Abstract

The assessment of choroidal thickness from optical coherence tomography (OCT) images of the human choroid is an important clinical and research task, since it provides valuable information regarding the eye’s normal anatomy and physiology, and changes associated with various eye diseases and the development of refractive error. Due to the time consuming and subjective nature of manual image analysis, there is a need for the development of reliable objective automated methods of image segmentation to derive choroidal thickness measures. However, the detection of the two boundaries which delineate the choroid is a complicated and challenging task, in particular the detection of the outer choroidal boundary, due to a number of issues including: (i) the vascular ocular tissue is non-uniform and rich in non-homogeneous features, and (ii) the boundary can have a low contrast. In this paper, an automatic segmentation technique based on graph-search theory is presented to segment the inner choroidal boundary (ICB) and the outer choroidal boundary (OCB) to obtain the choroid thickness profile from OCT images. Before the segmentation, the B-scan is pre-processed to enhance the two boundaries of interest and to minimize the artifacts produced by surrounding features. The algorithm to detect the ICB is based on a simple edge filter and a directional weighted map penalty, while the algorithm to detect the OCB is based on OCT image enhancement and a dual brightness probability gradient. The method was tested on a large data set of images from a pediatric (1083 B-scans) and an adult (90 B-scans) population, which were previously manually segmented by an experienced observer. The results demonstrate the proposed method provides robust detection of the boundaries of interest and is a useful tool to extract clinical data.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. L. Nickla and J. Wallman, “The multifunctional choroid,” Prog. Retin. Eye Res.29(2), 144–168 (2010).
    [CrossRef] [PubMed]
  2. A. Bill, G. Sperber, and K. Ujiie, “Physiology of the choroidal vascular bed,” Int. Ophthalmol.6(2), 101–107 (1983).
    [CrossRef] [PubMed]
  3. L. M. Parver, “Temperature modulating action of choroidal blood flow,” Eye (Lond.)5(2), 181–185 (1991).
    [CrossRef] [PubMed]
  4. A. Alm and S. F. Nilsson, “Uveoscleral outflow--a review,” Exp. Eye Res.88(4), 760–768 (2009).
    [CrossRef] [PubMed]
  5. D. Van Norren and L. F. Tiemeijer, “Spectral reflectance of the human eye,” Vision Res.26(2), 313–320 (1986).
    [CrossRef] [PubMed]
  6. S. A. Read, M. J. Collins, S. J. Vincent, and D. Alonso-Caneiro, “Choroidal thickness in childhood,” Invest. Ophthalmol. Vis. Sci.54(5), 3586–3593 (2013).
    [CrossRef] [PubMed]
  7. R. Margolis and R. F. Spaide, “A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes,” Am. J. Ophthalmol.147(5), 811–815 (2009).
    [CrossRef] [PubMed]
  8. M. Esmaeelpour, B. Považay, B. Hermann, B. Hofer, V. Kajic, K. Kapoor, N. J. Sheen, R. V. North, and W. Drexler, “Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients,” Invest. Ophthalmol. Vis. Sci.51(10), 5260–5266 (2010).
    [CrossRef] [PubMed]
  9. V. Manjunath, M. Taha, J. G. Fujimoto, and J. S. Duker, “Choroidal thickness in normal eyes measured using Cirrus HD optical coherence tomography,” Am. J. Ophthalmol.150(3), 325–329 (2010).
    [CrossRef] [PubMed]
  10. M. Hirata, A. Tsujikawa, A. Matsumoto, M. Hangai, S. Ooto, K. Yamashiro, M. Akiba, and N. Yoshimura, “Macular choroidal thickness and volume in normal subjects measured by swept-source optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(8), 4971–4978 (2011).
    [CrossRef] [PubMed]
  11. X. Q. Li, M. Larsen, and I. C. Munch, “Subfoveal choroidal thickness in relation to sex and axial length in 93 Danish university students,” Invest. Ophthalmol. Vis. Sci.52(11), 8438–8441 (2011).
    [CrossRef] [PubMed]
  12. D. S. Dhoot, S. Huo, A. Yuan, D. Xu, S. Srivistava, J. P. Ehlers, E. Traboulsi, and P. K. Kaiser, “Evaluation of choroidal thickness in retinitis pigmentosa using enhanced depth imaging optical coherence tomography,” Br. J. Ophthalmol.97(1), 66–69 (2013).
    [CrossRef] [PubMed]
  13. Y. Imamura, T. Fujiwara, R. Margolis, and R. F. Spaide, “Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy,” Retina29(10), 1469–1473 (2009).
    [CrossRef] [PubMed]
  14. V. Manjunath, J. Goren, J. G. Fujimoto, and J. S. Duker, “Analysis of choroidal thickness in age-related macular degeneration using spectral-domain optical coherence tomography,” Am. J. Ophthalmol.152(4), 663–668 (2011).
    [CrossRef] [PubMed]
  15. M. Esmaeelpour, B. Považay, B. Hermann, B. Hofer, V. Kajic, S. L. Hale, R. V. North, W. Drexler, and N. J. Sheen, “Mapping choroidal and retinal thickness variation in type 2 diabetes using three-dimensional 1060-nm optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(8), 5311–5316 (2011).
    [CrossRef] [PubMed]
  16. D. A. Sim, P. A. Keane, H. Mehta, S. Fung, J. Zarranz-Ventura, M. Fruttiger, P. J. Patel, C. A. Egan, and A. Tufail, “Repeatability and reproducibility of choroidal vessel layer measurements in diabetic retinopathy using enhanced depth optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.54(4), 2893–2901 (2013).
    [CrossRef] [PubMed]
  17. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  18. M. Wojtkowski, B. Kaluzny, and R. J. Zawadzki, “New directions in ophthalmic optical coherence tomography,” Optom. Vis. Sci.89(5), 524–542 (2012).
    [CrossRef] [PubMed]
  19. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002).
    [CrossRef] [PubMed]
  20. R. F. Spaide, H. Koizumi, and M. C. Pozzonni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol.146(4), 496–500 (2008).
    [CrossRef] [PubMed]
  21. B. Považay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. Fercher, W. Drexler, C. Schubert, P. Ahnelt, M. Mei, R. Holzwarth, W. Wadsworth, J. Knight, and P. S. Russell, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,” Opt. Express11(17), 1980–1986 (2003).
    [CrossRef] [PubMed]
  22. A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid,” Opt. Express13(9), 3252–3258 (2005).
    [CrossRef] [PubMed]
  23. E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, “In vivo optical frequency domain imaging of human retina and choroid,” Opt. Express14(10), 4403–4411 (2006).
    [CrossRef] [PubMed]
  24. Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1- um swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express15(10), 6121–6139 (2007).
    [CrossRef] [PubMed]
  25. L. Duan, M. Yamanari, and Y. Yasuno, “Automated phase retardation oriented segmentation of chorio-scleral interface by polarization sensitive optical coherence tomography,” Opt. Express20(3), 3353–3366 (2012).
    [CrossRef] [PubMed]
  26. T. Torzicky, M. Pircher, S. Zotter, M. Bonesi, E. Götzinger, and C. K. Hitzenberger, “Automated measurement of choroidal thickness in the human eye by polarization sensitive optical coherence tomography,” Opt. Express20(7), 7564–7574 (2012).
    [CrossRef] [PubMed]
  27. F. Jaillon, S. Makita, and Y. Yasuno, “Variable velocity range imaging of the choroid with dual-beam optical coherence angiography,” Opt. Express20(1), 385–396 (2012).
    [CrossRef] [PubMed]
