Abstract

Swept source/Fourier domain OCT is demonstrated for in vivo imaging of the rodent eye. Using commercial swept laser technology, we developed a prototype OCT imaging system for small animal ocular imaging operating in the 1050 nm wavelength range at an axial scan rate of 100 kHz with ~6 µm axial resolution. The high imaging speed enables volumetric imaging with high axial scan densities, measuring high flow velocities in vessels, and repeated volumetric imaging over time. The 1050 nm wavelength light provides increased penetration into tissue compared to standard commercial OCT systems at 850 nm. The long imaging range enables multiple operating modes for imaging the retina, posterior eye, as well as anterior eye and full eye length. A registration algorithm using orthogonally scanned OCT volumetric data sets which can correct motion on a per A-scan basis is applied to compensate motion and merge motion corrected volumetric data for enhanced OCT image quality. Ultrahigh speed swept source OCT is a promising technique for imaging the rodent eye, proving comprehensive information on the cornea, anterior segment, lens, vitreous, posterior segment, retina and choroid.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. A. Tsonis, Animal Models in Eye Research (Academic, 2008).
  2. N. L. Hawes, R. S. Smith, B. Chang, M. Davisson, J. R. Heckenlively, and S. W. John, “Mouse fundus photography and angiography: a catalogue of normal and mutant phenotypes,” Mol. Vis.5, 22 (1999).
    [PubMed]
  3. R. S. Smith, Systematic Evaluation of the Mouse Eye: Anatomy, Pathology, and Biomethods (CRC Press, Boca Raton, Fla., 2002).
  4. N. Nissirios, J. Ramos-Esteban, and J. Danias, “Ultrasound biomicroscopy of the rat eye: effects of cholinergic and anticholinergic agents,” Graefes Arch. Clin. Exp. Ophthalmol.243(5), 469–473 (2005).
    [CrossRef] [PubMed]
  5. M. W. Seeliger, S. C. Beck, N. Pereyra-Muñoz, S. Dangel, J. Y. Tsai, U. F. Luhmann, S. A. van de Pavert, J. Wijnholds, M. Samardzija, A. Wenzel, E. Zrenner, K. Narfström, E. Fahl, N. Tanimoto, N. Acar, and F. Tonagel, “In vivo confocal imaging of the retina in animal models using scanning laser ophthalmoscopy,” Vision Res.45(28), 3512–3519 (2005).
    [CrossRef] [PubMed]
  6. H. Cheng, G. Nair, T. A. Walker, M. K. Kim, M. T. Pardue, P. M. Thulé, D. E. Olson, and T. Q. Duong, “Structural and functional MRI reveals multiple retinal layers,” Proc. Natl. Acad. Sci. U.S.A.103(46), 17525–17530 (2006).
    [CrossRef] [PubMed]
  7. M. Paques, M. Simonutti, M. J. Roux, S. Picaud, E. Levavasseur, C. Bellman, and J. A. Sahel, “High resolution fundus imaging by confocal scanning laser ophthalmoscopy in the mouse,” Vision Res.46(8-9), 1336–1345 (2006).
    [CrossRef] [PubMed]
  8. M. Paques, J. L. Guyomard, M. Simonutti, M. J. Roux, S. Picaud, J. F. Legargasson, and J. A. Sahel, “Panretinal, high-resolution color photography of the mouse fundus,” Invest. Ophthalmol. Vis. Sci.48(6), 2769–2774 (2007).
    [CrossRef] [PubMed]
  9. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  10. V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.47(12), 5522–5528 (2006).
    [CrossRef] [PubMed]
  11. M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.48(4), 1808–1814 (2007).
    [CrossRef] [PubMed]
  12. K. H. Kim, M. Puoris’haag, G. N. Maguluri, Y. Umino, K. Cusato, R. B. Barlow, and J. F. de Boer, “Monitoring mouse retinal degeneration with high-resolution spectral-domain optical coherence tomography,” J. Vis.8(1), 17, 1–11 (2008).
    [CrossRef] [PubMed]
  13. G. Huber, S. C. Beck, C. Grimm, A. Sahaboglu-Tekgoz, F. Paquet-Durand, A. Wenzel, P. Humphries, T. M. Redmond, M. W. Seeliger, and M. D. Fischer, “Spectral domain optical coherence tomography in mouse models of retinal degeneration,” Invest. Ophthalmol. Vis. Sci.50(12), 5888–5895 (2009).
    [CrossRef] [PubMed]
  14. A. Giani, A. Thanos, M. I. Roh, E. Connolly, G. Trichonas, I. Kim, E. Gragoudas, D. Vavvas, and J. W. Miller, “In vivo evaluation of laser-induced choroidal neovascularization using spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(6), 3880–3887 (2011).
    [CrossRef] [PubMed]
  15. S. D. Hanlon, N. B. Patel, and A. R. Burns, “Assessment of postnatal corneal development in the C57BL/6 mouse using spectral domain optical coherence tomography and microwave-assisted histology,” Exp. Eye Res.93(4), 363–370 (2011).
    [CrossRef] [PubMed]
  16. S. Hariri, A. A. Moayed, A. Dracopolos, C. Hyun, S. Boyd, and K. Bizheva, “Limiting factors to the OCT axial resolution for in-vivo imaging of human and rodent retina in the 1060 nm wavelength range,” Opt. Express17(26), 24304–24316 (2009).
    [CrossRef] [PubMed]
  17. B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
    [CrossRef] [PubMed]
  18. L. Wang, B. Hofer, Y. P. Chen, J. A. Guggenheim, W. Drexler, and B. Povazay, “Highly reproducible swept-source, dispersion-encoded full-range biometry and imaging of the mouse eye,” J. Biomed. Opt.15(4), 046004 (2010).
    [CrossRef] [PubMed]
  19. B. Povazay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. Fercher, W. Drexler, C. Schubert, P. Ahnelt, M. Mei, R. Holzwarth, W. Wadsworth, J. Knight, and P. S. Russell, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,” Opt. Express11(17), 1980–1986 (2003).
    [CrossRef] [PubMed]
  20. A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid,” Opt. Express13(9), 3252–3258 (2005).
    [CrossRef] [PubMed]
  21. R. Leitgeb, L. Schmetterer, W. Drexler, A. Fercher, R. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express11(23), 3116–3121 (2003).
    [CrossRef] [PubMed]
  22. B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express11(25), 3490–3497 (2003).
    [CrossRef] [PubMed]
  23. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express14(17), 7821–7840 (2006).
    [CrossRef] [PubMed]
  24. Z. Zhi, W. Cepurna, E. Johnson, T. Shen, J. Morrison, and R. K. Wang, “Volumetric and quantitative imaging of retinal blood flow in rats with optical microangiography,” Biomed. Opt. Express2(3), 579–591 (2011).
    [CrossRef] [PubMed]
  25. B. Baumann, B. Potsaid, M. F. Kraus, J. J. Liu, D. Huang, J. Hornegger, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT,” Biomed. Opt. Express2(6), 1539–1552 (2011).
    [CrossRef] [PubMed]
  26. M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express3(6), 1182–1199 (2012).
    [CrossRef] [PubMed]
  27. L. Calderone, P. Grimes, and M. Shalev, “Acute reversible cataract induced by xylazine and by ketamine-xylazine anesthesia in rats and mice,” Exp. Eye Res.42(4), 331–337 (1986).
    [CrossRef] [PubMed]
  28. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express3(11), 2733–2751 (2012).
    [CrossRef] [PubMed]
  29. Z. Zhi, W. O. Cepurna, E. C. Johnson, J. C. Morrison, and R. K. Wang, “Impact of intraocular pressure on changes of blood flow in the retina, choroid, and optic nerve head in rats investigated by optical microangiography,” Biomed. Opt. Express3(9), 2220–2233 (2012).
    [CrossRef] [PubMed]
  30. Z. Zhi, X. Yin, S. Dziennis, T. Wietecha, K. L. Hudkins, C. E. Alpers, and R. K. Wang, “Optical microangiography of retina and choroid and measurement of total retinal blood flow in mice,” Biomed. Opt. Express3(11), 2976–2986 (2012).
    [CrossRef] [PubMed]
  31. V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, “In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography,” Opt. Lett.31(15), 2308–2310 (2006).
    [CrossRef] [PubMed]
  32. W. Choi, B. Baumann, J. J. Liu, A. C. Clermont, E. P. Feener, J. S. Duker, and J. G. Fujimoto, “Measurement of pulsatile total blood flow in the human and rat retina with ultrahigh speed spectral/Fourier domain OCT,” Biomed. Opt. Express3(5), 1047–1061 (2012).
    [CrossRef] [PubMed]

2012 (5)

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express3(11), 2733–2751 (2012).
[CrossRef] [PubMed]

