Abstract

A combined time-domain fluorescence and hemoglobin diffuse optical tomography (DOT) system and the image reconstruction methods are proposed for enhancing the reliability of breast-dedicated optical measurement. The system equipped with two pulsed laser diodes at wavelengths of 780 nm and 830 nm that are specific to the peak excitation and emission of the FDA-approved ICG agent, and works with a 4-channel time-correlated single photon counting device to acquire the time-resolved distributions of the light re-emissions at 32 boundary sites of tissues in a tandem serial-to-parallel mode. The simultaneous reconstruction of the two optical (absorption and scattering) and two fluorescent (yield and lifetime) properties are achieved with the respective featured-data algorithms based on the generalized pulse spectrum technique. The performances of the methodology are experimentally assessed on breast-mimicking phantoms for hemoglobin- and fluorescence-DOT alone, as well as for fluorescence-guided hemoglobin-DOT. The results demonstrate the efficacy of improving the accuracy of hemoglobin-DOT based on a priori fluorescence localization.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73(7), 076701 (2010).
    [CrossRef]
  2. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol.50(4), R1–R43 (2005).
    [CrossRef] [PubMed]
  3. D. R. Leff, O. J. Warren, L. C. Enfield, A. P. Gibson, T. Athanasiou, D. K. Patten, J. C. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat.108(1), 9–22 (2008).
    [CrossRef] [PubMed]
  4. B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys.35(6), 2443–2451 (2008).
    [CrossRef] [PubMed]
  5. S. G. Demos, A. J. Vogel, and A. H. Gandjbakhche, “Advances in optical spectroscopy and imaging of breast lesions,” J. Mammary Gland Biol. Neoplasia11(2), 165–181 (2006).
    [CrossRef] [PubMed]
  6. X. Intes, “Time-domain optical mammography SoftScan: initial results,” Acad. Radiol.12(8), 934–947 (2005).
    [CrossRef] [PubMed]
  7. S. Fantini and A. Sassaroli, “Near-infrared optical mammography for breast cancer detection with intrinsic contrast,” Ann. Biomed. Eng.40(2), 398–407 (2012).
    [CrossRef] [PubMed]
  8. S. M. W. Y. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, T. Nielsen, B. Brendel, C. Bontus, F. Uhlemann, R. Nachabe, R. Harbers, M. van Beek, L. Bakker, M. B. van der Mark, P. Luijten, and W. P. Mali, “Diffuse optical tomography of the breast: preliminary findings of a new prototype and comparison with magnetic resonance imaging,” Eur. Radiol.19(5), 1108–1113 (2009).
    [CrossRef] [PubMed]
  9. G. Gulsen, B. Xiong, O. Birgul, and O. Nalcioglu, “Design and implementation of a multifrequency near-infrared diffuse optical tomography system,” J. Biomed. Opt.11(1), 014020 (2006).
    [CrossRef] [PubMed]
  10. L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography,” J. Biomed. Opt.9(6), 1137–1142 (2004).
    [CrossRef] [PubMed]
  11. H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, and L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging20(12), 1334–1340 (2001).
    [CrossRef] [PubMed]
  12. L. C. Enfield, A. P. Gibson, N. L. Everdell, D. T. Delpy, M. Schweiger, S. R. Arridge, C. Richardson, M. Keshtgar, M. Douek, and J. C. Hebden, “Three-dimensional time-resolved optical mammography of the uncompressed breast,” Appl. Opt.46(17), 3628–3638 (2007).
    [CrossRef] [PubMed]
  13. B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol.12(8), 925–933 (2005).
    [CrossRef] [PubMed]
  14. S. Srinivasan, B. W. Pogue, C. Carpenter, S. Jiang, W. A. Wells, S. P. Poplack, P. A. Kaufman, and K. D. Paulsen, “Developments in quantitative oxygen-saturation imaging of breast tissue in vivo using multispectral near-infrared tomography,” Antioxid. Redox Signal.9(8), 1143–1156 (2007).
    [CrossRef] [PubMed]
  15. D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas,” Phys. Med. Biol.50(11), 2451–2468 (2005).
    [CrossRef] [PubMed]
  16. C. Li, S. R. Grobmyer, N. Massol, X. Liang, Q. Zhang, L. Chen, L. L. Fajardo, and H. B. Jiang, “Noninvasive in vivo tomographic optical imaging of cellular morphology in the breast: possible convergence of microscopic pathology and macroscopic radiology,” Med. Phys.35(6), 2493–2501 (2008).
    [CrossRef] [PubMed]
  17. V. Ntziachristos, A. G. Yodh, M. D. Schnall, and B. Chance, “MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia4(4), 347–354 (2002a).
    [CrossRef] [PubMed]
  18. C. M. Carpenter, S. Srinivasan, B. W. Pogue, and K. D. Paulsen, “Methodology development for three-dimensional MR-guided near infrared spectroscopy of breast tumors,” Opt. Express16(22), 17903–17914 (2008).
    [CrossRef] [PubMed]
  19. Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging28(1), 30–42 (2009).
    [CrossRef] [PubMed]
  20. Q. Zhu, S. H. Kurtzma, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia7(3), 263–270 (2005).
    [CrossRef] [PubMed]
  21. V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U.S.A.97(6), 2767–2772 (2000).
    [CrossRef] [PubMed]
  22. X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys.30(6), 1039–1047 (2003).
    [CrossRef] [PubMed]
  23. A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express15(11), 6696–6716 (2007).
    [CrossRef] [PubMed]
  24. S. M. W. Y. van de Ven, A. J. Wiethoff, T. Nielsen, B. Brendel, M. van der Voort, R. Nachabe, M. Van der Mark, M. Van Beek, L. Bakker, L. Fels, S. Elias, P. Luijten, and W. Mali, “A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients,” Mol. Imaging Biol.12(3), 343–348 (2010).
    [CrossRef] [PubMed]
  25. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol.23(3), 313–320 (2005).
    [CrossRef] [PubMed]
  26. E. Kuwana and E. M. Sevick-Muraca, “Fluorescence lifetime spectroscopy for pH sensing in scattering media,” Anal. Chem.75(16), 4325–4329 (2003).
    [CrossRef] [PubMed]
  27. A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera,” Phys. Med. Biol.48(12), 1701–1720 (2003).
    [CrossRef] [PubMed]
  28. A. Hagen, D. Grosenick, R. Macdonald, H. Rinneberg, S. Burock, P. Warnick, A. Poellinger, and P. M. Schlag, “Late-fluorescence mammography assesses tumor capillary permeability and differentiates malignant from benign lesions,” Opt. Express17(19), 17016–17033 (2009).
    [CrossRef] [PubMed]
  29. A. Leproux, M. van der Voort, M. B. van der Mark, R. Harbers, S. M. van de Ven, and T. G. van Leeuwen, “Optical mammography combined with fluorescence imaging: lesion detection using scatterplots,” Biomed. Opt. Express2(4), 1007–1020 (2011).
    [CrossRef] [PubMed]
  30. S. Achilefu, R. B. Dorshow, J. E. Bugaj, and R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,” Invest. Radiol.35(8), 479–485 (2000).
    [CrossRef] [PubMed]
  31. F. Gao, J. Li, L. M. Zhang, P. Poulet, H. J. Zhao, and Y. Yamada, “Simultaneous fluorescence yield and lifetime tomography from time-resolved transmittances of small-animal-sized phantom,” Appl. Opt.49(16), 3163–3172 (2010).
    [CrossRef] [PubMed]
  32. E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehgani, and D. T. Deply, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum.71(9), 3415–3427 (2000).
    [CrossRef]
  33. W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer-Verlag, Berlin, 2005).
  34. V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med.8(7), 757–761 (2002B).
    [CrossRef] [PubMed]
  35. F. Gao, H. J. Zhao, Y. Tanikawa, and Y. Yamada, “Time-resolved diffuse optical tomography using a modified generalized pulse spectrum technique,” IEICE Trans. Inf. Sys E85-D, 133–142 (2002).
  36. H. J. Zhao, F. Gao, Y. Tanikawa, and Y. Yamada, “Time-resolved diffuse optical tomography and its application to in vitro and in vivo imaging,” J. Biomed. Opt.12(6), 062107 (2007).
    [CrossRef] [PubMed]
  37. K. Furutsu and Y. Yamada, “Diffusion approximation for a dissipative random medium and the applications,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics50(5), 3634–3640 (1994).
    [CrossRef] [PubMed]
  38. F. Gao, H. J. Zhao, Y. Tanikawa, and Y. Yamada, “A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomography,” Opt. Express14(16), 7109–7124 (2006).
    [CrossRef] [PubMed]
  39. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl.15(2), R41–R93 (1999).
    [CrossRef]
  40. X. Intes, V. Ntziachristos, J. P. Culver, A. Yodh, and B. Chance, “Projection access order in algebraic reconstruction technique for diffuse optical tomography,” Phys. Med. Biol.47(1), N1–N10 (2002).
    [CrossRef] [PubMed]
  41. H. Dehghani, S. Srinivasan, B. W. Pogue, and A. P. Gibson, “Numerical modeling and imaging reconstruction in diffuse optical tomography,” Phil. Trans. R. Soc. A Math. Phys. Eng. Sci.367(1900), 3073–3093 (2009).
    [CrossRef]
  42. G. R. Walsh, Methods of Optimization (Wiley, New York, 1975).
  43. D. Qin, H. J. Zhao, Y. Tanikawa, and F. Gao, “Experimental determination of optical properties in turbid medium by TCSPC technique,” Proc. SPIE6434, 64342E, 64342E-10 (2007).
    [CrossRef]
  44. F. S. Azar and X. Intes, Translational Multimodality Optical Imaging (Artech House, Boston, 2008), Chap. 8.
  45. F. Gao, H. J. Zhao, Y. Tinikawa, K. Homma, and Y. Yamada, “Influences of target size and contrast on near infrared diffuse optical tomography—a comparison between featured-data and full time-resolved scheme,” Opt. Quantum Electron.37(13-15), 1287–1304 (2005).
    [CrossRef]
  46. D. D. Nolting, J. C. Gore, and W. Pham, “Near-infrared dyes: probe development and applications in optical molecular imaging,” Curr Org Synth8(4), 521–534 (2011).
    [CrossRef] [PubMed]
  47. M. E. Kilmer, E. L. Miller, A. Barbaro, and D. A. Boas, “Three-dimensional shape-based imaging of absorption perturbation for diffuse optical tomography,” Appl. Opt.42(16), 3129–3144 (2003).
    [CrossRef] [PubMed]
  48. M. Zacharopoulos, M. Schweiger, V. Kolehmainen, and S. Arridge, “3D shape based reconstruction of experimental data in diffuse optical tomography,” Opt. Express17(21), 18940–18956 (2009).
    [CrossRef]