  28. B. Braaf, K. A. Vermeer, K. V. Vienola, and J. F. de Boer, “Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans,” Opt. Express20(18), 20516–20534 (2012).
    [CrossRef] [PubMed]
  29. H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.46(6), 2012–2017 (2005).
    [CrossRef] [PubMed]
  30. T. Fabritius, S. Makita, M. Miura, R. Myllylä, and Y. Yasuno, “Automated segmentation of the macula by optical coherence tomography,” Opt. Express17(18), 15659–15669 (2009).
    [CrossRef] [PubMed]
  31. D. Cabrera Fernández, H. M. Salinas, and C. A. Puliafito, “Automated detection of retinal layer structures on optical coherence tomography images,” Opt. Express13(25), 10200–10216 (2005).
    [CrossRef] [PubMed]
  32. A. Yazdanpanah, G. Hamarneh, B. R. Smith, and M. V. Sarunic, “Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach,” IEEE Trans. Med. Imaging30(2), 484–496 (2011).
    [CrossRef] [PubMed]
  33. A. Mishra, A. Wong, K. Bizheva, and D. A. Clausi, “Intra-retinal layer segmentation in optical coherence tomography images,” Opt. Express17(26), 23719–23728 (2009).
    [CrossRef] [PubMed]
  34. K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, “Automated segmentation by pixel classification of retinal layers in ophthalmic OCT images,” Biomed. Opt. Express2(6), 1743–1756 (2011).
    [CrossRef] [PubMed]
  35. A. Lang, A. Carass, M. Hauser, E. S. Sotirchos, P. A. Calabresi, H. S. Ying, and J. L. Prince, “Retinal layer segmentation of macular OCT images using boundary classification,” Biomed. Opt. Express4(7), 1133–1152 (2013).
    [CrossRef] [PubMed]
  36. V. Kajić, B. Považay, B. Hermann, B. Hofer, D. Marshall, P. L. Rosin, and W. Drexler, “Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis,” Opt. Express18(14), 14730–14744 (2010).
    [CrossRef] [PubMed]
  37. D. Koozekanani, K. Boyer, and C. Roberts, “Retinal thickness measurements from optical coherence tomography using a Markov boundary model,” IEEE Trans. Med. Imaging20(9), 900–916 (2001).
    [CrossRef] [PubMed]
  38. S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express18(18), 19413–19428 (2010).
    [CrossRef] [PubMed]
  39. E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische Mathematik1(1), 269–271 (1959).
    [CrossRef]
  40. F. LaRocca, S. J. Chiu, R. P. McNabb, A. N. Kuo, J. A. Izatt, and S. Farsiu, “Robust automatic segmentation of corneal layer boundaries in SDOCT images using graph theory and dynamic programming,” Biomed. Opt. Express2(6), 1524–1538 (2011).
    [CrossRef] [PubMed]
  41. Q. Yang, C. A. Reisman, Z. Wang, Y. Fukuma, M. Hangai, N. Yoshimura, A. Tomidokoro, M. Araie, A. S. Raza, D. C. Hood, and K. Chan, “Automated layer segmentation of macular OCT images using dual-scale gradient information,” Opt. Express18(20), 21293–21307 (2010).
    [CrossRef] [PubMed]
  42. M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging28(9), 1436–1447 (2009).
    [CrossRef] [PubMed]
  43. B. J. Antony, M. D. Abràmoff, M. Sonka, Y. H. Kwon, and M. K. Garvin, “Incorporation of texture-based features in optimal graph-theoretic approach with application to the 3D segmentation of intraretinal surfaces in SD-OCT volumes,” in SPIE Medical Imaging, (International Society for Optics and Photonics, 2012), 83141G–83141G–83111.
  44. P. A. Dufour, L. Ceklic, H. Abdillahi, S. Schröder, S. De Dzanet, U. Wolf-Schnurrbusch, and J. Kowal, “Graph-based multi-surface segmentation of OCT data using trained hard and soft constraints,” IEEE Trans. Med. Imaging32(3), 531–543 (2013).
    [CrossRef] [PubMed]
  45. M. Haeker, M. Sonka, R. Kardon, V. A. Shah, X. Wu, and M. D. Abràmoff, “Automated segmentation of intraretinal layers from macular optical coherence tomography images,” in Medical Imaging, (International Society for Optics and Photonics, 2007), 651214–651214–651211.
  46. K. Lee, M. Niemeijer, M. K. Garvin, Y. H. Kwon, M. Sonka, and M. D. Abràmoff, “Segmentation of the optic disc in 3-D OCT scans of the optic nerve head,” IEEE Trans. Med. Imaging29(1), 159–168 (2010).
    [CrossRef] [PubMed]
  47. V. Kajić, M. Esmaeelpour, B. Považay, D. Marshall, P. L. Rosin, and W. Drexler, “Automated choroidal segmentation of 1060 nm OCT in healthy and pathologic eyes using a statistical model,” Biomed. Opt. Express3(1), 86–103 (2012).
    [CrossRef] [PubMed]
  48. L. Zhang, K. Lee, M. Niemeijer, R. F. Mullins, M. Sonka, and M. D. Abràmoff, “Automated segmentation of the choroid from clinical SD-OCT,” Invest. Ophthalmol. Vis. Sci.53(12), 7510–7519 (2012).
    [CrossRef] [PubMed]
  49. Z. Hu, X. Wu, Y. Ouyang, Y. Ouyang, and S. R. Sadda, “Semiautomated segmentation of the choroid in spectral-domain optical coherence tomography volume scans,” Invest. Ophthalmol. Vis. Sci.54(3), 1722–1729 (2013).
    [CrossRef] [PubMed]
  50. J. Tian, P. Marziliano, M. Baskaran, T. A. Tun, and T. Aung, “Automatic segmentation of the choroid in enhanced depth imaging optical coherence tomography images,” Biomed. Opt. Express4(3), 397–411 (2013).
    [CrossRef] [PubMed]
  51. S. Lee, N. Fallah, F. Forooghian, A. Ko, K. Pakzad-Vaezi, A. B. Merkur, A. W. Kirker, D. A. Albiani, M. Young, M. V. Sarunic, and M. F. Beg, “Comparative analysis of repeatability of manual and automated choroidal thickness measurements in nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci.54(4), 2864–2871 (2013).
    [CrossRef] [PubMed]
  52. K. Li, X. Wu, D. Z. Chen, and M. Sonka, “Optimal surface segmentation in volumetric images--a graph-theoretic approach,” IEEE Trans. Pattern Anal. Mach. Intell.28(1), 119–134 (2006).
    [CrossRef] [PubMed]
  53. S. A. Read, M. J. Collins, S. J. Vincent, and D. Alonso-Caneiro, “Choroidal thickness in myopic and non-myopic children assessed with enhanced depth imaging optical coherence tomography,” Invest Ophth Vis Sci, in press (accepted 21/10/2013).
  54. S. A. Read, M. J. Collins, S. J. Vincent, and D. Alonso-Caneiro, “Macular retinal layer thickness in childhood,” Retina. submitted.
  55. M. J. Girard, N. G. Strouthidis, C. R. Ethier, and J. M. Mari, “Shadow removal and contrast enhancement in optical coherence tomography images of the human optic nerve head,” Invest. Ophthalmol. Vis. Sci.52(10), 7738–7748 (2011).
    [CrossRef] [PubMed]
  56. J. M. Mari, N. G. Strouthidis, S. C. Park, and M. J. Girard, “Enhancement of lamina cribrosa visibility in optical coherence tomography images using adaptive compensation,” Invest. Ophthalmol. Vis. Sci.54(3), 2238–2247 (2013).
    [CrossRef] [PubMed]
  57. P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection and hierarchical image segmentation,” IEEE Trans. Pattern Anal. Mach. Intell.33(5), 898–916 (2011).
    [CrossRef] [PubMed]
  58. D. R. Martin, C. C. Fowlkes, and J. Malik, “Learning to detect natural image boundaries using local brightness, color, and texture cues,” IEEE Trans. Pattern Anal. Mach. Intell.26(5), 530–549 (2004).
    [CrossRef] [PubMed]
  59. J. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern Anal. Mach. Intell.679–698 (1986).
  60. W. Rahman, F. K. Chen, J. Yeoh, P. Patel, A. Tufail, and L. Da Cruz, “Repeatability of manual subfoveal choroidal thickness measurements in healthy subjects using the technique of enhanced depth imaging optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(5), 2267–2271 (2011).
    [CrossRef] [PubMed]

