Abstract

Variance of time-of-flight distributions have been shown to be more sensitive to cerebral blood flow (CBF) during dynamic-contrast enhanced monitoring of neurotrauma patients than attenuation. What is unknown is the degree to which variance is affected by changes in extracerebral blood flow. Furthermore, the importance of acquiring the arterial input function (AIF) on quantitative analysis of the data is not yet clear. This animal study confirms that variance is both sensitive and specific to changes occurring in the brain when measurements are acquired on the surface of the scalp. Furthermore, when the variance data along with the measured AIF is analyzed using a nonparametric deconvolution method, the recovered change in CBF is in good agreement with CT perfusion values.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. T. Elliott, M. Diop, K. M. Tichauer, T.-Y. Lee, and K. St. Lawrence, “Quantitative measurement of cerebral blood flow in a juvenile porcine model by depth-resolved near-infrared spectroscopy,” J. Biomed. Opt.15(3), 037014 (2010).
    [CrossRef] [PubMed]
  2. S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol.44(6), 1543–1563 (1999).
    [CrossRef] [PubMed]
  3. A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt.43(15), 3037–3047 (2004).
    [CrossRef] [PubMed]
  4. United States Food and Drug Administration, “Approved Drug Products with Therapeutic Equivalence Evaluations” (Silver Spring, MD, 2012).
  5. M. L. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol.40(4), 575–583 (1976).
    [PubMed]
  6. F. Gora, S. Shinde, C. E. Elwell, J. C. Goldstone, M. Cope, D. T. Delpy, and M. Smith, “Noninvasive measurement of cerebral blood flow in adults using near-infrared spectroscopy and indocyanine green: a pilot study,” J. Neurosurg. Anesthesiol.14(3), 218–222 (2002).
    [CrossRef] [PubMed]
  7. A. Jelzow, H. Wabnitz, H. Obrig, R. Macdonald, and J. Steinbrink, “Separation of indocyanine green boluses in the human brain and scalp based on time-resolved in-vivo fluorescence measurements,” J. Biomed. Opt.17(5), 057003 (2012).
    [CrossRef] [PubMed]
  8. O. Steinkellner, C. Gruber, H. Wabnitz, A. Jelzow, J. Steinbrink, J. B. Fiebach, R. Macdonald, and H. Obrig, “Optical bedside monitoring of cerebral perfusion: technological and methodological advances applied in a study on acute ischemic stroke,” J. Biomed. Opt.15(6), 061708 (2010).
    [CrossRef] [PubMed]
  9. A. Liebert, H. Wabnitz, J. Steinbrink, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, “Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance,” Neuroimage24(2), 426–435 (2005).
    [CrossRef] [PubMed]
  10. A. Liebert, D. Milej, W. Wojciech, A. Gerega, M. Kacprzak, E. Mayzner-Zawadzka, and R. Maniewski, “Assessment of brain perfusion disorders by ICG bolus tracking with time-resolved fluorescence monitoring,” in Biomedical Optics, OSA Technical Digest (Optical Society of America, 2012), paper. BTu3A.20.
  11. W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. Kuhnle, M. Welte, K. Messmer, and A. E. Goetz, “Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green,” J. Cereb. Blood Flow Metab.18(4), 445–456 (1998).
    [CrossRef] [PubMed]
  12. C. Terborg, T. Birkner, B. Schack, C. Weiller, and J. Röther, “Noninvasive monitoring of cerebral oxygenation during vasomotor reactivity tests by a new near-infrared spectroscopy device,” Cerebrovasc. Dis.16(1), 36–41 (2003).
    [CrossRef] [PubMed]
  13. A. Cenic, D. G. Nabavi, R. A. Craen, A. W. Gelb, and T. Y. Lee, “Dynamic CT measurement of cerebral blood flow: a validation study,” AJNR Am. J. Neuroradiol.20(1), 63–73 (1999).
    [PubMed]
  14. D. W. Brown, P. A. Picot, J. G. Naeini, R. Springett, D. T. Delpy, and T. Y. Lee, “Quantitative near infrared spectroscopy measurement of cerebral hemodynamics in newborn piglets,” Pediatr. Res.51(5), 564–570 (2002).
    [CrossRef] [PubMed]
  15. J. T. Elliott, M. Diop, T. Y. Lee, and K. St. Lawrence, “Model-independent dynamic constraint to improve the optical reconstruction of regional kinetic parameters,” Opt. Lett.37(13), 2571–2573 (2012).
    [CrossRef] [PubMed]
  16. G. Zaccanti, D. Contini, M. Gurioli, A. Ismaelli, H. Liszka, and A. Sassaroli, “Detectability of inhomogeneities within highly diffusing media,” Proc. SPIE2389, 755–762 (1995).
    [CrossRef]
  17. J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol.46(3), 879–896 (2001).
    [CrossRef] [PubMed]
  18. M. Diop and K. St. Lawrence, “Deconvolution method for recovering the photon time-of-flight distribution from time-resolved measurements,” Opt. Lett.37(12), 2358–2360 (2012).
    [CrossRef] [PubMed]
  19. M. Kacprzak, A. Liebert, P. Sawosz, N. Zolek, and R. Maniewski, “Time-resolved optical imager for assessment of cerebral oxygenation,” J. Biomed. Opt.12(3), 034019 (2007).
    [CrossRef] [PubMed]
  20. A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, and H. Rinneberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons,” Appl. Opt.42(28), 5785–5792 (2003).
    [CrossRef] [PubMed]
  21. P. Meier and K. L. Zierler, “On the theory of the indicator-dilution method for measurement of blood flow and volume,” J. Appl. Physiol.6(12), 731–744 (1954).
    [PubMed]
  22. J. T. Elliott, M. Diop, K. M. Tichauer, T.-Y. Lee, and K. St. Lawrence, “Monte Carlo based modeling of indocyanine green bolus tracking in the adult human head,” Proc. SPIE7896, 78960E, 78960E-13 (2011).
    [CrossRef]
  23. E. T. Jaynes, Probability Theory: The Logic of Science (Cambridge University Press, 2003).
  24. H. K. Thompson, C. F. Starmer, R. E. Whalen, and H. D. McIntosh, “Indicator transit time considered as a gamma variate,” Circ. Res.14(6), 502–515 (1964).
    [CrossRef] [PubMed]
  25. M. Diop, K. M. Tichauer, J. T. Elliott, M. Migueis, T.-Y. Lee, and K. St. Lawrence, “Comparison of time-resolved and continuous-wave near-infrared techniques for measuring cerebral blood flow in piglets,” J. Biomed. Opt.15(5), 057004 (2010).
    [CrossRef] [PubMed]
  26. R. L. Grubb, M. E. Raichle, J. O. Eichling, and M. M. Ter-Pogossian, “The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time,” Stroke5(5), 630–639 (1974).
    [CrossRef] [PubMed]
  27. R. L. Grubb, M. E. Raichle, J. O. Eichling, and M. H. Gado, “Effects of subarachnoid hemorrhage on cerebral blood volume, blood flow, and oxygen utilization in humans,” J. Neurosurg.46(4), 446–453 (1977).
    [CrossRef] [PubMed]
  28. M. Diop, K. M. Tichauer, J. T. Elliott, M. Migueis, T.-Y. Lee, and K. St. Lawrence, “Time-resolved near-infrared technique for bedside monitoring of absolute cerebral blood flow,” Proc. SPIE7555, 75550Z, 75550Z-9 (2010).
    [CrossRef]
  29. A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and J. Steinbrink, “Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain,” Neuroimage31(2), 600–608 (2006).
    [CrossRef] [PubMed]
  30. L. Friberg, J. Kastrup, M. Hansen, and J. Bülow, “Cerebral effects of scalp cooling and extracerebral contribution to calculated blood flow values using the intravenous 133Xe technique,” Scand. J. Clin. Lab. Invest.46(4), 375–379 (1986).
    [CrossRef] [PubMed]

