Abstract

Optical side-effects of fs-laser treatment in refractive surgery are investigated by means of a model eye. We show that rainbow glare is the predominant perturbation, which can be avoided by randomly distributing laser spots within the lens. For corneal applications such as fs-LASIK, even a regular grid with spot-to-spot distances of ~3 µm is sufficient to minimize rainbow glare perception. Contrast sensitivity is affected, when the lens is treated with large 3D-patterns.

© 2013 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Lasers in refractive surgery: history, present, and future

Lance J. Kugler and Ming X. Wang
Appl. Opt. 49(25) F1-F9 (2010)

Comparison between an objective and a psychophysical method for the evaluation of intraocular light scattering

Pablo Alejandro Barrionuevo, Elisa Margarita Colombo, Meritxell Vilaseca, Jaume Pujol, and Luis Alberto Issolio
J. Opt. Soc. Am. A 29(7) 1293-1299 (2012)

Cubic optical elements for an accommodative intraocular lens

Aleksey N. Simonov, Gleb Vdovin, and Michiel C. Rombach
Opt. Express 14(17) 7757-7775 (2006)

References

  • View by:
  • |
  • |
  • |

  1. S. Nolte, “Micromachining,” in Ultrafast Lasers: Technology and Applications, M. E. Fermann, A. Galvanauskas, and G. Sucha, eds. (Marcel Dekker, New York, 2002).
  2. K. Stonecipher, T. S. Ignacio, and M. Stonecipher, “Advances in refractive surgery: microkeratome and femtosecond laser flap creation in relation to safety, efficacy, predictability, and biomechanical stability,” Curr. Opin. Ophthalmol. 17(4), 368–372 (2006).
    [Crossref] [PubMed]
  3. T. Ripken, U. Oberheide, C. Ziltz, W. Ertmer, G. Gerten, and H. Lubatschowski, “Fs-laser induced elasticity changes to improve presbyopic lens accommodation,” Proc. SPIE 5688, 278–287 (2005).
    [Crossref]
  4. Z. Nagy, A. Takacs, T. Filkorn, and M. Sarayba, “Initial clinical evaluation of an intraocular femtosecond laser in cataract surgery,” J. Refract. Surg. 25(12), 1053–1060 (2009).
    [Crossref] [PubMed]
  5. S. Toropygin, M. Krause, I. Riemann, M. Hild, P. Mestres, B. Seitz, E. Khurieva, K. W. Ruprecht, U. Löw, Z. Gatzioufas, and K. König, “In vitro noncontact intravascular femtosecond laser surgery in models of branch retinal vein occlusion,” Curr. Eye Res. 33(3), 277–283 (2008).
    [Crossref] [PubMed]
  6. L. Ding, W. H. Knox, J. Bühren, L. J. Nagy, and K. R. Huxlin, “Intratissue refractive index shaping (IRIS) of the cornea and lens using a low-pulse-energy femtosecond laser oscillator,” Invest. Ophthalmol. Vis. Sci. 49(12), 5332–5339 (2008).
    [Crossref] [PubMed]
  7. L. J. Nagy, L. Ding, L. Xu, W. H. Knox, and K. R. Huxlin, “Potentiation of femtosecond laser intratissue refractive index shaping (IRIS) in the living cornea with sodium fluorescein,” Invest. Ophthalmol. Vis. Sci. 51(2), 850–856 (2010).
    [Crossref] [PubMed]
  8. L. Xu, W. H. Knox, M. DeMagistris, N. Wang, and K. R. Huxlin, “Noninvasive intratissue refractive index shaping (IRIS) of the cornea with blue femtosecond laser light,” Invest. Ophthalmol. Vis. Sci. 52(11), 8148–8155 (2011).
    [Crossref] [PubMed]
  9. A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
    [Crossref]
  10. T. Juhasz, G. A. Kastis, C. Suárez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med. 19(1), 23–31 (1996).
    [Crossref] [PubMed]
  11. R. R. Krueger, I. L. Thornton, M. Xu, Z. Bor, and T. J. van den Berg, “Rainbow glare as an optical side effect of IntraLASIK,” Ophthalmology 115(7), 1187–1195.e1 (2008).
    [Crossref] [PubMed]
  12. S. Bamba, K. M. Rocha, J. C. Ramos-Esteban, and R. R. Krueger, “Incidence of rainbow glare after laser in situ keratomileusis flap creation with a 60 kHz femtosecond laser,” J. Cataract Refract. Surg. 35(6), 1082–1086 (2009).
    [Crossref] [PubMed]
  13. M. Peter, R. Kammel, R. Ackermann, S. Schramm, B. U. Seifert, K. Frey, M. Blum, S. Nolte, and K. S. Kunert, “Analysis of optical side-effects of fs-laser therapy in human presbyopic lens simulated with modified contact lenses,” Graefes Arch. Clin. Exp. Ophthalmol. 250(12), 1813–1825 (2012).
    [Crossref] [PubMed]
  14. S. Norrby, P. Piers, C. Campbell, and M. van der Mooren, “Model eyes for evaluation of intraocular lenses,” Appl. Opt. 46(26), 6595–6605 (2007).
    [Crossref] [PubMed]
  15. W. J. Benjamin and Q. A. Cappelli, “Oxygen permeability (Dk) of thirty-seven rigid contact lens materials,” Optom. Vis. Sci. 79(2), 103–111 (2002).
    [Crossref] [PubMed]
  16. M. Sachsenweger, Augenheilkunde, Duale Reihe (Georg Thieme Verlag, 2002), Vol. 2.
  17. E. A. Hermans, M. Dubbelman, R. Van der Heijde, and R. M. Heethaar, “Equivalent refractive index of the human lens upon accommodative response,” Optom. Vis. Sci. 85(12), 1179–1184 (2008).
    [Crossref] [PubMed]
  18. R. C. Bakaraju, K. Ehrmann, D. Falk, A. Ho, and E. Papas, “Physical human model eye and methods of its use to analyse optical performance of soft contact lenses,” Opt. Express 18(16), 16868–16882 (2010).
    [Crossref] [PubMed]
  19. H. Wässle and B. B. Boycott, “Functional architecture of the mammalian retina,” Physiol. Rev. 71(2), 447–480 (1991).
    [PubMed]
  20. S. L. Polyak, The Retina (University of Chicago Press, Chicago, 1941).
  21. A. Gullstrand, “Zusätze von A. Gullstrand,” in Handbuch der physiologischen Optik von H. von Helmholtz, A. Gullstrand, J. von Kries, and W. Nagel, eds. (Verlag von Leopold Voss, Hamburg und Leipzig, 1909).
  22. J. Németh, O. Fekete, and N. Pesztenlehrer, “Optical and ultrasound measurement of axial length and anterior chamber depth for intraocular lens power calculation,” J. Cataract Refract. Surg. 29(1), 85–88 (2003).
    [Crossref] [PubMed]
  23. L. Wang, M. Shirayama, X. J. Ma, T. Kohnen, and D. D. Koch, “Optimizing intraocular lens power calculations in eyes with axial lengths above 25.0 mm,” J. Cataract Refract. Surg. 37(11), 2018–2027 (2011).
    [Crossref] [PubMed]
  24. T. Grosvenor and R. Scott, “Role of the axial length/corneal radius ratio in determining the refractive state of the eye,” Optom. Vis. Sci. 71(9), 573–579 (1994).
    [Crossref] [PubMed]
  25. C. Hönninger, M. Plötner, B. Ortaç, R. Ackermann, R. Kammel, J. Limpert, S. Nolte, and A. Tünnermann, “Femtosecond fiber laser system for medical applications,” Proc. SPIE 7203, 72030W, 72030W-6 (2009).
    [Crossref]
  26. H. Uozato and D. L. Guyton, “Centering corneal surgical procedures,” Am. J. Ophthalmol. 103(3 Pt 1), 264–275 (1987).
    [PubMed]
  27. M. Hammer, D. Schweitzer, W. Ziegler, M. Wiechmann, and J. Strobel, “Intrastromale refraktive Chirurgie mit ultrakurzen Laserpulsen Ergebnisse erster In-vitro-Experimente [Intrastomal refractive surgery with ultra-short laser pulses. Results from initial in vitro experiments],” Ophthalmologe 99(10), 756–760 (2002).
    [Crossref] [PubMed]
  28. J. Y. Kim, M. J. Kim, T. I. Kim, H. J. Choi, J. H. Pak, and H. Tchah, “A femtosecond laser creates a stronger flap than a mechanical microkeratome,” Invest. Ophthalmol. Vis. Sci. 47(2), 599–604 (2006).
    [Crossref] [PubMed]
  29. A. Vestergaard, A. Ivarsen, S. Asp, and J. O. Hjortdal, “Femtosecond (FS) laser vision correction procedure for moderate to high myopia: a prospective study of ReLEx® flex and comparison with a retrospective study of FS-laser in situ keratomileusis,” Acta Ophthalmol. (Copenh.) (2012), http://onlinelibrary.wiley.com/doi/10.1111/j.1755-3768.2012.02406.x/abstract;jsessionid=709547A0B32B5AF6026818404FFA2F39.d03t01 .
  30. H. Lubatschowski, S. Schumacher, M. Fromm, A. Wegener, H. Hoffmann, U. Oberheide, and G. Gerten, “Femtosecond lentotomy: generating gliding planes inside the crystalline lens to regain accommodation ability,” J Biophotonics 3(5-6), 265–268 (2010).
    [Crossref] [PubMed]
  31. A. J. Augustin, Augenheilkunde (Springer-Verlag, Heidelberg, 2007).
  32. S. Schumacher, M. Fromm, U. Oberheide, P. Bock, I. Imbschweiler, H. Hoffmann, A. Beineke, G. Gerten, A. Wegener, and H. Lubatschowski, “Femtosecond-lentotomy treatment: six-month follow-up of in vivo treated rabbit lenses,” Proc. SPIE 7373, 73730H, 73730H-8 (2009).
    [Crossref]
  33. R. Ackermann, K. S. Kunert, R. Kammel, S. Bischoff, S. C. Bühren, H. Schubert, M. Blum, and S. Nolte, “Femtosecond laser treatment of the crystalline lens: a 1-year study of possible cataractogenesis in minipigs,” Graefes Arch. Clin. Exp. Ophthalmol. 249(10), 1567–1573 (2011).
    [Crossref] [PubMed]
  34. M. P. Poudel, “Study of self-focusing effect induced by femtosecond photodisruption on model substances,” Opt. Lett. 34(3), 337–339 (2009).
    [Crossref] [PubMed]
  35. D. Giguère, G. Olivié, F. Vidal, S. Toetsch, G. Girard, T. Ozaki, J. C. Kieffer, O. Nada, and I. Brunette, “Laser ablation threshold dependence on pulse duration for fused silica and corneal tissues: experiments and modeling,” J. Opt. Soc. Am. A 24(6), 1562–1568 (2007).
    [Crossref] [PubMed]
  36. M. Miclea, U. Skrzypczak, S. Faust, F. Fankhauser, H. Graener, and G. Seifert, “Nonlinear refractive index of porcine cornea studied by z-scan and self-focusing during femtosecond laser processing,” Opt. Express 18(4), 3700–3707 (2010).
    [Crossref] [PubMed]
  37. B. Vasudevan, T. L. Simpson, and J. G. Sivak, “Regional variation in the refractive-index of the bovine and human cornea,” Optom. Vis. Sci. 85(10), 977–981 (2008).
    [Crossref] [PubMed]
  38. V. Nuzzo, M. Savoldelli, J. M. Legeais, and K. Plamann, “Self-focusing and spherical aberrations in corneal tissue during photodisruption by femtosecond laser,” J. Biomed. Opt. 15(3), 038003 (2010).
    [Crossref] [PubMed]
  39. A. K. Riau, R. I. Angunawela, S. S. Chaurasia, D. T. Tan, and J. S. Mehta, “Effect of different femtosecond laser-firing patterns on collagen disruption during refractive lenticule extraction,” J. Cataract Refract. Surg. 38(8), 1467–1475 (2012).
    [Crossref] [PubMed]
  40. A. K. Dexl, O. Seyeddain, W. Riha, M. Hohensinn, T. Rückl, V. Reischl, and G. Grabner, “One-year visual outcomes and patient satisfaction after surgical correction of presbyopia with an intracorneal inlay of a new design,” J. Cataract Refract. Surg. 38(2), 262–269 (2012).
    [Crossref] [PubMed]
  41. S. Schumacher, U. Oberheide, M. Fromm, T. Ripken, W. Ertmer, G. Gerten, A. Wegener, and H. Lubatschowski, “Femtosecond laser induced flexibility change of human donor lenses,” Vision Res. 49(14), 1853–1859 (2009).
    [Crossref] [PubMed]