2012 (1)

S. Fantini and A. Sassaroli, “Near-infrared optical mammography for breast cancer detection with intrinsic contrast,” Ann. Biomed. Eng.40(2), 398–407 (2012).
[CrossRef] [PubMed]

2011 (2)

2010 (3)

F. Gao, J. Li, L. M. Zhang, P. Poulet, H. J. Zhao, and Y. Yamada, “Simultaneous fluorescence yield and lifetime tomography from time-resolved transmittances of small-animal-sized phantom,” Appl. Opt.49(16), 3163–3172 (2010).
[CrossRef] [PubMed]

S. M. W. Y. van de Ven, A. J. Wiethoff, T. Nielsen, B. Brendel, M. van der Voort, R. Nachabe, M. Van der Mark, M. Van Beek, L. Bakker, L. Fels, S. Elias, P. Luijten, and W. Mali, “A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients,” Mol. Imaging Biol.12(3), 343–348 (2010).
[CrossRef] [PubMed]

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73(7), 076701 (2010).
[CrossRef]

2009 (5)

S. M. W. Y. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, T. Nielsen, B. Brendel, C. Bontus, F. Uhlemann, R. Nachabe, R. Harbers, M. van Beek, L. Bakker, M. B. van der Mark, P. Luijten, and W. P. Mali, “Diffuse optical tomography of the breast: preliminary findings of a new prototype and comparison with magnetic resonance imaging,” Eur. Radiol.19(5), 1108–1113 (2009).
[CrossRef] [PubMed]

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging28(1), 30–42 (2009).
[CrossRef] [PubMed]

A. Hagen, D. Grosenick, R. Macdonald, H. Rinneberg, S. Burock, P. Warnick, A. Poellinger, and P. M. Schlag, “Late-fluorescence mammography assesses tumor capillary permeability and differentiates malignant from benign lesions,” Opt. Express17(19), 17016–17033 (2009).
[CrossRef] [PubMed]

H. Dehghani, S. Srinivasan, B. W. Pogue, and A. P. Gibson, “Numerical modeling and imaging reconstruction in diffuse optical tomography,” Phil. Trans. R. Soc. A Math. Phys. Eng. Sci.367(1900), 3073–3093 (2009).
[CrossRef]

M. Zacharopoulos, M. Schweiger, V. Kolehmainen, and S. Arridge, “3D shape based reconstruction of experimental data in diffuse optical tomography,” Opt. Express17(21), 18940–18956 (2009).
[CrossRef]

2008 (4)

C. M. Carpenter, S. Srinivasan, B. W. Pogue, and K. D. Paulsen, “Methodology development for three-dimensional MR-guided near infrared spectroscopy of breast tumors,” Opt. Express16(22), 17903–17914 (2008).
[CrossRef] [PubMed]

D. R. Leff, O. J. Warren, L. C. Enfield, A. P. Gibson, T. Athanasiou, D. K. Patten, J. C. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat.108(1), 9–22 (2008).
[CrossRef] [PubMed]

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys.35(6), 2443–2451 (2008).
[CrossRef] [PubMed]

C. Li, S. R. Grobmyer, N. Massol, X. Liang, Q. Zhang, L. Chen, L. L. Fajardo, and H. B. Jiang, “Noninvasive in vivo tomographic optical imaging of cellular morphology in the breast: possible convergence of microscopic pathology and macroscopic radiology,” Med. Phys.35(6), 2493–2501 (2008).
[CrossRef] [PubMed]

2007 (5)

S. Srinivasan, B. W. Pogue, C. Carpenter, S. Jiang, W. A. Wells, S. P. Poplack, P. A. Kaufman, and K. D. Paulsen, “Developments in quantitative oxygen-saturation imaging of breast tissue in vivo using multispectral near-infrared tomography,” Antioxid. Redox Signal.9(8), 1143–1156 (2007).
[CrossRef] [PubMed]

L. C. Enfield, A. P. Gibson, N. L. Everdell, D. T. Delpy, M. Schweiger, S. R. Arridge, C. Richardson, M. Keshtgar, M. Douek, and J. C. Hebden, “Three-dimensional time-resolved optical mammography of the uncompressed breast,” Appl. Opt.46(17), 3628–3638 (2007).
[CrossRef] [PubMed]

A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express15(11), 6696–6716 (2007).
[CrossRef] [PubMed]

D. Qin, H. J. Zhao, Y. Tanikawa, and F. Gao, “Experimental determination of optical properties in turbid medium by TCSPC technique,” Proc. SPIE6434, 64342E, 64342E-10 (2007).
[CrossRef]

H. J. Zhao, F. Gao, Y. Tanikawa, and Y. Yamada, “Time-resolved diffuse optical tomography and its application to in vitro and in vivo imaging,” J. Biomed. Opt.12(6), 062107 (2007).
[CrossRef] [PubMed]

2006 (3)

F. Gao, H. J. Zhao, Y. Tanikawa, and Y. Yamada, “A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomography,” Opt. Express14(16), 7109–7124 (2006).
[CrossRef] [PubMed]

S. G. Demos, A. J. Vogel, and A. H. Gandjbakhche, “Advances in optical spectroscopy and imaging of breast lesions,” J. Mammary Gland Biol. Neoplasia11(2), 165–181 (2006).
[CrossRef] [PubMed]

G. Gulsen, B. Xiong, O. Birgul, and O. Nalcioglu, “Design and implementation of a multifrequency near-infrared diffuse optical tomography system,” J. Biomed. Opt.11(1), 014020 (2006).
[CrossRef] [PubMed]

2005 (7)

X. Intes, “Time-domain optical mammography SoftScan: initial results,” Acad. Radiol.12(8), 934–947 (2005).
[CrossRef] [PubMed]

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol.12(8), 925–933 (2005).
[CrossRef] [PubMed]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol.50(4), R1–R43 (2005).
[CrossRef] [PubMed]

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas,” Phys. Med. Biol.50(11), 2451–2468 (2005).
[CrossRef] [PubMed]

Q. Zhu, S. H. Kurtzma, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia7(3), 263–270 (2005).
[CrossRef] [PubMed]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol.23(3), 313–320 (2005).
[CrossRef] [PubMed]

F. Gao, H. J. Zhao, Y. Tinikawa, K. Homma, and Y. Yamada, “Influences of target size and contrast on near infrared diffuse optical tomography—a comparison between featured-data and full time-resolved scheme,” Opt. Quantum Electron.37(13-15), 1287–1304 (2005).
[CrossRef]

2004 (1)

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography,” J. Biomed. Opt.9(6), 1137–1142 (2004).
[CrossRef] [PubMed]

2003 (4)

E. Kuwana and E. M. Sevick-Muraca, “Fluorescence lifetime spectroscopy for pH sensing in scattering media,” Anal. Chem.75(16), 4325–4329 (2003).
[CrossRef] [PubMed]

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera,” Phys. Med. Biol.48(12), 1701–1720 (2003).
[CrossRef] [PubMed]

X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys.30(6), 1039–1047 (2003).
[CrossRef] [PubMed]

M. E. Kilmer, E. L. Miller, A. Barbaro, and D. A. Boas, “Three-dimensional shape-based imaging of absorption perturbation for diffuse optical tomography,” Appl. Opt.42(16), 3129–3144 (2003).
[CrossRef] [PubMed]

2002 (4)

X. Intes, V. Ntziachristos, J. P. Culver, A. Yodh, and B. Chance, “Projection access order in algebraic reconstruction technique for diffuse optical tomography,” Phys. Med. Biol.47(1), N1–N10 (2002).
[CrossRef] [PubMed]

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med.8(7), 757–761 (2002B).
[CrossRef] [PubMed]

F. Gao, H. J. Zhao, Y. Tanikawa, and Y. Yamada, “Time-resolved diffuse optical tomography using a modified generalized pulse spectrum technique,” IEICE Trans. Inf. Sys E85-D, 133–142 (2002).

V. Ntziachristos, A. G. Yodh, M. D. Schnall, and B. Chance, “MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia4(4), 347–354 (2002a).
[CrossRef] [PubMed]

2001 (1)

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, and L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging20(12), 1334–1340 (2001).
[CrossRef] [PubMed]

2000 (3)

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehgani, and D. T. Deply, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum.71(9), 3415–3427 (2000).
[CrossRef]

S. Achilefu, R. B. Dorshow, J. E. Bugaj, and R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,” Invest. Radiol.35(8), 479–485 (2000).
[CrossRef] [PubMed]

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U.S.A.97(6), 2767–2772 (2000).
[CrossRef] [PubMed]

1999 (1)

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl.15(2), R41–R93 (1999).
[CrossRef]

1994 (1)

K. Furutsu and Y. Yamada, “Diffusion approximation for a dissipative random medium and the applications,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics50(5), 3634–3640 (1994).
[CrossRef] [PubMed]

Achilefu, S.

S. Achilefu, R. B. Dorshow, J. E. Bugaj, and R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,” Invest. Radiol.35(8), 479–485 (2000).
[CrossRef] [PubMed]

Arridge, S.

Arridge, S. R.

A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express15(11), 6696–6716 (2007).
[CrossRef] [PubMed]

L. C. Enfield, A. P. Gibson, N. L. Everdell, D. T. Delpy, M. Schweiger, S. R. Arridge, C. Richardson, M. Keshtgar, M. Douek, and J. C. Hebden, “Three-dimensional time-resolved optical mammography of the uncompressed breast,” Appl. Opt.46(17), 3628–3638 (2007).
[CrossRef] [PubMed]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol.50(4), R1–R43 (2005).
[CrossRef] [PubMed]

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehgani, and D. T. Deply, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum.71(9), 3415–3427 (2000).
[CrossRef]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl.15(2), R41–R93 (1999).
[CrossRef]

Athanasiou, T.

D. R. Leff, O. J. Warren, L. C. Enfield, A. P. Gibson, T. Athanasiou, D. K. Patten, J. C. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat.108(1), 9–22 (2008).
[CrossRef] [PubMed]

Baker, W. B.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73(7), 076701 (2010).
[CrossRef]

Bakker, L.

S. M. W. Y. van de Ven, A. J. Wiethoff, T. Nielsen, B. Brendel, M. van der Voort, R. Nachabe, M. Van der Mark, M. Van Beek, L. Bakker, L. Fels, S. Elias, P. Luijten, and W. Mali, “A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients,” Mol. Imaging Biol.12(3), 343–348 (2010).
[CrossRef] [PubMed]

S. M. W. Y. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, T. Nielsen, B. Brendel, C. Bontus, F. Uhlemann, R. Nachabe, R. Harbers, M. van Beek, L. Bakker, M. B. van der Mark, P. Luijten, and W. P. Mali, “Diffuse optical tomography of the breast: preliminary findings of a new prototype and comparison with magnetic resonance imaging,” Eur. Radiol.19(5), 1108–1113 (2009).
[CrossRef] [PubMed]

Barbaro, A.