2013 (9)

S. A. Read, M. J. Collins, S. J. Vincent, and D. Alonso-Caneiro, “Choroidal thickness in childhood,” Invest. Ophthalmol. Vis. Sci.54(5), 3586–3593 (2013).
[CrossRef] [PubMed]

D. S. Dhoot, S. Huo, A. Yuan, D. Xu, S. Srivistava, J. P. Ehlers, E. Traboulsi, and P. K. Kaiser, “Evaluation of choroidal thickness in retinitis pigmentosa using enhanced depth imaging optical coherence tomography,” Br. J. Ophthalmol.97(1), 66–69 (2013).
[CrossRef] [PubMed]

D. A. Sim, P. A. Keane, H. Mehta, S. Fung, J. Zarranz-Ventura, M. Fruttiger, P. J. Patel, C. A. Egan, and A. Tufail, “Repeatability and reproducibility of choroidal vessel layer measurements in diabetic retinopathy using enhanced depth optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.54(4), 2893–2901 (2013).
[CrossRef] [PubMed]

A. Lang, A. Carass, M. Hauser, E. S. Sotirchos, P. A. Calabresi, H. S. Ying, and J. L. Prince, “Retinal layer segmentation of macular OCT images using boundary classification,” Biomed. Opt. Express4(7), 1133–1152 (2013).
[CrossRef] [PubMed]

P. A. Dufour, L. Ceklic, H. Abdillahi, S. Schröder, S. De Dzanet, U. Wolf-Schnurrbusch, and J. Kowal, “Graph-based multi-surface segmentation of OCT data using trained hard and soft constraints,” IEEE Trans. Med. Imaging32(3), 531–543 (2013).
[CrossRef] [PubMed]

Z. Hu, X. Wu, Y. Ouyang, Y. Ouyang, and S. R. Sadda, “Semiautomated segmentation of the choroid in spectral-domain optical coherence tomography volume scans,” Invest. Ophthalmol. Vis. Sci.54(3), 1722–1729 (2013).
[CrossRef] [PubMed]

J. Tian, P. Marziliano, M. Baskaran, T. A. Tun, and T. Aung, “Automatic segmentation of the choroid in enhanced depth imaging optical coherence tomography images,” Biomed. Opt. Express4(3), 397–411 (2013).
[CrossRef] [PubMed]

S. Lee, N. Fallah, F. Forooghian, A. Ko, K. Pakzad-Vaezi, A. B. Merkur, A. W. Kirker, D. A. Albiani, M. Young, M. V. Sarunic, and M. F. Beg, “Comparative analysis of repeatability of manual and automated choroidal thickness measurements in nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci.54(4), 2864–2871 (2013).
[CrossRef] [PubMed]

J. M. Mari, N. G. Strouthidis, S. C. Park, and M. J. Girard, “Enhancement of lamina cribrosa visibility in optical coherence tomography images using adaptive compensation,” Invest. Ophthalmol. Vis. Sci.54(3), 2238–2247 (2013).
[CrossRef] [PubMed]

2012 (7)

V. Kajić, M. Esmaeelpour, B. Považay, D. Marshall, P. L. Rosin, and W. Drexler, “Automated choroidal segmentation of 1060 nm OCT in healthy and pathologic eyes using a statistical model,” Biomed. Opt. Express3(1), 86–103 (2012).
[CrossRef] [PubMed]

L. Zhang, K. Lee, M. Niemeijer, R. F. Mullins, M. Sonka, and M. D. Abràmoff, “Automated segmentation of the choroid from clinical SD-OCT,” Invest. Ophthalmol. Vis. Sci.53(12), 7510–7519 (2012).
[CrossRef] [PubMed]

M. Wojtkowski, B. Kaluzny, and R. J. Zawadzki, “New directions in ophthalmic optical coherence tomography,” Optom. Vis. Sci.89(5), 524–542 (2012).
[CrossRef] [PubMed]

L. Duan, M. Yamanari, and Y. Yasuno, “Automated phase retardation oriented segmentation of chorio-scleral interface by polarization sensitive optical coherence tomography,” Opt. Express20(3), 3353–3366 (2012).
[CrossRef] [PubMed]