Z. Zhi, W. O. Cepurna, E. C. Johnson, J. C. Morrison, and R. K. Wang, “Impact of intraocular pressure on changes of blood flow in the retina, choroid, and optic nerve head in rats investigated by optical microangiography,” Biomed. Opt. Express3(9), 2220–2233 (2012).
[CrossRef] [PubMed]

Z. Zhi, X. Yin, S. Dziennis, T. Wietecha, K. L. Hudkins, C. E. Alpers, and R. K. Wang, “Optical microangiography of retina and choroid and measurement of total retinal blood flow in mice,” Biomed. Opt. Express3(11), 2976–2986 (2012).
[CrossRef] [PubMed]

M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express3(6), 1182–1199 (2012).
[CrossRef] [PubMed]

W. Choi, B. Baumann, J. J. Liu, A. C. Clermont, E. P. Feener, J. S. Duker, and J. G. Fujimoto, “Measurement of pulsatile total blood flow in the human and rat retina with ultrahigh speed spectral/Fourier domain OCT,” Biomed. Opt. Express3(5), 1047–1061 (2012).
[CrossRef] [PubMed]

2011 (4)

Z. Zhi, W. Cepurna, E. Johnson, T. Shen, J. Morrison, and R. K. Wang, “Volumetric and quantitative imaging of retinal blood flow in rats with optical microangiography,” Biomed. Opt. Express2(3), 579–591 (2011).
[CrossRef] [PubMed]

B. Baumann, B. Potsaid, M. F. Kraus, J. J. Liu, D. Huang, J. Hornegger, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT,” Biomed. Opt. Express2(6), 1539–1552 (2011).
[CrossRef] [PubMed]

A. Giani, A. Thanos, M. I. Roh, E. Connolly, G. Trichonas, I. Kim, E. Gragoudas, D. Vavvas, and J. W. Miller, “In vivo evaluation of laser-induced choroidal neovascularization using spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(6), 3880–3887 (2011).
[CrossRef] [PubMed]

S. D. Hanlon, N. B. Patel, and A. R. Burns, “Assessment of postnatal corneal development in the C57BL/6 mouse using spectral domain optical coherence tomography and microwave-assisted histology,” Exp. Eye Res.93(4), 363–370 (2011).
[CrossRef] [PubMed]

2010 (2)

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

L. Wang, B. Hofer, Y. P. Chen, J. A. Guggenheim, W. Drexler, and B. Povazay, “Highly reproducible swept-source, dispersion-encoded full-range biometry and imaging of the mouse eye,” J. Biomed. Opt.15(4), 046004 (2010).
[CrossRef] [PubMed]

2009 (2)

S. Hariri, A. A. Moayed, A. Dracopolos, C. Hyun, S. Boyd, and K. Bizheva, “Limiting factors to the OCT axial resolution for in-vivo imaging of human and rodent retina in the 1060 nm wavelength range,” Opt. Express17(26), 24304–24316 (2009).
[CrossRef] [PubMed]

G. Huber, S. C. Beck, C. Grimm, A. Sahaboglu-Tekgoz, F. Paquet-Durand, A. Wenzel, P. Humphries, T. M. Redmond, M. W. Seeliger, and M. D. Fischer, “Spectral domain optical coherence tomography in mouse models of retinal degeneration,” Invest. Ophthalmol. Vis. Sci.50(12), 5888–5895 (2009).
[CrossRef] [PubMed]

2008 (1)

K. H. Kim, M. Puoris’haag, G. N. Maguluri, Y. Umino, K. Cusato, R. B. Barlow, and J. F. de Boer, “Monitoring mouse retinal degeneration with high-resolution spectral-domain optical coherence tomography,” J. Vis.8(1), 17, 1–11 (2008).
[CrossRef] [PubMed]

2007 (2)

M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.48(4), 1808–1814 (2007).
[CrossRef] [PubMed]

M. Paques, J. L. Guyomard, M. Simonutti, M. J. Roux, S. Picaud, J. F. Legargasson, and J. A. Sahel, “Panretinal, high-resolution color photography of the mouse fundus,” Invest. Ophthalmol. Vis. Sci.48(6), 2769–2774 (2007).
[CrossRef] [PubMed]

2006 (5)

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.47(12), 5522–5528 (2006).
[CrossRef] [PubMed]

H. Cheng, G. Nair, T. A. Walker, M. K. Kim, M. T. Pardue, P. M. Thulé, D. E. Olson, and T. Q. Duong, “Structural and functional MRI reveals multiple retinal layers,” Proc. Natl. Acad. Sci. U.S.A.103(46), 17525–17530 (2006).
[CrossRef] [PubMed]

M. Paques, M. Simonutti, M. J. Roux, S. Picaud, E. Levavasseur, C. Bellman, and J. A. Sahel, “High resolution fundus imaging by confocal scanning laser ophthalmoscopy in the mouse,” Vision Res.46(8-9), 1336–1345 (2006).
[CrossRef] [PubMed]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express14(17), 7821–7840 (2006).
[CrossRef] [PubMed]

V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, “In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography,” Opt. Lett.31(15), 2308–2310 (2006).
[CrossRef] [PubMed]

2005 (3)

N. Nissirios, J. Ramos-Esteban, and J. Danias, “Ultrasound biomicroscopy of the rat eye: effects of cholinergic and anticholinergic agents,” Graefes Arch. Clin. Exp. Ophthalmol.243(5), 469–473 (2005).
[CrossRef] [PubMed]

M. W. Seeliger, S. C. Beck, N. Pereyra-Muñoz, S. Dangel, J. Y. Tsai, U. F. Luhmann, S. A. van de Pavert, J. Wijnholds, M. Samardzija, A. Wenzel, E. Zrenner, K. Narfström, E. Fahl, N. Tanimoto, N. Acar, and F. Tonagel, “In vivo confocal imaging of the retina in animal models using scanning laser ophthalmoscopy,” Vision Res.45(28), 3512–3519 (2005).
[CrossRef] [PubMed]

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid,” Opt. Express13(9), 3252–3258 (2005).
[CrossRef] [PubMed]

2003 (3)

1999 (1)

N. L. Hawes, R. S. Smith, B. Chang, M. Davisson, J. R. Heckenlively, and S. W. John, “Mouse fundus photography and angiography: a catalogue of normal and mutant phenotypes,” Mol. Vis.5, 22 (1999).
[PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

1986 (1)

L. Calderone, P. Grimes, and M. Shalev, “Acute reversible cataract induced by xylazine and by ketamine-xylazine anesthesia in rats and mice,” Exp. Eye Res.42(4), 331–337 (1986).
[CrossRef] [PubMed]

Acar, N.

M. W. Seeliger, S. C. Beck, N. Pereyra-Muñoz, S. Dangel, J. Y. Tsai, U. F. Luhmann, S. A. van de Pavert, J. Wijnholds, M. Samardzija, A. Wenzel, E. Zrenner, K. Narfström, E. Fahl, N. Tanimoto, N. Acar, and F. Tonagel, “In vivo confocal imaging of the retina in animal models using scanning laser ophthalmoscopy,” Vision Res.45(28), 3512–3519 (2005).
[CrossRef] [PubMed]

Ahnelt, P.

Alpers, C. E.

Z. Zhi, X. Yin, S. Dziennis, T. Wietecha, K. L. Hudkins, C. E. Alpers, and R. K. Wang, “Optical microangiography of retina and choroid and measurement of total retinal blood flow in mice,” Biomed. Opt. Express3(11), 2976–2986 (2012).
[CrossRef] [PubMed]

Bajraszewski, T.

Barlow, R. B.

K. H. Kim, M. Puoris’haag, G. N. Maguluri, Y. Umino, K. Cusato, R. B. Barlow, and J. F. de Boer, “Monitoring mouse retinal degeneration with high-resolution spectral-domain optical coherence tomography,” J. Vis.8(1), 17, 1–11 (2008).
[CrossRef] [PubMed]

Barry, S.

Baumann, B.

W. Choi, B. Baumann, J. J. Liu, A. C. Clermont, E. P. Feener, J. S. Duker, and J. G. Fujimoto, “Measurement of pulsatile total blood flow in the human and rat retina with ultrahigh speed spectral/Fourier domain OCT,” Biomed. Opt. Express3(5), 1047–1061 (2012).
[CrossRef] [PubMed]

M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express3(6), 1182–1199 (2012).
[CrossRef] [PubMed]

B. Baumann, B. Potsaid, M. F. Kraus, J. J. Liu, D. Huang, J. Hornegger, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT,” Biomed. Opt. Express2(6), 1539–1552 (2011).
[CrossRef] [PubMed]

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

Beck, S. C.