Baron, L.

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, and L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging20(12), 1334–1340 (2001).
[CrossRef] [PubMed]

Birgul, O.

G. Gulsen, B. Xiong, O. Birgul, and O. Nalcioglu, “Design and implementation of a multifrequency near-infrared diffuse optical tomography system,” J. Biomed. Opt.11(1), 014020 (2006).
[CrossRef] [PubMed]

Boas, D. A.

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging28(1), 30–42 (2009).
[CrossRef] [PubMed]

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys.35(6), 2443–2451 (2008).
[CrossRef] [PubMed]

M. E. Kilmer, E. L. Miller, A. Barbaro, and D. A. Boas, “Three-dimensional shape-based imaging of absorption perturbation for diffuse optical tomography,” Appl. Opt.42(16), 3129–3144 (2003).
[CrossRef] [PubMed]

Bontus, C.

S. M. W. Y. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, T. Nielsen, B. Brendel, C. Bontus, F. Uhlemann, R. Nachabe, R. Harbers, M. van Beek, L. Bakker, M. B. van der Mark, P. Luijten, and W. P. Mali, “Diffuse optical tomography of the breast: preliminary findings of a new prototype and comparison with magnetic resonance imaging,” Eur. Radiol.19(5), 1108–1113 (2009).
[CrossRef] [PubMed]

Boverman, G.

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging28(1), 30–42 (2009).
[CrossRef] [PubMed]

Bremer, C.

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med.8(7), 757–761 (2002B).
[CrossRef] [PubMed]

Brendel, B.

S. M. W. Y. van de Ven, A. J. Wiethoff, T. Nielsen, B. Brendel, M. van der Voort, R. Nachabe, M. Van der Mark, M. Van Beek, L. Bakker, L. Fels, S. Elias, P. Luijten, and W. Mali, “A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients,” Mol. Imaging Biol.12(3), 343–348 (2010).
[CrossRef] [PubMed]

S. M. W. Y. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, T. Nielsen, B. Brendel, C. Bontus, F. Uhlemann, R. Nachabe, R. Harbers, M. van Beek, L. Bakker, M. B. van der Mark, P. Luijten, and W. P. Mali, “Diffuse optical tomography of the breast: preliminary findings of a new prototype and comparison with magnetic resonance imaging,” Eur. Radiol.19(5), 1108–1113 (2009).
[CrossRef] [PubMed]

Briest, S.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol.12(8), 925–933 (2005).
[CrossRef] [PubMed]

Brooks, D. H.

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging28(1), 30–42 (2009).
[CrossRef] [PubMed]

Bugaj, J. E.

S. Achilefu, R. B. Dorshow, J. E. Bugaj, and R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,” Invest. Radiol.35(8), 479–485 (2000).
[CrossRef] [PubMed]

Burock, S.

Carp, S. A.

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging28(1), 30–42 (2009).
[CrossRef] [PubMed]

Carpenter, C.

S. Srinivasan, B. W. Pogue, C. Carpenter, S. Jiang, W. A. Wells, S. P. Poplack, P. A. Kaufman, and K. D. Paulsen, “Developments in quantitative oxygen-saturation imaging of breast tissue in vivo using multispectral near-infrared tomography,” Antioxid. Redox Signal.9(8), 1143–1156 (2007).
[CrossRef] [PubMed]

Carpenter, C. M.

Cerussi, A. E.

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys.35(6), 2443–2451 (2008).
[CrossRef] [PubMed]

Chance, B.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol.12(8), 925–933 (2005).
[CrossRef] [PubMed]

X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys.30(6), 1039–1047 (2003).
[CrossRef] [PubMed]

V. Ntziachristos, A. G. Yodh, M. D. Schnall, and B. Chance, “MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia4(4), 347–354 (2002a).
[CrossRef] [PubMed]

X. Intes, V. Ntziachristos, J. P. Culver, A. Yodh, and B. Chance, “Projection access order in algebraic reconstruction technique for diffuse optical tomography,” Phys. Med. Biol.47(1), N1–N10 (2002).
[CrossRef] [PubMed]

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U.S.A.97(6), 2767–2772 (2000).
[CrossRef] [PubMed]

Chen, L.

C. Li, S. R. Grobmyer, N. Massol, X. Liang, Q. Zhang, L. Chen, L. L. Fajardo, and H. B. Jiang, “Noninvasive in vivo tomographic optical imaging of cellular morphology in the breast: possible convergence of microscopic pathology and macroscopic radiology,” Med. Phys.35(6), 2493–2501 (2008).
[CrossRef] [PubMed]

Chen, N. G.

Q. Zhu, S. H. Kurtzma, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia7(3), 263–270 (2005).
[CrossRef] [PubMed]

Chen, Y.

X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys.30(6), 1039–1047 (2003).
[CrossRef] [PubMed]

Choe, R.

Conant, E. F.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol.12(8), 925–933 (2005).
[CrossRef] [PubMed]

Corlu, A.

Cubeddu, R.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography,” J. Biomed. Opt.9(6), 1137–1142 (2004).
[CrossRef] [PubMed]

Culver, J. P.

X. Intes, V. Ntziachristos, J. P. Culver, A. Yodh, and B. Chance, “Projection access order in algebraic reconstruction technique for diffuse optical tomography,” Phys. Med. Biol.47(1), N1–N10 (2002).
[CrossRef] [PubMed]

Czerniecki, B. J.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol.12(8), 925–933 (2005).
[CrossRef] [PubMed]

Danesini, G. M.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography,” J. Biomed. Opt.9(6), 1137–1142 (2004).
[CrossRef] [PubMed]

Darzi, A.

D. R. Leff, O. J. Warren, L. C. Enfield, A. P. Gibson, T. Athanasiou, D. K. Patten, J. C. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat.108(1), 9–22 (2008).
[CrossRef] [PubMed]

Dehgani, H.

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehgani, and D. T. Deply, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum.71(9), 3415–3427 (2000).
[CrossRef]

Dehghani, H.

H. Dehghani, S. Srinivasan, B. W. Pogue, and A. P. Gibson, “Numerical modeling and imaging reconstruction in diffuse optical tomography,” Phil. Trans. R. Soc. A Math. Phys. Eng. Sci.367(1900), 3073–3093 (2009).
[CrossRef]

Delpy, D. T.

Demos, S. G.

S. G. Demos, A. J. Vogel, and A. H. Gandjbakhche, “Advances in optical spectroscopy and imaging of breast lesions,” J. Mammary Gland Biol. Neoplasia11(2), 165–181 (2006).
[CrossRef] [PubMed]

Deply, D. T.

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehgani, and D. T. Deply, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum.71(9), 3415–3427 (2000).
[CrossRef]

Dorshow, R. B.

S. Achilefu, R. B. Dorshow, J. E. Bugaj, and R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,” Invest. Radiol.35(8), 479–485 (2000).
[CrossRef] [PubMed]

Douek, M.

Durduran, T.

Eggert, J.

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, and L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging20(12), 1334–1340 (2001).
[CrossRef] [PubMed]

Elias, S.

S. M. W. Y. van de Ven, A. J. Wiethoff, T. Nielsen, B. Brendel, M. van der Voort, R. Nachabe, M. Van der Mark, M. Van Beek, L. Bakker, L. Fels, S. Elias, P. Luijten, and W. Mali, “A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients,” Mol. Imaging Biol.12(3), 343–348 (2010).
[CrossRef] [PubMed]

Elias, S. G.

S. M. W. Y. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, T. Nielsen, B. Brendel, C. Bontus, F. Uhlemann, R. Nachabe, R. Harbers, M. van Beek, L. Bakker, M. B. van der Mark, P. Luijten, and W. P. Mali, “Diffuse optical tomography of the breast: preliminary findings of a new prototype and comparison with magnetic resonance imaging,” Eur. Radiol.19(5), 1108–1113 (2009).
[CrossRef] [PubMed]

Enfield, L. C.

D. R. Leff, O. J. Warren, L. C. Enfield, A. P. Gibson, T. Athanasiou, D. K. Patten, J. C. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat.108(1), 9–22 (2008).
[CrossRef] [PubMed]

L. C. Enfield, A. P. Gibson, N. L. Everdell, D. T. Delpy, M. Schweiger, S. R. Arridge, C. Richardson, M. Keshtgar, M. Douek, and J. C. Hebden, “Three-dimensional time-resolved optical mammography of the uncompressed breast,” Appl. Opt.46(17), 3628–3638 (2007).
[CrossRef] [PubMed]

Eppstein, M. J.

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera,” Phys. Med. Biol.48(12), 1701–1720 (2003).
[CrossRef] [PubMed]

Everdell, N. L.

Fajardo, L.

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, and L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging20(12), 1334–1340 (2001).
[CrossRef] [PubMed]

Fajardo, L. L.

C. Li, S. R. Grobmyer, N. Massol, X. Liang, Q. Zhang, L. Chen, L. L. Fajardo, and H. B. Jiang, “Noninvasive in vivo tomographic optical imaging of cellular morphology in the breast: possible convergence of microscopic pathology and macroscopic radiology,” Med. Phys.35(6), 2493–2501 (2008).
[CrossRef] [PubMed]

Fang, Q.

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging28(1), 30–42 (2009).
[CrossRef] [PubMed]

Fantini, S.

S. Fantini and A. Sassaroli, “Near-infrared optical mammography for breast cancer detection with intrinsic contrast,” Ann. Biomed. Eng.40(2), 398–407 (2012).
[CrossRef] [PubMed]

Fels, L.

S. M. W. Y. van de Ven, A. J. Wiethoff, T. Nielsen, B. Brendel, M. van der Voort, R. Nachabe, M. Van der Mark, M. Van Beek, L. Bakker, L. Fels, S. Elias, P. Luijten, and W. Mali, “A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients,” Mol. Imaging Biol.12(3), 343–348 (2010).
[CrossRef] [PubMed]

Furutsu, K.

K. Furutsu and Y. Yamada, “Diffusion approximation for a dissipative random medium and the applications,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics50(5), 3634–3640 (1994).
[CrossRef] [PubMed]

Gandjbakhche, A. H.

S. G. Demos, A. J. Vogel, and A. H. Gandjbakhche, “Advances in optical spectroscopy and imaging of breast lesions,” J. Mammary Gland Biol. Neoplasia11(2), 165–181 (2006).
[CrossRef] [PubMed]

Gao, F.