2012 (3)

2011 (1)

J. T. Elliott, M. Diop, K. M. Tichauer, T.-Y. Lee, and K. St. Lawrence, “Monte Carlo based modeling of indocyanine green bolus tracking in the adult human head,” Proc. SPIE7896, 78960E, 78960E-13 (2011).
[CrossRef]

2010 (4)

M. Diop, K. M. Tichauer, J. T. Elliott, M. Migueis, T.-Y. Lee, and K. St. Lawrence, “Comparison of time-resolved and continuous-wave near-infrared techniques for measuring cerebral blood flow in piglets,” J. Biomed. Opt.15(5), 057004 (2010).
[CrossRef] [PubMed]

M. Diop, K. M. Tichauer, J. T. Elliott, M. Migueis, T.-Y. Lee, and K. St. Lawrence, “Time-resolved near-infrared technique for bedside monitoring of absolute cerebral blood flow,” Proc. SPIE7555, 75550Z, 75550Z-9 (2010).
[CrossRef]

O. Steinkellner, C. Gruber, H. Wabnitz, A. Jelzow, J. Steinbrink, J. B. Fiebach, R. Macdonald, and H. Obrig, “Optical bedside monitoring of cerebral perfusion: technological and methodological advances applied in a study on acute ischemic stroke,” J. Biomed. Opt.15(6), 061708 (2010).
[CrossRef] [PubMed]

J. T. Elliott, M. Diop, K. M. Tichauer, T.-Y. Lee, and K. St. Lawrence, “Quantitative measurement of cerebral blood flow in a juvenile porcine model by depth-resolved near-infrared spectroscopy,” J. Biomed. Opt.15(3), 037014 (2010).
[CrossRef] [PubMed]

2007 (1)

M. Kacprzak, A. Liebert, P. Sawosz, N. Zolek, and R. Maniewski, “Time-resolved optical imager for assessment of cerebral oxygenation,” J. Biomed. Opt.12(3), 034019 (2007).
[CrossRef] [PubMed]

2006 (1)

A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and J. Steinbrink, “Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain,” Neuroimage31(2), 600–608 (2006).
[CrossRef] [PubMed]

2005 (1)

A. Liebert, H. Wabnitz, J. Steinbrink, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, “Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance,” Neuroimage24(2), 426–435 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (2)

A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, and H. Rinneberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons,” Appl. Opt.42(28), 5785–5792 (2003).
[CrossRef] [PubMed]

C. Terborg, T. Birkner, B. Schack, C. Weiller, and J. Röther, “Noninvasive monitoring of cerebral oxygenation during vasomotor reactivity tests by a new near-infrared spectroscopy device,” Cerebrovasc. Dis.16(1), 36–41 (2003).
[CrossRef] [PubMed]

2002 (2)

F. Gora, S. Shinde, C. E. Elwell, J. C. Goldstone, M. Cope, D. T. Delpy, and M. Smith, “Noninvasive measurement of cerebral blood flow in adults using near-infrared spectroscopy and indocyanine green: a pilot study,” J. Neurosurg. Anesthesiol.14(3), 218–222 (2002).
[CrossRef] [PubMed]

D. W. Brown, P. A. Picot, J. G. Naeini, R. Springett, D. T. Delpy, and T. Y. Lee, “Quantitative near infrared spectroscopy measurement of cerebral hemodynamics in newborn piglets,” Pediatr. Res.51(5), 564–570 (2002).
[CrossRef] [PubMed]

2001 (1)

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol.46(3), 879–896 (2001).
[CrossRef] [PubMed]

1999 (2)

A. Cenic, D. G. Nabavi, R. A. Craen, A. W. Gelb, and T. Y. Lee, “Dynamic CT measurement of cerebral blood flow: a validation study,” AJNR Am. J. Neuroradiol.20(1), 63–73 (1999).
[PubMed]

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol.44(6), 1543–1563 (1999).
[CrossRef] [PubMed]

1998 (1)

W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. Kuhnle, M. Welte, K. Messmer, and A. E. Goetz, “Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green,” J. Cereb. Blood Flow Metab.18(4), 445–456 (1998).
[CrossRef] [PubMed]

1995 (1)

G. Zaccanti, D. Contini, M. Gurioli, A. Ismaelli, H. Liszka, and A. Sassaroli, “Detectability of inhomogeneities within highly diffusing media,” Proc. SPIE2389, 755–762 (1995).
[CrossRef]

1986 (1)

L. Friberg, J. Kastrup, M. Hansen, and J. Bülow, “Cerebral effects of scalp cooling and extracerebral contribution to calculated blood flow values using the intravenous 133Xe technique,” Scand. J. Clin. Lab. Invest.46(4), 375–379 (1986).
[CrossRef] [PubMed]

1977 (1)

R. L. Grubb, M. E. Raichle, J. O. Eichling, and M. H. Gado, “Effects of subarachnoid hemorrhage on cerebral blood volume, blood flow, and oxygen utilization in humans,” J. Neurosurg.46(4), 446–453 (1977).
[CrossRef] [PubMed]

1976 (1)

M. L. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol.40(4), 575–583 (1976).
[PubMed]

1974 (1)

R. L. Grubb, M. E. Raichle, J. O. Eichling, and M. M. Ter-Pogossian, “The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time,” Stroke5(5), 630–639 (1974).
[CrossRef] [PubMed]

1964 (1)

H. K. Thompson, C. F. Starmer, R. E. Whalen, and H. D. McIntosh, “Indicator transit time considered as a gamma variate,” Circ. Res.14(6), 502–515 (1964).
[CrossRef] [PubMed]

1954 (1)

P. Meier and K. L. Zierler, “On the theory of the indicator-dilution method for measurement of blood flow and volume,” J. Appl. Physiol.6(12), 731–744 (1954).
[PubMed]

Birkner, T.

C. Terborg, T. Birkner, B. Schack, C. Weiller, and J. Röther, “Noninvasive monitoring of cerebral oxygenation during vasomotor reactivity tests by a new near-infrared spectroscopy device,” Cerebrovasc. Dis.16(1), 36–41 (2003).
[CrossRef] [PubMed]

Brown, D. W.

D. W. Brown, P. A. Picot, J. G. Naeini, R. Springett, D. T. Delpy, and T. Y. Lee, “Quantitative near infrared spectroscopy measurement of cerebral hemodynamics in newborn piglets,” Pediatr. Res.51(5), 564–570 (2002).
[CrossRef] [PubMed]

Bülow, J.

L. Friberg, J. Kastrup, M. Hansen, and J. Bülow, “Cerebral effects of scalp cooling and extracerebral contribution to calculated blood flow values using the intravenous 133Xe technique,” Scand. J. Clin. Lab. Invest.46(4), 375–379 (1986).
[CrossRef] [PubMed]

Cenic, A.