T. Torzicky, M. Pircher, S. Zotter, M. Bonesi, E. Götzinger, and C. K. Hitzenberger, “Automated measurement of choroidal thickness in the human eye by polarization sensitive optical coherence tomography,” Opt. Express20(7), 7564–7574 (2012).
[CrossRef] [PubMed]

F. Jaillon, S. Makita, and Y. Yasuno, “Variable velocity range imaging of the choroid with dual-beam optical coherence angiography,” Opt. Express20(1), 385–396 (2012).
[CrossRef] [PubMed]

B. Braaf, K. A. Vermeer, K. V. Vienola, and J. F. de Boer, “Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans,” Opt. Express20(18), 20516–20534 (2012).
[CrossRef] [PubMed]

2011 (10)

A. Yazdanpanah, G. Hamarneh, B. R. Smith, and M. V. Sarunic, “Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach,” IEEE Trans. Med. Imaging30(2), 484–496 (2011).
[CrossRef] [PubMed]

V. Manjunath, J. Goren, J. G. Fujimoto, and J. S. Duker, “Analysis of choroidal thickness in age-related macular degeneration using spectral-domain optical coherence tomography,” Am. J. Ophthalmol.152(4), 663–668 (2011).
[CrossRef] [PubMed]

M. Esmaeelpour, B. Považay, B. Hermann, B. Hofer, V. Kajic, S. L. Hale, R. V. North, W. Drexler, and N. J. Sheen, “Mapping choroidal and retinal thickness variation in type 2 diabetes using three-dimensional 1060-nm optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(8), 5311–5316 (2011).
[CrossRef] [PubMed]

M. Hirata, A. Tsujikawa, A. Matsumoto, M. Hangai, S. Ooto, K. Yamashiro, M. Akiba, and N. Yoshimura, “Macular choroidal thickness and volume in normal subjects measured by swept-source optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(8), 4971–4978 (2011).
[CrossRef] [PubMed]

X. Q. Li, M. Larsen, and I. C. Munch, “Subfoveal choroidal thickness in relation to sex and axial length in 93 Danish university students,” Invest. Ophthalmol. Vis. Sci.52(11), 8438–8441 (2011).
[CrossRef] [PubMed]

K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, “Automated segmentation by pixel classification of retinal layers in ophthalmic OCT images,” Biomed. Opt. Express2(6), 1743–1756 (2011).
[CrossRef] [PubMed]

M. J. Girard, N. G. Strouthidis, C. R. Ethier, and J. M. Mari, “Shadow removal and contrast enhancement in optical coherence tomography images of the human optic nerve head,” Invest. Ophthalmol. Vis. Sci.52(10), 7738–7748 (2011).
[CrossRef] [PubMed]

F. LaRocca, S. J. Chiu, R. P. McNabb, A. N. Kuo, J. A. Izatt, and S. Farsiu, “Robust automatic segmentation of corneal layer boundaries in SDOCT images using graph theory and dynamic programming,” Biomed. Opt. Express2(6), 1524–1538 (2011).
[CrossRef] [PubMed]

P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection and hierarchical image segmentation,” IEEE Trans. Pattern Anal. Mach. Intell.33(5), 898–916 (2011).
[CrossRef] [PubMed]

W. Rahman, F. K. Chen, J. Yeoh, P. Patel, A. Tufail, and L. Da Cruz, “Repeatability of manual subfoveal choroidal thickness measurements in healthy subjects using the technique of enhanced depth imaging optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(5), 2267–2271 (2011).
[CrossRef] [PubMed]

2010 (7)

Q. Yang, C. A. Reisman, Z. Wang, Y. Fukuma, M. Hangai, N. Yoshimura, A. Tomidokoro, M. Araie, A. S. Raza, D. C. Hood, and K. Chan, “Automated layer segmentation of macular OCT images using dual-scale gradient information,” Opt. Express18(20), 21293–21307 (2010).
[CrossRef] [PubMed]

K. Lee, M. Niemeijer, M. K. Garvin, Y. H. Kwon, M. Sonka, and M. D. Abràmoff, “Segmentation of the optic disc in 3-D OCT scans of the optic nerve head,” IEEE Trans. Med. Imaging29(1), 159–168 (2010).
[CrossRef] [PubMed]

V. Kajić, B. Považay, B. Hermann, B. Hofer, D. Marshall, P. L. Rosin, and W. Drexler, “Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis,” Opt. Express18(14), 14730–14744 (2010).
[CrossRef] [PubMed]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express18(18), 19413–19428 (2010).
[CrossRef] [PubMed]

M. Esmaeelpour, B. Považay, B. Hermann, B. Hofer, V. Kajic, K. Kapoor, N. J. Sheen, R. V. North, and W. Drexler, “Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients,” Invest. Ophthalmol. Vis. Sci.51(10), 5260–5266 (2010).
[CrossRef] [PubMed]

V. Manjunath, M. Taha, J. G. Fujimoto, and J. S. Duker, “Choroidal thickness in normal eyes measured using Cirrus HD optical coherence tomography,” Am. J. Ophthalmol.150(3), 325–329 (2010).
[CrossRef] [PubMed]

D. L. Nickla and J. Wallman, “The multifunctional choroid,” Prog. Retin. Eye Res.29(2), 144–168 (2010).
[CrossRef] [PubMed]

2009 (6)

A. Alm and S. F. Nilsson, “Uveoscleral outflow--a review,” Exp. Eye Res.88(4), 760–768 (2009).
[CrossRef] [PubMed]

R. Margolis and R. F. Spaide, “A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes,” Am. J. Ophthalmol.147(5), 811–815 (2009).
[CrossRef] [PubMed]

Y. Imamura, T. Fujiwara, R. Margolis, and R. F. Spaide, “Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy,” Retina29(10), 1469–1473 (2009).
[CrossRef] [PubMed]

A. Mishra, A. Wong, K. Bizheva, and D. A. Clausi, “Intra-retinal layer segmentation in optical coherence tomography images,” Opt. Express17(26), 23719–23728 (2009).
[CrossRef] [PubMed]

T. Fabritius, S. Makita, M. Miura, R. Myllylä, and Y. Yasuno, “Automated segmentation of the macula by optical coherence tomography,” Opt. Express17(18), 15659–15669 (2009).
[CrossRef] [PubMed]

M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging28(9), 1436–1447 (2009).
[CrossRef] [PubMed]

2008 (1)

R. F. Spaide, H. Koizumi, and M. C. Pozzonni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol.146(4), 496–500 (2008).
[CrossRef] [PubMed]

2007 (1)

2006 (2)

E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, “In vivo optical frequency domain imaging of human retina and choroid,” Opt. Express14(10), 4403–4411 (2006).
[CrossRef] [PubMed]