F. Gao, J. Li, L. M. Zhang, P. Poulet, H. J. Zhao, and Y. Yamada, “Simultaneous fluorescence yield and lifetime tomography from time-resolved transmittances of small-animal-sized phantom,” Appl. Opt.49(16), 3163–3172 (2010).
[CrossRef] [PubMed]

H. J. Zhao, F. Gao, Y. Tanikawa, and Y. Yamada, “Time-resolved diffuse optical tomography and its application to in vitro and in vivo imaging,” J. Biomed. Opt.12(6), 062107 (2007).
[CrossRef] [PubMed]

D. Qin, H. J. Zhao, Y. Tanikawa, and F. Gao, “Experimental determination of optical properties in turbid medium by TCSPC technique,” Proc. SPIE6434, 64342E, 64342E-10 (2007).
[CrossRef]

F. Gao, H. J. Zhao, Y. Tanikawa, and Y. Yamada, “A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomography,” Opt. Express14(16), 7109–7124 (2006).
[CrossRef] [PubMed]

F. Gao, H. J. Zhao, Y. Tinikawa, K. Homma, and Y. Yamada, “Influences of target size and contrast on near infrared diffuse optical tomography—a comparison between featured-data and full time-resolved scheme,” Opt. Quantum Electron.37(13-15), 1287–1304 (2005).
[CrossRef]

F. Gao, H. J. Zhao, Y. Tanikawa, and Y. Yamada, “Time-resolved diffuse optical tomography using a modified generalized pulse spectrum technique,” IEICE Trans. Inf. Sys E85-D, 133–142 (2002).

Gibson, A. P.

H. Dehghani, S. Srinivasan, B. W. Pogue, and A. P. Gibson, “Numerical modeling and imaging reconstruction in diffuse optical tomography,” Phil. Trans. R. Soc. A Math. Phys. Eng. Sci.367(1900), 3073–3093 (2009).
[CrossRef]

D. R. Leff, O. J. Warren, L. C. Enfield, A. P. Gibson, T. Athanasiou, D. K. Patten, J. C. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat.108(1), 9–22 (2008).
[CrossRef] [PubMed]

L. C. Enfield, A. P. Gibson, N. L. Everdell, D. T. Delpy, M. Schweiger, S. R. Arridge, C. Richardson, M. Keshtgar, M. Douek, and J. C. Hebden, “Three-dimensional time-resolved optical mammography of the uncompressed breast,” Appl. Opt.46(17), 3628–3638 (2007).
[CrossRef] [PubMed]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol.50(4), R1–R43 (2005).
[CrossRef] [PubMed]

Godavarty, A.

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera,” Phys. Med. Biol.48(12), 1701–1720 (2003).
[CrossRef] [PubMed]

Gore, J. C.

D. D. Nolting, J. C. Gore, and W. Pham, “Near-infrared dyes: probe development and applications in optical molecular imaging,” Curr Org Synth8(4), 521–534 (2011).
[CrossRef] [PubMed]

Grobmyer, S. R.

C. Li, S. R. Grobmyer, N. Massol, X. Liang, Q. Zhang, L. Chen, L. L. Fajardo, and H. B. Jiang, “Noninvasive in vivo tomographic optical imaging of cellular morphology in the breast: possible convergence of microscopic pathology and macroscopic radiology,” Med. Phys.35(6), 2493–2501 (2008).
[CrossRef] [PubMed]

Grosenick, D.

A. Hagen, D. Grosenick, R. Macdonald, H. Rinneberg, S. Burock, P. Warnick, A. Poellinger, and P. M. Schlag, “Late-fluorescence mammography assesses tumor capillary permeability and differentiates malignant from benign lesions,” Opt. Express17(19), 17016–17033 (2009).
[CrossRef] [PubMed]

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas,” Phys. Med. Biol.50(11), 2451–2468 (2005).
[CrossRef] [PubMed]

Gulsen, G.

G. Gulsen, B. Xiong, O. Birgul, and O. Nalcioglu, “Design and implementation of a multifrequency near-infrared diffuse optical tomography system,” J. Biomed. Opt.11(1), 014020 (2006).
[CrossRef] [PubMed]

Gurfinkel, M.

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera,” Phys. Med. Biol.48(12), 1701–1720 (2003).
[CrossRef] [PubMed]

Hagen, A.

Harbers, R.

A. Leproux, M. van der Voort, M. B. van der Mark, R. Harbers, S. M. van de Ven, and T. G. van Leeuwen, “Optical mammography combined with fluorescence imaging: lesion detection using scatterplots,” Biomed. Opt. Express2(4), 1007–1020 (2011).
[CrossRef] [PubMed]

S. M. W. Y. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, T. Nielsen, B. Brendel, C. Bontus, F. Uhlemann, R. Nachabe, R. Harbers, M. van Beek, L. Bakker, M. B. van der Mark, P. Luijten, and W. P. Mali, “Diffuse optical tomography of the breast: preliminary findings of a new prototype and comparison with magnetic resonance imaging,” Eur. Radiol.19(5), 1108–1113 (2009).
[CrossRef] [PubMed]

Hebden, J. C.

D. R. Leff, O. J. Warren, L. C. Enfield, A. P. Gibson, T. Athanasiou, D. K. Patten, J. C. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat.108(1), 9–22 (2008).
[CrossRef] [PubMed]

L. C. Enfield, A. P. Gibson, N. L. Everdell, D. T. Delpy, M. Schweiger, S. R. Arridge, C. Richardson, M. Keshtgar, M. Douek, and J. C. Hebden, “Three-dimensional time-resolved optical mammography of the uncompressed breast,” Appl. Opt.46(17), 3628–3638 (2007).
[CrossRef] [PubMed]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol.50(4), R1–R43 (2005).
[CrossRef] [PubMed]

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehgani, and D. T. Deply, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum.71(9), 3415–3427 (2000).
[CrossRef]

Hegde, P.

Q. Zhu, S. H. Kurtzma, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia7(3), 263–270 (2005).
[CrossRef] [PubMed]

Hillman, E. M. C.

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehgani, and D. T. Deply, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum.71(9), 3415–3427 (2000).
[CrossRef]

Homma, K.

F. Gao, H. J. Zhao, Y. Tinikawa, K. Homma, and Y. Yamada, “Influences of target size and contrast on near infrared diffuse optical tomography—a comparison between featured-data and full time-resolved scheme,” Opt. Quantum Electron.37(13-15), 1287–1304 (2005).
[CrossRef]

Huang, M.

Q. Zhu, S. H. Kurtzma, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia7(3), 263–270 (2005).
[CrossRef] [PubMed]

Hwang, E.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol.12(8), 925–933 (2005).
[CrossRef] [PubMed]

Iftimia, N.

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, and L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging20(12), 1334–1340 (2001).
[CrossRef] [PubMed]

Intes, X.

X. Intes, “Time-domain optical mammography SoftScan: initial results,” Acad. Radiol.12(8), 934–947 (2005).
[CrossRef] [PubMed]

X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys.30(6), 1039–1047 (2003).
[CrossRef] [PubMed]

X. Intes, V. Ntziachristos, J. P. Culver, A. Yodh, and B. Chance, “Projection access order in algebraic reconstruction technique for diffuse optical tomography,” Phys. Med. Biol.47(1), N1–N10 (2002).
[CrossRef] [PubMed]

Jagjivan, B.

Q. Zhu, S. H. Kurtzma, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia7(3), 263–270 (2005).
[CrossRef] [PubMed]

Jiang, H.

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, and L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging20(12), 1334–1340 (2001).
[CrossRef] [PubMed]

Jiang, H. B.

C. Li, S. R. Grobmyer, N. Massol, X. Liang, Q. Zhang, L. Chen, L. L. Fajardo, and H. B. Jiang, “Noninvasive in vivo tomographic optical imaging of cellular morphology in the breast: possible convergence of microscopic pathology and macroscopic radiology,” Med. Phys.35(6), 2493–2501 (2008).
[CrossRef] [PubMed]

Jiang, S.

S. Srinivasan, B. W. Pogue, C. Carpenter, S. Jiang, W. A. Wells, S. P. Poplack, P. A. Kaufman, and K. D. Paulsen, “Developments in quantitative oxygen-saturation imaging of breast tissue in vivo using multispectral near-infrared tomography,” Antioxid. Redox Signal.9(8), 1143–1156 (2007).
[CrossRef] [PubMed]

Kane, M.

Q. Zhu, S. H. Kurtzma, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia7(3), 263–270 (2005).
[CrossRef] [PubMed]

Kaufman, P. A.

S. Srinivasan, B. W. Pogue, C. Carpenter, S. Jiang, W. A. Wells, S. P. Poplack, P. A. Kaufman, and K. D. Paulsen, “Developments in quantitative oxygen-saturation imaging of breast tissue in vivo using multispectral near-infrared tomography,” Antioxid. Redox Signal.9(8), 1143–1156 (2007).
[CrossRef] [PubMed]

Keshtgar, M.

Kilmer, M. E.

Klove, K.

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, and L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging20(12), 1334–1340 (2001).
[CrossRef] [PubMed]

Kolehmainen, V.

Kopans, D. B.

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging28(1), 30–42 (2009).
[CrossRef] [PubMed]

Kurtzma, S. H.

Q. Zhu, S. H. Kurtzma, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia7(3), 263–270 (2005).
[CrossRef] [PubMed]

Kuwana, E.

E. Kuwana and E. M. Sevick-Muraca, “Fluorescence lifetime spectroscopy for pH sensing in scattering media,” Anal. Chem.75(16), 4325–4329 (2003).
[CrossRef] [PubMed]

Leff, D. R.

D. R. Leff, O. J. Warren, L. C. Enfield, A. P. Gibson, T. Athanasiou, D. K. Patten, J. C. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat.108(1), 9–22 (2008).
[CrossRef] [PubMed]

Leproux, A.

Li, C.

C. Li, S. R. Grobmyer, N. Massol, X. Liang, Q. Zhang, L. Chen, L. L. Fajardo, and H. B. Jiang, “Noninvasive in vivo tomographic optical imaging of cellular morphology in the breast: possible convergence of microscopic pathology and macroscopic radiology,” Med. Phys.35(6), 2493–2501 (2008).
[CrossRef] [PubMed]

Li, J.

Liang, X.

C. Li, S. R. Grobmyer, N. Massol, X. Liang, Q. Zhang, L. Chen, L. L. Fajardo, and H. B. Jiang, “Noninvasive in vivo tomographic optical imaging of cellular morphology in the breast: possible convergence of microscopic pathology and macroscopic radiology,” Med. Phys.35(6), 2493–2501 (2008).
[CrossRef] [PubMed]

Luijten, P.

