and D. W. Roberts, “Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker,” J. Neurosurg.115(1), 11–17 (2011).
[CrossRef] [PubMed]

P. A. Valdés, A. Kim, F. Leblond, O. M. Conde, B. T. Harris, K. D. Paulsen, B. C. Wilson, and D. W. Roberts, “Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low- and high-grade glioma surgery,” J. Biomed. Opt.16(11), 116007 (2011).
[CrossRef] [PubMed]

Liao, H.

T. Ando, E. Kobayashi, H. Liao, T. Maruyama, Y. Muragaki, H. Iseki, O. Kubo, and I. Sakuma, “Precise comparison of protoporphyrin IX fluorescence spectra with pathological results for brain tumor tissue identification,” Brain Tumor Pathol.28(1), 43–51 (2011).
[CrossRef] [PubMed]

Lozovaya, G. I.

G. I. Lozovaya, Z. Masinovsky, and A. A. Sivash, “Protoporphyrin IX as a possible ancient photosensitizer: spectral and photochemical studies,” Orig. Life Evol. Biosph.20(3-4), 321–330 (1990).
[CrossRef]

Lu, R.

Marchetti, L.

D. Arosio, F. Ricci, L. Marchetti, R. Gualdani, L. Albertazzi, and F. Beltram, “Simultaneous intracellular chloride and pH measurements using a GFP-based sensor,” Nat. Methods7(7), 516–518 (2010).
[CrossRef] [PubMed]

Maruyama, T.

T. Ando, E. Kobayashi, H. Liao, T. Maruyama, Y. Muragaki, H. Iseki, O. Kubo, and I. Sakuma, “Precise comparison of protoporphyrin IX fluorescence spectra with pathological results for brain tumor tissue identification,” Brain Tumor Pathol.28(1), 43–51 (2011).
[CrossRef] [PubMed]

Masinovsky, Z.

G. I. Lozovaya, Z. Masinovsky, and A. A. Sivash, “Protoporphyrin IX as a possible ancient photosensitizer: spectral and photochemical studies,” Orig. Life Evol. Biosph.20(3-4), 321–330 (1990).
[CrossRef]

Meinel, T.

W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, H. J. Reulen, and ALA-Glioma Study Group, “Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial,” Lancet Oncol.7(5), 392–401 (2006).
[CrossRef] [PubMed]

Melø, T. B.

T. B. Melø and G. Reisaeter, “The physicochemical state of protoporphyrin IX in aqueous solution investigated by fluorescence and light scattering,” Biophys. Chem.25(1), 99–104 (1986).
[CrossRef] [PubMed]

Mik, E. G.

E. G. Mik, J. Stap, M. Sinaasappel, J. F. Beek, J. A. Aten, T. G. van Leeuwen, and C. Ince, “Mitochondrial PO2 measured by delayed fluorescence of endogenous protoporphyrin IX,” Nat. Methods3(11), 939–945 (2006).
[CrossRef] [PubMed]

Moan, J.

M. B. Ericson, S. Grapengiesser, F. Gudmundson, A. M. Wennberg, O. Larkö, J. Moan, and A. Rosén, “A spectroscopic study of the photobleaching of protoporphyrin IX in solution,” Lasers Med. Sci.18(1), 56–62 (2003).
[CrossRef] [PubMed]

Moriyama, Y.

A. Kim, M. Khurana, Y. Moriyama, and B. C. Wilson, “Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements,” J. Biomed. Opt.15(6), 067006 (2010).
[CrossRef] [PubMed]

Moses, Z. B.

P. A. Valdés, A. Kim, M. Brantsch, C. Niu, Z. B. Moses, T. D. Tosteson, B. C. Wilson, K. D. Paulsen, D. W. Roberts, and B. T. Harris, “δ-aminolevulinic acid-induced protoporphyrin IX concentration correlates with histopathologic markers of malignancy in human gliomas: the need for quantitative fluorescence-guided resection to identify regions of increasing malignancy,” Neuro-oncol.13(8), 846–856 (2011).
[CrossRef] [PubMed]

Muragaki, Y.