A. Cenic, D. G. Nabavi, R. A. Craen, A. W. Gelb, and T. Y. Lee, “Dynamic CT measurement of cerebral blood flow: a validation study,” AJNR Am. J. Neuroradiol.20(1), 63–73 (1999).
[PubMed]

Contini, D.

G. Zaccanti, D. Contini, M. Gurioli, A. Ismaelli, H. Liszka, and A. Sassaroli, “Detectability of inhomogeneities within highly diffusing media,” Proc. SPIE2389, 755–762 (1995).
[CrossRef]

Cope, M.

F. Gora, S. Shinde, C. E. Elwell, J. C. Goldstone, M. Cope, D. T. Delpy, and M. Smith, “Noninvasive measurement of cerebral blood flow in adults using near-infrared spectroscopy and indocyanine green: a pilot study,” J. Neurosurg. Anesthesiol.14(3), 218–222 (2002).
[CrossRef] [PubMed]

Craen, R. A.

A. Cenic, D. G. Nabavi, R. A. Craen, A. W. Gelb, and T. Y. Lee, “Dynamic CT measurement of cerebral blood flow: a validation study,” AJNR Am. J. Neuroradiol.20(1), 63–73 (1999).
[PubMed]

Delpy, D. T.

F. Gora, S. Shinde, C. E. Elwell, J. C. Goldstone, M. Cope, D. T. Delpy, and M. Smith, “Noninvasive measurement of cerebral blood flow in adults using near-infrared spectroscopy and indocyanine green: a pilot study,” J. Neurosurg. Anesthesiol.14(3), 218–222 (2002).
[CrossRef] [PubMed]

D. W. Brown, P. A. Picot, J. G. Naeini, R. Springett, D. T. Delpy, and T. Y. Lee, “Quantitative near infrared spectroscopy measurement of cerebral hemodynamics in newborn piglets,” Pediatr. Res.51(5), 564–570 (2002).
[CrossRef] [PubMed]

Diop, M.

J. T. Elliott, M. Diop, T. Y. Lee, and K. St. Lawrence, “Model-independent dynamic constraint to improve the optical reconstruction of regional kinetic parameters,” Opt. Lett.37(13), 2571–2573 (2012).
[CrossRef] [PubMed]

M. Diop and K. St. Lawrence, “Deconvolution method for recovering the photon time-of-flight distribution from time-resolved measurements,” Opt. Lett.37(12), 2358–2360 (2012).
[CrossRef] [PubMed]

J. T. Elliott, M. Diop, K. M. Tichauer, T.-Y. Lee, and K. St. Lawrence, “Monte Carlo based modeling of indocyanine green bolus tracking in the adult human head,” Proc. SPIE7896, 78960E, 78960E-13 (2011).
[CrossRef]

M. Diop, K. M. Tichauer, J. T. Elliott, M. Migueis, T.-Y. Lee, and K. St. Lawrence, “Comparison of time-resolved and continuous-wave near-infrared techniques for measuring cerebral blood flow in piglets,” J. Biomed. Opt.15(5), 057004 (2010).
[CrossRef] [PubMed]

M. Diop, K. M. Tichauer, J. T. Elliott, M. Migueis, T.-Y. Lee, and K. St. Lawrence, “Time-resolved near-infrared technique for bedside monitoring of absolute cerebral blood flow,” Proc. SPIE7555, 75550Z, 75550Z-9 (2010).
[CrossRef]

J. T. Elliott, M. Diop, K. M. Tichauer, T.-Y. Lee, and K. St. Lawrence, “Quantitative measurement of cerebral blood flow in a juvenile porcine model by depth-resolved near-infrared spectroscopy,” J. Biomed. Opt.15(3), 037014 (2010).
[CrossRef] [PubMed]

Eichling, J. O.

R. L. Grubb, M. E. Raichle, J. O. Eichling, and M. H. Gado, “Effects of subarachnoid hemorrhage on cerebral blood volume, blood flow, and oxygen utilization in humans,” J. Neurosurg.46(4), 446–453 (1977).
[CrossRef] [PubMed]

R. L. Grubb, M. E. Raichle, J. O. Eichling, and M. M. Ter-Pogossian, “The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time,” Stroke5(5), 630–639 (1974).
[CrossRef] [PubMed]

Elliott, J. T.

J. T. Elliott, M. Diop, T. Y. Lee, and K. St. Lawrence, “Model-independent dynamic constraint to improve the optical reconstruction of regional kinetic parameters,” Opt. Lett.37(13), 2571–2573 (2012).
[CrossRef] [PubMed]

J. T. Elliott, M. Diop, K. M. Tichauer, T.-Y. Lee, and K. St. Lawrence, “Monte Carlo based modeling of indocyanine green bolus tracking in the adult human head,” Proc. SPIE7896, 78960E, 78960E-13 (2011).
[CrossRef]

M. Diop, K. M. Tichauer, J. T. Elliott, M. Migueis, T.-Y. Lee, and K. St. Lawrence, “Comparison of time-resolved and continuous-wave near-infrared techniques for measuring cerebral blood flow in piglets,” J. Biomed. Opt.15(5), 057004 (2010).
[CrossRef] [PubMed]

M. Diop, K. M. Tichauer, J. T. Elliott, M. Migueis, T.-Y. Lee, and K. St. Lawrence, “Time-resolved near-infrared technique for bedside monitoring of absolute cerebral blood flow,” Proc. SPIE7555, 75550Z, 75550Z-9 (2010).
[CrossRef]

J. T. Elliott, M. Diop, K. M. Tichauer, T.-Y. Lee, and K. St. Lawrence, “Quantitative measurement of cerebral blood flow in a juvenile porcine model by depth-resolved near-infrared spectroscopy,” J. Biomed. Opt.15(3), 037014 (2010).
[CrossRef] [PubMed]

Elwell, C. E.

F. Gora, S. Shinde, C. E. Elwell, J. C. Goldstone, M. Cope, D. T. Delpy, and M. Smith, “Noninvasive measurement of cerebral blood flow in adults using near-infrared spectroscopy and indocyanine green: a pilot study,” J. Neurosurg. Anesthesiol.14(3), 218–222 (2002).
[CrossRef] [PubMed]

Erdmann, R.

A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and J. Steinbrink, “Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain,” Neuroimage31(2), 600–608 (2006).
[CrossRef] [PubMed]

Fantini, S.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol.44(6), 1543–1563 (1999).
[CrossRef] [PubMed]

Fiebach, J. B.

O. Steinkellner, C. Gruber, H. Wabnitz, A. Jelzow, J. Steinbrink, J. B. Fiebach, R. Macdonald, and H. Obrig, “Optical bedside monitoring of cerebral perfusion: technological and methodological advances applied in a study on acute ischemic stroke,” J. Biomed. Opt.15(6), 061708 (2010).
[CrossRef] [PubMed]

Franceschini, M. A.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol.44(6), 1543–1563 (1999).
[CrossRef] [PubMed]

Friberg, L.

L. Friberg, J. Kastrup, M. Hansen, and J. Bülow, “Cerebral effects of scalp cooling and extracerebral contribution to calculated blood flow values using the intravenous 133Xe technique,” Scand. J. Clin. Lab. Invest.46(4), 375–379 (1986).
[CrossRef] [PubMed]

Gado, M. H.