G. Huber, S. C. Beck, C. Grimm, A. Sahaboglu-Tekgoz, F. Paquet-Durand, A. Wenzel, P. Humphries, T. M. Redmond, M. W. Seeliger, and M. D. Fischer, “Spectral domain optical coherence tomography in mouse models of retinal degeneration,” Invest. Ophthalmol. Vis. Sci.50(12), 5888–5895 (2009).
[CrossRef] [PubMed]

M. W. Seeliger, S. C. Beck, N. Pereyra-Muñoz, S. Dangel, J. Y. Tsai, U. F. Luhmann, S. A. van de Pavert, J. Wijnholds, M. Samardzija, A. Wenzel, E. Zrenner, K. Narfström, E. Fahl, N. Tanimoto, N. Acar, and F. Tonagel, “In vivo confocal imaging of the retina in animal models using scanning laser ophthalmoscopy,” Vision Res.45(28), 3512–3519 (2005).
[CrossRef] [PubMed]

Bellman, C.

M. Paques, M. Simonutti, M. J. Roux, S. Picaud, E. Levavasseur, C. Bellman, and J. A. Sahel, “High resolution fundus imaging by confocal scanning laser ophthalmoscopy in the mouse,” Vision Res.46(8-9), 1336–1345 (2006).
[CrossRef] [PubMed]

Bizheva, K.

Bock, R.

M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express3(6), 1182–1199 (2012).
[CrossRef] [PubMed]

Bouma, B.

B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express11(25), 3490–3497 (2003).
[CrossRef] [PubMed]

Boyd, S.

Burns, A. R.

S. D. Hanlon, N. B. Patel, and A. R. Burns, “Assessment of postnatal corneal development in the C57BL/6 mouse using spectral domain optical coherence tomography and microwave-assisted histology,” Exp. Eye Res.93(4), 363–370 (2011).
[CrossRef] [PubMed]

Bursell, S. E.

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.47(12), 5522–5528 (2006).
[CrossRef] [PubMed]

Cable, A. E.

Calderone, L.

L. Calderone, P. Grimes, and M. Shalev, “Acute reversible cataract induced by xylazine and by ketamine-xylazine anesthesia in rats and mice,” Exp. Eye Res.42(4), 331–337 (1986).
[CrossRef] [PubMed]

Carvalho, M.

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.47(12), 5522–5528 (2006).
[CrossRef] [PubMed]

Cense, B.

B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express11(25), 3490–3497 (2003).
[CrossRef] [PubMed]

Cepurna, W.

Cepurna, W. O.

Chang, B.

N. L. Hawes, R. S. Smith, B. Chang, M. Davisson, J. R. Heckenlively, and S. W. John, “Mouse fundus photography and angiography: a catalogue of normal and mutant phenotypes,” Mol. Vis.5, 22 (1999).
[PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chavez-Pirson, A.

Chen, T.

B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express11(25), 3490–3497 (2003).
[CrossRef] [PubMed]

Chen, Y. P.

L. Wang, B. Hofer, Y. P. Chen, J. A. Guggenheim, W. Drexler, and B. Povazay, “Highly reproducible swept-source, dispersion-encoded full-range biometry and imaging of the mouse eye,” J. Biomed. Opt.15(4), 046004 (2010).
[CrossRef] [PubMed]

Cheng, H.

H. Cheng, G. Nair, T. A. Walker, M. K. Kim, M. T. Pardue, P. M. Thulé, D. E. Olson, and T. Q. Duong, “Structural and functional MRI reveals multiple retinal layers,” Proc. Natl. Acad. Sci. U.S.A.103(46), 17525–17530 (2006).
[CrossRef] [PubMed]

Choi, W.

W. Choi, B. Baumann, J. J. Liu, A. C. Clermont, E. P. Feener, J. S. Duker, and J. G. Fujimoto, “Measurement of pulsatile total blood flow in the human and rat retina with ultrahigh speed spectral/Fourier domain OCT,” Biomed. Opt. Express3(5), 1047–1061 (2012).
[CrossRef] [PubMed]

Clermont, A.

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.47(12), 5522–5528 (2006).
[CrossRef] [PubMed]

Clermont, A. C.

W. Choi, B. Baumann, J. J. Liu, A. C. Clermont, E. P. Feener, J. S. Duker, and J. G. Fujimoto, “Measurement of pulsatile total blood flow in the human and rat retina with ultrahigh speed spectral/Fourier domain OCT,” Biomed. Opt. Express3(5), 1047–1061 (2012).
[CrossRef] [PubMed]

Connolly, E.

A. Giani, A. Thanos, M. I. Roh, E. Connolly, G. Trichonas, I. Kim, E. Gragoudas, D. Vavvas, and J. W. Miller, “In vivo evaluation of laser-induced choroidal neovascularization using spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(6), 3880–3887 (2011).
[CrossRef] [PubMed]

Cusato, K.

K. H. Kim, M. Puoris’haag, G. N. Maguluri, Y. Umino, K. Cusato, R. B. Barlow, and J. F. de Boer, “Monitoring mouse retinal degeneration with high-resolution spectral-domain optical coherence tomography,” J. Vis.8(1), 17, 1–11 (2008).
[CrossRef] [PubMed]

Dangel, S.

M. W. Seeliger, S. C. Beck, N. Pereyra-Muñoz, S. Dangel, J. Y. Tsai, U. F. Luhmann, S. A. van de Pavert, J. Wijnholds, M. Samardzija, A. Wenzel, E. Zrenner, K. Narfström, E. Fahl, N. Tanimoto, N. Acar, and F. Tonagel, “In vivo confocal imaging of the retina in animal models using scanning laser ophthalmoscopy,” Vision Res.45(28), 3512–3519 (2005).
[CrossRef] [PubMed]

Danias, J.

N. Nissirios, J. Ramos-Esteban, and J. Danias, “Ultrasound biomicroscopy of the rat eye: effects of cholinergic and anticholinergic agents,” Graefes Arch. Clin. Exp. Ophthalmol.243(5), 469–473 (2005).
[CrossRef] [PubMed]

Davisson, M.

N. L. Hawes, R. S. Smith, B. Chang, M. Davisson, J. R. Heckenlively, and S. W. John, “Mouse fundus photography and angiography: a catalogue of normal and mutant phenotypes,” Mol. Vis.5, 22 (1999).
[PubMed]

de Boer, J.

B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express11(25), 3490–3497 (2003).
[CrossRef] [PubMed]

de Boer, J. F.

K. H. Kim, M. Puoris’haag, G. N. Maguluri, Y. Umino, K. Cusato, R. B. Barlow, and J. F. de Boer, “Monitoring mouse retinal degeneration with high-resolution spectral-domain optical coherence tomography,” J. Vis.8(1), 17, 1–11 (2008).
[CrossRef] [PubMed]

Dracopolos, A.

Drexler, W.

Duan, Y.

M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.48(4), 1808–1814 (2007).
[CrossRef] [PubMed]

Duker, J. S.

W. Choi, B. Baumann, J. J. Liu, A. C. Clermont, E. P. Feener, J. S. Duker, and J. G. Fujimoto, “Measurement of pulsatile total blood flow in the human and rat retina with ultrahigh speed spectral/Fourier domain OCT,” Biomed. Opt. Express3(5), 1047–1061 (2012).
[CrossRef] [PubMed]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express3(11), 2733–2751 (2012).
[CrossRef] [PubMed]

B. Baumann, B. Potsaid, M. F. Kraus, J. J. Liu, D. Huang, J. Hornegger, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT,” Biomed. Opt. Express2(6), 1539–1552 (2011).
[CrossRef] [PubMed]

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.47(12), 5522–5528 (2006).
[CrossRef] [PubMed]

V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, “In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography,” Opt. Lett.31(15), 2308–2310 (2006).
[CrossRef] [PubMed]

Duong, T. Q.

H. Cheng, G. Nair, T. A. Walker, M. K. Kim, M. T. Pardue, P. M. Thulé, D. E. Olson, and T. Q. Duong, “Structural and functional MRI reveals multiple retinal layers,” Proc. Natl. Acad. Sci. U.S.A.103(46), 17525–17530 (2006).
[CrossRef] [PubMed]

Dziennis, S.

Z. Zhi, X. Yin, S. Dziennis, T. Wietecha, K. L. Hudkins, C. E. Alpers, and R. K. Wang, “Optical microangiography of retina and choroid and measurement of total retinal blood flow in mice,” Biomed. Opt. Express3(11), 2976–2986 (2012).
[CrossRef] [PubMed]

et,

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fahl, E.