2012 (3)

M. Peter, R. Kammel, R. Ackermann, S. Schramm, B. U. Seifert, K. Frey, M. Blum, S. Nolte, and K. S. Kunert, “Analysis of optical side-effects of fs-laser therapy in human presbyopic lens simulated with modified contact lenses,” Graefes Arch. Clin. Exp. Ophthalmol. 250(12), 1813–1825 (2012).
[Crossref] [PubMed]

A. K. Riau, R. I. Angunawela, S. S. Chaurasia, D. T. Tan, and J. S. Mehta, “Effect of different femtosecond laser-firing patterns on collagen disruption during refractive lenticule extraction,” J. Cataract Refract. Surg. 38(8), 1467–1475 (2012).
[Crossref] [PubMed]

A. K. Dexl, O. Seyeddain, W. Riha, M. Hohensinn, T. Rückl, V. Reischl, and G. Grabner, “One-year visual outcomes and patient satisfaction after surgical correction of presbyopia with an intracorneal inlay of a new design,” J. Cataract Refract. Surg. 38(2), 262–269 (2012).
[Crossref] [PubMed]

2011 (3)

R. Ackermann, K. S. Kunert, R. Kammel, S. Bischoff, S. C. Bühren, H. Schubert, M. Blum, and S. Nolte, “Femtosecond laser treatment of the crystalline lens: a 1-year study of possible cataractogenesis in minipigs,” Graefes Arch. Clin. Exp. Ophthalmol. 249(10), 1567–1573 (2011).
[Crossref] [PubMed]

L. Wang, M. Shirayama, X. J. Ma, T. Kohnen, and D. D. Koch, “Optimizing intraocular lens power calculations in eyes with axial lengths above 25.0 mm,” J. Cataract Refract. Surg. 37(11), 2018–2027 (2011).
[Crossref] [PubMed]

L. Xu, W. H. Knox, M. DeMagistris, N. Wang, and K. R. Huxlin, “Noninvasive intratissue refractive index shaping (IRIS) of the cornea with blue femtosecond laser light,” Invest. Ophthalmol. Vis. Sci. 52(11), 8148–8155 (2011).
[Crossref] [PubMed]

2010 (5)

L. J. Nagy, L. Ding, L. Xu, W. H. Knox, and K. R. Huxlin, “Potentiation of femtosecond laser intratissue refractive index shaping (IRIS) in the living cornea with sodium fluorescein,” Invest. Ophthalmol. Vis. Sci. 51(2), 850–856 (2010).
[Crossref] [PubMed]

R. C. Bakaraju, K. Ehrmann, D. Falk, A. Ho, and E. Papas, “Physical human model eye and methods of its use to analyse optical performance of soft contact lenses,” Opt. Express 18(16), 16868–16882 (2010).
[Crossref] [PubMed]

H. Lubatschowski, S. Schumacher, M. Fromm, A. Wegener, H. Hoffmann, U. Oberheide, and G. Gerten, “Femtosecond lentotomy: generating gliding planes inside the crystalline lens to regain accommodation ability,” J Biophotonics 3(5-6), 265–268 (2010).
[Crossref] [PubMed]

M. Miclea, U. Skrzypczak, S. Faust, F. Fankhauser, H. Graener, and G. Seifert, “Nonlinear refractive index of porcine cornea studied by z-scan and self-focusing during femtosecond laser processing,” Opt. Express 18(4), 3700–3707 (2010).
[Crossref] [PubMed]

V. Nuzzo, M. Savoldelli, J. M. Legeais, and K. Plamann, “Self-focusing and spherical aberrations in corneal tissue during photodisruption by femtosecond laser,” J. Biomed. Opt. 15(3), 038003 (2010).
[Crossref] [PubMed]

2009 (6)

S. Schumacher, U. Oberheide, M. Fromm, T. Ripken, W. Ertmer, G. Gerten, A. Wegener, and H. Lubatschowski, “Femtosecond laser induced flexibility change of human donor lenses,” Vision Res. 49(14), 1853–1859 (2009).
[Crossref] [PubMed]

S. Schumacher, M. Fromm, U. Oberheide, P. Bock, I. Imbschweiler, H. Hoffmann, A. Beineke, G. Gerten, A. Wegener, and H. Lubatschowski, “Femtosecond-lentotomy treatment: six-month follow-up of in vivo treated rabbit lenses,” Proc. SPIE 7373, 73730H, 73730H-8 (2009).
[Crossref]

M. P. Poudel, “Study of self-focusing effect induced by femtosecond photodisruption on model substances,” Opt. Lett. 34(3), 337–339 (2009).
[Crossref] [PubMed]

C. Hönninger, M. Plötner, B. Ortaç, R. Ackermann, R. Kammel, J. Limpert, S. Nolte, and A. Tünnermann, “Femtosecond fiber laser system for medical applications,” Proc. SPIE 7203, 72030W, 72030W-6 (2009).
[Crossref]

S. Bamba, K. M. Rocha, J. C. Ramos-Esteban, and R. R. Krueger, “Incidence of rainbow glare after laser in situ keratomileusis flap creation with a 60 kHz femtosecond laser,” J. Cataract Refract. Surg. 35(6), 1082–1086 (2009).
[Crossref] [PubMed]

Z. Nagy, A. Takacs, T. Filkorn, and M. Sarayba, “Initial clinical evaluation of an intraocular femtosecond laser in cataract surgery,” J. Refract. Surg. 25(12), 1053–1060 (2009).
[Crossref] [PubMed]

2008 (5)

S. Toropygin, M. Krause, I. Riemann, M. Hild, P. Mestres, B. Seitz, E. Khurieva, K. W. Ruprecht, U. Löw, Z. Gatzioufas, and K. König, “In vitro noncontact intravascular femtosecond laser surgery in models of branch retinal vein occlusion,” Curr. Eye Res. 33(3), 277–283 (2008).
[Crossref] [PubMed]

L. Ding, W. H. Knox, J. Bühren, L. J. Nagy, and K. R. Huxlin, “Intratissue refractive index shaping (IRIS) of the cornea and lens using a low-pulse-energy femtosecond laser oscillator,” Invest. Ophthalmol. Vis. Sci. 49(12), 5332–5339 (2008).
[Crossref] [PubMed]

R. R. Krueger, I. L. Thornton, M. Xu, Z. Bor, and T. J. van den Berg, “Rainbow glare as an optical side effect of IntraLASIK,” Ophthalmology 115(7), 1187–1195.e1 (2008).
[Crossref] [PubMed]

E. A. Hermans, M. Dubbelman, R. Van der Heijde, and R. M. Heethaar, “Equivalent refractive index of the human lens upon accommodative response,” Optom. Vis. Sci. 85(12), 1179–1184 (2008).
[Crossref] [PubMed]

B. Vasudevan, T. L. Simpson, and J. G. Sivak, “Regional variation in the refractive-index of the bovine and human cornea,” Optom. Vis. Sci. 85(10), 977–981 (2008).
[Crossref] [PubMed]

2007 (2)

2006 (2)

K. Stonecipher, T. S. Ignacio, and M. Stonecipher, “Advances in refractive surgery: microkeratome and femtosecond laser flap creation in relation to safety, efficacy, predictability, and biomechanical stability,” Curr. Opin. Ophthalmol. 17(4), 368–372 (2006).
[Crossref] [PubMed]

J. Y. Kim, M. J. Kim, T. I. Kim, H. J. Choi, J. H. Pak, and H. Tchah, “A femtosecond laser creates a stronger flap than a mechanical microkeratome,” Invest. Ophthalmol. Vis. Sci. 47(2), 599–604 (2006).
[Crossref] [PubMed]

2005 (2)

T. Ripken, U. Oberheide, C. Ziltz, W. Ertmer, G. Gerten, and H. Lubatschowski, “Fs-laser induced elasticity changes to improve presbyopic lens accommodation,” Proc. SPIE 5688, 278–287 (2005).
[Crossref]

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

2003 (1)

J. Németh, O. Fekete, and N. Pesztenlehrer, “Optical and ultrasound measurement of axial length and anterior chamber depth for intraocular lens power calculation,” J. Cataract Refract. Surg. 29(1), 85–88 (2003).
[Crossref] [PubMed]

2002 (2)

M. Hammer, D. Schweitzer, W. Ziegler, M. Wiechmann, and J. Strobel, “Intrastromale refraktive Chirurgie mit ultrakurzen Laserpulsen Ergebnisse erster In-vitro-Experimente [Intrastomal refractive surgery with ultra-short laser pulses. Results from initial in vitro experiments],” Ophthalmologe 99(10), 756–760 (2002).
[Crossref] [PubMed]

W. J. Benjamin and Q. A. Cappelli, “Oxygen permeability (Dk) of thirty-seven rigid contact lens materials,” Optom. Vis. Sci. 79(2), 103–111 (2002).
[Crossref] [PubMed]

1996 (1)

T. Juhasz, G. A. Kastis, C. Suárez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med. 19(1), 23–31 (1996).
[Crossref] [PubMed]

1994 (1)

T. Grosvenor and R. Scott, “Role of the axial length/corneal radius ratio in determining the refractive state of the eye,” Optom. Vis. Sci. 71(9), 573–579 (1994).
[Crossref] [PubMed]

1991 (1)

H. Wässle and B. B. Boycott, “Functional architecture of the mammalian retina,” Physiol. Rev. 71(2), 447–480 (1991).
[PubMed]

1987 (1)

H. Uozato and D. L. Guyton, “Centering corneal surgical procedures,” Am. J. Ophthalmol. 103(3 Pt 1), 264–275 (1987).
[PubMed]

Ackermann, R.