R. L. Grubb, M. E. Raichle, J. O. Eichling, and M. H. Gado, “Effects of subarachnoid hemorrhage on cerebral blood volume, blood flow, and oxygen utilization in humans,” J. Neurosurg.46(4), 446–453 (1977).
[CrossRef] [PubMed]

Gelb, A. W.

A. Cenic, D. G. Nabavi, R. A. Craen, A. W. Gelb, and T. Y. Lee, “Dynamic CT measurement of cerebral blood flow: a validation study,” AJNR Am. J. Neuroradiol.20(1), 63–73 (1999).
[PubMed]

Goetz, A. E.

W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. Kuhnle, M. Welte, K. Messmer, and A. E. Goetz, “Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green,” J. Cereb. Blood Flow Metab.18(4), 445–456 (1998).
[CrossRef] [PubMed]

Goldstone, J. C.

F. Gora, S. Shinde, C. E. Elwell, J. C. Goldstone, M. Cope, D. T. Delpy, and M. Smith, “Noninvasive measurement of cerebral blood flow in adults using near-infrared spectroscopy and indocyanine green: a pilot study,” J. Neurosurg. Anesthesiol.14(3), 218–222 (2002).
[CrossRef] [PubMed]

Gora, F.

F. Gora, S. Shinde, C. E. Elwell, J. C. Goldstone, M. Cope, D. T. Delpy, and M. Smith, “Noninvasive measurement of cerebral blood flow in adults using near-infrared spectroscopy and indocyanine green: a pilot study,” J. Neurosurg. Anesthesiol.14(3), 218–222 (2002).
[CrossRef] [PubMed]

Gratton, E.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol.44(6), 1543–1563 (1999).
[CrossRef] [PubMed]

Grosenick, D.

Grubb, R. L.

R. L. Grubb, M. E. Raichle, J. O. Eichling, and M. H. Gado, “Effects of subarachnoid hemorrhage on cerebral blood volume, blood flow, and oxygen utilization in humans,” J. Neurosurg.46(4), 446–453 (1977).
[CrossRef] [PubMed]

R. L. Grubb, M. E. Raichle, J. O. Eichling, and M. M. Ter-Pogossian, “The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time,” Stroke5(5), 630–639 (1974).
[CrossRef] [PubMed]

Gruber, C.

O. Steinkellner, C. Gruber, H. Wabnitz, A. Jelzow, J. Steinbrink, J. B. Fiebach, R. Macdonald, and H. Obrig, “Optical bedside monitoring of cerebral perfusion: technological and methodological advances applied in a study on acute ischemic stroke,” J. Biomed. Opt.15(6), 061708 (2010).
[CrossRef] [PubMed]

Gurioli, M.

G. Zaccanti, D. Contini, M. Gurioli, A. Ismaelli, H. Liszka, and A. Sassaroli, “Detectability of inhomogeneities within highly diffusing media,” Proc. SPIE2389, 755–762 (1995).
[CrossRef]

Habler, O.

W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. Kuhnle, M. Welte, K. Messmer, and A. E. Goetz, “Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green,” J. Cereb. Blood Flow Metab.18(4), 445–456 (1998).
[CrossRef] [PubMed]

Hansen, M.

L. Friberg, J. Kastrup, M. Hansen, and J. Bülow, “Cerebral effects of scalp cooling and extracerebral contribution to calculated blood flow values using the intravenous 133Xe technique,” Scand. J. Clin. Lab. Invest.46(4), 375–379 (1986).
[CrossRef] [PubMed]

Hueber, D.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol.44(6), 1543–1563 (1999).
[CrossRef] [PubMed]

Ismaelli, A.

G. Zaccanti, D. Contini, M. Gurioli, A. Ismaelli, H. Liszka, and A. Sassaroli, “Detectability of inhomogeneities within highly diffusing media,” Proc. SPIE2389, 755–762 (1995).
[CrossRef]

Jelzow, A.

A. Jelzow, H. Wabnitz, H. Obrig, R. Macdonald, and J. Steinbrink, “Separation of indocyanine green boluses in the human brain and scalp based on time-resolved in-vivo fluorescence measurements,” J. Biomed. Opt.17(5), 057003 (2012).
[CrossRef] [PubMed]

O. Steinkellner, C. Gruber, H. Wabnitz, A. Jelzow, J. Steinbrink, J. B. Fiebach, R. Macdonald, and H. Obrig, “Optical bedside monitoring of cerebral perfusion: technological and methodological advances applied in a study on acute ischemic stroke,” J. Biomed. Opt.15(6), 061708 (2010).
[CrossRef] [PubMed]

Kacprzak, M.

M. Kacprzak, A. Liebert, P. Sawosz, N. Zolek, and R. Maniewski, “Time-resolved optical imager for assessment of cerebral oxygenation,” J. Biomed. Opt.12(3), 034019 (2007).
[CrossRef] [PubMed]

Kastrup, J.

L. Friberg, J. Kastrup, M. Hansen, and J. Bülow, “Cerebral effects of scalp cooling and extracerebral contribution to calculated blood flow values using the intravenous 133Xe technique,” Scand. J. Clin. Lab. Invest.46(4), 375–379 (1986).
[CrossRef] [PubMed]

Kleen, M.

W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. Kuhnle, M. Welte, K. Messmer, and A. E. Goetz, “Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green,” J. Cereb. Blood Flow Metab.18(4), 445–456 (1998).
[CrossRef] [PubMed]

Kuebler, W. M.

W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. Kuhnle, M. Welte, K. Messmer, and A. E. Goetz, “Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green,” J. Cereb. Blood Flow Metab.18(4), 445–456 (1998).
[CrossRef] [PubMed]

Kuhnle, G. E.

W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. Kuhnle, M. Welte, K. Messmer, and A. E. Goetz, “Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green,” J. Cereb. Blood Flow Metab.18(4), 445–456 (1998).
[CrossRef] [PubMed]

Kwant, G.

M. L. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol.40(4), 575–583 (1976).
[PubMed]

Landsman, M. L.

M. L. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol.40(4), 575–583 (1976).
[PubMed]

Lee, T. Y.

J. T. Elliott, M. Diop, T. Y. Lee, and K. St. Lawrence, “Model-independent dynamic constraint to improve the optical reconstruction of regional kinetic parameters,” Opt. Lett.37(13), 2571–2573 (2012).
[CrossRef] [PubMed]

D. W. Brown, P. A. Picot, J. G. Naeini, R. Springett, D. T. Delpy, and T. Y. Lee, “Quantitative near infrared spectroscopy measurement of cerebral hemodynamics in newborn piglets,” Pediatr. Res.51(5), 564–570 (2002).
[CrossRef] [PubMed]

A. Cenic, D. G. Nabavi, R. A. Craen, A. W. Gelb, and T. Y. Lee, “Dynamic CT measurement of cerebral blood flow: a validation study,” AJNR Am. J. Neuroradiol.20(1), 63–73 (1999).
[PubMed]

Lee, T.-Y.