T. Ando, E. Kobayashi, H. Liao, T. Maruyama, Y. Muragaki, H. Iseki, O. Kubo, and I. Sakuma, “Precise comparison of protoporphyrin IX fluorescence spectra with pathological results for brain tumor tissue identification,” Brain Tumor Pathol.28(1), 43–51 (2011).
[CrossRef] [PubMed]

Niu, C.

P. A. Valdés, A. Kim, M. Brantsch, C. Niu, Z. B. Moses, T. D. Tosteson, B. C. Wilson, K. D. Paulsen, D. W. Roberts, and B. T. Harris, “δ-aminolevulinic acid-induced protoporphyrin IX concentration correlates with histopathologic markers of malignancy in human gliomas: the need for quantitative fluorescence-guided resection to identify regions of increasing malignancy,” Neuro-oncol.13(8), 846–856 (2011).
[CrossRef] [PubMed]

Oka, H.

S. Utsuki, H. Oka, S. Sato, S. Suzuki, S. Shimizu, S. Tanaka, and K. Fujii, “Possibility of using laser spectroscopy for the intraoperative detection of nonfluorescing brain tumors and the boundaries of brain tumor infiltrates,” J. Neurosurg.104(4), 618–620 (2006).
[CrossRef] [PubMed]

Olivo, M.

B. C. Wilson, M. Olivo, and G. Singh, “Subcellular localization of Photofrin and aminolevulinic acid and photodynamic cross-resistance in vitro in radiation-induced fibrosarcoma cells sensitive or resistant to photofrin-mediated photodynamic therapy,” Photochem. Photobiol.65(1), 166–176 (1997).
[CrossRef] [PubMed]

Palte, G.

A. Johansson, G. Palte, O. Schnell, J.-C. Tonn, J. Herms, and H. Stepp, “5-Aminolevulinic acid-induced protoporphyrin IX levels in tissue of human malignant brain tumors,” Photochem. Photobiol.86(6), 1373–1378 (2010).
[CrossRef] [PubMed]

Patterson, M. S.

J. S. Dysart and M. S. Patterson, “Photobleaching kinetics, photoproduct formation, and dose estimation during ALA induced PpIX PDT of MLL cells under well oxygenated and hypoxic conditions,” Photochem. Photobiol. Sci.5(1), 73–81 (2006).
[CrossRef] [PubMed]

Paulsen, K. D.

P. A. Valdés, A. Kim, F. Leblond, O. M. Conde, B. T. Harris, K. D. Paulsen, B. C. Wilson, and D. W. Roberts, “Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low- and high-grade glioma surgery,” J. Biomed. Opt.16(11), 116007 (2011).
[CrossRef] [PubMed]

P. A. Valdés, A. Kim, M. Brantsch, C. Niu, Z. B. Moses, T. D. Tosteson, B. C. Wilson, K. D. Paulsen, D. W. Roberts, and B. T. Harris, “δ-aminolevulinic acid-induced protoporphyrin IX concentration correlates with histopathologic markers of malignancy in human gliomas: the need for quantitative fluorescence-guided resection to identify regions of increasing malignancy,” Neuro-oncol.13(8), 846–856 (2011).
[CrossRef] [PubMed]

P. A. Valdés, F. Leblond, A. Kim, B. T. Harris, B. C. Wilson, X. Fan, T. D. Tosteson, A. Hartov, S. Ji, K. Erkmen, N. E. Simmons, K. D. Paulsen, and D. W. Roberts, “Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker,” J. Neurosurg.115(1), 11–17 (2011).
[CrossRef] [PubMed]

Peng, Q.

S. M. Wu, Q. G. Ren, M. O. Zhou, Q. Peng, and J. Y. Chen, “Protoporphyrin IX production and its photodynamic effects on glioma cells, neuroblastoma cells and normal cerebellar granule cells in vitro with 5-aminolevulinic acid and its hexylester,” Cancer Lett.200(2), 123–131 (2003).
[CrossRef] [PubMed]

Pichlmeier, U.

W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, H. J. Reulen, and ALA-Glioma Study Group, “Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial,” Lancet Oncol.7(5), 392–401 (2006).
[CrossRef] [PubMed]

Pittet, M. J.

R. Weissleder and M. J. Pittet, “Imaging in the era of molecular oncology,” Nature452(7187), 580–589 (2008).
[CrossRef] [PubMed]

Qin, J.