K. Li, X. Wu, D. Z. Chen, and M. Sonka, “Optimal surface segmentation in volumetric images--a graph-theoretic approach,” IEEE Trans. Pattern Anal. Mach. Intell.28(1), 119–134 (2006).
[CrossRef] [PubMed]

2005 (3)

2004 (1)

D. R. Martin, C. C. Fowlkes, and J. Malik, “Learning to detect natural image boundaries using local brightness, color, and texture cues,” IEEE Trans. Pattern Anal. Mach. Intell.26(5), 530–549 (2004).
[CrossRef] [PubMed]

2003 (1)

2002 (1)

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002).
[CrossRef] [PubMed]

2001 (1)

D. Koozekanani, K. Boyer, and C. Roberts, “Retinal thickness measurements from optical coherence tomography using a Markov boundary model,” IEEE Trans. Med. Imaging20(9), 900–916 (2001).
[CrossRef] [PubMed]

1991 (2)

L. M. Parver, “Temperature modulating action of choroidal blood flow,” Eye (Lond.)5(2), 181–185 (1991).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

1986 (2)

D. Van Norren and L. F. Tiemeijer, “Spectral reflectance of the human eye,” Vision Res.26(2), 313–320 (1986).
[CrossRef] [PubMed]

J. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern Anal. Mach. Intell.679–698 (1986).

1983 (1)

A. Bill, G. Sperber, and K. Ujiie, “Physiology of the choroidal vascular bed,” Int. Ophthalmol.6(2), 101–107 (1983).
[CrossRef] [PubMed]

1959 (1)

E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische Mathematik1(1), 269–271 (1959).
[CrossRef]

Abdillahi, H.

P. A. Dufour, L. Ceklic, H. Abdillahi, S. Schröder, S. De Dzanet, U. Wolf-Schnurrbusch, and J. Kowal, “Graph-based multi-surface segmentation of OCT data using trained hard and soft constraints,” IEEE Trans. Med. Imaging32(3), 531–543 (2013).
[CrossRef] [PubMed]

Abràmoff, M. D.

L. Zhang, K. Lee, M. Niemeijer, R. F. Mullins, M. Sonka, and M. D. Abràmoff, “Automated segmentation of the choroid from clinical SD-OCT,” Invest. Ophthalmol. Vis. Sci.53(12), 7510–7519 (2012).
[CrossRef] [PubMed]

K. Lee, M. Niemeijer, M. K. Garvin, Y. H. Kwon, M. Sonka, and M. D. Abràmoff, “Segmentation of the optic disc in 3-D OCT scans of the optic nerve head,” IEEE Trans. Med. Imaging29(1), 159–168 (2010).
[CrossRef] [PubMed]

M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging28(9), 1436–1447 (2009).
[CrossRef] [PubMed]

Ahnelt, P.

Akiba, M.

M. Hirata, A. Tsujikawa, A. Matsumoto, M. Hangai, S. Ooto, K. Yamashiro, M. Akiba, and N. Yoshimura, “Macular choroidal thickness and volume in normal subjects measured by swept-source optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(8), 4971–4978 (2011).
[CrossRef] [PubMed]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1- um swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express15(10), 6121–6139 (2007).
[CrossRef] [PubMed]

Albiani, D. A.

S. Lee, N. Fallah, F. Forooghian, A. Ko, K. Pakzad-Vaezi, A. B. Merkur, A. W. Kirker, D. A. Albiani, M. Young, M. V. Sarunic, and M. F. Beg, “Comparative analysis of repeatability of manual and automated choroidal thickness measurements in nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci.54(4), 2864–2871 (2013).
[CrossRef] [PubMed]

Alm, A.

A. Alm and S. F. Nilsson, “Uveoscleral outflow--a review,” Exp. Eye Res.88(4), 760–768 (2009).
[CrossRef] [PubMed]

Alonso-Caneiro, D.

S. A. Read, M. J. Collins, S. J. Vincent, and D. Alonso-Caneiro, “Choroidal thickness in childhood,” Invest. Ophthalmol. Vis. Sci.54(5), 3586–3593 (2013).
[CrossRef] [PubMed]

S. A. Read, M. J. Collins, S. J. Vincent, and D. Alonso-Caneiro, “Macular retinal layer thickness in childhood,” Retina. submitted.

Araie, M.

Arbeláez, P.

P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection and hierarchical image segmentation,” IEEE Trans. Pattern Anal. Mach. Intell.33(5), 898–916 (2011).
[CrossRef] [PubMed]

Aung, T.

Bajraszewski, T.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002).
[CrossRef] [PubMed]

Baskaran, M.

Beaton, S.

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.46(6), 2012–2017 (2005).
[CrossRef] [PubMed]

Beg, M. F.

S. Lee, N. Fallah, F. Forooghian, A. Ko, K. Pakzad-Vaezi, A. B. Merkur, A. W. Kirker, D. A. Albiani, M. Young, M. V. Sarunic, and M. F. Beg, “Comparative analysis of repeatability of manual and automated choroidal thickness measurements in nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci.54(4), 2864–2871 (2013).
[CrossRef] [PubMed]

Bill, A.

A. Bill, G. Sperber, and K. Ujiie, “Physiology of the choroidal vascular bed,” Int. Ophthalmol.6(2), 101–107 (1983).
[CrossRef] [PubMed]

Bizheva, K.

Bonesi, M.

Boyer, K.

D. Koozekanani, K. Boyer, and C. Roberts, “Retinal thickness measurements from optical coherence tomography using a Markov boundary model,” IEEE Trans. Med. Imaging20(9), 900–916 (2001).
[CrossRef] [PubMed]

Braaf, B.

Burns, T. L.

M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging28(9), 1436–1447 (2009).
[CrossRef] [PubMed]

Cabrera Fernández, D.

Calabresi, P. A.

Canny, J.

J. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern Anal. Mach. Intell.679–698 (1986).

Carass, A.

Ceklic, L.

P. A. Dufour, L. Ceklic, H. Abdillahi, S. Schröder, S. De Dzanet, U. Wolf-Schnurrbusch, and J. Kowal, “Graph-based multi-surface segmentation of OCT data using trained hard and soft constraints,” IEEE Trans. Med. Imaging32(3), 531–543 (2013).
[CrossRef] [PubMed]

Chan, K.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chavez-Pirson, A.

Chen, D. Z.

K. Li, X. Wu, D. Z. Chen, and M. Sonka, “Optimal surface segmentation in volumetric images--a graph-theoretic approach,” IEEE Trans. Pattern Anal. Mach. Intell.28(1), 119–134 (2006).
[CrossRef] [PubMed]

Chen, F. K.

W. Rahman, F. K. Chen, J. Yeoh, P. Patel, A. Tufail, and L. Da Cruz, “Repeatability of manual subfoveal choroidal thickness measurements in healthy subjects using the technique of enhanced depth imaging optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(5), 2267–2271 (2011).
[CrossRef] [PubMed]

Chiu, S. J.