J. T. Elliott, M. Diop, K. M. Tichauer, T.-Y. Lee, and K. St. Lawrence, “Monte Carlo based modeling of indocyanine green bolus tracking in the adult human head,” Proc. SPIE7896, 78960E, 78960E-13 (2011).
[CrossRef]

M. Diop, K. M. Tichauer, J. T. Elliott, M. Migueis, T.-Y. Lee, and K. St. Lawrence, “Comparison of time-resolved and continuous-wave near-infrared techniques for measuring cerebral blood flow in piglets,” J. Biomed. Opt.15(5), 057004 (2010).
[CrossRef] [PubMed]

M. Diop, K. M. Tichauer, J. T. Elliott, M. Migueis, T.-Y. Lee, and K. St. Lawrence, “Time-resolved near-infrared technique for bedside monitoring of absolute cerebral blood flow,” Proc. SPIE7555, 75550Z, 75550Z-9 (2010).
[CrossRef]

J. T. Elliott, M. Diop, K. M. Tichauer, T.-Y. Lee, and K. St. Lawrence, “Quantitative measurement of cerebral blood flow in a juvenile porcine model by depth-resolved near-infrared spectroscopy,” J. Biomed. Opt.15(3), 037014 (2010).
[CrossRef] [PubMed]

Liebert, A.

M. Kacprzak, A. Liebert, P. Sawosz, N. Zolek, and R. Maniewski, “Time-resolved optical imager for assessment of cerebral oxygenation,” J. Biomed. Opt.12(3), 034019 (2007).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and J. Steinbrink, “Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain,” Neuroimage31(2), 600–608 (2006).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, “Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance,” Neuroimage24(2), 426–435 (2005).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt.43(15), 3037–3047 (2004).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, and H. Rinneberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons,” Appl. Opt.42(28), 5785–5792 (2003).
[CrossRef] [PubMed]

Liszka, H.

G. Zaccanti, D. Contini, M. Gurioli, A. Ismaelli, H. Liszka, and A. Sassaroli, “Detectability of inhomogeneities within highly diffusing media,” Proc. SPIE2389, 755–762 (1995).
[CrossRef]

Macdonald, R.

A. Jelzow, H. Wabnitz, H. Obrig, R. Macdonald, and J. Steinbrink, “Separation of indocyanine green boluses in the human brain and scalp based on time-resolved in-vivo fluorescence measurements,” J. Biomed. Opt.17(5), 057003 (2012).
[CrossRef] [PubMed]

O. Steinkellner, C. Gruber, H. Wabnitz, A. Jelzow, J. Steinbrink, J. B. Fiebach, R. Macdonald, and H. Obrig, “Optical bedside monitoring of cerebral perfusion: technological and methodological advances applied in a study on acute ischemic stroke,” J. Biomed. Opt.15(6), 061708 (2010).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and J. Steinbrink, “Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain,” Neuroimage31(2), 600–608 (2006).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, “Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance,” Neuroimage24(2), 426–435 (2005).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt.43(15), 3037–3047 (2004).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, and H. Rinneberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons,” Appl. Opt.42(28), 5785–5792 (2003).
[CrossRef] [PubMed]

Maniewski, R.

M. Kacprzak, A. Liebert, P. Sawosz, N. Zolek, and R. Maniewski, “Time-resolved optical imager for assessment of cerebral oxygenation,” J. Biomed. Opt.12(3), 034019 (2007).
[CrossRef] [PubMed]

Maulik, D.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol.44(6), 1543–1563 (1999).
[CrossRef] [PubMed]

McIntosh, H. D.

H. K. Thompson, C. F. Starmer, R. E. Whalen, and H. D. McIntosh, “Indicator transit time considered as a gamma variate,” Circ. Res.14(6), 502–515 (1964).
[CrossRef] [PubMed]

Meier, P.

P. Meier and K. L. Zierler, “On the theory of the indicator-dilution method for measurement of blood flow and volume,” J. Appl. Physiol.6(12), 731–744 (1954).
[PubMed]

Messmer, K.

W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. Kuhnle, M. Welte, K. Messmer, and A. E. Goetz, “Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green,” J. Cereb. Blood Flow Metab.18(4), 445–456 (1998).
[CrossRef] [PubMed]

Migueis, M.

M. Diop, K. M. Tichauer, J. T. Elliott, M. Migueis, T.-Y. Lee, and K. St. Lawrence, “Time-resolved near-infrared technique for bedside monitoring of absolute cerebral blood flow,” Proc. SPIE7555, 75550Z, 75550Z-9 (2010).
[CrossRef]

M. Diop, K. M. Tichauer, J. T. Elliott, M. Migueis, T.-Y. Lee, and K. St. Lawrence, “Comparison of time-resolved and continuous-wave near-infrared techniques for measuring cerebral blood flow in piglets,” J. Biomed. Opt.15(5), 057004 (2010).
[CrossRef] [PubMed]

Möller, M.

A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and J. Steinbrink, “Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain,” Neuroimage31(2), 600–608 (2006).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, “Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance,” Neuroimage24(2), 426–435 (2005).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt.43(15), 3037–3047 (2004).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, and H. Rinneberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons,” Appl. Opt.42(28), 5785–5792 (2003).
[CrossRef] [PubMed]

Mook, G. A.

M. L. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol.40(4), 575–583 (1976).
[PubMed]

Nabavi, D. G.

A. Cenic, D. G. Nabavi, R. A. Craen, A. W. Gelb, and T. Y. Lee, “Dynamic CT measurement of cerebral blood flow: a validation study,” AJNR Am. J. Neuroradiol.20(1), 63–73 (1999).
[PubMed]

Naeini, J. G.

D. W. Brown, P. A. Picot, J. G. Naeini, R. Springett, D. T. Delpy, and T. Y. Lee, “Quantitative near infrared spectroscopy measurement of cerebral hemodynamics in newborn piglets,” Pediatr. Res.51(5), 564–570 (2002).
[CrossRef] [PubMed]

Obrig, H.

A. Jelzow, H. Wabnitz, H. Obrig, R. Macdonald, and J. Steinbrink, “Separation of indocyanine green boluses in the human brain and scalp based on time-resolved in-vivo fluorescence measurements,” J. Biomed. Opt.17(5), 057003 (2012).
[CrossRef] [PubMed]

O. Steinkellner, C. Gruber, H. Wabnitz, A. Jelzow, J. Steinbrink, J. B. Fiebach, R. Macdonald, and H. Obrig, “Optical bedside monitoring of cerebral perfusion: technological and methodological advances applied in a study on acute ischemic stroke,” J. Biomed. Opt.15(6), 061708 (2010).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and J. Steinbrink, “Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain,” Neuroimage31(2), 600–608 (2006).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, “Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance,” Neuroimage24(2), 426–435 (2005).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt.43(15), 3037–3047 (2004).
[CrossRef] [PubMed]

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol.46(3), 879–896 (2001).
[CrossRef] [PubMed]

Picot, P. A.

D. W. Brown, P. A. Picot, J. G. Naeini, R. Springett, D. T. Delpy, and T. Y. Lee, “Quantitative near infrared spectroscopy measurement of cerebral hemodynamics in newborn piglets,” Pediatr. Res.51(5), 564–570 (2002).
[CrossRef] [PubMed]

Raichle, M. E.

R. L. Grubb, M. E. Raichle, J. O. Eichling, and M. H. Gado, “Effects of subarachnoid hemorrhage on cerebral blood volume, blood flow, and oxygen utilization in humans,” J. Neurosurg.46(4), 446–453 (1977).
[CrossRef] [PubMed]

R. L. Grubb, M. E. Raichle, J. O. Eichling, and M. M. Ter-Pogossian, “The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time,” Stroke5(5), 630–639 (1974).
[CrossRef] [PubMed]

Rinneberg, H.