M. Peter, R. Kammel, R. Ackermann, S. Schramm, B. U. Seifert, K. Frey, M. Blum, S. Nolte, and K. S. Kunert, “Analysis of optical side-effects of fs-laser therapy in human presbyopic lens simulated with modified contact lenses,” Graefes Arch. Clin. Exp. Ophthalmol. 250(12), 1813–1825 (2012).
[Crossref] [PubMed]

R. Ackermann, K. S. Kunert, R. Kammel, S. Bischoff, S. C. Bühren, H. Schubert, M. Blum, and S. Nolte, “Femtosecond laser treatment of the crystalline lens: a 1-year study of possible cataractogenesis in minipigs,” Graefes Arch. Clin. Exp. Ophthalmol. 249(10), 1567–1573 (2011).
[Crossref] [PubMed]

C. Hönninger, M. Plötner, B. Ortaç, R. Ackermann, R. Kammel, J. Limpert, S. Nolte, and A. Tünnermann, “Femtosecond fiber laser system for medical applications,” Proc. SPIE 7203, 72030W, 72030W-6 (2009).
[Crossref]

Angunawela, R. I.

A. K. Riau, R. I. Angunawela, S. S. Chaurasia, D. T. Tan, and J. S. Mehta, “Effect of different femtosecond laser-firing patterns on collagen disruption during refractive lenticule extraction,” J. Cataract Refract. Surg. 38(8), 1467–1475 (2012).
[Crossref] [PubMed]

Bakaraju, R. C.

Bamba, S.

S. Bamba, K. M. Rocha, J. C. Ramos-Esteban, and R. R. Krueger, “Incidence of rainbow glare after laser in situ keratomileusis flap creation with a 60 kHz femtosecond laser,” J. Cataract Refract. Surg. 35(6), 1082–1086 (2009).
[Crossref] [PubMed]

Beineke, A.

S. Schumacher, M. Fromm, U. Oberheide, P. Bock, I. Imbschweiler, H. Hoffmann, A. Beineke, G. Gerten, A. Wegener, and H. Lubatschowski, “Femtosecond-lentotomy treatment: six-month follow-up of in vivo treated rabbit lenses,” Proc. SPIE 7373, 73730H, 73730H-8 (2009).
[Crossref]

Benjamin, W. J.

W. J. Benjamin and Q. A. Cappelli, “Oxygen permeability (Dk) of thirty-seven rigid contact lens materials,” Optom. Vis. Sci. 79(2), 103–111 (2002).
[Crossref] [PubMed]

Bischoff, S.

R. Ackermann, K. S. Kunert, R. Kammel, S. Bischoff, S. C. Bühren, H. Schubert, M. Blum, and S. Nolte, “Femtosecond laser treatment of the crystalline lens: a 1-year study of possible cataractogenesis in minipigs,” Graefes Arch. Clin. Exp. Ophthalmol. 249(10), 1567–1573 (2011).
[Crossref] [PubMed]

Blum, M.

M. Peter, R. Kammel, R. Ackermann, S. Schramm, B. U. Seifert, K. Frey, M. Blum, S. Nolte, and K. S. Kunert, “Analysis of optical side-effects of fs-laser therapy in human presbyopic lens simulated with modified contact lenses,” Graefes Arch. Clin. Exp. Ophthalmol. 250(12), 1813–1825 (2012).
[Crossref] [PubMed]

R. Ackermann, K. S. Kunert, R. Kammel, S. Bischoff, S. C. Bühren, H. Schubert, M. Blum, and S. Nolte, “Femtosecond laser treatment of the crystalline lens: a 1-year study of possible cataractogenesis in minipigs,” Graefes Arch. Clin. Exp. Ophthalmol. 249(10), 1567–1573 (2011).
[Crossref] [PubMed]

Bock, P.

S. Schumacher, M. Fromm, U. Oberheide, P. Bock, I. Imbschweiler, H. Hoffmann, A. Beineke, G. Gerten, A. Wegener, and H. Lubatschowski, “Femtosecond-lentotomy treatment: six-month follow-up of in vivo treated rabbit lenses,” Proc. SPIE 7373, 73730H, 73730H-8 (2009).
[Crossref]

Bor, Z.

R. R. Krueger, I. L. Thornton, M. Xu, Z. Bor, and T. J. van den Berg, “Rainbow glare as an optical side effect of IntraLASIK,” Ophthalmology 115(7), 1187–1195.e1 (2008).
[Crossref] [PubMed]

T. Juhasz, G. A. Kastis, C. Suárez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med. 19(1), 23–31 (1996).
[Crossref] [PubMed]

Boycott, B. B.

H. Wässle and B. B. Boycott, “Functional architecture of the mammalian retina,” Physiol. Rev. 71(2), 447–480 (1991).
[PubMed]

Bron, W. E.

T. Juhasz, G. A. Kastis, C. Suárez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med. 19(1), 23–31 (1996).
[Crossref] [PubMed]

Brunette, I.

Bühren, J.

L. Ding, W. H. Knox, J. Bühren, L. J. Nagy, and K. R. Huxlin, “Intratissue refractive index shaping (IRIS) of the cornea and lens using a low-pulse-energy femtosecond laser oscillator,” Invest. Ophthalmol. Vis. Sci. 49(12), 5332–5339 (2008).
[Crossref] [PubMed]

Bühren, S. C.

R. Ackermann, K. S. Kunert, R. Kammel, S. Bischoff, S. C. Bühren, H. Schubert, M. Blum, and S. Nolte, “Femtosecond laser treatment of the crystalline lens: a 1-year study of possible cataractogenesis in minipigs,” Graefes Arch. Clin. Exp. Ophthalmol. 249(10), 1567–1573 (2011).
[Crossref] [PubMed]

Campbell, C.

Cappelli, Q. A.

W. J. Benjamin and Q. A. Cappelli, “Oxygen permeability (Dk) of thirty-seven rigid contact lens materials,” Optom. Vis. Sci. 79(2), 103–111 (2002).
[Crossref] [PubMed]

Chaurasia, S. S.

A. K. Riau, R. I. Angunawela, S. S. Chaurasia, D. T. Tan, and J. S. Mehta, “Effect of different femtosecond laser-firing patterns on collagen disruption during refractive lenticule extraction,” J. Cataract Refract. Surg. 38(8), 1467–1475 (2012).
[Crossref] [PubMed]

Choi, H. J.

J. Y. Kim, M. J. Kim, T. I. Kim, H. J. Choi, J. H. Pak, and H. Tchah, “A femtosecond laser creates a stronger flap than a mechanical microkeratome,” Invest. Ophthalmol. Vis. Sci. 47(2), 599–604 (2006).
[Crossref] [PubMed]

DeMagistris, M.

L. Xu, W. H. Knox, M. DeMagistris, N. Wang, and K. R. Huxlin, “Noninvasive intratissue refractive index shaping (IRIS) of the cornea with blue femtosecond laser light,” Invest. Ophthalmol. Vis. Sci. 52(11), 8148–8155 (2011).
[Crossref] [PubMed]

Dexl, A. K.

A. K. Dexl, O. Seyeddain, W. Riha, M. Hohensinn, T. Rückl, V. Reischl, and G. Grabner, “One-year visual outcomes and patient satisfaction after surgical correction of presbyopia with an intracorneal inlay of a new design,” J. Cataract Refract. Surg. 38(2), 262–269 (2012).
[Crossref] [PubMed]

Ding, L.

L. J. Nagy, L. Ding, L. Xu, W. H. Knox, and K. R. Huxlin, “Potentiation of femtosecond laser intratissue refractive index shaping (IRIS) in the living cornea with sodium fluorescein,” Invest. Ophthalmol. Vis. Sci. 51(2), 850–856 (2010).
[Crossref] [PubMed]

L. Ding, W. H. Knox, J. Bühren, L. J. Nagy, and K. R. Huxlin, “Intratissue refractive index shaping (IRIS) of the cornea and lens using a low-pulse-energy femtosecond laser oscillator,” Invest. Ophthalmol. Vis. Sci. 49(12), 5332–5339 (2008).
[Crossref] [PubMed]

Dubbelman, M.

E. A. Hermans, M. Dubbelman, R. Van der Heijde, and R. M. Heethaar, “Equivalent refractive index of the human lens upon accommodative response,” Optom. Vis. Sci. 85(12), 1179–1184 (2008).
[Crossref] [PubMed]

Ehrmann, K.

Ertmer, W.

S. Schumacher, U. Oberheide, M. Fromm, T. Ripken, W. Ertmer, G. Gerten, A. Wegener, and H. Lubatschowski, “Femtosecond laser induced flexibility change of human donor lenses,” Vision Res. 49(14), 1853–1859 (2009).
[Crossref] [PubMed]

T. Ripken, U. Oberheide, C. Ziltz, W. Ertmer, G. Gerten, and H. Lubatschowski, “Fs-laser induced elasticity changes to improve presbyopic lens accommodation,” Proc. SPIE 5688, 278–287 (2005).
[Crossref]

Falk, D.

Fankhauser, F.

Faust, S.

Fekete, O.

J. Németh, O. Fekete, and N. Pesztenlehrer, “Optical and ultrasound measurement of axial length and anterior chamber depth for intraocular lens power calculation,” J. Cataract Refract. Surg. 29(1), 85–88 (2003).
[Crossref] [PubMed]

Filkorn, T.

Z. Nagy, A. Takacs, T. Filkorn, and M. Sarayba, “Initial clinical evaluation of an intraocular femtosecond laser in cataract surgery,” J. Refract. Surg. 25(12), 1053–1060 (2009).
[Crossref] [PubMed]

Frey, K.

M. Peter, R. Kammel, R. Ackermann, S. Schramm, B. U. Seifert, K. Frey, M. Blum, S. Nolte, and K. S. Kunert, “Analysis of optical side-effects of fs-laser therapy in human presbyopic lens simulated with modified contact lenses,” Graefes Arch. Clin. Exp. Ophthalmol. 250(12), 1813–1825 (2012).
[Crossref] [PubMed]

Fromm, M.