M. W. Seeliger, S. C. Beck, N. Pereyra-Muñoz, S. Dangel, J. Y. Tsai, U. F. Luhmann, S. A. van de Pavert, J. Wijnholds, M. Samardzija, A. Wenzel, E. Zrenner, K. Narfström, E. Fahl, N. Tanimoto, N. Acar, and F. Tonagel, “In vivo confocal imaging of the retina in animal models using scanning laser ophthalmoscopy,” Vision Res.45(28), 3512–3519 (2005).
[CrossRef] [PubMed]

Feener, E. P.

W. Choi, B. Baumann, J. J. Liu, A. C. Clermont, E. P. Feener, J. S. Duker, and J. G. Fujimoto, “Measurement of pulsatile total blood flow in the human and rat retina with ultrahigh speed spectral/Fourier domain OCT,” Biomed. Opt. Express3(5), 1047–1061 (2012).
[CrossRef] [PubMed]

Fercher, A.

Fischer, M. D.

G. Huber, S. C. Beck, C. Grimm, A. Sahaboglu-Tekgoz, F. Paquet-Durand, A. Wenzel, P. Humphries, T. M. Redmond, M. W. Seeliger, and M. D. Fischer, “Spectral domain optical coherence tomography in mouse models of retinal degeneration,” Invest. Ophthalmol. Vis. Sci.50(12), 5888–5895 (2009).
[CrossRef] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

W. Choi, B. Baumann, J. J. Liu, A. C. Clermont, E. P. Feener, J. S. Duker, and J. G. Fujimoto, “Measurement of pulsatile total blood flow in the human and rat retina with ultrahigh speed spectral/Fourier domain OCT,” Biomed. Opt. Express3(5), 1047–1061 (2012).
[CrossRef] [PubMed]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express3(11), 2733–2751 (2012).
[CrossRef] [PubMed]

M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express3(6), 1182–1199 (2012).
[CrossRef] [PubMed]

B. Baumann, B. Potsaid, M. F. Kraus, J. J. Liu, D. Huang, J. Hornegger, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT,” Biomed. Opt. Express2(6), 1539–1552 (2011).
[CrossRef] [PubMed]

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.47(12), 5522–5528 (2006).
[CrossRef] [PubMed]

V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, “In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography,” Opt. Lett.31(15), 2308–2310 (2006).
[CrossRef] [PubMed]

Giani, A.

A. Giani, A. Thanos, M. I. Roh, E. Connolly, G. Trichonas, I. Kim, E. Gragoudas, D. Vavvas, and J. W. Miller, “In vivo evaluation of laser-induced choroidal neovascularization using spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(6), 3880–3887 (2011).
[CrossRef] [PubMed]

Gragoudas, E.

A. Giani, A. Thanos, M. I. Roh, E. Connolly, G. Trichonas, I. Kim, E. Gragoudas, D. Vavvas, and J. W. Miller, “In vivo evaluation of laser-induced choroidal neovascularization using spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(6), 3880–3887 (2011).
[CrossRef] [PubMed]

Gregori, G.

M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.48(4), 1808–1814 (2007).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Grimes, P.

L. Calderone, P. Grimes, and M. Shalev, “Acute reversible cataract induced by xylazine and by ketamine-xylazine anesthesia in rats and mice,” Exp. Eye Res.42(4), 331–337 (1986).
[CrossRef] [PubMed]

Grimm, C.

G. Huber, S. C. Beck, C. Grimm, A. Sahaboglu-Tekgoz, F. Paquet-Durand, A. Wenzel, P. Humphries, T. M. Redmond, M. W. Seeliger, and M. D. Fischer, “Spectral domain optical coherence tomography in mouse models of retinal degeneration,” Invest. Ophthalmol. Vis. Sci.50(12), 5888–5895 (2009).
[CrossRef] [PubMed]

Grulkowski, I.

Guggenheim, J. A.

L. Wang, B. Hofer, Y. P. Chen, J. A. Guggenheim, W. Drexler, and B. Povazay, “Highly reproducible swept-source, dispersion-encoded full-range biometry and imaging of the mouse eye,” J. Biomed. Opt.15(4), 046004 (2010).
[CrossRef] [PubMed]

Guyomard, J. L.

M. Paques, J. L. Guyomard, M. Simonutti, M. J. Roux, S. Picaud, J. F. Legargasson, and J. A. Sahel, “Panretinal, high-resolution color photography of the mouse fundus,” Invest. Ophthalmol. Vis. Sci.48(6), 2769–2774 (2007).
[CrossRef] [PubMed]

Hackam, A.

M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.48(4), 1808–1814 (2007).
[CrossRef] [PubMed]

Hanlon, S. D.

S. D. Hanlon, N. B. Patel, and A. R. Burns, “Assessment of postnatal corneal development in the C57BL/6 mouse using spectral domain optical coherence tomography and microwave-assisted histology,” Exp. Eye Res.93(4), 363–370 (2011).
[CrossRef] [PubMed]

Hariri, S.

Hawes, N. L.

N. L. Hawes, R. S. Smith, B. Chang, M. Davisson, J. R. Heckenlively, and S. W. John, “Mouse fundus photography and angiography: a catalogue of normal and mutant phenotypes,” Mol. Vis.5, 22 (1999).
[PubMed]

Heckenlively, J. R.

N. L. Hawes, R. S. Smith, B. Chang, M. Davisson, J. R. Heckenlively, and S. W. John, “Mouse fundus photography and angiography: a catalogue of normal and mutant phenotypes,” Mol. Vis.5, 22 (1999).
[PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hermann, B.

Hofer, B.

L. Wang, B. Hofer, Y. P. Chen, J. A. Guggenheim, W. Drexler, and B. Povazay, “Highly reproducible swept-source, dispersion-encoded full-range biometry and imaging of the mouse eye,” J. Biomed. Opt.15(4), 046004 (2010).
[CrossRef] [PubMed]

Holzwarth, R.

Hong, Y.

Hornegger, J.

M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express3(6), 1182–1199 (2012).
[CrossRef] [PubMed]

B. Baumann, B. Potsaid, M. F. Kraus, J. J. Liu, D. Huang, J. Hornegger, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT,” Biomed. Opt. Express2(6), 1539–1552 (2011).
[CrossRef] [PubMed]

Huang, D.

Huber, G.

G. Huber, S. C. Beck, C. Grimm, A. Sahaboglu-Tekgoz, F. Paquet-Durand, A. Wenzel, P. Humphries, T. M. Redmond, M. W. Seeliger, and M. D. Fischer, “Spectral domain optical coherence tomography in mouse models of retinal degeneration,” Invest. Ophthalmol. Vis. Sci.50(12), 5888–5895 (2009).
[CrossRef] [PubMed]

Hudkins, K. L.

Z. Zhi, X. Yin, S. Dziennis, T. Wietecha, K. L. Hudkins, C. E. Alpers, and R. K. Wang, “Optical microangiography of retina and choroid and measurement of total retinal blood flow in mice,” Biomed. Opt. Express3(11), 2976–2986 (2012).
[CrossRef] [PubMed]

Humphries, P.

G. Huber, S. C. Beck, C. Grimm, A. Sahaboglu-Tekgoz, F. Paquet-Durand, A. Wenzel, P. Humphries, T. M. Redmond, M. W. Seeliger, and M. D. Fischer, “Spectral domain optical coherence tomography in mouse models of retinal degeneration,” Invest. Ophthalmol. Vis. Sci.50(12), 5888–5895 (2009).
[CrossRef] [PubMed]

Hyun, C.

Jayaraman, V.

Jiang, J.

Jiao, S.

M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.48(4), 1808–1814 (2007).
[CrossRef] [PubMed]

Jockovich, M. E.

M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.48(4), 1808–1814 (2007).
[CrossRef] [PubMed]

John, S. W.

N. L. Hawes, R. S. Smith, B. Chang, M. Davisson, J. R. Heckenlively, and S. W. John, “Mouse fundus photography and angiography: a catalogue of normal and mutant phenotypes,” Mol. Vis.5, 22 (1999).
[PubMed]

Johnson, E.

Johnson, E. C.

Kim, I.

A. Giani, A. Thanos, M. I. Roh, E. Connolly, G. Trichonas, I. Kim, E. Gragoudas, D. Vavvas, and J. W. Miller, “In vivo evaluation of laser-induced choroidal neovascularization using spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(6), 3880–3887 (2011).
[CrossRef] [PubMed]

Kim, K. H.

K. H. Kim, M. Puoris’haag, G. N. Maguluri, Y. Umino, K. Cusato, R. B. Barlow, and J. F. de Boer, “Monitoring mouse retinal degeneration with high-resolution spectral-domain optical coherence tomography,” J. Vis.8(1), 17, 1–11 (2008).
[CrossRef] [PubMed]

Kim, M. K.