S. M. W. Y. van de Ven, A. J. Wiethoff, T. Nielsen, B. Brendel, M. van der Voort, R. Nachabe, M. Van der Mark, M. Van Beek, L. Bakker, L. Fels, S. Elias, P. Luijten, and W. Mali, “A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients,” Mol. Imaging Biol.12(3), 343–348 (2010).
[CrossRef] [PubMed]

S. M. W. Y. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, T. Nielsen, B. Brendel, C. Bontus, F. Uhlemann, R. Nachabe, R. Harbers, M. van Beek, L. Bakker, M. B. van der Mark, P. Luijten, and W. P. Mali, “Diffuse optical tomography of the breast: preliminary findings of a new prototype and comparison with magnetic resonance imaging,” Eur. Radiol.19(5), 1108–1113 (2009).
[CrossRef] [PubMed]

Macdonald, R.

Mali, W.

S. M. W. Y. van de Ven, A. J. Wiethoff, T. Nielsen, B. Brendel, M. van der Voort, R. Nachabe, M. Van der Mark, M. Van Beek, L. Bakker, L. Fels, S. Elias, P. Luijten, and W. Mali, “A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients,” Mol. Imaging Biol.12(3), 343–348 (2010).
[CrossRef] [PubMed]

Mali, W. P.

S. M. W. Y. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, T. Nielsen, B. Brendel, C. Bontus, F. Uhlemann, R. Nachabe, R. Harbers, M. van Beek, L. Bakker, M. B. van der Mark, P. Luijten, and W. P. Mali, “Diffuse optical tomography of the breast: preliminary findings of a new prototype and comparison with magnetic resonance imaging,” Eur. Radiol.19(5), 1108–1113 (2009).
[CrossRef] [PubMed]

Massol, N.

C. Li, S. R. Grobmyer, N. Massol, X. Liang, Q. Zhang, L. Chen, L. L. Fajardo, and H. B. Jiang, “Noninvasive in vivo tomographic optical imaging of cellular morphology in the breast: possible convergence of microscopic pathology and macroscopic radiology,” Med. Phys.35(6), 2493–2501 (2008).
[CrossRef] [PubMed]

Miller, E. L.

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging28(1), 30–42 (2009).
[CrossRef] [PubMed]

M. E. Kilmer, E. L. Miller, A. Barbaro, and D. A. Boas, “Three-dimensional shape-based imaging of absorption perturbation for diffuse optical tomography,” Appl. Opt.42(16), 3129–3144 (2003).
[CrossRef] [PubMed]

Moesta, K. T.

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas,” Phys. Med. Biol.50(11), 2451–2468 (2005).
[CrossRef] [PubMed]

Moore, R. H.

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging28(1), 30–42 (2009).
[CrossRef] [PubMed]

Mucke, J.

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas,” Phys. Med. Biol.50(11), 2451–2468 (2005).
[CrossRef] [PubMed]

Nachabe, R.

S. M. W. Y. van de Ven, A. J. Wiethoff, T. Nielsen, B. Brendel, M. van der Voort, R. Nachabe, M. Van der Mark, M. Van Beek, L. Bakker, L. Fels, S. Elias, P. Luijten, and W. Mali, “A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients,” Mol. Imaging Biol.12(3), 343–348 (2010).
[CrossRef] [PubMed]

S. M. W. Y. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, T. Nielsen, B. Brendel, C. Bontus, F. Uhlemann, R. Nachabe, R. Harbers, M. van Beek, L. Bakker, M. B. van der Mark, P. Luijten, and W. P. Mali, “Diffuse optical tomography of the breast: preliminary findings of a new prototype and comparison with magnetic resonance imaging,” Eur. Radiol.19(5), 1108–1113 (2009).
[CrossRef] [PubMed]

Nalcioglu, O.

G. Gulsen, B. Xiong, O. Birgul, and O. Nalcioglu, “Design and implementation of a multifrequency near-infrared diffuse optical tomography system,” J. Biomed. Opt.11(1), 014020 (2006).
[CrossRef] [PubMed]

Nielsen, T.

S. M. W. Y. van de Ven, A. J. Wiethoff, T. Nielsen, B. Brendel, M. van der Voort, R. Nachabe, M. Van der Mark, M. Van Beek, L. Bakker, L. Fels, S. Elias, P. Luijten, and W. Mali, “A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients,” Mol. Imaging Biol.12(3), 343–348 (2010).
[CrossRef] [PubMed]

S. M. W. Y. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, T. Nielsen, B. Brendel, C. Bontus, F. Uhlemann, R. Nachabe, R. Harbers, M. van Beek, L. Bakker, M. B. van der Mark, P. Luijten, and W. P. Mali, “Diffuse optical tomography of the breast: preliminary findings of a new prototype and comparison with magnetic resonance imaging,” Eur. Radiol.19(5), 1108–1113 (2009).
[CrossRef] [PubMed]

Nioka, S.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol.12(8), 925–933 (2005).
[CrossRef] [PubMed]

X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys.30(6), 1039–1047 (2003).
[CrossRef] [PubMed]

Nolting, D. D.

D. D. Nolting, J. C. Gore, and W. Pham, “Near-infrared dyes: probe development and applications in optical molecular imaging,” Curr Org Synth8(4), 521–534 (2011).
[CrossRef] [PubMed]

Ntziachristos, V.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol.23(3), 313–320 (2005).
[CrossRef] [PubMed]

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med.8(7), 757–761 (2002B).
[CrossRef] [PubMed]

X. Intes, V. Ntziachristos, J. P. Culver, A. Yodh, and B. Chance, “Projection access order in algebraic reconstruction technique for diffuse optical tomography,” Phys. Med. Biol.47(1), N1–N10 (2002).
[CrossRef] [PubMed]

V. Ntziachristos, A. G. Yodh, M. D. Schnall, and B. Chance, “MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia4(4), 347–354 (2002a).
[CrossRef] [PubMed]

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U.S.A.97(6), 2767–2772 (2000).
[CrossRef] [PubMed]

Orel, S. G.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol.12(8), 925–933 (2005).
[CrossRef] [PubMed]

Patten, D. K.

D. R. Leff, O. J. Warren, L. C. Enfield, A. P. Gibson, T. Athanasiou, D. K. Patten, J. C. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat.108(1), 9–22 (2008).
[CrossRef] [PubMed]

Paulsen, K. D.

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys.35(6), 2443–2451 (2008).
[CrossRef] [PubMed]

C. M. Carpenter, S. Srinivasan, B. W. Pogue, and K. D. Paulsen, “Methodology development for three-dimensional MR-guided near infrared spectroscopy of breast tumors,” Opt. Express16(22), 17903–17914 (2008).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, C. Carpenter, S. Jiang, W. A. Wells, S. P. Poplack, P. A. Kaufman, and K. D. Paulsen, “Developments in quantitative oxygen-saturation imaging of breast tissue in vivo using multispectral near-infrared tomography,” Antioxid. Redox Signal.9(8), 1143–1156 (2007).
[CrossRef] [PubMed]

Pham, W.

D. D. Nolting, J. C. Gore, and W. Pham, “Near-infrared dyes: probe development and applications in optical molecular imaging,” Curr Org Synth8(4), 521–534 (2011).
[CrossRef] [PubMed]

Pifferi, A.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography,” J. Biomed. Opt.9(6), 1137–1142 (2004).
[CrossRef] [PubMed]

Poellinger, A.

Pogue, B. W.

H. Dehghani, S. Srinivasan, B. W. Pogue, and A. P. Gibson, “Numerical modeling and imaging reconstruction in diffuse optical tomography,” Phil. Trans. R. Soc. A Math. Phys. Eng. Sci.367(1900), 3073–3093 (2009).
[CrossRef]

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys.35(6), 2443–2451 (2008).
[CrossRef] [PubMed]

C. M. Carpenter, S. Srinivasan, B. W. Pogue, and K. D. Paulsen, “Methodology development for three-dimensional MR-guided near infrared spectroscopy of breast tumors,” Opt. Express16(22), 17903–17914 (2008).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, C. Carpenter, S. Jiang, W. A. Wells, S. P. Poplack, P. A. Kaufman, and K. D. Paulsen, “Developments in quantitative oxygen-saturation imaging of breast tissue in vivo using multispectral near-infrared tomography,” Antioxid. Redox Signal.9(8), 1143–1156 (2007).
[CrossRef] [PubMed]

Poplack, S. P.

S. Srinivasan, B. W. Pogue, C. Carpenter, S. Jiang, W. A. Wells, S. P. Poplack, P. A. Kaufman, and K. D. Paulsen, “Developments in quantitative oxygen-saturation imaging of breast tissue in vivo using multispectral near-infrared tomography,” Antioxid. Redox Signal.9(8), 1143–1156 (2007).
[CrossRef] [PubMed]

Poulet, P.

Qin, D.

D. Qin, H. J. Zhao, Y. Tanikawa, and F. Gao, “Experimental determination of optical properties in turbid medium by TCSPC technique,” Proc. SPIE6434, 64342E, 64342E-10 (2007).
[CrossRef]

Rajagopalan, R.

S. Achilefu, R. B. Dorshow, J. E. Bugaj, and R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,” Invest. Radiol.35(8), 479–485 (2000).
[CrossRef] [PubMed]

Richardson, C.

Rinneberg, H.

A. Hagen, D. Grosenick, R. Macdonald, H. Rinneberg, S. Burock, P. Warnick, A. Poellinger, and P. M. Schlag, “Late-fluorescence mammography assesses tumor capillary permeability and differentiates malignant from benign lesions,” Opt. Express17(19), 17016–17033 (2009).
[CrossRef] [PubMed]

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas,” Phys. Med. Biol.50(11), 2451–2468 (2005).
[CrossRef] [PubMed]

Ripoll, J.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol.23(3), 313–320 (2005).
[CrossRef] [PubMed]

X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys.30(6), 1039–1047 (2003).
[CrossRef] [PubMed]

Rosen, M. A.

Sassaroli, A.

S. Fantini and A. Sassaroli, “Near-infrared optical mammography for breast cancer detection with intrinsic contrast,” Ann. Biomed. Eng.40(2), 398–407 (2012).
[CrossRef] [PubMed]

Schlag, P. M.

A. Hagen, D. Grosenick, R. Macdonald, H. Rinneberg, S. Burock, P. Warnick, A. Poellinger, and P. M. Schlag, “Late-fluorescence mammography assesses tumor capillary permeability and differentiates malignant from benign lesions,” Opt. Express17(19), 17016–17033 (2009).
[CrossRef] [PubMed]

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas,” Phys. Med. Biol.50(11), 2451–2468 (2005).
[CrossRef] [PubMed]

Schmidt, F. E. W.

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehgani, and D. T. Deply, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum.71(9), 3415–3427 (2000).
[CrossRef]

Schnall, M.

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U.S.A.97(6), 2767–2772 (2000).
[CrossRef] [PubMed]

Schnall, M. D.