H. Lubatschowski, S. Schumacher, M. Fromm, A. Wegener, H. Hoffmann, U. Oberheide, and G. Gerten, “Femtosecond lentotomy: generating gliding planes inside the crystalline lens to regain accommodation ability,” J Biophotonics 3(5-6), 265–268 (2010).
[Crossref] [PubMed]

S. Schumacher, M. Fromm, U. Oberheide, P. Bock, I. Imbschweiler, H. Hoffmann, A. Beineke, G. Gerten, A. Wegener, and H. Lubatschowski, “Femtosecond-lentotomy treatment: six-month follow-up of in vivo treated rabbit lenses,” Proc. SPIE 7373, 73730H, 73730H-8 (2009).
[Crossref]

S. Schumacher, U. Oberheide, M. Fromm, T. Ripken, W. Ertmer, G. Gerten, A. Wegener, and H. Lubatschowski, “Femtosecond laser induced flexibility change of human donor lenses,” Vision Res. 49(14), 1853–1859 (2009).
[Crossref] [PubMed]

Gatzioufas, Z.

S. Toropygin, M. Krause, I. Riemann, M. Hild, P. Mestres, B. Seitz, E. Khurieva, K. W. Ruprecht, U. Löw, Z. Gatzioufas, and K. König, “In vitro noncontact intravascular femtosecond laser surgery in models of branch retinal vein occlusion,” Curr. Eye Res. 33(3), 277–283 (2008).
[Crossref] [PubMed]

Gerten, G.

H. Lubatschowski, S. Schumacher, M. Fromm, A. Wegener, H. Hoffmann, U. Oberheide, and G. Gerten, “Femtosecond lentotomy: generating gliding planes inside the crystalline lens to regain accommodation ability,” J Biophotonics 3(5-6), 265–268 (2010).
[Crossref] [PubMed]

S. Schumacher, M. Fromm, U. Oberheide, P. Bock, I. Imbschweiler, H. Hoffmann, A. Beineke, G. Gerten, A. Wegener, and H. Lubatschowski, “Femtosecond-lentotomy treatment: six-month follow-up of in vivo treated rabbit lenses,” Proc. SPIE 7373, 73730H, 73730H-8 (2009).
[Crossref]

S. Schumacher, U. Oberheide, M. Fromm, T. Ripken, W. Ertmer, G. Gerten, A. Wegener, and H. Lubatschowski, “Femtosecond laser induced flexibility change of human donor lenses,” Vision Res. 49(14), 1853–1859 (2009).
[Crossref] [PubMed]

T. Ripken, U. Oberheide, C. Ziltz, W. Ertmer, G. Gerten, and H. Lubatschowski, “Fs-laser induced elasticity changes to improve presbyopic lens accommodation,” Proc. SPIE 5688, 278–287 (2005).
[Crossref]

Giguère, D.

Girard, G.

Grabner, G.

A. K. Dexl, O. Seyeddain, W. Riha, M. Hohensinn, T. Rückl, V. Reischl, and G. Grabner, “One-year visual outcomes and patient satisfaction after surgical correction of presbyopia with an intracorneal inlay of a new design,” J. Cataract Refract. Surg. 38(2), 262–269 (2012).
[Crossref] [PubMed]

Graener, H.

Grosvenor, T.

T. Grosvenor and R. Scott, “Role of the axial length/corneal radius ratio in determining the refractive state of the eye,” Optom. Vis. Sci. 71(9), 573–579 (1994).
[Crossref] [PubMed]

Guyton, D. L.

H. Uozato and D. L. Guyton, “Centering corneal surgical procedures,” Am. J. Ophthalmol. 103(3 Pt 1), 264–275 (1987).
[PubMed]

Hammer, M.

M. Hammer, D. Schweitzer, W. Ziegler, M. Wiechmann, and J. Strobel, “Intrastromale refraktive Chirurgie mit ultrakurzen Laserpulsen Ergebnisse erster In-vitro-Experimente [Intrastomal refractive surgery with ultra-short laser pulses. Results from initial in vitro experiments],” Ophthalmologe 99(10), 756–760 (2002).
[Crossref] [PubMed]

Heethaar, R. M.

E. A. Hermans, M. Dubbelman, R. Van der Heijde, and R. M. Heethaar, “Equivalent refractive index of the human lens upon accommodative response,” Optom. Vis. Sci. 85(12), 1179–1184 (2008).
[Crossref] [PubMed]

Hermans, E. A.

E. A. Hermans, M. Dubbelman, R. Van der Heijde, and R. M. Heethaar, “Equivalent refractive index of the human lens upon accommodative response,” Optom. Vis. Sci. 85(12), 1179–1184 (2008).
[Crossref] [PubMed]

Hild, M.

S. Toropygin, M. Krause, I. Riemann, M. Hild, P. Mestres, B. Seitz, E. Khurieva, K. W. Ruprecht, U. Löw, Z. Gatzioufas, and K. König, “In vitro noncontact intravascular femtosecond laser surgery in models of branch retinal vein occlusion,” Curr. Eye Res. 33(3), 277–283 (2008).
[Crossref] [PubMed]

Ho, A.

Hoffmann, H.

H. Lubatschowski, S. Schumacher, M. Fromm, A. Wegener, H. Hoffmann, U. Oberheide, and G. Gerten, “Femtosecond lentotomy: generating gliding planes inside the crystalline lens to regain accommodation ability,” J Biophotonics 3(5-6), 265–268 (2010).
[Crossref] [PubMed]

S. Schumacher, M. Fromm, U. Oberheide, P. Bock, I. Imbschweiler, H. Hoffmann, A. Beineke, G. Gerten, A. Wegener, and H. Lubatschowski, “Femtosecond-lentotomy treatment: six-month follow-up of in vivo treated rabbit lenses,” Proc. SPIE 7373, 73730H, 73730H-8 (2009).
[Crossref]

Hohensinn, M.

A. K. Dexl, O. Seyeddain, W. Riha, M. Hohensinn, T. Rückl, V. Reischl, and G. Grabner, “One-year visual outcomes and patient satisfaction after surgical correction of presbyopia with an intracorneal inlay of a new design,” J. Cataract Refract. Surg. 38(2), 262–269 (2012).
[Crossref] [PubMed]

Hönninger, C.

C. Hönninger, M. Plötner, B. Ortaç, R. Ackermann, R. Kammel, J. Limpert, S. Nolte, and A. Tünnermann, “Femtosecond fiber laser system for medical applications,” Proc. SPIE 7203, 72030W, 72030W-6 (2009).
[Crossref]

Hüttman, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Huxlin, K. R.

L. Xu, W. H. Knox, M. DeMagistris, N. Wang, and K. R. Huxlin, “Noninvasive intratissue refractive index shaping (IRIS) of the cornea with blue femtosecond laser light,” Invest. Ophthalmol. Vis. Sci. 52(11), 8148–8155 (2011).
[Crossref] [PubMed]

L. J. Nagy, L. Ding, L. Xu, W. H. Knox, and K. R. Huxlin, “Potentiation of femtosecond laser intratissue refractive index shaping (IRIS) in the living cornea with sodium fluorescein,” Invest. Ophthalmol. Vis. Sci. 51(2), 850–856 (2010).
[Crossref] [PubMed]

L. Ding, W. H. Knox, J. Bühren, L. J. Nagy, and K. R. Huxlin, “Intratissue refractive index shaping (IRIS) of the cornea and lens using a low-pulse-energy femtosecond laser oscillator,” Invest. Ophthalmol. Vis. Sci. 49(12), 5332–5339 (2008).
[Crossref] [PubMed]

Ignacio, T. S.

K. Stonecipher, T. S. Ignacio, and M. Stonecipher, “Advances in refractive surgery: microkeratome and femtosecond laser flap creation in relation to safety, efficacy, predictability, and biomechanical stability,” Curr. Opin. Ophthalmol. 17(4), 368–372 (2006).
[Crossref] [PubMed]

Imbschweiler, I.

S. Schumacher, M. Fromm, U. Oberheide, P. Bock, I. Imbschweiler, H. Hoffmann, A. Beineke, G. Gerten, A. Wegener, and H. Lubatschowski, “Femtosecond-lentotomy treatment: six-month follow-up of in vivo treated rabbit lenses,” Proc. SPIE 7373, 73730H, 73730H-8 (2009).
[Crossref]

Juhasz, T.

T. Juhasz, G. A. Kastis, C. Suárez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med. 19(1), 23–31 (1996).
[Crossref] [PubMed]

Kammel, R.

M. Peter, R. Kammel, R. Ackermann, S. Schramm, B. U. Seifert, K. Frey, M. Blum, S. Nolte, and K. S. Kunert, “Analysis of optical side-effects of fs-laser therapy in human presbyopic lens simulated with modified contact lenses,” Graefes Arch. Clin. Exp. Ophthalmol. 250(12), 1813–1825 (2012).
[Crossref] [PubMed]

R. Ackermann, K. S. Kunert, R. Kammel, S. Bischoff, S. C. Bühren, H. Schubert, M. Blum, and S. Nolte, “Femtosecond laser treatment of the crystalline lens: a 1-year study of possible cataractogenesis in minipigs,” Graefes Arch. Clin. Exp. Ophthalmol. 249(10), 1567–1573 (2011).
[Crossref] [PubMed]

C. Hönninger, M. Plötner, B. Ortaç, R. Ackermann, R. Kammel, J. Limpert, S. Nolte, and A. Tünnermann, “Femtosecond fiber laser system for medical applications,” Proc. SPIE 7203, 72030W, 72030W-6 (2009).
[Crossref]

Kastis, G. A.

T. Juhasz, G. A. Kastis, C. Suárez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med. 19(1), 23–31 (1996).
[Crossref] [PubMed]

Khurieva, E.

S. Toropygin, M. Krause, I. Riemann, M. Hild, P. Mestres, B. Seitz, E. Khurieva, K. W. Ruprecht, U. Löw, Z. Gatzioufas, and K. König, “In vitro noncontact intravascular femtosecond laser surgery in models of branch retinal vein occlusion,” Curr. Eye Res. 33(3), 277–283 (2008).
[Crossref] [PubMed]

Kieffer, J. C.

Kim, J. Y.

J. Y. Kim, M. J. Kim, T. I. Kim, H. J. Choi, J. H. Pak, and H. Tchah, “A femtosecond laser creates a stronger flap than a mechanical microkeratome,” Invest. Ophthalmol. Vis. Sci. 47(2), 599–604 (2006).
[Crossref] [PubMed]

Kim, M. J.

J. Y. Kim, M. J. Kim, T. I. Kim, H. J. Choi, J. H. Pak, and H. Tchah, “A femtosecond laser creates a stronger flap than a mechanical microkeratome,” Invest. Ophthalmol. Vis. Sci. 47(2), 599–604 (2006).
[Crossref] [PubMed]

Kim, T. I.