Ramanujam, N.

N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,” Neoplasia2(1/2), 89–117 (2000).
[CrossRef] [PubMed]

Reisaeter, G.

T. B. Melø and G. Reisaeter, “The physicochemical state of protoporphyrin IX in aqueous solution investigated by fluorescence and light scattering,” Biophys. Chem.25(1), 99–104 (1986).
[CrossRef] [PubMed]

Rémy, C.

A. Ziegler, M. von Kienlin, M. Décorps, and C. Rémy, “High glycolytic activity in rat glioma demonstrated in vivo by correlation peak 1H magnetic resonance imaging,” Cancer Res.61(14), 5595–5600 (2001).
[PubMed]

Ren, Q. G.

S. M. Wu, Q. G. Ren, M. O. Zhou, Q. Peng, and J. Y. Chen, “Protoporphyrin IX production and its photodynamic effects on glioma cells, neuroblastoma cells and normal cerebellar granule cells in vitro with 5-aminolevulinic acid and its hexylester,” Cancer Lett.200(2), 123–131 (2003).
[CrossRef] [PubMed]

Reulen, H. J.

W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, H. J. Reulen, and ALA-Glioma Study Group, “Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial,” Lancet Oncol.7(5), 392–401 (2006).
[CrossRef] [PubMed]

Ricci, F.

D. Arosio, F. Ricci, L. Marchetti, R. Gualdani, L. Albertazzi, and F. Beltram, “Simultaneous intracellular chloride and pH measurements using a GFP-based sensor,” Nat. Methods7(7), 516–518 (2010).
[CrossRef] [PubMed]

Richter, J.

N. Haj-Hosseini, J. Richter, S. Andersson-Engels, and K. Wårdell, “Optical touch pointer for fluorescence guided glioblastoma resection using 5-aminolevulinic acid,” Lasers Surg. Med.42(1), 9–14 (2010).
[CrossRef] [PubMed]

Roberts, D. W.

P. A. Valdés, F. Leblond, A. Kim, B. T. Harris, B. C. Wilson, X. Fan, T. D. Tosteson, A. Hartov, S. Ji, K. Erkmen, N. E. Simmons, K. D. Paulsen, and D. W. Roberts, “Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker,” J. Neurosurg.115(1), 11–17 (2011).
[CrossRef] [PubMed]

P. A. Valdés, A. Kim, M. Brantsch, C. Niu, Z. B. Moses, T. D. Tosteson, B. C. Wilson, K. D. Paulsen, D. W. Roberts, and B. T. Harris, “δ-aminolevulinic acid-induced protoporphyrin IX concentration correlates with histopathologic markers of malignancy in human gliomas: the need for quantitative fluorescence-guided resection to identify regions of increasing malignancy,” Neuro-oncol.13(8), 846–856 (2011).
[CrossRef] [PubMed]

P. A. Valdés, A. Kim, F. Leblond, O. M. Conde, B. T. Harris, K. D. Paulsen, B. C. Wilson, and D. W. Roberts, “Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low- and high-grade glioma surgery,” J. Biomed. Opt.16(11), 116007 (2011).
[CrossRef] [PubMed]

Rosén, A.

M. B. Ericson, S. Grapengiesser, F. Gudmundson, A. M. Wennberg, O. Larkö, J. Moan, and A. Rosén, “A spectroscopic study of the photobleaching of protoporphyrin IX in solution,” Lasers Med. Sci.18(1), 56–62 (2003).
[CrossRef] [PubMed]

Sakuma, I.

T. Ando, E. Kobayashi, H. Liao, T. Maruyama, Y. Muragaki, H. Iseki, O. Kubo, and I. Sakuma, “Precise comparison of protoporphyrin IX fluorescence spectra with pathological results for brain tumor tissue identification,” Brain Tumor Pathol.28(1), 43–51 (2011).
[CrossRef] [PubMed]

Sato, S.

S. Utsuki, H. Oka, S. Sato, S. Suzuki, S. Shimizu, S. Tanaka, and K. Fujii, “Possibility of using laser spectroscopy for the intraoperative detection of nonfluorescing brain tumors and the boundaries of brain tumor infiltrates,” J. Neurosurg.104(4), 618–620 (2006).
[CrossRef] [PubMed]

Schnell, O.