H. Cheng, G. Nair, T. A. Walker, M. K. Kim, M. T. Pardue, P. M. Thulé, D. E. Olson, and T. Q. Duong, “Structural and functional MRI reveals multiple retinal layers,” Proc. Natl. Acad. Sci. U.S.A.103(46), 17525–17530 (2006).
[CrossRef] [PubMed]

Knight, J.

Ko, T. H.

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.47(12), 5522–5528 (2006).
[CrossRef] [PubMed]

Kraus, M. F.

M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express3(6), 1182–1199 (2012).
[CrossRef] [PubMed]

B. Baumann, B. Potsaid, M. F. Kraus, J. J. Liu, D. Huang, J. Hornegger, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT,” Biomed. Opt. Express2(6), 1539–1552 (2011).
[CrossRef] [PubMed]

Legargasson, J. F.

M. Paques, J. L. Guyomard, M. Simonutti, M. J. Roux, S. Picaud, J. F. Legargasson, and J. A. Sahel, “Panretinal, high-resolution color photography of the mouse fundus,” Invest. Ophthalmol. Vis. Sci.48(6), 2769–2774 (2007).
[CrossRef] [PubMed]

Leitgeb, R.

Lem, J.

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.47(12), 5522–5528 (2006).
[CrossRef] [PubMed]

Levavasseur, E.

M. Paques, M. Simonutti, M. J. Roux, S. Picaud, E. Levavasseur, C. Bellman, and J. A. Sahel, “High resolution fundus imaging by confocal scanning laser ophthalmoscopy in the mouse,” Vision Res.46(8-9), 1336–1345 (2006).
[CrossRef] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Liu, J. J.

W. Choi, B. Baumann, J. J. Liu, A. C. Clermont, E. P. Feener, J. S. Duker, and J. G. Fujimoto, “Measurement of pulsatile total blood flow in the human and rat retina with ultrahigh speed spectral/Fourier domain OCT,” Biomed. Opt. Express3(5), 1047–1061 (2012).
[CrossRef] [PubMed]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express3(11), 2733–2751 (2012).
[CrossRef] [PubMed]

M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express3(6), 1182–1199 (2012).
[CrossRef] [PubMed]

B. Baumann, B. Potsaid, M. F. Kraus, J. J. Liu, D. Huang, J. Hornegger, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT,” Biomed. Opt. Express2(6), 1539–1552 (2011).
[CrossRef] [PubMed]

Lu, C. D.

Luhmann, U. F.

M. W. Seeliger, S. C. Beck, N. Pereyra-Muñoz, S. Dangel, J. Y. Tsai, U. F. Luhmann, S. A. van de Pavert, J. Wijnholds, M. Samardzija, A. Wenzel, E. Zrenner, K. Narfström, E. Fahl, N. Tanimoto, N. Acar, and F. Tonagel, “In vivo confocal imaging of the retina in animal models using scanning laser ophthalmoscopy,” Vision Res.45(28), 3512–3519 (2005).
[CrossRef] [PubMed]

Maguluri, G. N.

K. H. Kim, M. Puoris’haag, G. N. Maguluri, Y. Umino, K. Cusato, R. B. Barlow, and J. F. de Boer, “Monitoring mouse retinal degeneration with high-resolution spectral-domain optical coherence tomography,” J. Vis.8(1), 17, 1–11 (2008).
[CrossRef] [PubMed]

Makita, S.

Mayer, M. A.

M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express3(6), 1182–1199 (2012).
[CrossRef] [PubMed]

Mei, M.

Miller, J. W.

A. Giani, A. Thanos, M. I. Roh, E. Connolly, G. Trichonas, I. Kim, E. Gragoudas, D. Vavvas, and J. W. Miller, “In vivo evaluation of laser-induced choroidal neovascularization using spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(6), 3880–3887 (2011).
[CrossRef] [PubMed]

Moayed, A. A.

Morrison, J.

Morrison, J. C.

Nair, G.

H. Cheng, G. Nair, T. A. Walker, M. K. Kim, M. T. Pardue, P. M. Thulé, D. E. Olson, and T. Q. Duong, “Structural and functional MRI reveals multiple retinal layers,” Proc. Natl. Acad. Sci. U.S.A.103(46), 17525–17530 (2006).
[CrossRef] [PubMed]

Narfström, K.

M. W. Seeliger, S. C. Beck, N. Pereyra-Muñoz, S. Dangel, J. Y. Tsai, U. F. Luhmann, S. A. van de Pavert, J. Wijnholds, M. Samardzija, A. Wenzel, E. Zrenner, K. Narfström, E. Fahl, N. Tanimoto, N. Acar, and F. Tonagel, “In vivo confocal imaging of the retina in animal models using scanning laser ophthalmoscopy,” Vision Res.45(28), 3512–3519 (2005).
[CrossRef] [PubMed]

Nassif, N.

B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express11(25), 3490–3497 (2003).
[CrossRef] [PubMed]

Nissirios, N.

N. Nissirios, J. Ramos-Esteban, and J. Danias, “Ultrasound biomicroscopy of the rat eye: effects of cholinergic and anticholinergic agents,” Graefes Arch. Clin. Exp. Ophthalmol.243(5), 469–473 (2005).
[CrossRef] [PubMed]

Olson, D. E.

H. Cheng, G. Nair, T. A. Walker, M. K. Kim, M. T. Pardue, P. M. Thulé, D. E. Olson, and T. Q. Duong, “Structural and functional MRI reveals multiple retinal layers,” Proc. Natl. Acad. Sci. U.S.A.103(46), 17525–17530 (2006).
[CrossRef] [PubMed]

Paques, M.

M. Paques, J. L. Guyomard, M. Simonutti, M. J. Roux, S. Picaud, J. F. Legargasson, and J. A. Sahel, “Panretinal, high-resolution color photography of the mouse fundus,” Invest. Ophthalmol. Vis. Sci.48(6), 2769–2774 (2007).
[CrossRef] [PubMed]

M. Paques, M. Simonutti, M. J. Roux, S. Picaud, E. Levavasseur, C. Bellman, and J. A. Sahel, “High resolution fundus imaging by confocal scanning laser ophthalmoscopy in the mouse,” Vision Res.46(8-9), 1336–1345 (2006).
[CrossRef] [PubMed]

Paquet-Durand, F.

G. Huber, S. C. Beck, C. Grimm, A. Sahaboglu-Tekgoz, F. Paquet-Durand, A. Wenzel, P. Humphries, T. M. Redmond, M. W. Seeliger, and M. D. Fischer, “Spectral domain optical coherence tomography in mouse models of retinal degeneration,” Invest. Ophthalmol. Vis. Sci.50(12), 5888–5895 (2009).
[CrossRef] [PubMed]

Pardue, M. T.

H. Cheng, G. Nair, T. A. Walker, M. K. Kim, M. T. Pardue, P. M. Thulé, D. E. Olson, and T. Q. Duong, “Structural and functional MRI reveals multiple retinal layers,” Proc. Natl. Acad. Sci. U.S.A.103(46), 17525–17530 (2006).
[CrossRef] [PubMed]

Park, B.

B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express11(25), 3490–3497 (2003).
[CrossRef] [PubMed]

Patel, N. B.

S. D. Hanlon, N. B. Patel, and A. R. Burns, “Assessment of postnatal corneal development in the C57BL/6 mouse using spectral domain optical coherence tomography and microwave-assisted histology,” Exp. Eye Res.93(4), 363–370 (2011).
[CrossRef] [PubMed]

Pereyra-Muñoz, N.

M. W. Seeliger, S. C. Beck, N. Pereyra-Muñoz, S. Dangel, J. Y. Tsai, U. F. Luhmann, S. A. van de Pavert, J. Wijnholds, M. Samardzija, A. Wenzel, E. Zrenner, K. Narfström, E. Fahl, N. Tanimoto, N. Acar, and F. Tonagel, “In vivo confocal imaging of the retina in animal models using scanning laser ophthalmoscopy,” Vision Res.45(28), 3512–3519 (2005).
[CrossRef] [PubMed]

Picaud, S.

M. Paques, J. L. Guyomard, M. Simonutti, M. J. Roux, S. Picaud, J. F. Legargasson, and J. A. Sahel, “Panretinal, high-resolution color photography of the mouse fundus,” Invest. Ophthalmol. Vis. Sci.48(6), 2769–2774 (2007).
[CrossRef] [PubMed]

M. Paques, M. Simonutti, M. J. Roux, S. Picaud, E. Levavasseur, C. Bellman, and J. A. Sahel, “High resolution fundus imaging by confocal scanning laser ophthalmoscopy in the mouse,” Vision Res.46(8-9), 1336–1345 (2006).
[CrossRef] [PubMed]

Pierce, M.

B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express11(25), 3490–3497 (2003).
[CrossRef] [PubMed]

Potsaid, B.

Povazay, B.

Puliafito, C. A.