J. Y. Kim, M. J. Kim, T. I. Kim, H. J. Choi, J. H. Pak, and H. Tchah, “A femtosecond laser creates a stronger flap than a mechanical microkeratome,” Invest. Ophthalmol. Vis. Sci. 47(2), 599–604 (2006).
[Crossref] [PubMed]

Knox, W. H.

L. Xu, W. H. Knox, M. DeMagistris, N. Wang, and K. R. Huxlin, “Noninvasive intratissue refractive index shaping (IRIS) of the cornea with blue femtosecond laser light,” Invest. Ophthalmol. Vis. Sci. 52(11), 8148–8155 (2011).
[Crossref] [PubMed]

L. J. Nagy, L. Ding, L. Xu, W. H. Knox, and K. R. Huxlin, “Potentiation of femtosecond laser intratissue refractive index shaping (IRIS) in the living cornea with sodium fluorescein,” Invest. Ophthalmol. Vis. Sci. 51(2), 850–856 (2010).
[Crossref] [PubMed]

L. Ding, W. H. Knox, J. Bühren, L. J. Nagy, and K. R. Huxlin, “Intratissue refractive index shaping (IRIS) of the cornea and lens using a low-pulse-energy femtosecond laser oscillator,” Invest. Ophthalmol. Vis. Sci. 49(12), 5332–5339 (2008).
[Crossref] [PubMed]

Koch, D. D.

L. Wang, M. Shirayama, X. J. Ma, T. Kohnen, and D. D. Koch, “Optimizing intraocular lens power calculations in eyes with axial lengths above 25.0 mm,” J. Cataract Refract. Surg. 37(11), 2018–2027 (2011).
[Crossref] [PubMed]

Kohnen, T.

L. Wang, M. Shirayama, X. J. Ma, T. Kohnen, and D. D. Koch, “Optimizing intraocular lens power calculations in eyes with axial lengths above 25.0 mm,” J. Cataract Refract. Surg. 37(11), 2018–2027 (2011).
[Crossref] [PubMed]

König, K.

S. Toropygin, M. Krause, I. Riemann, M. Hild, P. Mestres, B. Seitz, E. Khurieva, K. W. Ruprecht, U. Löw, Z. Gatzioufas, and K. König, “In vitro noncontact intravascular femtosecond laser surgery in models of branch retinal vein occlusion,” Curr. Eye Res. 33(3), 277–283 (2008).
[Crossref] [PubMed]

Krause, M.

S. Toropygin, M. Krause, I. Riemann, M. Hild, P. Mestres, B. Seitz, E. Khurieva, K. W. Ruprecht, U. Löw, Z. Gatzioufas, and K. König, “In vitro noncontact intravascular femtosecond laser surgery in models of branch retinal vein occlusion,” Curr. Eye Res. 33(3), 277–283 (2008).
[Crossref] [PubMed]

Krueger, R. R.

S. Bamba, K. M. Rocha, J. C. Ramos-Esteban, and R. R. Krueger, “Incidence of rainbow glare after laser in situ keratomileusis flap creation with a 60 kHz femtosecond laser,” J. Cataract Refract. Surg. 35(6), 1082–1086 (2009).
[Crossref] [PubMed]

R. R. Krueger, I. L. Thornton, M. Xu, Z. Bor, and T. J. van den Berg, “Rainbow glare as an optical side effect of IntraLASIK,” Ophthalmology 115(7), 1187–1195.e1 (2008).
[Crossref] [PubMed]

Kunert, K. S.

M. Peter, R. Kammel, R. Ackermann, S. Schramm, B. U. Seifert, K. Frey, M. Blum, S. Nolte, and K. S. Kunert, “Analysis of optical side-effects of fs-laser therapy in human presbyopic lens simulated with modified contact lenses,” Graefes Arch. Clin. Exp. Ophthalmol. 250(12), 1813–1825 (2012).
[Crossref] [PubMed]

R. Ackermann, K. S. Kunert, R. Kammel, S. Bischoff, S. C. Bühren, H. Schubert, M. Blum, and S. Nolte, “Femtosecond laser treatment of the crystalline lens: a 1-year study of possible cataractogenesis in minipigs,” Graefes Arch. Clin. Exp. Ophthalmol. 249(10), 1567–1573 (2011).
[Crossref] [PubMed]

Legeais, J. M.

V. Nuzzo, M. Savoldelli, J. M. Legeais, and K. Plamann, “Self-focusing and spherical aberrations in corneal tissue during photodisruption by femtosecond laser,” J. Biomed. Opt. 15(3), 038003 (2010).
[Crossref] [PubMed]

Limpert, J.

C. Hönninger, M. Plötner, B. Ortaç, R. Ackermann, R. Kammel, J. Limpert, S. Nolte, and A. Tünnermann, “Femtosecond fiber laser system for medical applications,” Proc. SPIE 7203, 72030W, 72030W-6 (2009).
[Crossref]

Löw, U.

S. Toropygin, M. Krause, I. Riemann, M. Hild, P. Mestres, B. Seitz, E. Khurieva, K. W. Ruprecht, U. Löw, Z. Gatzioufas, and K. König, “In vitro noncontact intravascular femtosecond laser surgery in models of branch retinal vein occlusion,” Curr. Eye Res. 33(3), 277–283 (2008).
[Crossref] [PubMed]

Lubatschowski, H.

H. Lubatschowski, S. Schumacher, M. Fromm, A. Wegener, H. Hoffmann, U. Oberheide, and G. Gerten, “Femtosecond lentotomy: generating gliding planes inside the crystalline lens to regain accommodation ability,” J Biophotonics 3(5-6), 265–268 (2010).
[Crossref] [PubMed]

S. Schumacher, M. Fromm, U. Oberheide, P. Bock, I. Imbschweiler, H. Hoffmann, A. Beineke, G. Gerten, A. Wegener, and H. Lubatschowski, “Femtosecond-lentotomy treatment: six-month follow-up of in vivo treated rabbit lenses,” Proc. SPIE 7373, 73730H, 73730H-8 (2009).
[Crossref]

S. Schumacher, U. Oberheide, M. Fromm, T. Ripken, W. Ertmer, G. Gerten, A. Wegener, and H. Lubatschowski, “Femtosecond laser induced flexibility change of human donor lenses,” Vision Res. 49(14), 1853–1859 (2009).
[Crossref] [PubMed]

T. Ripken, U. Oberheide, C. Ziltz, W. Ertmer, G. Gerten, and H. Lubatschowski, “Fs-laser induced elasticity changes to improve presbyopic lens accommodation,” Proc. SPIE 5688, 278–287 (2005).
[Crossref]

Ma, X. J.

L. Wang, M. Shirayama, X. J. Ma, T. Kohnen, and D. D. Koch, “Optimizing intraocular lens power calculations in eyes with axial lengths above 25.0 mm,” J. Cataract Refract. Surg. 37(11), 2018–2027 (2011).
[Crossref] [PubMed]

Mehta, J. S.

A. K. Riau, R. I. Angunawela, S. S. Chaurasia, D. T. Tan, and J. S. Mehta, “Effect of different femtosecond laser-firing patterns on collagen disruption during refractive lenticule extraction,” J. Cataract Refract. Surg. 38(8), 1467–1475 (2012).
[Crossref] [PubMed]

Mestres, P.

S. Toropygin, M. Krause, I. Riemann, M. Hild, P. Mestres, B. Seitz, E. Khurieva, K. W. Ruprecht, U. Löw, Z. Gatzioufas, and K. König, “In vitro noncontact intravascular femtosecond laser surgery in models of branch retinal vein occlusion,” Curr. Eye Res. 33(3), 277–283 (2008).
[Crossref] [PubMed]

Miclea, M.

Nada, O.

Nagy, L. J.

L. J. Nagy, L. Ding, L. Xu, W. H. Knox, and K. R. Huxlin, “Potentiation of femtosecond laser intratissue refractive index shaping (IRIS) in the living cornea with sodium fluorescein,” Invest. Ophthalmol. Vis. Sci. 51(2), 850–856 (2010).
[Crossref] [PubMed]

L. Ding, W. H. Knox, J. Bühren, L. J. Nagy, and K. R. Huxlin, “Intratissue refractive index shaping (IRIS) of the cornea and lens using a low-pulse-energy femtosecond laser oscillator,” Invest. Ophthalmol. Vis. Sci. 49(12), 5332–5339 (2008).
[Crossref] [PubMed]

Nagy, Z.

Z. Nagy, A. Takacs, T. Filkorn, and M. Sarayba, “Initial clinical evaluation of an intraocular femtosecond laser in cataract surgery,” J. Refract. Surg. 25(12), 1053–1060 (2009).
[Crossref] [PubMed]

Németh, J.

J. Németh, O. Fekete, and N. Pesztenlehrer, “Optical and ultrasound measurement of axial length and anterior chamber depth for intraocular lens power calculation,” J. Cataract Refract. Surg. 29(1), 85–88 (2003).
[Crossref] [PubMed]

Noack, J.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Nolte, S.

M. Peter, R. Kammel, R. Ackermann, S. Schramm, B. U. Seifert, K. Frey, M. Blum, S. Nolte, and K. S. Kunert, “Analysis of optical side-effects of fs-laser therapy in human presbyopic lens simulated with modified contact lenses,” Graefes Arch. Clin. Exp. Ophthalmol. 250(12), 1813–1825 (2012).
[Crossref] [PubMed]

R. Ackermann, K. S. Kunert, R. Kammel, S. Bischoff, S. C. Bühren, H. Schubert, M. Blum, and S. Nolte, “Femtosecond laser treatment of the crystalline lens: a 1-year study of possible cataractogenesis in minipigs,” Graefes Arch. Clin. Exp. Ophthalmol. 249(10), 1567–1573 (2011).
[Crossref] [PubMed]

C. Hönninger, M. Plötner, B. Ortaç, R. Ackermann, R. Kammel, J. Limpert, S. Nolte, and A. Tünnermann, “Femtosecond fiber laser system for medical applications,” Proc. SPIE 7203, 72030W, 72030W-6 (2009).
[Crossref]

Norrby, S.

Nuzzo, V.

V. Nuzzo, M. Savoldelli, J. M. Legeais, and K. Plamann, “Self-focusing and spherical aberrations in corneal tissue during photodisruption by femtosecond laser,” J. Biomed. Opt. 15(3), 038003 (2010).
[Crossref] [PubMed]

Oberheide, U.