A. Johansson, G. Palte, O. Schnell, J.-C. Tonn, J. Herms, and H. Stepp, “5-Aminolevulinic acid-induced protoporphyrin IX levels in tissue of human malignant brain tumors,” Photochem. Photobiol.86(6), 1373–1378 (2010).
[CrossRef] [PubMed]

Shimizu, S.

S. Utsuki, H. Oka, S. Sato, S. Suzuki, S. Shimizu, S. Tanaka, and K. Fujii, “Possibility of using laser spectroscopy for the intraoperative detection of nonfluorescing brain tumors and the boundaries of brain tumor infiltrates,” J. Neurosurg.104(4), 618–620 (2006).
[CrossRef] [PubMed]

Simmons, N. E.

P. A. Valdés, F. Leblond, A. Kim, B. T. Harris, B. C. Wilson, X. Fan, T. D. Tosteson, A. Hartov, S. Ji, K. Erkmen, N. E. Simmons, K. D. Paulsen, and D. W. Roberts, “Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker,” J. Neurosurg.115(1), 11–17 (2011).
[CrossRef] [PubMed]

Sinaasappel, M.

E. G. Mik, J. Stap, M. Sinaasappel, J. F. Beek, J. A. Aten, T. G. van Leeuwen, and C. Ince, “Mitochondrial PO2 measured by delayed fluorescence of endogenous protoporphyrin IX,” Nat. Methods3(11), 939–945 (2006).
[CrossRef] [PubMed]

Singh, G.

B. C. Wilson, M. Olivo, and G. Singh, “Subcellular localization of Photofrin and aminolevulinic acid and photodynamic cross-resistance in vitro in radiation-induced fibrosarcoma cells sensitive or resistant to photofrin-mediated photodynamic therapy,” Photochem. Photobiol.65(1), 166–176 (1997).
[CrossRef] [PubMed]

Sivash, A. A.

G. I. Lozovaya, Z. Masinovsky, and A. A. Sivash, “Protoporphyrin IX as a possible ancient photosensitizer: spectral and photochemical studies,” Orig. Life Evol. Biosph.20(3-4), 321–330 (1990).
[CrossRef]

Stap, J.

E. G. Mik, J. Stap, M. Sinaasappel, J. F. Beek, J. A. Aten, T. G. van Leeuwen, and C. Ince, “Mitochondrial PO2 measured by delayed fluorescence of endogenous protoporphyrin IX,” Nat. Methods3(11), 939–945 (2006).
[CrossRef] [PubMed]

Star, W. M.

G. A. Wagnières, W. M. Star, and B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol.68(5), 603–632 (1998).
[PubMed]

Stepp, H.

A. Johansson, G. Palte, O. Schnell, J.-C. Tonn, J. Herms, and H. Stepp, “5-Aminolevulinic acid-induced protoporphyrin IX levels in tissue of human malignant brain tumors,” Photochem. Photobiol.86(6), 1373–1378 (2010).
[CrossRef] [PubMed]

Stummer, W.

W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, H. J. Reulen, and ALA-Glioma Study Group, “Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial,” Lancet Oncol.7(5), 392–401 (2006).
[CrossRef] [PubMed]

Suzuki, S.

S. Utsuki, H. Oka, S. Sato, S. Suzuki, S. Shimizu, S. Tanaka, and K. Fujii, “Possibility of using laser spectroscopy for the intraoperative detection of nonfluorescing brain tumors and the boundaries of brain tumor infiltrates,” J. Neurosurg.104(4), 618–620 (2006).
[CrossRef] [PubMed]

Tanaka, S.

S. Utsuki, H. Oka, S. Sato, S. Suzuki, S. Shimizu, S. Tanaka, and K. Fujii, “Possibility of using laser spectroscopy for the intraoperative detection of nonfluorescing brain tumors and the boundaries of brain tumor infiltrates,” J. Neurosurg.104(4), 618–620 (2006).
[CrossRef] [PubMed]

Tonn, J.-C.