Clausi, D. A.

Collins, M. J.

S. A. Read, M. J. Collins, S. J. Vincent, and D. Alonso-Caneiro, “Choroidal thickness in childhood,” Invest. Ophthalmol. Vis. Sci.54(5), 3586–3593 (2013).
[CrossRef] [PubMed]

S. A. Read, M. J. Collins, S. J. Vincent, and D. Alonso-Caneiro, “Macular retinal layer thickness in childhood,” Retina. submitted.

Da Cruz, L.

W. Rahman, F. K. Chen, J. Yeoh, P. Patel, A. Tufail, and L. Da Cruz, “Repeatability of manual subfoveal choroidal thickness measurements in healthy subjects using the technique of enhanced depth imaging optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(5), 2267–2271 (2011).
[CrossRef] [PubMed]

de Boer, J. F.

De Dzanet, S.

P. A. Dufour, L. Ceklic, H. Abdillahi, S. Schröder, S. De Dzanet, U. Wolf-Schnurrbusch, and J. Kowal, “Graph-based multi-surface segmentation of OCT data using trained hard and soft constraints,” IEEE Trans. Med. Imaging32(3), 531–543 (2013).
[CrossRef] [PubMed]

Dhoot, D. S.

D. S. Dhoot, S. Huo, A. Yuan, D. Xu, S. Srivistava, J. P. Ehlers, E. Traboulsi, and P. K. Kaiser, “Evaluation of choroidal thickness in retinitis pigmentosa using enhanced depth imaging optical coherence tomography,” Br. J. Ophthalmol.97(1), 66–69 (2013).
[CrossRef] [PubMed]

Dijkstra, E. W.

E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische Mathematik1(1), 269–271 (1959).
[CrossRef]

Drexler, W.

V. Kajić, M. Esmaeelpour, B. Považay, D. Marshall, P. L. Rosin, and W. Drexler, “Automated choroidal segmentation of 1060 nm OCT in healthy and pathologic eyes using a statistical model,” Biomed. Opt. Express3(1), 86–103 (2012).
[CrossRef] [PubMed]

M. Esmaeelpour, B. Považay, B. Hermann, B. Hofer, V. Kajic, S. L. Hale, R. V. North, W. Drexler, and N. J. Sheen, “Mapping choroidal and retinal thickness variation in type 2 diabetes using three-dimensional 1060-nm optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(8), 5311–5316 (2011).
[CrossRef] [PubMed]

M. Esmaeelpour, B. Považay, B. Hermann, B. Hofer, V. Kajic, K. Kapoor, N. J. Sheen, R. V. North, and W. Drexler, “Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients,” Invest. Ophthalmol. Vis. Sci.51(10), 5260–5266 (2010).
[CrossRef] [PubMed]

V. Kajić, B. Považay, B. Hermann, B. Hofer, D. Marshall, P. L. Rosin, and W. Drexler, “Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis,” Opt. Express18(14), 14730–14744 (2010).
[CrossRef] [PubMed]

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid,” Opt. Express13(9), 3252–3258 (2005).
[CrossRef] [PubMed]

B. Považay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. Fercher, W. Drexler, C. Schubert, P. Ahnelt, M. Mei, R. Holzwarth, W. Wadsworth, J. Knight, and P. S. Russell, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,” Opt. Express11(17), 1980–1986 (2003).
[CrossRef] [PubMed]

Duan, L.

Dufour, P. A.

P. A. Dufour, L. Ceklic, H. Abdillahi, S. Schröder, S. De Dzanet, U. Wolf-Schnurrbusch, and J. Kowal, “Graph-based multi-surface segmentation of OCT data using trained hard and soft constraints,” IEEE Trans. Med. Imaging32(3), 531–543 (2013).
[CrossRef] [PubMed]

Duker, J. S.

V. Manjunath, J. Goren, J. G. Fujimoto, and J. S. Duker, “Analysis of choroidal thickness in age-related macular degeneration using spectral-domain optical coherence tomography,” Am. J. Ophthalmol.152(4), 663–668 (2011).
[CrossRef] [PubMed]

V. Manjunath, M. Taha, J. G. Fujimoto, and J. S. Duker, “Choroidal thickness in normal eyes measured using Cirrus HD optical coherence tomography,” Am. J. Ophthalmol.150(3), 325–329 (2010).
[CrossRef] [PubMed]

Egan, C. A.

D. A. Sim, P. A. Keane, H. Mehta, S. Fung, J. Zarranz-Ventura, M. Fruttiger, P. J. Patel, C. A. Egan, and A. Tufail, “Repeatability and reproducibility of choroidal vessel layer measurements in diabetic retinopathy using enhanced depth optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.54(4), 2893–2901 (2013).
[CrossRef] [PubMed]

Ehlers, J. P.

D. S. Dhoot, S. Huo, A. Yuan, D. Xu, S. Srivistava, J. P. Ehlers, E. Traboulsi, and P. K. Kaiser, “Evaluation of choroidal thickness in retinitis pigmentosa using enhanced depth imaging optical coherence tomography,” Br. J. Ophthalmol.97(1), 66–69 (2013).
[CrossRef] [PubMed]

Esmaeelpour, M.

V. Kajić, M. Esmaeelpour, B. Považay, D. Marshall, P. L. Rosin, and W. Drexler, “Automated choroidal segmentation of 1060 nm OCT in healthy and pathologic eyes using a statistical model,” Biomed. Opt. Express3(1), 86–103 (2012).
[CrossRef] [PubMed]

M. Esmaeelpour, B. Považay, B. Hermann, B. Hofer, V. Kajic, S. L. Hale, R. V. North, W. Drexler, and N. J. Sheen, “Mapping choroidal and retinal thickness variation in type 2 diabetes using three-dimensional 1060-nm optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(8), 5311–5316 (2011).
[CrossRef] [PubMed]

M. Esmaeelpour, B. Považay, B. Hermann, B. Hofer, V. Kajic, K. Kapoor, N. J. Sheen, R. V. North, and W. Drexler, “Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients,” Invest. Ophthalmol. Vis. Sci.51(10), 5260–5266 (2010).
[CrossRef] [PubMed]

et,

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Ethier, C. R.

M. J. Girard, N. G. Strouthidis, C. R. Ethier, and J. M. Mari, “Shadow removal and contrast enhancement in optical coherence tomography images of the human optic nerve head,” Invest. Ophthalmol. Vis. Sci.52(10), 7738–7748 (2011).
[CrossRef] [PubMed]

Fabritius, T.

Fallah, N.