A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express15(11), 6696–6716 (2007).
[CrossRef] [PubMed]

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol.12(8), 925–933 (2005).
[CrossRef] [PubMed]

V. Ntziachristos, A. G. Yodh, M. D. Schnall, and B. Chance, “MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia4(4), 347–354 (2002a).
[CrossRef] [PubMed]

Schweiger, M.

Selb, J.

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging28(1), 30–42 (2009).
[CrossRef] [PubMed]

Sevick-Muraca, E. M.

E. Kuwana and E. M. Sevick-Muraca, “Fluorescence lifetime spectroscopy for pH sensing in scattering media,” Anal. Chem.75(16), 4325–4329 (2003).
[CrossRef] [PubMed]

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera,” Phys. Med. Biol.48(12), 1701–1720 (2003).
[CrossRef] [PubMed]

Spinelli, L.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography,” J. Biomed. Opt.9(6), 1137–1142 (2004).
[CrossRef] [PubMed]

Srinivasan, S.

H. Dehghani, S. Srinivasan, B. W. Pogue, and A. P. Gibson, “Numerical modeling and imaging reconstruction in diffuse optical tomography,” Phil. Trans. R. Soc. A Math. Phys. Eng. Sci.367(1900), 3073–3093 (2009).
[CrossRef]

C. M. Carpenter, S. Srinivasan, B. W. Pogue, and K. D. Paulsen, “Methodology development for three-dimensional MR-guided near infrared spectroscopy of breast tumors,” Opt. Express16(22), 17903–17914 (2008).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, C. Carpenter, S. Jiang, W. A. Wells, S. P. Poplack, P. A. Kaufman, and K. D. Paulsen, “Developments in quantitative oxygen-saturation imaging of breast tissue in vivo using multispectral near-infrared tomography,” Antioxid. Redox Signal.9(8), 1143–1156 (2007).
[CrossRef] [PubMed]

Tanikawa, Y.

H. J. Zhao, F. Gao, Y. Tanikawa, and Y. Yamada, “Time-resolved diffuse optical tomography and its application to in vitro and in vivo imaging,” J. Biomed. Opt.12(6), 062107 (2007).
[CrossRef] [PubMed]

D. Qin, H. J. Zhao, Y. Tanikawa, and F. Gao, “Experimental determination of optical properties in turbid medium by TCSPC technique,” Proc. SPIE6434, 64342E, 64342E-10 (2007).
[CrossRef]

F. Gao, H. J. Zhao, Y. Tanikawa, and Y. Yamada, “A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomography,” Opt. Express14(16), 7109–7124 (2006).
[CrossRef] [PubMed]

F. Gao, H. J. Zhao, Y. Tanikawa, and Y. Yamada, “Time-resolved diffuse optical tomography using a modified generalized pulse spectrum technique,” IEICE Trans. Inf. Sys E85-D, 133–142 (2002).

Tannenbaum, S.

Q. Zhu, S. H. Kurtzma, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia7(3), 263–270 (2005).
[CrossRef] [PubMed]

Taroni, P.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography,” J. Biomed. Opt.9(6), 1137–1142 (2004).
[CrossRef] [PubMed]

Theru, S.

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera,” Phys. Med. Biol.48(12), 1701–1720 (2003).
[CrossRef] [PubMed]

Thompson, A. B.

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera,” Phys. Med. Biol.48(12), 1701–1720 (2003).
[CrossRef] [PubMed]

Tinikawa, Y.

F. Gao, H. J. Zhao, Y. Tinikawa, K. Homma, and Y. Yamada, “Influences of target size and contrast on near infrared diffuse optical tomography—a comparison between featured-data and full time-resolved scheme,” Opt. Quantum Electron.37(13-15), 1287–1304 (2005).
[CrossRef]

Torricelli, A.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography,” J. Biomed. Opt.9(6), 1137–1142 (2004).
[CrossRef] [PubMed]

Tromberg, B. J.

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys.35(6), 2443–2451 (2008).
[CrossRef] [PubMed]

Tung, C. H.

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med.8(7), 757–761 (2002B).
[CrossRef] [PubMed]

Uhlemann, F.

S. M. W. Y. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, T. Nielsen, B. Brendel, C. Bontus, F. Uhlemann, R. Nachabe, R. Harbers, M. van Beek, L. Bakker, M. B. van der Mark, P. Luijten, and W. P. Mali, “Diffuse optical tomography of the breast: preliminary findings of a new prototype and comparison with magnetic resonance imaging,” Eur. Radiol.19(5), 1108–1113 (2009).
[CrossRef] [PubMed]

Van Beek, M.

S. M. W. Y. van de Ven, A. J. Wiethoff, T. Nielsen, B. Brendel, M. van der Voort, R. Nachabe, M. Van der Mark, M. Van Beek, L. Bakker, L. Fels, S. Elias, P. Luijten, and W. Mali, “A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients,” Mol. Imaging Biol.12(3), 343–348 (2010).
[CrossRef] [PubMed]

S. M. W. Y. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, T. Nielsen, B. Brendel, C. Bontus, F. Uhlemann, R. Nachabe, R. Harbers, M. van Beek, L. Bakker, M. B. van der Mark, P. Luijten, and W. P. Mali, “Diffuse optical tomography of the breast: preliminary findings of a new prototype and comparison with magnetic resonance imaging,” Eur. Radiol.19(5), 1108–1113 (2009).
[CrossRef] [PubMed]

van de Ven, S. M.

van de Ven, S. M. W. Y.

S. M. W. Y. van de Ven, A. J. Wiethoff, T. Nielsen, B. Brendel, M. van der Voort, R. Nachabe, M. Van der Mark, M. Van Beek, L. Bakker, L. Fels, S. Elias, P. Luijten, and W. Mali, “A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients,” Mol. Imaging Biol.12(3), 343–348 (2010).
[CrossRef] [PubMed]

S. M. W. Y. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, T. Nielsen, B. Brendel, C. Bontus, F. Uhlemann, R. Nachabe, R. Harbers, M. van Beek, L. Bakker, M. B. van der Mark, P. Luijten, and W. P. Mali, “Diffuse optical tomography of the breast: preliminary findings of a new prototype and comparison with magnetic resonance imaging,” Eur. Radiol.19(5), 1108–1113 (2009).
[CrossRef] [PubMed]

Van der Mark, M.

S. M. W. Y. van de Ven, A. J. Wiethoff, T. Nielsen, B. Brendel, M. van der Voort, R. Nachabe, M. Van der Mark, M. Van Beek, L. Bakker, L. Fels, S. Elias, P. Luijten, and W. Mali, “A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients,” Mol. Imaging Biol.12(3), 343–348 (2010).
[CrossRef] [PubMed]

van der Mark, M. B.

A. Leproux, M. van der Voort, M. B. van der Mark, R. Harbers, S. M. van de Ven, and T. G. van Leeuwen, “Optical mammography combined with fluorescence imaging: lesion detection using scatterplots,” Biomed. Opt. Express2(4), 1007–1020 (2011).
[CrossRef] [PubMed]

S. M. W. Y. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, T. Nielsen, B. Brendel, C. Bontus, F. Uhlemann, R. Nachabe, R. Harbers, M. van Beek, L. Bakker, M. B. van der Mark, P. Luijten, and W. P. Mali, “Diffuse optical tomography of the breast: preliminary findings of a new prototype and comparison with magnetic resonance imaging,” Eur. Radiol.19(5), 1108–1113 (2009).
[CrossRef] [PubMed]

van der Voort, M.

A. Leproux, M. van der Voort, M. B. van der Mark, R. Harbers, S. M. van de Ven, and T. G. van Leeuwen, “Optical mammography combined with fluorescence imaging: lesion detection using scatterplots,” Biomed. Opt. Express2(4), 1007–1020 (2011).
[CrossRef] [PubMed]

S. M. W. Y. van de Ven, A. J. Wiethoff, T. Nielsen, B. Brendel, M. van der Voort, R. Nachabe, M. Van der Mark, M. Van Beek, L. Bakker, L. Fels, S. Elias, P. Luijten, and W. Mali, “A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients,” Mol. Imaging Biol.12(3), 343–348 (2010).
[CrossRef] [PubMed]

S. M. W. Y. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, T. Nielsen, B. Brendel, C. Bontus, F. Uhlemann, R. Nachabe, R. Harbers, M. van Beek, L. Bakker, M. B. van der Mark, P. Luijten, and W. P. Mali, “Diffuse optical tomography of the breast: preliminary findings of a new prototype and comparison with magnetic resonance imaging,” Eur. Radiol.19(5), 1108–1113 (2009).
[CrossRef] [PubMed]

van Leeuwen, T. G.

Vogel, A. J.

S. G. Demos, A. J. Vogel, and A. H. Gandjbakhche, “Advances in optical spectroscopy and imaging of breast lesions,” J. Mammary Gland Biol. Neoplasia11(2), 165–181 (2006).
[CrossRef] [PubMed]

Wabnitz, H.

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas,” Phys. Med. Biol.50(11), 2451–2468 (2005).
[CrossRef] [PubMed]

Wang, L. V.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol.23(3), 313–320 (2005).
[CrossRef] [PubMed]

Warnick, P.

Warren, O. J.

D. R. Leff, O. J. Warren, L. C. Enfield, A. P. Gibson, T. Athanasiou, D. K. Patten, J. C. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat.108(1), 9–22 (2008).
[CrossRef] [PubMed]

Weissleder, R.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol.23(3), 313–320 (2005).
[CrossRef] [PubMed]

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med.8(7), 757–761 (2002B).
[CrossRef] [PubMed]

Wells, W. A.

S. Srinivasan, B. W. Pogue, C. Carpenter, S. Jiang, W. A. Wells, S. P. Poplack, P. A. Kaufman, and K. D. Paulsen, “Developments in quantitative oxygen-saturation imaging of breast tissue in vivo using multispectral near-infrared tomography,” Antioxid. Redox Signal.9(8), 1143–1156 (2007).
[CrossRef] [PubMed]

Wiethoff, A. J.

S. M. W. Y. van de Ven, A. J. Wiethoff, T. Nielsen, B. Brendel, M. van der Voort, R. Nachabe, M. Van der Mark, M. Van Beek, L. Bakker, L. Fels, S. Elias, P. Luijten, and W. Mali, “A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients,” Mol. Imaging Biol.12(3), 343–348 (2010).
[CrossRef] [PubMed]

S. M. W. Y. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, T. Nielsen, B. Brendel, C. Bontus, F. Uhlemann, R. Nachabe, R. Harbers, M. van Beek, L. Bakker, M. B. van der Mark, P. Luijten, and W. P. Mali, “Diffuse optical tomography of the breast: preliminary findings of a new prototype and comparison with magnetic resonance imaging,” Eur. Radiol.19(5), 1108–1113 (2009).
[CrossRef] [PubMed]

Xiong, B.