H. Lubatschowski, S. Schumacher, M. Fromm, A. Wegener, H. Hoffmann, U. Oberheide, and G. Gerten, “Femtosecond lentotomy: generating gliding planes inside the crystalline lens to regain accommodation ability,” J Biophotonics 3(5-6), 265–268 (2010).
[Crossref] [PubMed]

S. Schumacher, M. Fromm, U. Oberheide, P. Bock, I. Imbschweiler, H. Hoffmann, A. Beineke, G. Gerten, A. Wegener, and H. Lubatschowski, “Femtosecond-lentotomy treatment: six-month follow-up of in vivo treated rabbit lenses,” Proc. SPIE 7373, 73730H, 73730H-8 (2009).
[Crossref]

S. Schumacher, U. Oberheide, M. Fromm, T. Ripken, W. Ertmer, G. Gerten, A. Wegener, and H. Lubatschowski, “Femtosecond laser induced flexibility change of human donor lenses,” Vision Res. 49(14), 1853–1859 (2009).
[Crossref] [PubMed]

T. Ripken, U. Oberheide, C. Ziltz, W. Ertmer, G. Gerten, and H. Lubatschowski, “Fs-laser induced elasticity changes to improve presbyopic lens accommodation,” Proc. SPIE 5688, 278–287 (2005).
[Crossref]

Olivié, G.

Ortaç, B.

C. Hönninger, M. Plötner, B. Ortaç, R. Ackermann, R. Kammel, J. Limpert, S. Nolte, and A. Tünnermann, “Femtosecond fiber laser system for medical applications,” Proc. SPIE 7203, 72030W, 72030W-6 (2009).
[Crossref]

Ozaki, T.

Pak, J. H.

J. Y. Kim, M. J. Kim, T. I. Kim, H. J. Choi, J. H. Pak, and H. Tchah, “A femtosecond laser creates a stronger flap than a mechanical microkeratome,” Invest. Ophthalmol. Vis. Sci. 47(2), 599–604 (2006).
[Crossref] [PubMed]

Paltauf, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Papas, E.

Pesztenlehrer, N.

J. Németh, O. Fekete, and N. Pesztenlehrer, “Optical and ultrasound measurement of axial length and anterior chamber depth for intraocular lens power calculation,” J. Cataract Refract. Surg. 29(1), 85–88 (2003).
[Crossref] [PubMed]

Peter, M.

M. Peter, R. Kammel, R. Ackermann, S. Schramm, B. U. Seifert, K. Frey, M. Blum, S. Nolte, and K. S. Kunert, “Analysis of optical side-effects of fs-laser therapy in human presbyopic lens simulated with modified contact lenses,” Graefes Arch. Clin. Exp. Ophthalmol. 250(12), 1813–1825 (2012).
[Crossref] [PubMed]

Piers, P.

Plamann, K.

V. Nuzzo, M. Savoldelli, J. M. Legeais, and K. Plamann, “Self-focusing and spherical aberrations in corneal tissue during photodisruption by femtosecond laser,” J. Biomed. Opt. 15(3), 038003 (2010).
[Crossref] [PubMed]

Plötner, M.

C. Hönninger, M. Plötner, B. Ortaç, R. Ackermann, R. Kammel, J. Limpert, S. Nolte, and A. Tünnermann, “Femtosecond fiber laser system for medical applications,” Proc. SPIE 7203, 72030W, 72030W-6 (2009).
[Crossref]

Poudel, M. P.

Ramos-Esteban, J. C.

S. Bamba, K. M. Rocha, J. C. Ramos-Esteban, and R. R. Krueger, “Incidence of rainbow glare after laser in situ keratomileusis flap creation with a 60 kHz femtosecond laser,” J. Cataract Refract. Surg. 35(6), 1082–1086 (2009).
[Crossref] [PubMed]

Reischl, V.

A. K. Dexl, O. Seyeddain, W. Riha, M. Hohensinn, T. Rückl, V. Reischl, and G. Grabner, “One-year visual outcomes and patient satisfaction after surgical correction of presbyopia with an intracorneal inlay of a new design,” J. Cataract Refract. Surg. 38(2), 262–269 (2012).
[Crossref] [PubMed]

Riau, A. K.

A. K. Riau, R. I. Angunawela, S. S. Chaurasia, D. T. Tan, and J. S. Mehta, “Effect of different femtosecond laser-firing patterns on collagen disruption during refractive lenticule extraction,” J. Cataract Refract. Surg. 38(8), 1467–1475 (2012).
[Crossref] [PubMed]

Riemann, I.

S. Toropygin, M. Krause, I. Riemann, M. Hild, P. Mestres, B. Seitz, E. Khurieva, K. W. Ruprecht, U. Löw, Z. Gatzioufas, and K. König, “In vitro noncontact intravascular femtosecond laser surgery in models of branch retinal vein occlusion,” Curr. Eye Res. 33(3), 277–283 (2008).
[Crossref] [PubMed]

Riha, W.

A. K. Dexl, O. Seyeddain, W. Riha, M. Hohensinn, T. Rückl, V. Reischl, and G. Grabner, “One-year visual outcomes and patient satisfaction after surgical correction of presbyopia with an intracorneal inlay of a new design,” J. Cataract Refract. Surg. 38(2), 262–269 (2012).
[Crossref] [PubMed]

Ripken, T.

S. Schumacher, U. Oberheide, M. Fromm, T. Ripken, W. Ertmer, G. Gerten, A. Wegener, and H. Lubatschowski, “Femtosecond laser induced flexibility change of human donor lenses,” Vision Res. 49(14), 1853–1859 (2009).
[Crossref] [PubMed]

T. Ripken, U. Oberheide, C. Ziltz, W. Ertmer, G. Gerten, and H. Lubatschowski, “Fs-laser induced elasticity changes to improve presbyopic lens accommodation,” Proc. SPIE 5688, 278–287 (2005).
[Crossref]

Rocha, K. M.

S. Bamba, K. M. Rocha, J. C. Ramos-Esteban, and R. R. Krueger, “Incidence of rainbow glare after laser in situ keratomileusis flap creation with a 60 kHz femtosecond laser,” J. Cataract Refract. Surg. 35(6), 1082–1086 (2009).
[Crossref] [PubMed]

Rückl, T.

A. K. Dexl, O. Seyeddain, W. Riha, M. Hohensinn, T. Rückl, V. Reischl, and G. Grabner, “One-year visual outcomes and patient satisfaction after surgical correction of presbyopia with an intracorneal inlay of a new design,” J. Cataract Refract. Surg. 38(2), 262–269 (2012).
[Crossref] [PubMed]

Ruprecht, K. W.

S. Toropygin, M. Krause, I. Riemann, M. Hild, P. Mestres, B. Seitz, E. Khurieva, K. W. Ruprecht, U. Löw, Z. Gatzioufas, and K. König, “In vitro noncontact intravascular femtosecond laser surgery in models of branch retinal vein occlusion,” Curr. Eye Res. 33(3), 277–283 (2008).
[Crossref] [PubMed]

Sarayba, M.

Z. Nagy, A. Takacs, T. Filkorn, and M. Sarayba, “Initial clinical evaluation of an intraocular femtosecond laser in cataract surgery,” J. Refract. Surg. 25(12), 1053–1060 (2009).
[Crossref] [PubMed]

Savoldelli, M.

V. Nuzzo, M. Savoldelli, J. M. Legeais, and K. Plamann, “Self-focusing and spherical aberrations in corneal tissue during photodisruption by femtosecond laser,” J. Biomed. Opt. 15(3), 038003 (2010).
[Crossref] [PubMed]

Schramm, S.

M. Peter, R. Kammel, R. Ackermann, S. Schramm, B. U. Seifert, K. Frey, M. Blum, S. Nolte, and K. S. Kunert, “Analysis of optical side-effects of fs-laser therapy in human presbyopic lens simulated with modified contact lenses,” Graefes Arch. Clin. Exp. Ophthalmol. 250(12), 1813–1825 (2012).
[Crossref] [PubMed]

Schubert, H.

R. Ackermann, K. S. Kunert, R. Kammel, S. Bischoff, S. C. Bühren, H. Schubert, M. Blum, and S. Nolte, “Femtosecond laser treatment of the crystalline lens: a 1-year study of possible cataractogenesis in minipigs,” Graefes Arch. Clin. Exp. Ophthalmol. 249(10), 1567–1573 (2011).
[Crossref] [PubMed]

Schumacher, S.

H. Lubatschowski, S. Schumacher, M. Fromm, A. Wegener, H. Hoffmann, U. Oberheide, and G. Gerten, “Femtosecond lentotomy: generating gliding planes inside the crystalline lens to regain accommodation ability,” J Biophotonics 3(5-6), 265–268 (2010).
[Crossref] [PubMed]

S. Schumacher, M. Fromm, U. Oberheide, P. Bock, I. Imbschweiler, H. Hoffmann, A. Beineke, G. Gerten, A. Wegener, and H. Lubatschowski, “Femtosecond-lentotomy treatment: six-month follow-up of in vivo treated rabbit lenses,” Proc. SPIE 7373, 73730H, 73730H-8 (2009).
[Crossref]

S. Schumacher, U. Oberheide, M. Fromm, T. Ripken, W. Ertmer, G. Gerten, A. Wegener, and H. Lubatschowski, “Femtosecond laser induced flexibility change of human donor lenses,” Vision Res. 49(14), 1853–1859 (2009).
[Crossref] [PubMed]

Schweitzer, D.

M. Hammer, D. Schweitzer, W. Ziegler, M. Wiechmann, and J. Strobel, “Intrastromale refraktive Chirurgie mit ultrakurzen Laserpulsen Ergebnisse erster In-vitro-Experimente [Intrastomal refractive surgery with ultra-short laser pulses. Results from initial in vitro experiments],” Ophthalmologe 99(10), 756–760 (2002).
[Crossref] [PubMed]

Scott, R.

T. Grosvenor and R. Scott, “Role of the axial length/corneal radius ratio in determining the refractive state of the eye,” Optom. Vis. Sci. 71(9), 573–579 (1994).
[Crossref] [PubMed]

Seifert, B. U.

M. Peter, R. Kammel, R. Ackermann, S. Schramm, B. U. Seifert, K. Frey, M. Blum, S. Nolte, and K. S. Kunert, “Analysis of optical side-effects of fs-laser therapy in human presbyopic lens simulated with modified contact lenses,” Graefes Arch. Clin. Exp. Ophthalmol. 250(12), 1813–1825 (2012).
[Crossref] [PubMed]

Seifert, G.

Seitz, B.

S. Toropygin, M. Krause, I. Riemann, M. Hild, P. Mestres, B. Seitz, E. Khurieva, K. W. Ruprecht, U. Löw, Z. Gatzioufas, and K. König, “In vitro noncontact intravascular femtosecond laser surgery in models of branch retinal vein occlusion,” Curr. Eye Res. 33(3), 277–283 (2008).
[Crossref] [PubMed]

Seyeddain, O.