M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.48(4), 1808–1814 (2007).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Puoris’haag, M.

K. H. Kim, M. Puoris’haag, G. N. Maguluri, Y. Umino, K. Cusato, R. B. Barlow, and J. F. de Boer, “Monitoring mouse retinal degeneration with high-resolution spectral-domain optical coherence tomography,” J. Vis.8(1), 17, 1–11 (2008).
[CrossRef] [PubMed]

Ramos-Esteban, J.

N. Nissirios, J. Ramos-Esteban, and J. Danias, “Ultrasound biomicroscopy of the rat eye: effects of cholinergic and anticholinergic agents,” Graefes Arch. Clin. Exp. Ophthalmol.243(5), 469–473 (2005).
[CrossRef] [PubMed]

Redmond, T. M.

G. Huber, S. C. Beck, C. Grimm, A. Sahaboglu-Tekgoz, F. Paquet-Durand, A. Wenzel, P. Humphries, T. M. Redmond, M. W. Seeliger, and M. D. Fischer, “Spectral domain optical coherence tomography in mouse models of retinal degeneration,” Invest. Ophthalmol. Vis. Sci.50(12), 5888–5895 (2009).
[CrossRef] [PubMed]

Roh, M. I.

A. Giani, A. Thanos, M. I. Roh, E. Connolly, G. Trichonas, I. Kim, E. Gragoudas, D. Vavvas, and J. W. Miller, “In vivo evaluation of laser-induced choroidal neovascularization using spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(6), 3880–3887 (2011).
[CrossRef] [PubMed]

Roux, M. J.

M. Paques, J. L. Guyomard, M. Simonutti, M. J. Roux, S. Picaud, J. F. Legargasson, and J. A. Sahel, “Panretinal, high-resolution color photography of the mouse fundus,” Invest. Ophthalmol. Vis. Sci.48(6), 2769–2774 (2007).
[CrossRef] [PubMed]

M. Paques, M. Simonutti, M. J. Roux, S. Picaud, E. Levavasseur, C. Bellman, and J. A. Sahel, “High resolution fundus imaging by confocal scanning laser ophthalmoscopy in the mouse,” Vision Res.46(8-9), 1336–1345 (2006).
[CrossRef] [PubMed]

Ruggeri, M.

M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.48(4), 1808–1814 (2007).
[CrossRef] [PubMed]

Russell, P. S.

Sahaboglu-Tekgoz, A.

G. Huber, S. C. Beck, C. Grimm, A. Sahaboglu-Tekgoz, F. Paquet-Durand, A. Wenzel, P. Humphries, T. M. Redmond, M. W. Seeliger, and M. D. Fischer, “Spectral domain optical coherence tomography in mouse models of retinal degeneration,” Invest. Ophthalmol. Vis. Sci.50(12), 5888–5895 (2009).
[CrossRef] [PubMed]

Sahel, J. A.

M. Paques, J. L. Guyomard, M. Simonutti, M. J. Roux, S. Picaud, J. F. Legargasson, and J. A. Sahel, “Panretinal, high-resolution color photography of the mouse fundus,” Invest. Ophthalmol. Vis. Sci.48(6), 2769–2774 (2007).
[CrossRef] [PubMed]

M. Paques, M. Simonutti, M. J. Roux, S. Picaud, E. Levavasseur, C. Bellman, and J. A. Sahel, “High resolution fundus imaging by confocal scanning laser ophthalmoscopy in the mouse,” Vision Res.46(8-9), 1336–1345 (2006).
[CrossRef] [PubMed]

Samardzija, M.

M. W. Seeliger, S. C. Beck, N. Pereyra-Muñoz, S. Dangel, J. Y. Tsai, U. F. Luhmann, S. A. van de Pavert, J. Wijnholds, M. Samardzija, A. Wenzel, E. Zrenner, K. Narfström, E. Fahl, N. Tanimoto, N. Acar, and F. Tonagel, “In vivo confocal imaging of the retina in animal models using scanning laser ophthalmoscopy,” Vision Res.45(28), 3512–3519 (2005).
[CrossRef] [PubMed]

Sattmann, H.

Schmetterer, L.

Schubert, C.

Schuman, J. S.

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.47(12), 5522–5528 (2006).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Seeliger, M. W.

G. Huber, S. C. Beck, C. Grimm, A. Sahaboglu-Tekgoz, F. Paquet-Durand, A. Wenzel, P. Humphries, T. M. Redmond, M. W. Seeliger, and M. D. Fischer, “Spectral domain optical coherence tomography in mouse models of retinal degeneration,” Invest. Ophthalmol. Vis. Sci.50(12), 5888–5895 (2009).
[CrossRef] [PubMed]

M. W. Seeliger, S. C. Beck, N. Pereyra-Muñoz, S. Dangel, J. Y. Tsai, U. F. Luhmann, S. A. van de Pavert, J. Wijnholds, M. Samardzija, A. Wenzel, E. Zrenner, K. Narfström, E. Fahl, N. Tanimoto, N. Acar, and F. Tonagel, “In vivo confocal imaging of the retina in animal models using scanning laser ophthalmoscopy,” Vision Res.45(28), 3512–3519 (2005).
[CrossRef] [PubMed]

Shalev, M.

L. Calderone, P. Grimes, and M. Shalev, “Acute reversible cataract induced by xylazine and by ketamine-xylazine anesthesia in rats and mice,” Exp. Eye Res.42(4), 331–337 (1986).
[CrossRef] [PubMed]

Shen, T.

Simonutti, M.

M. Paques, J. L. Guyomard, M. Simonutti, M. J. Roux, S. Picaud, J. F. Legargasson, and J. A. Sahel, “Panretinal, high-resolution color photography of the mouse fundus,” Invest. Ophthalmol. Vis. Sci.48(6), 2769–2774 (2007).
[CrossRef] [PubMed]

M. Paques, M. Simonutti, M. J. Roux, S. Picaud, E. Levavasseur, C. Bellman, and J. A. Sahel, “High resolution fundus imaging by confocal scanning laser ophthalmoscopy in the mouse,” Vision Res.46(8-9), 1336–1345 (2006).
[CrossRef] [PubMed]

Smith, R. S.

N. L. Hawes, R. S. Smith, B. Chang, M. Davisson, J. R. Heckenlively, and S. W. John, “Mouse fundus photography and angiography: a catalogue of normal and mutant phenotypes,” Mol. Vis.5, 22 (1999).
[PubMed]

Song, Q. H.

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.47(12), 5522–5528 (2006).
[CrossRef] [PubMed]

Srinivasan, V. J.

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.47(12), 5522–5528 (2006).
[CrossRef] [PubMed]

V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, “In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography,” Opt. Lett.31(15), 2308–2310 (2006).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Tanimoto, N.

M. W. Seeliger, S. C. Beck, N. Pereyra-Muñoz, S. Dangel, J. Y. Tsai, U. F. Luhmann, S. A. van de Pavert, J. Wijnholds, M. Samardzija, A. Wenzel, E. Zrenner, K. Narfström, E. Fahl, N. Tanimoto, N. Acar, and F. Tonagel, “In vivo confocal imaging of the retina in animal models using scanning laser ophthalmoscopy,” Vision Res.45(28), 3512–3519 (2005).
[CrossRef] [PubMed]

Tearney, G.

B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express11(25), 3490–3497 (2003).
[CrossRef] [PubMed]

Thanos, A.

A. Giani, A. Thanos, M. I. Roh, E. Connolly, G. Trichonas, I. Kim, E. Gragoudas, D. Vavvas, and J. W. Miller, “In vivo evaluation of laser-induced choroidal neovascularization using spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(6), 3880–3887 (2011).
[CrossRef] [PubMed]

Thulé, P. M.

H. Cheng, G. Nair, T. A. Walker, M. K. Kim, M. T. Pardue, P. M. Thulé, D. E. Olson, and T. Q. Duong, “Structural and functional MRI reveals multiple retinal layers,” Proc. Natl. Acad. Sci. U.S.A.103(46), 17525–17530 (2006).
[CrossRef] [PubMed]

Tonagel, F.

M. W. Seeliger, S. C. Beck, N. Pereyra-Muñoz, S. Dangel, J. Y. Tsai, U. F. Luhmann, S. A. van de Pavert, J. Wijnholds, M. Samardzija, A. Wenzel, E. Zrenner, K. Narfström, E. Fahl, N. Tanimoto, N. Acar, and F. Tonagel, “In vivo confocal imaging of the retina in animal models using scanning laser ophthalmoscopy,” Vision Res.45(28), 3512–3519 (2005).
[CrossRef] [PubMed]

Trichonas, G.