A. Johansson, G. Palte, O. Schnell, J.-C. Tonn, J. Herms, and H. Stepp, “5-Aminolevulinic acid-induced protoporphyrin IX levels in tissue of human malignant brain tumors,” Photochem. Photobiol.86(6), 1373–1378 (2010).
[CrossRef] [PubMed]

Tosteson, T. D.

P. A. Valdés, A. Kim, M. Brantsch, C. Niu, Z. B. Moses, T. D. Tosteson, B. C. Wilson, K. D. Paulsen, D. W. Roberts, and B. T. Harris, “δ-aminolevulinic acid-induced protoporphyrin IX concentration correlates with histopathologic markers of malignancy in human gliomas: the need for quantitative fluorescence-guided resection to identify regions of increasing malignancy,” Neuro-oncol.13(8), 846–856 (2011).
[CrossRef] [PubMed]

P. A. Valdés, F. Leblond, A. Kim, B. T. Harris, B. C. Wilson, X. Fan, T. D. Tosteson, A. Hartov, S. Ji, K. Erkmen, N. E. Simmons, K. D. Paulsen, and D. W. Roberts, “Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker,” J. Neurosurg.115(1), 11–17 (2011).
[CrossRef] [PubMed]

Utsuki, S.

S. Utsuki, H. Oka, S. Sato, S. Suzuki, S. Shimizu, S. Tanaka, and K. Fujii, “Possibility of using laser spectroscopy for the intraoperative detection of nonfluorescing brain tumors and the boundaries of brain tumor infiltrates,” J. Neurosurg.104(4), 618–620 (2006).
[CrossRef] [PubMed]

Valdés, P. A.

P. A. Valdés, F. Leblond, A. Kim, B. T. Harris, B. C. Wilson, X. Fan, T. D. Tosteson, A. Hartov, S. Ji, K. Erkmen, N. E. Simmons, K. D. Paulsen, and D. W. Roberts, “Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker,” J. Neurosurg.115(1), 11–17 (2011).
[CrossRef] [PubMed]

P. A. Valdés, A. Kim, M. Brantsch, C. Niu, Z. B. Moses, T. D. Tosteson, B. C. Wilson, K. D. Paulsen, D. W. Roberts, and B. T. Harris, “δ-aminolevulinic acid-induced protoporphyrin IX concentration correlates with histopathologic markers of malignancy in human gliomas: the need for quantitative fluorescence-guided resection to identify regions of increasing malignancy,” Neuro-oncol.13(8), 846–856 (2011).
[CrossRef] [PubMed]

P. A. Valdés, A. Kim, F. Leblond, O. M. Conde, B. T. Harris, K. D. Paulsen, B. C. Wilson, and D. W. Roberts, “Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low- and high-grade glioma surgery,” J. Biomed. Opt.16(11), 116007 (2011).
[CrossRef] [PubMed]

van Leeuwen, T. G.

E. G. Mik, J. Stap, M. Sinaasappel, J. F. Beek, J. A. Aten, T. G. van Leeuwen, and C. Ince, “Mitochondrial PO2 measured by delayed fluorescence of endogenous protoporphyrin IX,” Nat. Methods3(11), 939–945 (2006).
[CrossRef] [PubMed]

von Kienlin, M.

A. Ziegler, M. von Kienlin, M. Décorps, and C. Rémy, “High glycolytic activity in rat glioma demonstrated in vivo by correlation peak 1H magnetic resonance imaging,” Cancer Res.61(14), 5595–5600 (2001).
[PubMed]

Wagnières, G. A.

G. A. Wagnières, W. M. Star, and B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol.68(5), 603–632 (1998).
[PubMed]

Wårdell, K.

N. Haj-Hosseini, J. Richter, S. Andersson-Engels, and K. Wårdell, “Optical touch pointer for fluorescence guided glioblastoma resection using 5-aminolevulinic acid,” Lasers Surg. Med.42(1), 9–14 (2010).
[CrossRef] [PubMed]

Weissleder, R.

R. Weissleder and M. J. Pittet, “Imaging in the era of molecular oncology,” Nature452(7187), 580–589 (2008).
[CrossRef] [PubMed]

Wennberg, A. M.