A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and J. Steinbrink, “Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain,” Neuroimage31(2), 600–608 (2006).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, “Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance,” Neuroimage24(2), 426–435 (2005).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt.43(15), 3037–3047 (2004).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, and H. Rinneberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons,” Appl. Opt.42(28), 5785–5792 (2003).
[CrossRef] [PubMed]

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol.46(3), 879–896 (2001).
[CrossRef] [PubMed]

Rosenfeld, W.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol.44(6), 1543–1563 (1999).
[CrossRef] [PubMed]

Röther, J.

C. Terborg, T. Birkner, B. Schack, C. Weiller, and J. Röther, “Noninvasive monitoring of cerebral oxygenation during vasomotor reactivity tests by a new near-infrared spectroscopy device,” Cerebrovasc. Dis.16(1), 36–41 (2003).
[CrossRef] [PubMed]

Sassaroli, A.

G. Zaccanti, D. Contini, M. Gurioli, A. Ismaelli, H. Liszka, and A. Sassaroli, “Detectability of inhomogeneities within highly diffusing media,” Proc. SPIE2389, 755–762 (1995).
[CrossRef]

Sawosz, P.

M. Kacprzak, A. Liebert, P. Sawosz, N. Zolek, and R. Maniewski, “Time-resolved optical imager for assessment of cerebral oxygenation,” J. Biomed. Opt.12(3), 034019 (2007).
[CrossRef] [PubMed]

Schack, B.

C. Terborg, T. Birkner, B. Schack, C. Weiller, and J. Röther, “Noninvasive monitoring of cerebral oxygenation during vasomotor reactivity tests by a new near-infrared spectroscopy device,” Cerebrovasc. Dis.16(1), 36–41 (2003).
[CrossRef] [PubMed]

Sckell, A.

W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. Kuhnle, M. Welte, K. Messmer, and A. E. Goetz, “Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green,” J. Cereb. Blood Flow Metab.18(4), 445–456 (1998).
[CrossRef] [PubMed]

Shinde, S.

F. Gora, S. Shinde, C. E. Elwell, J. C. Goldstone, M. Cope, D. T. Delpy, and M. Smith, “Noninvasive measurement of cerebral blood flow in adults using near-infrared spectroscopy and indocyanine green: a pilot study,” J. Neurosurg. Anesthesiol.14(3), 218–222 (2002).
[CrossRef] [PubMed]

Smith, M.

F. Gora, S. Shinde, C. E. Elwell, J. C. Goldstone, M. Cope, D. T. Delpy, and M. Smith, “Noninvasive measurement of cerebral blood flow in adults using near-infrared spectroscopy and indocyanine green: a pilot study,” J. Neurosurg. Anesthesiol.14(3), 218–222 (2002).
[CrossRef] [PubMed]

Springett, R.

D. W. Brown, P. A. Picot, J. G. Naeini, R. Springett, D. T. Delpy, and T. Y. Lee, “Quantitative near infrared spectroscopy measurement of cerebral hemodynamics in newborn piglets,” Pediatr. Res.51(5), 564–570 (2002).
[CrossRef] [PubMed]

St. Lawrence, K.

J. T. Elliott, M. Diop, T. Y. Lee, and K. St. Lawrence, “Model-independent dynamic constraint to improve the optical reconstruction of regional kinetic parameters,” Opt. Lett.37(13), 2571–2573 (2012).
[CrossRef] [PubMed]

M. Diop and K. St. Lawrence, “Deconvolution method for recovering the photon time-of-flight distribution from time-resolved measurements,” Opt. Lett.37(12), 2358–2360 (2012).
[CrossRef] [PubMed]

J. T. Elliott, M. Diop, K. M. Tichauer, T.-Y. Lee, and K. St. Lawrence, “Monte Carlo based modeling of indocyanine green bolus tracking in the adult human head,” Proc. SPIE7896, 78960E, 78960E-13 (2011).
[CrossRef]

M. Diop, K. M. Tichauer, J. T. Elliott, M. Migueis, T.-Y. Lee, and K. St. Lawrence, “Comparison of time-resolved and continuous-wave near-infrared techniques for measuring cerebral blood flow in piglets,” J. Biomed. Opt.15(5), 057004 (2010).
[CrossRef] [PubMed]

M. Diop, K. M. Tichauer, J. T. Elliott, M. Migueis, T.-Y. Lee, and K. St. Lawrence, “Time-resolved near-infrared technique for bedside monitoring of absolute cerebral blood flow,” Proc. SPIE7555, 75550Z, 75550Z-9 (2010).
[CrossRef]

J. T. Elliott, M. Diop, K. M. Tichauer, T.-Y. Lee, and K. St. Lawrence, “Quantitative measurement of cerebral blood flow in a juvenile porcine model by depth-resolved near-infrared spectroscopy,” J. Biomed. Opt.15(3), 037014 (2010).
[CrossRef] [PubMed]

Stankovic, M. R.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol.44(6), 1543–1563 (1999).
[CrossRef] [PubMed]

Starmer, C. F.

H. K. Thompson, C. F. Starmer, R. E. Whalen, and H. D. McIntosh, “Indicator transit time considered as a gamma variate,” Circ. Res.14(6), 502–515 (1964).
[CrossRef] [PubMed]

Steinbrink, J.

A. Jelzow, H. Wabnitz, H. Obrig, R. Macdonald, and J. Steinbrink, “Separation of indocyanine green boluses in the human brain and scalp based on time-resolved in-vivo fluorescence measurements,” J. Biomed. Opt.17(5), 057003 (2012).
[CrossRef] [PubMed]

O. Steinkellner, C. Gruber, H. Wabnitz, A. Jelzow, J. Steinbrink, J. B. Fiebach, R. Macdonald, and H. Obrig, “Optical bedside monitoring of cerebral perfusion: technological and methodological advances applied in a study on acute ischemic stroke,” J. Biomed. Opt.15(6), 061708 (2010).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and J. Steinbrink, “Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain,” Neuroimage31(2), 600–608 (2006).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, “Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance,” Neuroimage24(2), 426–435 (2005).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt.43(15), 3037–3047 (2004).
[CrossRef] [PubMed]

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol.46(3), 879–896 (2001).
[CrossRef] [PubMed]

Steinkellner, O.

O. Steinkellner, C. Gruber, H. Wabnitz, A. Jelzow, J. Steinbrink, J. B. Fiebach, R. Macdonald, and H. Obrig, “Optical bedside monitoring of cerebral perfusion: technological and methodological advances applied in a study on acute ischemic stroke,” J. Biomed. Opt.15(6), 061708 (2010).
[CrossRef] [PubMed]

Stubblefield, P. G.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol.44(6), 1543–1563 (1999).
[CrossRef] [PubMed]

Terborg, C.

C. Terborg, T. Birkner, B. Schack, C. Weiller, and J. Röther, “Noninvasive monitoring of cerebral oxygenation during vasomotor reactivity tests by a new near-infrared spectroscopy device,” Cerebrovasc. Dis.16(1), 36–41 (2003).
[CrossRef] [PubMed]

Ter-Pogossian, M. M.

R. L. Grubb, M. E. Raichle, J. O. Eichling, and M. M. Ter-Pogossian, “The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time,” Stroke5(5), 630–639 (1974).
[CrossRef] [PubMed]

Thompson, H. K.

H. K. Thompson, C. F. Starmer, R. E. Whalen, and H. D. McIntosh, “Indicator transit time considered as a gamma variate,” Circ. Res.14(6), 502–515 (1964).
[CrossRef] [PubMed]

Tichauer, K. M.