A. K. Dexl, O. Seyeddain, W. Riha, M. Hohensinn, T. Rückl, V. Reischl, and G. Grabner, “One-year visual outcomes and patient satisfaction after surgical correction of presbyopia with an intracorneal inlay of a new design,” J. Cataract Refract. Surg. 38(2), 262–269 (2012).
[Crossref] [PubMed]

Shirayama, M.

L. Wang, M. Shirayama, X. J. Ma, T. Kohnen, and D. D. Koch, “Optimizing intraocular lens power calculations in eyes with axial lengths above 25.0 mm,” J. Cataract Refract. Surg. 37(11), 2018–2027 (2011).
[Crossref] [PubMed]

Simpson, T. L.

B. Vasudevan, T. L. Simpson, and J. G. Sivak, “Regional variation in the refractive-index of the bovine and human cornea,” Optom. Vis. Sci. 85(10), 977–981 (2008).
[Crossref] [PubMed]

Sivak, J. G.

B. Vasudevan, T. L. Simpson, and J. G. Sivak, “Regional variation in the refractive-index of the bovine and human cornea,” Optom. Vis. Sci. 85(10), 977–981 (2008).
[Crossref] [PubMed]

Skrzypczak, U.

Stonecipher, K.

K. Stonecipher, T. S. Ignacio, and M. Stonecipher, “Advances in refractive surgery: microkeratome and femtosecond laser flap creation in relation to safety, efficacy, predictability, and biomechanical stability,” Curr. Opin. Ophthalmol. 17(4), 368–372 (2006).
[Crossref] [PubMed]

Stonecipher, M.

K. Stonecipher, T. S. Ignacio, and M. Stonecipher, “Advances in refractive surgery: microkeratome and femtosecond laser flap creation in relation to safety, efficacy, predictability, and biomechanical stability,” Curr. Opin. Ophthalmol. 17(4), 368–372 (2006).
[Crossref] [PubMed]

Strobel, J.

M. Hammer, D. Schweitzer, W. Ziegler, M. Wiechmann, and J. Strobel, “Intrastromale refraktive Chirurgie mit ultrakurzen Laserpulsen Ergebnisse erster In-vitro-Experimente [Intrastomal refractive surgery with ultra-short laser pulses. Results from initial in vitro experiments],” Ophthalmologe 99(10), 756–760 (2002).
[Crossref] [PubMed]

Suárez, C.

T. Juhasz, G. A. Kastis, C. Suárez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med. 19(1), 23–31 (1996).
[Crossref] [PubMed]

Takacs, A.

Z. Nagy, A. Takacs, T. Filkorn, and M. Sarayba, “Initial clinical evaluation of an intraocular femtosecond laser in cataract surgery,” J. Refract. Surg. 25(12), 1053–1060 (2009).
[Crossref] [PubMed]

Tan, D. T.

A. K. Riau, R. I. Angunawela, S. S. Chaurasia, D. T. Tan, and J. S. Mehta, “Effect of different femtosecond laser-firing patterns on collagen disruption during refractive lenticule extraction,” J. Cataract Refract. Surg. 38(8), 1467–1475 (2012).
[Crossref] [PubMed]

Tchah, H.

J. Y. Kim, M. J. Kim, T. I. Kim, H. J. Choi, J. H. Pak, and H. Tchah, “A femtosecond laser creates a stronger flap than a mechanical microkeratome,” Invest. Ophthalmol. Vis. Sci. 47(2), 599–604 (2006).
[Crossref] [PubMed]

Thornton, I. L.

R. R. Krueger, I. L. Thornton, M. Xu, Z. Bor, and T. J. van den Berg, “Rainbow glare as an optical side effect of IntraLASIK,” Ophthalmology 115(7), 1187–1195.e1 (2008).
[Crossref] [PubMed]

Toetsch, S.

Toropygin, S.

S. Toropygin, M. Krause, I. Riemann, M. Hild, P. Mestres, B. Seitz, E. Khurieva, K. W. Ruprecht, U. Löw, Z. Gatzioufas, and K. König, “In vitro noncontact intravascular femtosecond laser surgery in models of branch retinal vein occlusion,” Curr. Eye Res. 33(3), 277–283 (2008).
[Crossref] [PubMed]

Tünnermann, A.

C. Hönninger, M. Plötner, B. Ortaç, R. Ackermann, R. Kammel, J. Limpert, S. Nolte, and A. Tünnermann, “Femtosecond fiber laser system for medical applications,” Proc. SPIE 7203, 72030W, 72030W-6 (2009).
[Crossref]

Uozato, H.

H. Uozato and D. L. Guyton, “Centering corneal surgical procedures,” Am. J. Ophthalmol. 103(3 Pt 1), 264–275 (1987).
[PubMed]

van den Berg, T. J.

R. R. Krueger, I. L. Thornton, M. Xu, Z. Bor, and T. J. van den Berg, “Rainbow glare as an optical side effect of IntraLASIK,” Ophthalmology 115(7), 1187–1195.e1 (2008).
[Crossref] [PubMed]

Van der Heijde, R.

E. A. Hermans, M. Dubbelman, R. Van der Heijde, and R. M. Heethaar, “Equivalent refractive index of the human lens upon accommodative response,” Optom. Vis. Sci. 85(12), 1179–1184 (2008).
[Crossref] [PubMed]

van der Mooren, M.

Vasudevan, B.

B. Vasudevan, T. L. Simpson, and J. G. Sivak, “Regional variation in the refractive-index of the bovine and human cornea,” Optom. Vis. Sci. 85(10), 977–981 (2008).
[Crossref] [PubMed]

Vidal, F.

Vogel, A.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Wang, L.

L. Wang, M. Shirayama, X. J. Ma, T. Kohnen, and D. D. Koch, “Optimizing intraocular lens power calculations in eyes with axial lengths above 25.0 mm,” J. Cataract Refract. Surg. 37(11), 2018–2027 (2011).
[Crossref] [PubMed]

Wang, N.

L. Xu, W. H. Knox, M. DeMagistris, N. Wang, and K. R. Huxlin, “Noninvasive intratissue refractive index shaping (IRIS) of the cornea with blue femtosecond laser light,” Invest. Ophthalmol. Vis. Sci. 52(11), 8148–8155 (2011).
[Crossref] [PubMed]

Wässle, H.

H. Wässle and B. B. Boycott, “Functional architecture of the mammalian retina,” Physiol. Rev. 71(2), 447–480 (1991).
[PubMed]

Wegener, A.

H. Lubatschowski, S. Schumacher, M. Fromm, A. Wegener, H. Hoffmann, U. Oberheide, and G. Gerten, “Femtosecond lentotomy: generating gliding planes inside the crystalline lens to regain accommodation ability,” J Biophotonics 3(5-6), 265–268 (2010).
[Crossref] [PubMed]

S. Schumacher, M. Fromm, U. Oberheide, P. Bock, I. Imbschweiler, H. Hoffmann, A. Beineke, G. Gerten, A. Wegener, and H. Lubatschowski, “Femtosecond-lentotomy treatment: six-month follow-up of in vivo treated rabbit lenses,” Proc. SPIE 7373, 73730H, 73730H-8 (2009).
[Crossref]

S. Schumacher, U. Oberheide, M. Fromm, T. Ripken, W. Ertmer, G. Gerten, A. Wegener, and H. Lubatschowski, “Femtosecond laser induced flexibility change of human donor lenses,” Vision Res. 49(14), 1853–1859 (2009).
[Crossref] [PubMed]

Wiechmann, M.

M. Hammer, D. Schweitzer, W. Ziegler, M. Wiechmann, and J. Strobel, “Intrastromale refraktive Chirurgie mit ultrakurzen Laserpulsen Ergebnisse erster In-vitro-Experimente [Intrastomal refractive surgery with ultra-short laser pulses. Results from initial in vitro experiments],” Ophthalmologe 99(10), 756–760 (2002).
[Crossref] [PubMed]

Xu, L.

L. Xu, W. H. Knox, M. DeMagistris, N. Wang, and K. R. Huxlin, “Noninvasive intratissue refractive index shaping (IRIS) of the cornea with blue femtosecond laser light,” Invest. Ophthalmol. Vis. Sci. 52(11), 8148–8155 (2011).
[Crossref] [PubMed]

L. J. Nagy, L. Ding, L. Xu, W. H. Knox, and K. R. Huxlin, “Potentiation of femtosecond laser intratissue refractive index shaping (IRIS) in the living cornea with sodium fluorescein,” Invest. Ophthalmol. Vis. Sci. 51(2), 850–856 (2010).
[Crossref] [PubMed]

Xu, M.

R. R. Krueger, I. L. Thornton, M. Xu, Z. Bor, and T. J. van den Berg, “Rainbow glare as an optical side effect of IntraLASIK,” Ophthalmology 115(7), 1187–1195.e1 (2008).
[Crossref] [PubMed]

Ziegler, W.

M. Hammer, D. Schweitzer, W. Ziegler, M. Wiechmann, and J. Strobel, “Intrastromale refraktive Chirurgie mit ultrakurzen Laserpulsen Ergebnisse erster In-vitro-Experimente [Intrastomal refractive surgery with ultra-short laser pulses. Results from initial in vitro experiments],” Ophthalmologe 99(10), 756–760 (2002).
[Crossref] [PubMed]

Ziltz, C.