M. B. Ericson, S. Grapengiesser, F. Gudmundson, A. M. Wennberg, O. Larkö, J. Moan, and A. Rosén, “A spectroscopic study of the photobleaching of protoporphyrin IX in solution,” Lasers Med. Sci.18(1), 56–62 (2003).
[CrossRef] [PubMed]

Wiestler, O. D.

W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, H. J. Reulen, and ALA-Glioma Study Group, “Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial,” Lancet Oncol.7(5), 392–401 (2006).
[CrossRef] [PubMed]

Wilson, B. C.

P. A. Valdés, A. Kim, M. Brantsch, C. Niu, Z. B. Moses, T. D. Tosteson, B. C. Wilson, K. D. Paulsen, D. W. Roberts, and B. T. Harris, “δ-aminolevulinic acid-induced protoporphyrin IX concentration correlates with histopathologic markers of malignancy in human gliomas: the need for quantitative fluorescence-guided resection to identify regions of increasing malignancy,” Neuro-oncol.13(8), 846–856 (2011).
[CrossRef] [PubMed]

P. A. Valdés, A. Kim, F. Leblond, O. M. Conde, B. T. Harris, K. D. Paulsen, B. C. Wilson, and D. W. Roberts, “Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low- and high-grade glioma surgery,” J. Biomed. Opt.16(11), 116007 (2011).
[CrossRef] [PubMed]

P. A. Valdés, F. Leblond, A. Kim, B. T. Harris, B. C. Wilson, X. Fan, T. D. Tosteson, A. Hartov, S. Ji, K. Erkmen, N. E. Simmons, K. D. Paulsen, and D. W. Roberts, “Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker,” J. Neurosurg.115(1), 11–17 (2011).
[CrossRef] [PubMed]

A. Kim, M. Khurana, Y. Moriyama, and B. C. Wilson, “Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements,” J. Biomed. Opt.15(6), 067006 (2010).
[CrossRef] [PubMed]

G. A. Wagnières, W. M. Star, and B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol.68(5), 603–632 (1998).
[PubMed]

B. C. Wilson, M. Olivo, and G. Singh, “Subcellular localization of Photofrin and aminolevulinic acid and photodynamic cross-resistance in vitro in radiation-induced fibrosarcoma cells sensitive or resistant to photofrin-mediated photodynamic therapy,” Photochem. Photobiol.65(1), 166–176 (1997).
[CrossRef] [PubMed]

Wu, S. M.

S. M. Wu, Q. G. Ren, M. O. Zhou, Q. Peng, and J. Y. Chen, “Protoporphyrin IX production and its photodynamic effects on glioma cells, neuroblastoma cells and normal cerebellar granule cells in vitro with 5-aminolevulinic acid and its hexylester,” Cancer Lett.200(2), 123–131 (2003).
[CrossRef] [PubMed]

Zanella, F.

W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, H. J. Reulen, and ALA-Glioma Study Group, “Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial,” Lancet Oncol.7(5), 392–401 (2006).
[CrossRef] [PubMed]

Zhou, M. O.

S. M. Wu, Q. G. Ren, M. O. Zhou, Q. Peng, and J. Y. Chen, “Protoporphyrin IX production and its photodynamic effects on glioma cells, neuroblastoma cells and normal cerebellar granule cells in vitro with 5-aminolevulinic acid and its hexylester,” Cancer Lett.200(2), 123–131 (2003).
[CrossRef] [PubMed]

Ziegler, A.

A. Ziegler, M. von Kienlin, M. Décorps, and C. Rémy, “High glycolytic activity in rat glioma demonstrated in vivo by correlation peak 1H magnetic resonance imaging,” Cancer Res.61(14), 5595–5600 (2001).
[PubMed]

Appl. Spectrosc.

Biophys. Chem.

T. B. Melø and G. Reisaeter, “The physicochemical state of protoporphyrin IX in aqueous solution investigated by fluorescence and light scattering,” Biophys. Chem.25(1), 99–104 (1986).
[CrossRef] [PubMed]

Brain Tumor Pathol.

T. Ando, E. Kobayashi, H. Liao, T. Maruyama, Y. Muragaki, H. Iseki, O. Kubo, and I. Sakuma, “Precise comparison of protoporphyrin IX fluorescence spectra with pathological results for brain tumor tissue identification,” Brain Tumor Pathol.28(1), 43–51 (2011).
[CrossRef] [PubMed]

Cancer Lett.