J. T. Elliott, M. Diop, K. M. Tichauer, T.-Y. Lee, and K. St. Lawrence, “Monte Carlo based modeling of indocyanine green bolus tracking in the adult human head,” Proc. SPIE7896, 78960E, 78960E-13 (2011).
[CrossRef]

M. Diop, K. M. Tichauer, J. T. Elliott, M. Migueis, T.-Y. Lee, and K. St. Lawrence, “Comparison of time-resolved and continuous-wave near-infrared techniques for measuring cerebral blood flow in piglets,” J. Biomed. Opt.15(5), 057004 (2010).
[CrossRef] [PubMed]

M. Diop, K. M. Tichauer, J. T. Elliott, M. Migueis, T.-Y. Lee, and K. St. Lawrence, “Time-resolved near-infrared technique for bedside monitoring of absolute cerebral blood flow,” Proc. SPIE7555, 75550Z, 75550Z-9 (2010).
[CrossRef]

J. T. Elliott, M. Diop, K. M. Tichauer, T.-Y. Lee, and K. St. Lawrence, “Quantitative measurement of cerebral blood flow in a juvenile porcine model by depth-resolved near-infrared spectroscopy,” J. Biomed. Opt.15(3), 037014 (2010).
[CrossRef] [PubMed]

Villringer, A.

A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and J. Steinbrink, “Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain,” Neuroimage31(2), 600–608 (2006).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, “Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance,” Neuroimage24(2), 426–435 (2005).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt.43(15), 3037–3047 (2004).
[CrossRef] [PubMed]

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol.46(3), 879–896 (2001).
[CrossRef] [PubMed]

Wabnitz, H.

A. Jelzow, H. Wabnitz, H. Obrig, R. Macdonald, and J. Steinbrink, “Separation of indocyanine green boluses in the human brain and scalp based on time-resolved in-vivo fluorescence measurements,” J. Biomed. Opt.17(5), 057003 (2012).
[CrossRef] [PubMed]

O. Steinkellner, C. Gruber, H. Wabnitz, A. Jelzow, J. Steinbrink, J. B. Fiebach, R. Macdonald, and H. Obrig, “Optical bedside monitoring of cerebral perfusion: technological and methodological advances applied in a study on acute ischemic stroke,” J. Biomed. Opt.15(6), 061708 (2010).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and J. Steinbrink, “Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain,” Neuroimage31(2), 600–608 (2006).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, “Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance,” Neuroimage24(2), 426–435 (2005).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt.43(15), 3037–3047 (2004).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, and H. Rinneberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons,” Appl. Opt.42(28), 5785–5792 (2003).
[CrossRef] [PubMed]

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol.46(3), 879–896 (2001).
[CrossRef] [PubMed]

Weiller, C.

C. Terborg, T. Birkner, B. Schack, C. Weiller, and J. Röther, “Noninvasive monitoring of cerebral oxygenation during vasomotor reactivity tests by a new near-infrared spectroscopy device,” Cerebrovasc. Dis.16(1), 36–41 (2003).
[CrossRef] [PubMed]

Welte, M.

W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. Kuhnle, M. Welte, K. Messmer, and A. E. Goetz, “Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green,” J. Cereb. Blood Flow Metab.18(4), 445–456 (1998).
[CrossRef] [PubMed]

Whalen, R. E.

H. K. Thompson, C. F. Starmer, R. E. Whalen, and H. D. McIntosh, “Indicator transit time considered as a gamma variate,” Circ. Res.14(6), 502–515 (1964).
[CrossRef] [PubMed]

Zaccanti, G.

G. Zaccanti, D. Contini, M. Gurioli, A. Ismaelli, H. Liszka, and A. Sassaroli, “Detectability of inhomogeneities within highly diffusing media,” Proc. SPIE2389, 755–762 (1995).
[CrossRef]

Zierler, K. L.

P. Meier and K. L. Zierler, “On the theory of the indicator-dilution method for measurement of blood flow and volume,” J. Appl. Physiol.6(12), 731–744 (1954).
[PubMed]

Zijlstra, W. G.

M. L. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol.40(4), 575–583 (1976).
[PubMed]

Zolek, N.

M. Kacprzak, A. Liebert, P. Sawosz, N. Zolek, and R. Maniewski, “Time-resolved optical imager for assessment of cerebral oxygenation,” J. Biomed. Opt.12(3), 034019 (2007).
[CrossRef] [PubMed]

AJNR Am. J. Neuroradiol. (1)

A. Cenic, D. G. Nabavi, R. A. Craen, A. W. Gelb, and T. Y. Lee, “Dynamic CT measurement of cerebral blood flow: a validation study,” AJNR Am. J. Neuroradiol.20(1), 63–73 (1999).
[PubMed]

Appl. Opt. (2)

Cerebrovasc. Dis. (1)

C. Terborg, T. Birkner, B. Schack, C. Weiller, and J. Röther, “Noninvasive monitoring of cerebral oxygenation during vasomotor reactivity tests by a new near-infrared spectroscopy device,” Cerebrovasc. Dis.16(1), 36–41 (2003).
[CrossRef] [PubMed]

Circ. Res. (1)

H. K. Thompson, C. F. Starmer, R. E. Whalen, and H. D. McIntosh, “Indicator transit time considered as a gamma variate,” Circ. Res.14(6), 502–515 (1964).
[CrossRef] [PubMed]

J. Appl. Physiol. (2)

P. Meier and K. L. Zierler, “On the theory of the indicator-dilution method for measurement of blood flow and volume,” J. Appl. Physiol.6(12), 731–744 (1954).
[PubMed]

M. L. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol.40(4), 575–583 (1976).
[PubMed]

J. Biomed. Opt. (5)

J. T. Elliott, M. Diop, K. M. Tichauer, T.-Y. Lee, and K. St. Lawrence, “Quantitative measurement of cerebral blood flow in a juvenile porcine model by depth-resolved near-infrared spectroscopy,” J. Biomed. Opt.15(3), 037014 (2010).
[CrossRef] [PubMed]

A. Jelzow, H. Wabnitz, H. Obrig, R. Macdonald, and J. Steinbrink, “Separation of indocyanine green boluses in the human brain and scalp based on time-resolved in-vivo fluorescence measurements,” J. Biomed. Opt.17(5), 057003 (2012).
[CrossRef] [PubMed]

O. Steinkellner, C. Gruber, H. Wabnitz, A. Jelzow, J. Steinbrink, J. B. Fiebach, R. Macdonald, and H. Obrig, “Optical bedside monitoring of cerebral perfusion: technological and methodological advances applied in a study on acute ischemic stroke,” J. Biomed. Opt.15(6), 061708 (2010).
[CrossRef] [PubMed]

M. Diop, K. M. Tichauer, J. T. Elliott, M. Migueis, T.-Y. Lee, and K. St. Lawrence, “Comparison of time-resolved and continuous-wave near-infrared techniques for measuring cerebral blood flow in piglets,” J. Biomed. Opt.15(5), 057004 (2010).
[CrossRef] [PubMed]

M. Kacprzak, A. Liebert, P. Sawosz, N. Zolek, and R. Maniewski, “Time-resolved optical imager for assessment of cerebral oxygenation,” J. Biomed. Opt.12(3), 034019 (2007).
[CrossRef] [PubMed]