A. Giani, A. Thanos, M. I. Roh, E. Connolly, G. Trichonas, I. Kim, E. Gragoudas, D. Vavvas, and J. W. Miller, “In vivo evaluation of laser-induced choroidal neovascularization using spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(6), 3880–3887 (2011).
[CrossRef] [PubMed]

Tsai, J. Y.

M. W. Seeliger, S. C. Beck, N. Pereyra-Muñoz, S. Dangel, J. Y. Tsai, U. F. Luhmann, S. A. van de Pavert, J. Wijnholds, M. Samardzija, A. Wenzel, E. Zrenner, K. Narfström, E. Fahl, N. Tanimoto, N. Acar, and F. Tonagel, “In vivo confocal imaging of the retina in animal models using scanning laser ophthalmoscopy,” Vision Res.45(28), 3512–3519 (2005).
[CrossRef] [PubMed]

Umino, Y.

K. H. Kim, M. Puoris’haag, G. N. Maguluri, Y. Umino, K. Cusato, R. B. Barlow, and J. F. de Boer, “Monitoring mouse retinal degeneration with high-resolution spectral-domain optical coherence tomography,” J. Vis.8(1), 17, 1–11 (2008).
[CrossRef] [PubMed]

Unterhuber, A.

van de Pavert, S. A.

M. W. Seeliger, S. C. Beck, N. Pereyra-Muñoz, S. Dangel, J. Y. Tsai, U. F. Luhmann, S. A. van de Pavert, J. Wijnholds, M. Samardzija, A. Wenzel, E. Zrenner, K. Narfström, E. Fahl, N. Tanimoto, N. Acar, and F. Tonagel, “In vivo confocal imaging of the retina in animal models using scanning laser ophthalmoscopy,” Vision Res.45(28), 3512–3519 (2005).
[CrossRef] [PubMed]

Vavvas, D.

A. Giani, A. Thanos, M. I. Roh, E. Connolly, G. Trichonas, I. Kim, E. Gragoudas, D. Vavvas, and J. W. Miller, “In vivo evaluation of laser-induced choroidal neovascularization using spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(6), 3880–3887 (2011).
[CrossRef] [PubMed]

Wadsworth, W.

Walker, T. A.

H. Cheng, G. Nair, T. A. Walker, M. K. Kim, M. T. Pardue, P. M. Thulé, D. E. Olson, and T. Q. Duong, “Structural and functional MRI reveals multiple retinal layers,” Proc. Natl. Acad. Sci. U.S.A.103(46), 17525–17530 (2006).
[CrossRef] [PubMed]

Wang, L.

L. Wang, B. Hofer, Y. P. Chen, J. A. Guggenheim, W. Drexler, and B. Povazay, “Highly reproducible swept-source, dispersion-encoded full-range biometry and imaging of the mouse eye,” J. Biomed. Opt.15(4), 046004 (2010).
[CrossRef] [PubMed]

Wang, R. K.

Wehbe, H.

M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.48(4), 1808–1814 (2007).
[CrossRef] [PubMed]

Wenzel, A.

G. Huber, S. C. Beck, C. Grimm, A. Sahaboglu-Tekgoz, F. Paquet-Durand, A. Wenzel, P. Humphries, T. M. Redmond, M. W. Seeliger, and M. D. Fischer, “Spectral domain optical coherence tomography in mouse models of retinal degeneration,” Invest. Ophthalmol. Vis. Sci.50(12), 5888–5895 (2009).
[CrossRef] [PubMed]

M. W. Seeliger, S. C. Beck, N. Pereyra-Muñoz, S. Dangel, J. Y. Tsai, U. F. Luhmann, S. A. van de Pavert, J. Wijnholds, M. Samardzija, A. Wenzel, E. Zrenner, K. Narfström, E. Fahl, N. Tanimoto, N. Acar, and F. Tonagel, “In vivo confocal imaging of the retina in animal models using scanning laser ophthalmoscopy,” Vision Res.45(28), 3512–3519 (2005).
[CrossRef] [PubMed]

White, B.

B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express11(25), 3490–3497 (2003).
[CrossRef] [PubMed]

Wietecha, T.

Z. Zhi, X. Yin, S. Dziennis, T. Wietecha, K. L. Hudkins, C. E. Alpers, and R. K. Wang, “Optical microangiography of retina and choroid and measurement of total retinal blood flow in mice,” Biomed. Opt. Express3(11), 2976–2986 (2012).
[CrossRef] [PubMed]

Wijnholds, J.

M. W. Seeliger, S. C. Beck, N. Pereyra-Muñoz, S. Dangel, J. Y. Tsai, U. F. Luhmann, S. A. van de Pavert, J. Wijnholds, M. Samardzija, A. Wenzel, E. Zrenner, K. Narfström, E. Fahl, N. Tanimoto, N. Acar, and F. Tonagel, “In vivo confocal imaging of the retina in animal models using scanning laser ophthalmoscopy,” Vision Res.45(28), 3512–3519 (2005).
[CrossRef] [PubMed]

Wojtkowski, M.

V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, “In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography,” Opt. Lett.31(15), 2308–2310 (2006).
[CrossRef] [PubMed]

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.47(12), 5522–5528 (2006).
[CrossRef] [PubMed]

Yamanari, M.

Yasuno, Y.

Yatagai, T.

Yin, X.

Z. Zhi, X. Yin, S. Dziennis, T. Wietecha, K. L. Hudkins, C. E. Alpers, and R. K. Wang, “Optical microangiography of retina and choroid and measurement of total retinal blood flow in mice,” Biomed. Opt. Express3(11), 2976–2986 (2012).
[CrossRef] [PubMed]

Zawadzki, R.

Zhi, Z.

Zrenner, E.

M. W. Seeliger, S. C. Beck, N. Pereyra-Muñoz, S. Dangel, J. Y. Tsai, U. F. Luhmann, S. A. van de Pavert, J. Wijnholds, M. Samardzija, A. Wenzel, E. Zrenner, K. Narfström, E. Fahl, N. Tanimoto, N. Acar, and F. Tonagel, “In vivo confocal imaging of the retina in animal models using scanning laser ophthalmoscopy,” Vision Res.45(28), 3512–3519 (2005).
[CrossRef] [PubMed]

Biomed. Opt. Express (1)

W. Choi, B. Baumann, J. J. Liu, A. C. Clermont, E. P. Feener, J. S. Duker, and J. G. Fujimoto, “Measurement of pulsatile total blood flow in the human and rat retina with ultrahigh speed spectral/Fourier domain OCT,” Biomed. Opt. Express3(5), 1047–1061 (2012).
[CrossRef] [PubMed]

Biomed. Opt. Express (2)

Z. Zhi, X. Yin, S. Dziennis, T. Wietecha, K. L. Hudkins, C. E. Alpers, and R. K. Wang, “Optical microangiography of retina and choroid and measurement of total retinal blood flow in mice,” Biomed. Opt. Express3(11), 2976–2986 (2012).
[CrossRef] [PubMed]

M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express3(6), 1182–1199 (2012).
[CrossRef] [PubMed]

Biomed. Opt. Express (4)

Exp. Eye Res. (1)

L. Calderone, P. Grimes, and M. Shalev, “Acute reversible cataract induced by xylazine and by ketamine-xylazine anesthesia in rats and mice,” Exp. Eye Res.42(4), 331–337 (1986).
[CrossRef] [PubMed]

Exp. Eye Res. (1)

S. D. Hanlon, N. B. Patel, and A. R. Burns, “Assessment of postnatal corneal development in the C57BL/6 mouse using spectral domain optical coherence tomography and microwave-assisted histology,” Exp. Eye Res.93(4), 363–370 (2011).
[CrossRef] [PubMed]

Graefes Arch. Clin. Exp. Ophthalmol. (1)

N. Nissirios, J. Ramos-Esteban, and J. Danias, “Ultrasound biomicroscopy of the rat eye: effects of cholinergic and anticholinergic agents,” Graefes Arch. Clin. Exp. Ophthalmol.243(5), 469–473 (2005).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.48(4), 1808–1814 (2007).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (4)

V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.47(12), 5522–5528 (2006).
[CrossRef] [PubMed]

G. Huber, S. C. Beck, C. Grimm, A. Sahaboglu-Tekgoz, F. Paquet-Durand, A. Wenzel, P. Humphries, T. M. Redmond, M. W. Seeliger, and M. D. Fischer, “Spectral domain optical coherence tomography in mouse models of retinal degeneration,” Invest. Ophthalmol. Vis. Sci.50(12), 5888–5895 (2009).
[CrossRef] [PubMed]

A. Giani, A. Thanos, M. I. Roh, E. Connolly, G. Trichonas, I. Kim, E. Gragoudas, D. Vavvas, and J. W. Miller, “In vivo evaluation of laser-induced choroidal neovascularization using spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(6), 3880–3887 (2011).
[CrossRef] [PubMed]