S. M. Wu, Q. G. Ren, M. O. Zhou, Q. Peng, and J. Y. Chen, “Protoporphyrin IX production and its photodynamic effects on glioma cells, neuroblastoma cells and normal cerebellar granule cells in vitro with 5-aminolevulinic acid and its hexylester,” Cancer Lett.200(2), 123–131 (2003).
[CrossRef] [PubMed]

Cancer Res.

A. Ziegler, M. von Kienlin, M. Décorps, and C. Rémy, “High glycolytic activity in rat glioma demonstrated in vivo by correlation peak 1H magnetic resonance imaging,” Cancer Res.61(14), 5595–5600 (2001).
[PubMed]

J. Biomed. Opt.

P. A. Valdés, A. Kim, F. Leblond, O. M. Conde, B. T. Harris, K. D. Paulsen, B. C. Wilson, and D. W. Roberts, “Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low- and high-grade glioma surgery,” J. Biomed. Opt.16(11), 116007 (2011).
[CrossRef] [PubMed]

A. Kim, M. Khurana, Y. Moriyama, and B. C. Wilson, “Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements,” J. Biomed. Opt.15(6), 067006 (2010).
[CrossRef] [PubMed]

J. Neurosurg.

P. A. Valdés, F. Leblond, A. Kim, B. T. Harris, B. C. Wilson, X. Fan, T. D. Tosteson, A. Hartov, S. Ji, K. Erkmen, N. E. Simmons, K. D. Paulsen, and D. W. Roberts, “Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker,” J. Neurosurg.115(1), 11–17 (2011).
[CrossRef] [PubMed]

S. Utsuki, H. Oka, S. Sato, S. Suzuki, S. Shimizu, S. Tanaka, and K. Fujii, “Possibility of using laser spectroscopy for the intraoperative detection of nonfluorescing brain tumors and the boundaries of brain tumor infiltrates,” J. Neurosurg.104(4), 618–620 (2006).
[CrossRef] [PubMed]

Lancet Oncol.

W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, H. J. Reulen, and ALA-Glioma Study Group, “Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial,” Lancet Oncol.7(5), 392–401 (2006).
[CrossRef] [PubMed]

Lasers Med. Sci.

M. B. Ericson, S. Grapengiesser, F. Gudmundson, A. M. Wennberg, O. Larkö, J. Moan, and A. Rosén, “A spectroscopic study of the photobleaching of protoporphyrin IX in solution,” Lasers Med. Sci.18(1), 56–62 (2003).
[CrossRef] [PubMed]

Lasers Surg. Med.

N. Haj-Hosseini, J. Richter, S. Andersson-Engels, and K. Wårdell, “Optical touch pointer for fluorescence guided glioblastoma resection using 5-aminolevulinic acid,” Lasers Surg. Med.42(1), 9–14 (2010).
[CrossRef] [PubMed]

Nat. Methods

E. G. Mik, J. Stap, M. Sinaasappel, J. F. Beek, J. A. Aten, T. G. van Leeuwen, and C. Ince, “Mitochondrial PO2 measured by delayed fluorescence of endogenous protoporphyrin IX,” Nat. Methods3(11), 939–945 (2006).
[CrossRef] [PubMed]

D. Arosio, F. Ricci, L. Marchetti, R. Gualdani, L. Albertazzi, and F. Beltram, “Simultaneous intracellular chloride and pH measurements using a GFP-based sensor,” Nat. Methods7(7), 516–518 (2010).
[CrossRef] [PubMed]

Nature

R. Weissleder and M. J. Pittet, “Imaging in the era of molecular oncology,” Nature452(7187), 580–589 (2008).
[CrossRef] [PubMed]

Neoplasia

N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,” Neoplasia2(1/2), 89–117 (2000).
[CrossRef] [PubMed]

Neuro-oncol.