J. Cereb. Blood Flow Metab. (1)

W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. Kuhnle, M. Welte, K. Messmer, and A. E. Goetz, “Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green,” J. Cereb. Blood Flow Metab.18(4), 445–456 (1998).
[CrossRef] [PubMed]

J. Neurosurg. (1)

R. L. Grubb, M. E. Raichle, J. O. Eichling, and M. H. Gado, “Effects of subarachnoid hemorrhage on cerebral blood volume, blood flow, and oxygen utilization in humans,” J. Neurosurg.46(4), 446–453 (1977).
[CrossRef] [PubMed]

J. Neurosurg. Anesthesiol. (1)

F. Gora, S. Shinde, C. E. Elwell, J. C. Goldstone, M. Cope, D. T. Delpy, and M. Smith, “Noninvasive measurement of cerebral blood flow in adults using near-infrared spectroscopy and indocyanine green: a pilot study,” J. Neurosurg. Anesthesiol.14(3), 218–222 (2002).
[CrossRef] [PubMed]

Neuroimage (2)

A. Liebert, H. Wabnitz, J. Steinbrink, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, “Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance,” Neuroimage24(2), 426–435 (2005).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and J. Steinbrink, “Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain,” Neuroimage31(2), 600–608 (2006).
[CrossRef] [PubMed]

Opt. Lett. (2)

Pediatr. Res. (1)

D. W. Brown, P. A. Picot, J. G. Naeini, R. Springett, D. T. Delpy, and T. Y. Lee, “Quantitative near infrared spectroscopy measurement of cerebral hemodynamics in newborn piglets,” Pediatr. Res.51(5), 564–570 (2002).
[CrossRef] [PubMed]

Phys. Med. Biol. (2)

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol.44(6), 1543–1563 (1999).
[CrossRef] [PubMed]

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol.46(3), 879–896 (2001).
[CrossRef] [PubMed]

Proc. SPIE (3)

J. T. Elliott, M. Diop, K. M. Tichauer, T.-Y. Lee, and K. St. Lawrence, “Monte Carlo based modeling of indocyanine green bolus tracking in the adult human head,” Proc. SPIE7896, 78960E, 78960E-13 (2011).
[CrossRef]

M. Diop, K. M. Tichauer, J. T. Elliott, M. Migueis, T.-Y. Lee, and K. St. Lawrence, “Time-resolved near-infrared technique for bedside monitoring of absolute cerebral blood flow,” Proc. SPIE7555, 75550Z, 75550Z-9 (2010).
[CrossRef]

G. Zaccanti, D. Contini, M. Gurioli, A. Ismaelli, H. Liszka, and A. Sassaroli, “Detectability of inhomogeneities within highly diffusing media,” Proc. SPIE2389, 755–762 (1995).
[CrossRef]

Scand. J. Clin. Lab. Invest. (1)

L. Friberg, J. Kastrup, M. Hansen, and J. Bülow, “Cerebral effects of scalp cooling and extracerebral contribution to calculated blood flow values using the intravenous 133Xe technique,” Scand. J. Clin. Lab. Invest.46(4), 375–379 (1986).
[CrossRef] [PubMed]

Stroke (1)

R. L. Grubb, M. E. Raichle, J. O. Eichling, and M. M. Ter-Pogossian, “The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time,” Stroke5(5), 630–639 (1974).
[CrossRef] [PubMed]

Other (3)

E. T. Jaynes, Probability Theory: The Logic of Science (Cambridge University Press, 2003).

United States Food and Drug Administration, “Approved Drug Products with Therapeutic Equivalence Evaluations” (Silver Spring, MD, 2012).

A. Liebert, D. Milej, W. Wojciech, A. Gerega, M. Kacprzak, E. Mayzner-Zawadzka, and R. Maniewski, “Assessment of brain perfusion disorders by ICG bolus tracking with time-resolved fluorescence monitoring,” in Biomedical Optics, OSA Technical Digest (Optical Society of America, 2012), paper. BTu3A.20.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

A depiction of the time-to-peak (TTP) method. Hypothetical tissue and arterial concentration curves including the effects of dye recirculation are shown by the solid black lines, along with their corresponding TTP values (TTPC and TTPCa, respectively). The solid grey lines represent the first moments of the concentration curves without the effects of recirculation.

Fig. 2
Fig. 2

The relationship between changes in tissue-curve TTP (ΔTTPC) and changes in CBF (ΔCBF) (grey lines). (A) The effect of varying the relationship between CBV and CBF, which was performed using the Grubb relationship for γ = 0.2, 0.4 and 0.6, and setting TTPCa = 0. (B) The effect of varying the arterial TTP (TTPCa) from 0 to 6 s with γ set to 0.38. The solid lines show the negative unity slope for comparison.

Fig. 3
Fig. 3

Representative curves from one animal (pig #2) under the four conditions. In this case, the thickness of the extracerebral layer was 10.2 mm. (A) Change in attenuation (ΔA) for measurements made on intact scalp (solid grey), ischemic scalp (dashed grey), skull (dashed black) and brain (solid black). (B) Change in variance (ΔV) for the same conditions. (C) ΔA measured on the brain (solid black) compared with ΔV measured on the scalp (dashed black).

Fig. 4
Fig. 4

Box-and-whisker plot of the difference in measured blood flow indices during the extracerebral manipulations compared to measurements acquired on the brain. Each parameter was evaluated from seventeen measurements acquired in four pigs. Boxes are bound by 1st and 3rd quartiles, with the centre line indicating the median. Error bars represent the range of the data, and crosses signify outliers. Only ΔA dBF was significantly different from the expected change of zero (p < 0.001). Additionally, none of ΔA TTP, ΔV TTP, or ΔV dBF differed significantly from each another, as measured by a paired t-test.

Fig. 5
Fig. 5

CT perfusion images of the brain from one animal during normocapnia and hypocapnia. The mean reduction in global CBF during hypocapnia was 43% in this case.

Fig. 6
Fig. 6

Representative curves from one animal under normocapnia (solid lines) and hypocapnia (dashed lines). (A) The change in attenuation (ΔA) made on intact scalp for the two conditions. (B) The change in variance (ΔV) made on intact scalp for the two conditions. (C) ΔA measured directly on the brain for the two conditions. Note: curves have been normalized to the maximum of the normocapnia curve.

Tables (2)

Tables Icon

Table 1 The three moments used in DTOF analysis, along with their formula and the abbreviations for their sensitivity factors

Tables Icon

Table 2 Percent change in the blood flow indices (TTP and dBF) obtained by analysis of attenuation (ΔA) and variance (ΔV) of DTOF during hypocapnia. Measurements were obtained directly on the brain and on the contralateral scalp. The error values are relative to the CBF change measured by CT perfusion (CTP). The thickness of the extracerebral layer was 10.2 mm and 11.2 mm for animal 1 and 2, respectively.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Δ N i = j A i,j Δ μ a,j ,
m k (t)= t 1 t 2 t k N(t)dt,
Δ m k = j A k,j Δ μ a,j ,
Δ μ a (T)=C(T)εln(10),
C(T)=F 0 T C a (u)R(Tu)du,
Δ m k (T)= j F j εln(10) A k,j 0 T C a (u) R j (Tu)du .
t C = t Ca +MTT.
TT P C =TT P Ca + CBV CBF .
dB F k = j F j εln(10) A k,j .
dB F ΔV CBFεln(10)VSF,
CBV=gCB F γ .

Metrics