S. Lee, N. Fallah, F. Forooghian, A. Ko, K. Pakzad-Vaezi, A. B. Merkur, A. W. Kirker, D. A. Albiani, M. Young, M. V. Sarunic, and M. F. Beg, “Comparative analysis of repeatability of manual and automated choroidal thickness measurements in nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci.54(4), 2864–2871 (2013).
[CrossRef] [PubMed]

Farsiu, S.

Fercher, A.

Fercher, A. F.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002).
[CrossRef] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Forooghian, F.

S. Lee, N. Fallah, F. Forooghian, A. Ko, K. Pakzad-Vaezi, A. B. Merkur, A. W. Kirker, D. A. Albiani, M. Young, M. V. Sarunic, and M. F. Beg, “Comparative analysis of repeatability of manual and automated choroidal thickness measurements in nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci.54(4), 2864–2871 (2013).
[CrossRef] [PubMed]

Fowlkes, C.

P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection and hierarchical image segmentation,” IEEE Trans. Pattern Anal. Mach. Intell.33(5), 898–916 (2011).
[CrossRef] [PubMed]

Fowlkes, C. C.

D. R. Martin, C. C. Fowlkes, and J. Malik, “Learning to detect natural image boundaries using local brightness, color, and texture cues,” IEEE Trans. Pattern Anal. Mach. Intell.26(5), 530–549 (2004).
[CrossRef] [PubMed]

Fruttiger, M.

D. A. Sim, P. A. Keane, H. Mehta, S. Fung, J. Zarranz-Ventura, M. Fruttiger, P. J. Patel, C. A. Egan, and A. Tufail, “Repeatability and reproducibility of choroidal vessel layer measurements in diabetic retinopathy using enhanced depth optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.54(4), 2893–2901 (2013).
[CrossRef] [PubMed]

Fujimoto, J. G.

V. Manjunath, J. Goren, J. G. Fujimoto, and J. S. Duker, “Analysis of choroidal thickness in age-related macular degeneration using spectral-domain optical coherence tomography,” Am. J. Ophthalmol.152(4), 663–668 (2011).
[CrossRef] [PubMed]

V. Manjunath, M. Taha, J. G. Fujimoto, and J. S. Duker, “Choroidal thickness in normal eyes measured using Cirrus HD optical coherence tomography,” Am. J. Ophthalmol.150(3), 325–329 (2010).
[CrossRef] [PubMed]

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.46(6), 2012–2017 (2005).
[CrossRef] [PubMed]

Fujiwara, T.

Y. Imamura, T. Fujiwara, R. Margolis, and R. F. Spaide, “Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy,” Retina29(10), 1469–1473 (2009).
[CrossRef] [PubMed]

Fukuma, Y.

Fung, S.

D. A. Sim, P. A. Keane, H. Mehta, S. Fung, J. Zarranz-Ventura, M. Fruttiger, P. J. Patel, C. A. Egan, and A. Tufail, “Repeatability and reproducibility of choroidal vessel layer measurements in diabetic retinopathy using enhanced depth optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.54(4), 2893–2901 (2013).
[CrossRef] [PubMed]

Garvin, M. K.

K. Lee, M. Niemeijer, M. K. Garvin, Y. H. Kwon, M. Sonka, and M. D. Abràmoff, “Segmentation of the optic disc in 3-D OCT scans of the optic nerve head,” IEEE Trans. Med. Imaging29(1), 159–168 (2010).
[CrossRef] [PubMed]

M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging28(9), 1436–1447 (2009).
[CrossRef] [PubMed]

Girard, M. J.

J. M. Mari, N. G. Strouthidis, S. C. Park, and M. J. Girard, “Enhancement of lamina cribrosa visibility in optical coherence tomography images using adaptive compensation,” Invest. Ophthalmol. Vis. Sci.54(3), 2238–2247 (2013).
[CrossRef] [PubMed]

M. J. Girard, N. G. Strouthidis, C. R. Ethier, and J. M. Mari, “Shadow removal and contrast enhancement in optical coherence tomography images of the human optic nerve head,” Invest. Ophthalmol. Vis. Sci.52(10), 7738–7748 (2011).
[CrossRef] [PubMed]

Goren, J.

V. Manjunath, J. Goren, J. G. Fujimoto, and J. S. Duker, “Analysis of choroidal thickness in age-related macular degeneration using spectral-domain optical coherence tomography,” Am. J. Ophthalmol.152(4), 663–668 (2011).
[CrossRef] [PubMed]

Götzinger, E.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hale, S. L.

M. Esmaeelpour, B. Považay, B. Hermann, B. Hofer, V. Kajic, S. L. Hale, R. V. North, W. Drexler, and N. J. Sheen, “Mapping choroidal and retinal thickness variation in type 2 diabetes using three-dimensional 1060-nm optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(8), 5311–5316 (2011).
[CrossRef] [PubMed]

Hamarneh, G.

A. Yazdanpanah, G. Hamarneh, B. R. Smith, and M. V. Sarunic, “Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach,” IEEE Trans. Med. Imaging30(2), 484–496 (2011).
[CrossRef] [PubMed]

Hangai, M.

M. Hirata, A. Tsujikawa, A. Matsumoto, M. Hangai, S. Ooto, K. Yamashiro, M. Akiba, and N. Yoshimura, “Macular choroidal thickness and volume in normal subjects measured by swept-source optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(8), 4971–4978 (2011).
[CrossRef] [PubMed]

Q. Yang, C. A. Reisman, Z. Wang, Y. Fukuma, M. Hangai, N. Yoshimura, A. Tomidokoro, M. Araie, A. S. Raza, D. C. Hood, and K. Chan, “Automated layer segmentation of macular OCT images using dual-scale gradient information,” Opt. Express18(20), 21293–21307 (2010).
[CrossRef] [PubMed]

Hauser, M.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hermann, B.

M. Esmaeelpour, B. Považay, B. Hermann, B. Hofer, V. Kajic, S. L. Hale, R. V. North, W. Drexler, and N. J. Sheen, “Mapping choroidal and retinal thickness variation in type 2 diabetes using three-dimensional 1060-nm optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(8), 5311–5316 (2011).
[CrossRef] [PubMed]

M. Esmaeelpour, B. Považay, B. Hermann, B. Hofer, V. Kajic, K. Kapoor, N. J. Sheen, R. V. North, and W. Drexler, “Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients,” Invest. Ophthalmol. Vis. Sci.51(10), 5260–5266 (2010).
[CrossRef] [PubMed]

V. Kajić, B. Považay, B. Hermann, B. Hofer, D. Marshall, P. L. Rosin, and W. Drexler, “Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis,” Opt. Express18(14), 14730–14744 (2010).
[CrossRef] [PubMed]

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid,” Opt. Express13(9), 3252–3258 (2005).
[CrossRef] [PubMed]

B. Považay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. Fercher, W. Drexler, C. Schubert, P. Ahnelt, M. Mei, R. Holzwarth, W. Wadsworth, J. Knight, and P. S. Russell, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,” Opt. Express11(17), 1980–1986 (2003).
[CrossRef] [PubMed]

Hirata, M.