T. Ripken, U. Oberheide, C. Ziltz, W. Ertmer, G. Gerten, and H. Lubatschowski, “Fs-laser induced elasticity changes to improve presbyopic lens accommodation,” Proc. SPIE 5688, 278–287 (2005).
[Crossref]

Am. J. Ophthalmol. (1)

H. Uozato and D. L. Guyton, “Centering corneal surgical procedures,” Am. J. Ophthalmol. 103(3 Pt 1), 264–275 (1987).
[PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Curr. Eye Res. (1)

S. Toropygin, M. Krause, I. Riemann, M. Hild, P. Mestres, B. Seitz, E. Khurieva, K. W. Ruprecht, U. Löw, Z. Gatzioufas, and K. König, “In vitro noncontact intravascular femtosecond laser surgery in models of branch retinal vein occlusion,” Curr. Eye Res. 33(3), 277–283 (2008).
[Crossref] [PubMed]

Curr. Opin. Ophthalmol. (1)

K. Stonecipher, T. S. Ignacio, and M. Stonecipher, “Advances in refractive surgery: microkeratome and femtosecond laser flap creation in relation to safety, efficacy, predictability, and biomechanical stability,” Curr. Opin. Ophthalmol. 17(4), 368–372 (2006).
[Crossref] [PubMed]

Graefes Arch. Clin. Exp. Ophthalmol. (2)

M. Peter, R. Kammel, R. Ackermann, S. Schramm, B. U. Seifert, K. Frey, M. Blum, S. Nolte, and K. S. Kunert, “Analysis of optical side-effects of fs-laser therapy in human presbyopic lens simulated with modified contact lenses,” Graefes Arch. Clin. Exp. Ophthalmol. 250(12), 1813–1825 (2012).
[Crossref] [PubMed]

R. Ackermann, K. S. Kunert, R. Kammel, S. Bischoff, S. C. Bühren, H. Schubert, M. Blum, and S. Nolte, “Femtosecond laser treatment of the crystalline lens: a 1-year study of possible cataractogenesis in minipigs,” Graefes Arch. Clin. Exp. Ophthalmol. 249(10), 1567–1573 (2011).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (4)

J. Y. Kim, M. J. Kim, T. I. Kim, H. J. Choi, J. H. Pak, and H. Tchah, “A femtosecond laser creates a stronger flap than a mechanical microkeratome,” Invest. Ophthalmol. Vis. Sci. 47(2), 599–604 (2006).
[Crossref] [PubMed]

L. Ding, W. H. Knox, J. Bühren, L. J. Nagy, and K. R. Huxlin, “Intratissue refractive index shaping (IRIS) of the cornea and lens using a low-pulse-energy femtosecond laser oscillator,” Invest. Ophthalmol. Vis. Sci. 49(12), 5332–5339 (2008).
[Crossref] [PubMed]

L. J. Nagy, L. Ding, L. Xu, W. H. Knox, and K. R. Huxlin, “Potentiation of femtosecond laser intratissue refractive index shaping (IRIS) in the living cornea with sodium fluorescein,” Invest. Ophthalmol. Vis. Sci. 51(2), 850–856 (2010).
[Crossref] [PubMed]

L. Xu, W. H. Knox, M. DeMagistris, N. Wang, and K. R. Huxlin, “Noninvasive intratissue refractive index shaping (IRIS) of the cornea with blue femtosecond laser light,” Invest. Ophthalmol. Vis. Sci. 52(11), 8148–8155 (2011).
[Crossref] [PubMed]

J Biophotonics (1)

H. Lubatschowski, S. Schumacher, M. Fromm, A. Wegener, H. Hoffmann, U. Oberheide, and G. Gerten, “Femtosecond lentotomy: generating gliding planes inside the crystalline lens to regain accommodation ability,” J Biophotonics 3(5-6), 265–268 (2010).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

V. Nuzzo, M. Savoldelli, J. M. Legeais, and K. Plamann, “Self-focusing and spherical aberrations in corneal tissue during photodisruption by femtosecond laser,” J. Biomed. Opt. 15(3), 038003 (2010).
[Crossref] [PubMed]

J. Cataract Refract. Surg. (5)

A. K. Riau, R. I. Angunawela, S. S. Chaurasia, D. T. Tan, and J. S. Mehta, “Effect of different femtosecond laser-firing patterns on collagen disruption during refractive lenticule extraction,” J. Cataract Refract. Surg. 38(8), 1467–1475 (2012).
[Crossref] [PubMed]

A. K. Dexl, O. Seyeddain, W. Riha, M. Hohensinn, T. Rückl, V. Reischl, and G. Grabner, “One-year visual outcomes and patient satisfaction after surgical correction of presbyopia with an intracorneal inlay of a new design,” J. Cataract Refract. Surg. 38(2), 262–269 (2012).
[Crossref] [PubMed]

J. Németh, O. Fekete, and N. Pesztenlehrer, “Optical and ultrasound measurement of axial length and anterior chamber depth for intraocular lens power calculation,” J. Cataract Refract. Surg. 29(1), 85–88 (2003).
[Crossref] [PubMed]

L. Wang, M. Shirayama, X. J. Ma, T. Kohnen, and D. D. Koch, “Optimizing intraocular lens power calculations in eyes with axial lengths above 25.0 mm,” J. Cataract Refract. Surg. 37(11), 2018–2027 (2011).
[Crossref] [PubMed]

S. Bamba, K. M. Rocha, J. C. Ramos-Esteban, and R. R. Krueger, “Incidence of rainbow glare after laser in situ keratomileusis flap creation with a 60 kHz femtosecond laser,” J. Cataract Refract. Surg. 35(6), 1082–1086 (2009).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

J. Refract. Surg. (1)

Z. Nagy, A. Takacs, T. Filkorn, and M. Sarayba, “Initial clinical evaluation of an intraocular femtosecond laser in cataract surgery,” J. Refract. Surg. 25(12), 1053–1060 (2009).
[Crossref] [PubMed]

Lasers Surg. Med. (1)

T. Juhasz, G. A. Kastis, C. Suárez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med. 19(1), 23–31 (1996).
[Crossref] [PubMed]

Ophthalmologe (1)

M. Hammer, D. Schweitzer, W. Ziegler, M. Wiechmann, and J. Strobel, “Intrastromale refraktive Chirurgie mit ultrakurzen Laserpulsen Ergebnisse erster In-vitro-Experimente [Intrastomal refractive surgery with ultra-short laser pulses. Results from initial in vitro experiments],” Ophthalmologe 99(10), 756–760 (2002).
[Crossref] [PubMed]

Ophthalmology (1)

R. R. Krueger, I. L. Thornton, M. Xu, Z. Bor, and T. J. van den Berg, “Rainbow glare as an optical side effect of IntraLASIK,” Ophthalmology 115(7), 1187–1195.e1 (2008).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Optom. Vis. Sci. (4)

E. A. Hermans, M. Dubbelman, R. Van der Heijde, and R. M. Heethaar, “Equivalent refractive index of the human lens upon accommodative response,” Optom. Vis. Sci. 85(12), 1179–1184 (2008).
[Crossref] [PubMed]

W. J. Benjamin and Q. A. Cappelli, “Oxygen permeability (Dk) of thirty-seven rigid contact lens materials,” Optom. Vis. Sci. 79(2), 103–111 (2002).
[Crossref] [PubMed]

T. Grosvenor and R. Scott, “Role of the axial length/corneal radius ratio in determining the refractive state of the eye,” Optom. Vis. Sci. 71(9), 573–579 (1994).
[Crossref] [PubMed]

B. Vasudevan, T. L. Simpson, and J. G. Sivak, “Regional variation in the refractive-index of the bovine and human cornea,” Optom. Vis. Sci. 85(10), 977–981 (2008).
[Crossref] [PubMed]

Physiol. Rev. (1)

H. Wässle and B. B. Boycott, “Functional architecture of the mammalian retina,” Physiol. Rev. 71(2), 447–480 (1991).
[PubMed]

Proc. SPIE (3)

T. Ripken, U. Oberheide, C. Ziltz, W. Ertmer, G. Gerten, and H. Lubatschowski, “Fs-laser induced elasticity changes to improve presbyopic lens accommodation,” Proc. SPIE 5688, 278–287 (2005).
[Crossref]

C. Hönninger, M. Plötner, B. Ortaç, R. Ackermann, R. Kammel, J. Limpert, S. Nolte, and A. Tünnermann, “Femtosecond fiber laser system for medical applications,” Proc. SPIE 7203, 72030W, 72030W-6 (2009).
[Crossref]

S. Schumacher, M. Fromm, U. Oberheide, P. Bock, I. Imbschweiler, H. Hoffmann, A. Beineke, G. Gerten, A. Wegener, and H. Lubatschowski, “Femtosecond-lentotomy treatment: six-month follow-up of in vivo treated rabbit lenses,” Proc. SPIE 7373, 73730H, 73730H-8 (2009).
[Crossref]

Vision Res. (1)

S. Schumacher, U. Oberheide, M. Fromm, T. Ripken, W. Ertmer, G. Gerten, A. Wegener, and H. Lubatschowski, “Femtosecond laser induced flexibility change of human donor lenses,” Vision Res. 49(14), 1853–1859 (2009).
[Crossref] [PubMed]

Other (6)

A. J. Augustin, Augenheilkunde (Springer-Verlag, Heidelberg, 2007).

A. Vestergaard, A. Ivarsen, S. Asp, and J. O. Hjortdal, “Femtosecond (FS) laser vision correction procedure for moderate to high myopia: a prospective study of ReLEx® flex and comparison with a retrospective study of FS-laser in situ keratomileusis,” Acta Ophthalmol. (Copenh.) (2012), http://onlinelibrary.wiley.com/doi/10.1111/j.1755-3768.2012.02406.x/abstract;jsessionid=709547A0B32B5AF6026818404FFA2F39.d03t01 .

M. Sachsenweger, Augenheilkunde, Duale Reihe (Georg Thieme Verlag, 2002), Vol. 2.

S. Nolte, “Micromachining,” in Ultrafast Lasers: Technology and Applications, M. E. Fermann, A. Galvanauskas, and G. Sucha, eds. (Marcel Dekker, New York, 2002).

S. L. Polyak, The Retina (University of Chicago Press, Chicago, 1941).

A. Gullstrand, “Zusätze von A. Gullstrand,” in Handbuch der physiologischen Optik von H. von Helmholtz, A. Gullstrand, J. von Kries, and W. Nagel, eds. (Verlag von Leopold Voss, Hamburg und Leipzig, 1909).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Sectional drawing of the model eye.

Fig. 2
Fig. 2

Microscope images (20×) of a regular laser pattern (a) with a spot distance of 10 µm. (b) shows a random pattern, having the same amount of spots as the regular pattern.

Fig. 3
Fig. 3

Number of pixels, for which the intensity of the RGB-channel to be analyzed is 25% higher than the other two channels; the ordinate shows their mean intensity value. Colors indicate the corresponding RGB-channel. For the lens with laser spots at random positions, the number of pixels is exactly zero.

Fig. 4
Fig. 4

Rainbow glare induced in lens CL10µm (a), 1L10µm (b) and 1S10µm (c). For the green RGB-channel, the inset indicates the pixels which were identified as “rainbow glare”.

Fig. 5
Fig. 5

Rainbow glare induced in lens 5S10µm (a) and 1S3µm (b). Note that the full camera frame is shown to visualize rainbow glare at the edges. The dashed square indicates the area which was numerically analyzed.

Fig. 6
Fig. 6

Rainbow glare induced in an untreated lens (a), lens 1Rline10µm (b) and 1Rfull10µm (c).

Fig. 7
Fig. 7

Maximum contrast for different visual acuity levels. Level “1.3 logMAR” was investigated only for untreated, spiral and random position lenses.

Fig. 8
Fig. 8

Landolt ring charts for an untreated lens, for lens 3S10µm and 1S3µm. Maximum and minimum pixel values for each visual acuity level were determined along the dashed line.

Fig. 9
Fig. 9

Microscope image (5×) of a spiral fs-laser pattern within a porcine lens. The spot/line distance is 5 µm/20 µm.

Tables (2)

Tables Icon

Table 1 Parameters of the model eye

Tables Icon

Table 2 Parameters of investigated laser patterns

Metrics