P. A. Valdés, A. Kim, M. Brantsch, C. Niu, Z. B. Moses, T. D. Tosteson, B. C. Wilson, K. D. Paulsen, D. W. Roberts, and B. T. Harris, “δ-aminolevulinic acid-induced protoporphyrin IX concentration correlates with histopathologic markers of malignancy in human gliomas: the need for quantitative fluorescence-guided resection to identify regions of increasing malignancy,” Neuro-oncol.13(8), 846–856 (2011).
[CrossRef] [PubMed]

Orig. Life Evol. Biosph.

G. I. Lozovaya, Z. Masinovsky, and A. A. Sivash, “Protoporphyrin IX as a possible ancient photosensitizer: spectral and photochemical studies,” Orig. Life Evol. Biosph.20(3-4), 321–330 (1990).
[CrossRef]

Photochem. Photobiol.

A. Johansson, G. Palte, O. Schnell, J.-C. Tonn, J. Herms, and H. Stepp, “5-Aminolevulinic acid-induced protoporphyrin IX levels in tissue of human malignant brain tumors,” Photochem. Photobiol.86(6), 1373–1378 (2010).
[CrossRef] [PubMed]

B. C. Wilson, M. Olivo, and G. Singh, “Subcellular localization of Photofrin and aminolevulinic acid and photodynamic cross-resistance in vitro in radiation-induced fibrosarcoma cells sensitive or resistant to photofrin-mediated photodynamic therapy,” Photochem. Photobiol.65(1), 166–176 (1997).
[CrossRef] [PubMed]

G. A. Wagnières, W. M. Star, and B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol.68(5), 603–632 (1998).
[PubMed]

Photochem. Photobiol. Sci.

J. S. Dysart and M. S. Patterson, “Photobleaching kinetics, photoproduct formation, and dose estimation during ALA induced PpIX PDT of MLL cells under well oxygenated and hypoxic conditions,” Photochem. Photobiol. Sci.5(1), 73–81 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Simulated and in vitro calibration experiments. (a) PpIX emission spectra measured in vitro for the two physicochemical states with peak wavelength at 634 nm (blue dotted line) and 620 nm (red dashed line) and for photoproducts (brown dashed and dotted line). (b, c) Two examples of fitting of PpIX emission spectra in vitro (solutions at ratio620/634 = 0.98 (b) and ratio620/634 = 0.38 (c)), measured (x signs), simulated (green solid line), fitted [ PpI X 634 ] η 634 I 634 λ (blue dotted line), fitted [ PpI X 620 ] η 620 I 620 λ (red dashed line) and fitted photoproducts (brown dashed and dotted line).

Fig. 2
Fig. 2

Simulated and in vitro calibration experiments. (a) Influence of the microenvironment on ratio620/634. (b) Fitted PpIX fluorescence intensities of [PpIX634634 ( + signs), [PpIX620620 (o signs) and photoproducts (* signs) in function of ratio620/634.

Fig. 3
Fig. 3

Extracted tumor tissues experiments. (a) Extraction of auto-fluorescence in measured spectrum, example of a measured spectrum (x signs) and exponential decay fitting of auto-fluorescence (solid line). (b) Example of fitting of PpIX emission spectrum on an extracted tumor tissues (ratio620/634 = 0.56), measured (x signs), simulated (green solid line), fitted [ PpI X 634 ] η 634 I 634 λ (blue dotted line), fitted [ PpI X 620 ] η 620 I 620 λ (red dashed line) and fitted photoproducts (brown dashed and dotted line).

Fig. 4
Fig. 4

Extracted tumor tissues experiments statistical tests. (a) ratio620/634, (b) fitted [PpIX634634 and (c) fitted [PpIX620620 for the 4 groups GBMst (n = 5), GBMinf (n = 16), Gst (n = 7) and Ginf (n = 7). Mean (grey column) and standard error of the mean are shown (error bar). *P < 0.05, **P < 0.01, ***P < 0.001. Two sample Kolmogorov-Smirnov test.

Tables (1)

Tables Icon

Table 1 Statistical Representation of the Extracted Tumor Tissues Experimentsa

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I em λ =α( [ PpI X 620 ] η 620 I 620 λ +[ PpI X 634 ] η 634 I 634 λ ) =α[ PpI X 634 ] η 634 I 634 λ ( 1+ I 620 λ I 634 λ rati o 620/634 )

Metrics