G. Gulsen, B. Xiong, O. Birgul, and O. Nalcioglu, “Design and implementation of a multifrequency near-infrared diffuse optical tomography system,” J. Biomed. Opt.11(1), 014020 (2006).
[CrossRef] [PubMed]

Xu, Y.

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, and L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging20(12), 1334–1340 (2001).
[CrossRef] [PubMed]

Yamada, Y.

F. Gao, J. Li, L. M. Zhang, P. Poulet, H. J. Zhao, and Y. Yamada, “Simultaneous fluorescence yield and lifetime tomography from time-resolved transmittances of small-animal-sized phantom,” Appl. Opt.49(16), 3163–3172 (2010).
[CrossRef] [PubMed]

H. J. Zhao, F. Gao, Y. Tanikawa, and Y. Yamada, “Time-resolved diffuse optical tomography and its application to in vitro and in vivo imaging,” J. Biomed. Opt.12(6), 062107 (2007).
[CrossRef] [PubMed]

F. Gao, H. J. Zhao, Y. Tanikawa, and Y. Yamada, “A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomography,” Opt. Express14(16), 7109–7124 (2006).
[CrossRef] [PubMed]

F. Gao, H. J. Zhao, Y. Tinikawa, K. Homma, and Y. Yamada, “Influences of target size and contrast on near infrared diffuse optical tomography—a comparison between featured-data and full time-resolved scheme,” Opt. Quantum Electron.37(13-15), 1287–1304 (2005).
[CrossRef]

F. Gao, H. J. Zhao, Y. Tanikawa, and Y. Yamada, “Time-resolved diffuse optical tomography using a modified generalized pulse spectrum technique,” IEICE Trans. Inf. Sys E85-D, 133–142 (2002).

K. Furutsu and Y. Yamada, “Diffusion approximation for a dissipative random medium and the applications,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics50(5), 3634–3640 (1994).
[CrossRef] [PubMed]

Yang, G. Z.

D. R. Leff, O. J. Warren, L. C. Enfield, A. P. Gibson, T. Athanasiou, D. K. Patten, J. C. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat.108(1), 9–22 (2008).
[CrossRef] [PubMed]

Yodh, A.

X. Intes, V. Ntziachristos, J. P. Culver, A. Yodh, and B. Chance, “Projection access order in algebraic reconstruction technique for diffuse optical tomography,” Phys. Med. Biol.47(1), N1–N10 (2002).
[CrossRef] [PubMed]

Yodh, A. G.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73(7), 076701 (2010).
[CrossRef]

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys.35(6), 2443–2451 (2008).
[CrossRef] [PubMed]

A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express15(11), 6696–6716 (2007).
[CrossRef] [PubMed]

X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys.30(6), 1039–1047 (2003).
[CrossRef] [PubMed]

V. Ntziachristos, A. G. Yodh, M. D. Schnall, and B. Chance, “MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia4(4), 347–354 (2002a).
[CrossRef] [PubMed]

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U.S.A.97(6), 2767–2772 (2000).
[CrossRef] [PubMed]

Zacharopoulos, M.

Zarfos, K.

Q. Zhu, S. H. Kurtzma, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia7(3), 263–270 (2005).
[CrossRef] [PubMed]

Zhang, C.

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera,” Phys. Med. Biol.48(12), 1701–1720 (2003).
[CrossRef] [PubMed]

Zhang, J.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol.12(8), 925–933 (2005).
[CrossRef] [PubMed]

Zhang, L. M.

Zhang, Q.

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging28(1), 30–42 (2009).
[CrossRef] [PubMed]

C. Li, S. R. Grobmyer, N. Massol, X. Liang, Q. Zhang, L. Chen, L. L. Fajardo, and H. B. Jiang, “Noninvasive in vivo tomographic optical imaging of cellular morphology in the breast: possible convergence of microscopic pathology and macroscopic radiology,” Med. Phys.35(6), 2493–2501 (2008).
[CrossRef] [PubMed]

Zhao, H. J.

F. Gao, J. Li, L. M. Zhang, P. Poulet, H. J. Zhao, and Y. Yamada, “Simultaneous fluorescence yield and lifetime tomography from time-resolved transmittances of small-animal-sized phantom,” Appl. Opt.49(16), 3163–3172 (2010).
[CrossRef] [PubMed]

H. J. Zhao, F. Gao, Y. Tanikawa, and Y. Yamada, “Time-resolved diffuse optical tomography and its application to in vitro and in vivo imaging,” J. Biomed. Opt.12(6), 062107 (2007).
[CrossRef] [PubMed]

D. Qin, H. J. Zhao, Y. Tanikawa, and F. Gao, “Experimental determination of optical properties in turbid medium by TCSPC technique,” Proc. SPIE6434, 64342E, 64342E-10 (2007).
[CrossRef]

F. Gao, H. J. Zhao, Y. Tanikawa, and Y. Yamada, “A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomography,” Opt. Express14(16), 7109–7124 (2006).
[CrossRef] [PubMed]

F. Gao, H. J. Zhao, Y. Tinikawa, K. Homma, and Y. Yamada, “Influences of target size and contrast on near infrared diffuse optical tomography—a comparison between featured-data and full time-resolved scheme,” Opt. Quantum Electron.37(13-15), 1287–1304 (2005).
[CrossRef]

F. Gao, H. J. Zhao, Y. Tanikawa, and Y. Yamada, “Time-resolved diffuse optical tomography using a modified generalized pulse spectrum technique,” IEICE Trans. Inf. Sys E85-D, 133–142 (2002).

Zhu, Q.

Q. Zhu, S. H. Kurtzma, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia7(3), 263–270 (2005).
[CrossRef] [PubMed]

Acad. Radiol. (2)

X. Intes, “Time-domain optical mammography SoftScan: initial results,” Acad. Radiol.12(8), 934–947 (2005).
[CrossRef] [PubMed]

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol.12(8), 925–933 (2005).
[CrossRef] [PubMed]

Anal. Chem. (1)

E. Kuwana and E. M. Sevick-Muraca, “Fluorescence lifetime spectroscopy for pH sensing in scattering media,” Anal. Chem.75(16), 4325–4329 (2003).
[CrossRef] [PubMed]

Ann. Biomed. Eng. (1)

S. Fantini and A. Sassaroli, “Near-infrared optical mammography for breast cancer detection with intrinsic contrast,” Ann. Biomed. Eng.40(2), 398–407 (2012).
[CrossRef] [PubMed]

Antioxid. Redox Signal. (1)

S. Srinivasan, B. W. Pogue, C. Carpenter, S. Jiang, W. A. Wells, S. P. Poplack, P. A. Kaufman, and K. D. Paulsen, “Developments in quantitative oxygen-saturation imaging of breast tissue in vivo using multispectral near-infrared tomography,” Antioxid. Redox Signal.9(8), 1143–1156 (2007).
[CrossRef] [PubMed]

Appl. Opt. (3)

Biomed. Opt. Express (1)

Breast Cancer Res. Treat. (1)

D. R. Leff, O. J. Warren, L. C. Enfield, A. P. Gibson, T. Athanasiou, D. K. Patten, J. C. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat.108(1), 9–22 (2008).
[CrossRef] [PubMed]

Curr Org Synth (1)

D. D. Nolting, J. C. Gore, and W. Pham, “Near-infrared dyes: probe development and applications in optical molecular imaging,” Curr Org Synth8(4), 521–534 (2011).
[CrossRef] [PubMed]

Eur. Radiol. (1)

S. M. W. Y. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, T. Nielsen, B. Brendel, C. Bontus, F. Uhlemann, R. Nachabe, R. Harbers, M. van Beek, L. Bakker, M. B. van der Mark, P. Luijten, and W. P. Mali, “Diffuse optical tomography of the breast: preliminary findings of a new prototype and comparison with magnetic resonance imaging,” Eur. Radiol.19(5), 1108–1113 (2009).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging (2)

H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, and L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging20(12), 1334–1340 (2001).
[CrossRef] [PubMed]

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging28(1), 30–42 (2009).
[CrossRef] [PubMed]

IEICE Trans. Inf. Sys E (1)

F. Gao, H. J. Zhao, Y. Tanikawa, and Y. Yamada, “Time-resolved diffuse optical tomography using a modified generalized pulse spectrum technique,” IEICE Trans. Inf. Sys E85-D, 133–142 (2002).

Inverse Probl. (1)

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl.15(2), R41–R93 (1999).
[CrossRef]

Invest. Radiol. (1)

S. Achilefu, R. B. Dorshow, J. E. Bugaj, and R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,” Invest. Radiol.35(8), 479–485 (2000).
[CrossRef] [PubMed]

J. Biomed. Opt. (3)

H. J. Zhao, F. Gao, Y. Tanikawa, and Y. Yamada, “Time-resolved diffuse optical tomography and its application to in vitro and in vivo imaging,” J. Biomed. Opt.12(6), 062107 (2007).
[CrossRef] [PubMed]

G. Gulsen, B. Xiong, O. Birgul, and O. Nalcioglu, “Design and implementation of a multifrequency near-infrared diffuse optical tomography system,” J. Biomed. Opt.11(1), 014020 (2006).
[CrossRef] [PubMed]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography,” J. Biomed. Opt.9(6), 1137–1142 (2004).
[CrossRef] [PubMed]

J. Mammary Gland Biol. Neoplasia (1)

S. G. Demos, A. J. Vogel, and A. H. Gandjbakhche, “Advances in optical spectroscopy and imaging of breast lesions,” J. Mammary Gland Biol. Neoplasia11(2), 165–181 (2006).
[CrossRef] [PubMed]

Med. Phys. (3)

C. Li, S. R. Grobmyer, N. Massol, X. Liang, Q. Zhang, L. Chen, L. L. Fajardo, and H. B. Jiang, “Noninvasive in vivo tomographic optical imaging of cellular morphology in the breast: possible convergence of microscopic pathology and macroscopic radiology,” Med. Phys.35(6), 2493–2501 (2008).
[CrossRef] [PubMed]

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys.35(6), 2443–2451 (2008).
[CrossRef] [PubMed]

X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green,” Med. Phys.30(6), 1039–1047 (2003).
[CrossRef] [PubMed]

Mol. Imaging Biol. (1)

S. M. W. Y. van de Ven, A. J. Wiethoff, T. Nielsen, B. Brendel, M. van der Voort, R. Nachabe, M. Van der Mark, M. Van Beek, L. Bakker, L. Fels, S. Elias, P. Luijten, and W. Mali, “A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients,” Mol. Imaging Biol.12(3), 343–348 (2010).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol.23(3), 313–320 (2005).
[CrossRef] [PubMed]

Nat. Med. (1)

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med.8(7), 757–761 (2002B).
[CrossRef] [PubMed]

Neoplasia (2)