M. Paques, J. L. Guyomard, M. Simonutti, M. J. Roux, S. Picaud, J. F. Legargasson, and J. A. Sahel, “Panretinal, high-resolution color photography of the mouse fundus,” Invest. Ophthalmol. Vis. Sci.48(6), 2769–2774 (2007).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

L. Wang, B. Hofer, Y. P. Chen, J. A. Guggenheim, W. Drexler, and B. Povazay, “Highly reproducible swept-source, dispersion-encoded full-range biometry and imaging of the mouse eye,” J. Biomed. Opt.15(4), 046004 (2010).
[CrossRef] [PubMed]

J. Vis. (1)

K. H. Kim, M. Puoris’haag, G. N. Maguluri, Y. Umino, K. Cusato, R. B. Barlow, and J. F. de Boer, “Monitoring mouse retinal degeneration with high-resolution spectral-domain optical coherence tomography,” J. Vis.8(1), 17, 1–11 (2008).
[CrossRef] [PubMed]

Mol. Vis. (1)

N. L. Hawes, R. S. Smith, B. Chang, M. Davisson, J. R. Heckenlively, and S. W. John, “Mouse fundus photography and angiography: a catalogue of normal and mutant phenotypes,” Mol. Vis.5, 22 (1999).
[PubMed]

Opt. Express (1)

B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express11(25), 3490–3497 (2003).
[CrossRef] [PubMed]

Opt. Lett. (1)

V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, “In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography,” Opt. Lett.31(15), 2308–2310 (2006).
[CrossRef] [PubMed]

Opt. Express (6)

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express14(17), 7821–7840 (2006).
[CrossRef] [PubMed]

B. Povazay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. Fercher, W. Drexler, C. Schubert, P. Ahnelt, M. Mei, R. Holzwarth, W. Wadsworth, J. Knight, and P. S. Russell, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,” Opt. Express11(17), 1980–1986 (2003).
[CrossRef] [PubMed]

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid,” Opt. Express13(9), 3252–3258 (2005).
[CrossRef] [PubMed]

R. Leitgeb, L. Schmetterer, W. Drexler, A. Fercher, R. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express11(23), 3116–3121 (2003).
[CrossRef] [PubMed]

S. Hariri, A. A. Moayed, A. Dracopolos, C. Hyun, S. Boyd, and K. Bizheva, “Limiting factors to the OCT axial resolution for in-vivo imaging of human and rodent retina in the 1060 nm wavelength range,” Opt. Express17(26), 24304–24316 (2009).
[CrossRef] [PubMed]

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

H. Cheng, G. Nair, T. A. Walker, M. K. Kim, M. T. Pardue, P. M. Thulé, D. E. Olson, and T. Q. Duong, “Structural and functional MRI reveals multiple retinal layers,” Proc. Natl. Acad. Sci. U.S.A.103(46), 17525–17530 (2006).
[CrossRef] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Vision Res. (2)

M. Paques, M. Simonutti, M. J. Roux, S. Picaud, E. Levavasseur, C. Bellman, and J. A. Sahel, “High resolution fundus imaging by confocal scanning laser ophthalmoscopy in the mouse,” Vision Res.46(8-9), 1336–1345 (2006).
[CrossRef] [PubMed]

M. W. Seeliger, S. C. Beck, N. Pereyra-Muñoz, S. Dangel, J. Y. Tsai, U. F. Luhmann, S. A. van de Pavert, J. Wijnholds, M. Samardzija, A. Wenzel, E. Zrenner, K. Narfström, E. Fahl, N. Tanimoto, N. Acar, and F. Tonagel, “In vivo confocal imaging of the retina in animal models using scanning laser ophthalmoscopy,” Vision Res.45(28), 3512–3519 (2005).
[CrossRef] [PubMed]

Other (2)

R. S. Smith, Systematic Evaluation of the Mouse Eye: Anatomy, Pathology, and Biomethods (CRC Press, Boca Raton, Fla., 2002).

P. A. Tsonis, Animal Models in Eye Research (Academic, 2008).

Supplementary Material (6)

» Media 1: AVI (3029 KB)     
» Media 2: MPG (3056 KB)     
» Media 3: AVI (1364 KB)     
» Media 4: AVI (1334 KB)     
» Media 5: AVI (1485 KB)     
» Media 6: AVI (1489 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(A) Schematic of ultrahigh speed swept source/Fourier domain OCT instrument. GS – galvanometric scanners, RR – retroreflector, LS – LED light stimulus, DBP – dual balanced photodetector, A/D – analog-to-digital converter, TRG – trigger signal. (B) Spectrum of the light source. (C) Point spread function showing axial resolution. (D) Sensitivity roll-off.

Fig. 2
Fig. 2

Imaging of the unpigmented Sprague-Dawley rat retina. Registered and merged OCT data set generated from 6 orthogonally scanned OCT data sets. (700 × 700 axial scans over a 2.4 mm × 2.4 mm region) (A) OCT fundus view. (B) Retinal layers visualized in the cropped, enlarged OCT image. (C) 3-D rendering. (D, E, F) OCT images in the X direction. (G, H, I) OCT images in the Y direction.

Fig. 3
Fig. 3

Imaging of the pigmented C57BL/6 mouse retina. Registered and merged data set generated from 6 orthogonally scanned OCT data sets. (700 × 700 axial scans over a 1.2 mm × 1.2 mm region) (A) OCT fundus view. (B) Retinal layers shown in the cropped, enlarged OCT image (C) 3-D rendering. (D, E. F) OCT images in the X direction. (G, H, I) OCT images in the Y direction.

Fig. 4
Fig. 4

Anterior eye and full eye length OCT imaging in the Sprague-Dawley rat and C57BL/6 mouse eye. (A, E) En face view of the volumetric data set registered and merged from two orthogonally scanned 500 × 500 axial scan volumes. The rat eye was scanned over a 7 mm × 7 mm area. The mouse eye was scanned over a 2.6 mm × 2.6 mm area. (B, C, F, G) Cross-sectional images in the horizontal and vertical direction generated from averaging neighboring 5 frames. The red arrows point to the rat lens nucleus. The green box is a region in the image where the contrast was adjusted to better visualize signal from the rat retina. (D) Extracted en face cross section at the red line position showing the Y-shaped suture pattern in the rat lens anterior. (H) Summed en face view over the rat lens posterior as indicated in the red dotted box, which shows the pattern of opacities in the mouse lens.

Fig. 5
Fig. 5

Posterior eye imaging of the unpigmented Sprague-Dawley rat including retina, vitreous, and posterior lens. (A) OCT en face view of the registered and merged data set from six orthogonally scanned 500 × 500 axial scan volumes. Imaging of the rat posterior eye was performed over a 2.6 mm × 2.6 mm area. (B) En face cross section showing inverted Y-shaped posterior lens sutures. (C, D) Cross-sections from the registered data set showing the retina, hyaloid vessel and posterior part of the crystalline lens. The red line indicates the depth position of the en face cross section. (E) 3-D rendering of the data set (Media 1).

Fig. 6
Fig. 6

Doppler OCT imaging in a unpigmented Sprague-Dawley rat retina. Doppler OCT analysis was performed using posterior eye OCT data (6 orthogonally scanned 500 × 500 axial scan OCT data sets over a 2.6 mm × 2.6 mm region). The 6 Doppler OCT volumes were merged using the displacement fields from registered structural OCT data. (A) OCT fundus image. (B, C, D) OCT color Doppler images with blood flow information overlaid on structural images. (E) 3-D Doppler OCT angiography (Media 2).

Fig. 7
Fig. 7

Dynamic response of the Sprague-Dawley rat eye to long (Media 3) and short duration (Media 4) light stimulus. Volumetric imaging was performed at ~10 volumes per second. Each volume consists of 100 × 100 axial scans over a 7 mm × 7 mm area. Changes of the pupil area before, during, and after light stimulus are shown in plot. (A, B, C) (D, E, F) Selected time points illustrate the structural changes in the eye over time. An OCT en face view, central orthogonal cross-sections, as well as a 3-D rendering are shown for each time point.

Fig. 8
Fig. 8

Dynamic response of the C57BL/6 mouse eye to long (Media 5) and short duration (Media 6) light stimulus. Volumetric imaging was performed at ~10 volumes per second. Each volume consists of 100 × 100 axial scans over a 3.5 mm × 3.5 mm area. Changes of the pupil area before, during, and after light stimulus are shown in plot. (A, B, C) (D, E, F) Selected time points illustrate the structural changes in the eye over time. An OCT en face view, central orthogonal cross-sections, as well as a 3-D rendering are shown for each time point.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

v z ( z ) = λ 0 4 π n f [ φ i + 1 ( z ) φ i ( z ) ] ,

Metrics