V. Ntziachristos, A. G. Yodh, M. D. Schnall, and B. Chance, “MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia4(4), 347–354 (2002a).
[CrossRef] [PubMed]

Q. Zhu, S. H. Kurtzma, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia7(3), 263–270 (2005).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Quantum Electron. (1)

F. Gao, H. J. Zhao, Y. Tinikawa, K. Homma, and Y. Yamada, “Influences of target size and contrast on near infrared diffuse optical tomography—a comparison between featured-data and full time-resolved scheme,” Opt. Quantum Electron.37(13-15), 1287–1304 (2005).
[CrossRef]

Phil. Trans. R. Soc. A Math. Phys. Eng. Sci. (1)

H. Dehghani, S. Srinivasan, B. W. Pogue, and A. P. Gibson, “Numerical modeling and imaging reconstruction in diffuse optical tomography,” Phil. Trans. R. Soc. A Math. Phys. Eng. Sci.367(1900), 3073–3093 (2009).
[CrossRef]

Phys. Med. Biol. (4)

X. Intes, V. Ntziachristos, J. P. Culver, A. Yodh, and B. Chance, “Projection access order in algebraic reconstruction technique for diffuse optical tomography,” Phys. Med. Biol.47(1), N1–N10 (2002).
[CrossRef] [PubMed]

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera,” Phys. Med. Biol.48(12), 1701–1720 (2003).
[CrossRef] [PubMed]

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas,” Phys. Med. Biol.50(11), 2451–2468 (2005).
[CrossRef] [PubMed]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol.50(4), R1–R43 (2005).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

K. Furutsu and Y. Yamada, “Diffusion approximation for a dissipative random medium and the applications,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics50(5), 3634–3640 (1994).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U.S.A.97(6), 2767–2772 (2000).
[CrossRef] [PubMed]

Proc. SPIE (1)

D. Qin, H. J. Zhao, Y. Tanikawa, and F. Gao, “Experimental determination of optical properties in turbid medium by TCSPC technique,” Proc. SPIE6434, 64342E, 64342E-10 (2007).
[CrossRef]

Rep. Prog. Phys. (1)

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73(7), 076701 (2010).
[CrossRef]

Rev. Sci. Instrum. (1)

E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehgani, and D. T. Deply, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum.71(9), 3415–3427 (2000).
[CrossRef]

Other (3)

W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer-Verlag, Berlin, 2005).

F. S. Azar and X. Intes, Translational Multimodality Optical Imaging (Artech House, Boston, 2008), Chap. 8.

G. R. Walsh, Methods of Optimization (Wiley, New York, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of the developed hybrid TD fluorescence- and hemoglobin-DOT system for breast tumor diagnosis. The system uses two ps-pulsed LDs at 780 nm and 830 nm driven in a temporally multiplexing mode with the interval of 25 ns for the light delivery, and works with 4 PMT-TCSPC channels in a tandem serial-to-parallel scheme for the time-resolved detection.

Fig. 2
Fig. 2

Schematic diagram and photography of the cylindrical chamber (inner height: 80 mm, inner diameter: 100 mm). 64 holes were drilled perpendicular to the chamber wall at 4 imaging planes evenly distributed along the height, with the 16 equally-spaced at each plane.

Fig. 3
Fig. 3

Workflow of a complete hybrid fluorescence- and hemoglobin-DOT process, where the supporting information required by a phase is explained beside the associated arrows.

Fig. 4
Fig. 4

Normalized TPSFs acquired in parallel by Detection-fiber #5-#8 for the illumination of Source-fiber #1 in (a) 2-D hemoglobin-DOT experiment with the reference scenario, as described in Sec. 3.1, and (b) 2-D fluorescence-DOT experiment with a target ICG concentration of 250 nM, as described in Sec. 3.2.

Fig. 5
Fig. 5

(a) Sketch of the cylindrical solid phantom (diameter: 80 mm, length: 100 mm) and the coordinates used in the experiments. The phantom contains two axially-parallel cylindrical holes with different lengths (65 mm and 55 mm) and the same radius (7.5 mm), and can be configured for either a 3-D or a 2-D experimental scenario, with the contrasting solution partially or fully filled, respectively. Photographs of (b) 2-D and (c) 3-D optode configurations. In the 2-D configuration 16 optodes are installed on Imaging Plane #4 (Z = 64 mm), whereas in the 3-D configuration 32 optodes are placed on all the 4 imaging planes, with 8 optodes evenly distributed on each plane.

Fig. 6
Fig. 6

2-D standalone hemoglobin-DOT reconstructions of a single target with varying target absorption coefficient of μ a ( T ) 0.012 , 0.010, 0.008, and 0.006 mm–1, but a constant target scattering coefficient of μ s ( T ) 2.0  mm 1 : (a) The μ a - and μ s -images reconstructed at 780-nm and 830-nm wavelengths, respectively; (b) the X-profiles in the μ a - and μ s -images at both wavelengths, respectively. The circles in the images indicate the correct position and size of the target.

Fig. 7
Fig. 7

2-D fluorescence-DOT reconstructions of the single target with varying ICG-dye concentration of 250 nM, 125 nM, 62.5 nM, and 30 nM: (a) The reconstructed y ICG - and τ ICG -images; (b) the X-profiles in the y ICG - and τ ICG -images, respectively. The circles in the images indicate the correct position and size of the target.

Fig. 8
Fig. 8

3-D fluorescence-DOT reconstruction of the dual targets from the fluorescence-guided hemoglobin-DOT experiment: (a) The reconstructed y ICG - and τ ICG -images of the sectional slice at Z = 38 mm and the coronal slice at Y = 0 mm, all across the center of Target #1, as well as of the sectional slice at Z = 48 mm and the coronal slice at Y′ = 0 mm, all across the center of Target #2; (b) the X-profiles in the y ICG - and τ ICG -images of the sectional slice at Z = 38 mm and the X'-profiles in the y ICG - and τ ICG -images of the sectional slice at Z = 48 mm, respectively. The circles and rectangles in the images indicate the correct positions and sizes of the targets; (c) The ROI masks of the two sectional slices at Z = 38 mm and Z = 48 mm, as well as the two coronal slices at Y = 0 mm and Y′ = 0 mm. The ROI were extracted from the y ICG -image of the 3-D fluorescence-DOT reconstruction with the threshold method using a attending factor of ρ = 0.86.

Fig. 9
Fig. 9

(a) 3-D fluorescence-guided and (b) standalone hemoglobin-DOT reconstruction of the dual targets from the fluorescence-guided hemoglobin-DOT experiment: The μ a - and μ s -images of two sectional slices at Z = 38 mm and Z = 48 mm and as well as of two coronal slices at Y = 0 mm and Y′ = 0 mm, reconstructed at 780-nm and 830-nm wavelengths, respectively. The circles and rectangles in the images indicate the original positions and sizes of the targets; (c) The X- and X'-profiles in the μ a - and μ s -images of the two sectional slices at Z = 38 mm and Z = 48 mm, reconstructed from both the 3-D standalone and fluorescence-guided hemoglobin-DOT at 780-nm and 830-nm wavelengths, respectively. The profiles are plotted vs. their respective original ones for a comparison.

Tables (1)

Tables Icon

Table 1 Quantitative accuracy of the reconstructed targets: fluorescence-guided hemoglobin-DOT vs. standalone hemoglobin-DOT

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

I ^ nb ( ξ d , ζ s ,β )=Θ( d,s ) I ^ ICG ( ξ d , ζ s ,β ) I ^ λ 1 ( ξ d , ζ s ,β )
Θ( d,s )= T x ( d,s ) Γ ND ( d,s ) T m ( d,s ) Γ BP ( d,s )
I ^ λ i ( ξ d , ζ s ,β )= I ^ λ i ( Hb ) ( ξ d , ζ s ,β ) I ^ λ i ( Ref ) ( ξ d , ζ s ,β )
[ κ( r, λ i )+( μ a ( r, λ i )c+β ) ] Φ λ i ( r, ζ s ,β )= δ λ i ( r ζ s ),  i=1, 2
[ κ( r, λ 2 )+( μ a ( r, λ 2 )c+β ) ] Φ ICG ( r, ζ s ,β )=c Φ λ 1 ( r, ζ s ,β ) y ICG ( r, λ 1 ) 1+β τ ICG ( r, λ 1 )
I λ i ( ξ d , ζ s ,β, μ a ( k ) , μ s ( k ) ) I ^ λ i ( ξ d , ζ s ,β ) I λ i ( ξ d , ζ s ,β, μ a ( 0 ) , μ s ( 0 ) )=                                    Ω G λ i ( ξ d ,r,β, μ a ( k ) , μ s ( k ) ) Φ λ i ( r, ζ s ,β, μ a ( k ) , μ s ( k ) ) P λ i ( k ) ( r,β )dr
{ δ μ a ( k ) ( r, λ i )= [ μ a ( k ) ( r, λ i )c+ β + ( λ i ) ] P λ i ( k ) [ r, β ( λ i ) ][ μ a ( k ) ( r, λ i )c+ β ( λ i ) ] P λ i ( k ) [ r, β + ( λ i ) ] [ β + ( λ i ) β ( λ i ) ]c δ μ s ( k ) ( r, λ i )= μ s ( k ) ( r, λ i ){ P λ i ( k ) [ r, β + ( λ i ) ] P λ i ( k ) [ r, λ i , β ( λ i ) ] } β + ( λ i ) β ( λ i )
I ^ nb ( ξ d , ζ s ,β ) I λ 1 ( ξ d , ζ s ,β )= c G λ 2 ( ξ d ,r,β ) Φ λ 1 ( r, ζ s ,β ) F ICG ( r,β )dr
{ y ICG ( r )= ( β + β ) F ICG ( r, β + ) F ICG ( r, β ) β + F ICG ( r, β + ) β F ICG ( r, β ) τ ICG ( r )= F ICG ( r, β + ) F ICG ( r, β ) β + F ICG ( r, β + ) β F ICG ( r, β )
{ J ^ ( k ) = J ( k ) T M ( k ) = J ^ ( k ) P ^ ( k ) P ( k+1 ) =T P ^ ( k ) + P ( k )
T=[ T( r 1 , r 1 ),   T( r 1 , r 2 ),  ,  T( r 1 , r NR ) T( r 2 , r 1 ),  T( r 2 , r 2 ),  ,  T( r 2 , r NR )                T( r N , r 1 ), T( r N , r 2 ), T( r N , r NR ) ], where T( r i , r j )={ 1,     r i = r j 0,    r i r j ,
Y th = y ¯ ICG +ρ σ ICG
min ρ { r i ROIs [ y ICG ( r i ) max r i ( y ICG ( r i ) ) ]+ r i ROIs [ y ICG ( r i ) min r i ( y ICG ( r i ) ) ] }

Metrics