M. Hirata, A. Tsujikawa, A. Matsumoto, M. Hangai, S. Ooto, K. Yamashiro, M. Akiba, and N. Yoshimura, “Macular choroidal thickness and volume in normal subjects measured by swept-source optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(8), 4971–4978 (2011).
[CrossRef] [PubMed]

Hitzenberger, C. K.

Hofer, B.

M. Esmaeelpour, B. Považay, B. Hermann, B. Hofer, V. Kajic, S. L. Hale, R. V. North, W. Drexler, and N. J. Sheen, “Mapping choroidal and retinal thickness variation in type 2 diabetes using three-dimensional 1060-nm optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(8), 5311–5316 (2011).
[CrossRef] [PubMed]

M. Esmaeelpour, B. Považay, B. Hermann, B. Hofer, V. Kajic, K. Kapoor, N. J. Sheen, R. V. North, and W. Drexler, “Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients,” Invest. Ophthalmol. Vis. Sci.51(10), 5260–5266 (2010).
[CrossRef] [PubMed]

V. Kajić, B. Považay, B. Hermann, B. Hofer, D. Marshall, P. L. Rosin, and W. Drexler, “Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis,” Opt. Express18(14), 14730–14744 (2010).
[CrossRef] [PubMed]

Holzwarth, R.

Hong, Y.

Hood, D. C.

Hu, Z.

Z. Hu, X. Wu, Y. Ouyang, Y. Ouyang, and S. R. Sadda, “Semiautomated segmentation of the choroid in spectral-domain optical coherence tomography volume scans,” Invest. Ophthalmol. Vis. Sci.54(3), 1722–1729 (2013).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Huo, S.

D. S. Dhoot, S. Huo, A. Yuan, D. Xu, S. Srivistava, J. P. Ehlers, E. Traboulsi, and P. K. Kaiser, “Evaluation of choroidal thickness in retinitis pigmentosa using enhanced depth imaging optical coherence tomography,” Br. J. Ophthalmol.97(1), 66–69 (2013).
[CrossRef] [PubMed]

Imamura, Y.

Y. Imamura, T. Fujiwara, R. Margolis, and R. F. Spaide, “Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy,” Retina29(10), 1469–1473 (2009).
[CrossRef] [PubMed]

Ishikawa, H.

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.46(6), 2012–2017 (2005).
[CrossRef] [PubMed]

Izatt, J. A.

Jaillon, F.

Kaiser, P. K.

D. S. Dhoot, S. Huo, A. Yuan, D. Xu, S. Srivistava, J. P. Ehlers, E. Traboulsi, and P. K. Kaiser, “Evaluation of choroidal thickness in retinitis pigmentosa using enhanced depth imaging optical coherence tomography,” Br. J. Ophthalmol.97(1), 66–69 (2013).
[CrossRef] [PubMed]

Kajic, V.

V. Kajić, M. Esmaeelpour, B. Považay, D. Marshall, P. L. Rosin, and W. Drexler, “Automated choroidal segmentation of 1060 nm OCT in healthy and pathologic eyes using a statistical model,” Biomed. Opt. Express3(1), 86–103 (2012).
[CrossRef] [PubMed]

M. Esmaeelpour, B. Považay, B. Hermann, B. Hofer, V. Kajic, S. L. Hale, R. V. North, W. Drexler, and N. J. Sheen, “Mapping choroidal and retinal thickness variation in type 2 diabetes using three-dimensional 1060-nm optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(8), 5311–5316 (2011).
[CrossRef] [PubMed]

M. Esmaeelpour, B. Považay, B. Hermann, B. Hofer, V. Kajic, K. Kapoor, N. J. Sheen, R. V. North, and W. Drexler, “Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients,” Invest. Ophthalmol. Vis. Sci.51(10), 5260–5266 (2010).
[CrossRef] [PubMed]

V. Kajić, B. Považay, B. Hermann, B. Hofer, D. Marshall, P. L. Rosin, and W. Drexler, “Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis,” Opt. Express18(14), 14730–14744 (2010).
[CrossRef] [PubMed]

Kaluzny, B.

M. Wojtkowski, B. Kaluzny, and R. J. Zawadzki, “New directions in ophthalmic optical coherence tomography,” Optom. Vis. Sci.89(5), 524–542 (2012).
[CrossRef] [PubMed]

Kapoor, K.

M. Esmaeelpour, B. Považay, B. Hermann, B. Hofer, V. Kajic, K. Kapoor, N. J. Sheen, R. V. North, and W. Drexler, “Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients,” Invest. Ophthalmol. Vis. Sci.51(10), 5260–5266 (2010).
[CrossRef] [PubMed]

Keane, P. A.

D. A. Sim, P. A. Keane, H. Mehta, S. Fung, J. Zarranz-Ventura, M. Fruttiger, P. J. Patel, C. A. Egan, and A. Tufail, “Repeatability and reproducibility of choroidal vessel layer measurements in diabetic retinopathy using enhanced depth optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.54(4), 2893–2901 (2013).
[CrossRef] [PubMed]

Kirker, A. W.

S. Lee, N. Fallah, F. Forooghian, A. Ko, K. Pakzad-Vaezi, A. B. Merkur, A. W. Kirker, D. A. Albiani, M. Young, M. V. Sarunic, and M. F. Beg, “Comparative analysis of repeatability of manual and automated choroidal thickness measurements in nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci.54(4), 2864–2871 (2013).
[CrossRef] [PubMed]

Knight, J.

Ko, A.

S. Lee, N. Fallah, F. Forooghian, A. Ko, K. Pakzad-Vaezi, A. B. Merkur, A. W. Kirker, D. A. Albiani, M. Young, M. V. Sarunic, and M. F. Beg, “Comparative analysis of repeatability of manual and automated choroidal thickness measurements in nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci.54(4), 2864–2871 (2013).
[CrossRef] [PubMed]

Koizumi, H.

R. F. Spaide, H. Koizumi, and M. C. Pozzonni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol.146(4), 496–500 (2008).
[CrossRef] [PubMed]

Koozekanani, D.

D. Koozekanani, K. Boyer, and C. Roberts, “Retinal thickness measurements from optical coherence tomography using a Markov boundary model,” IEEE Trans. Med. Imaging20(9), 900–916 (2001).
[CrossRef] [PubMed]

Kowal, J.

P. A. Dufour, L. Ceklic, H. Abdillahi, S. Schröder, S. De Dzanet, U. Wolf-Schnurrbusch, and J. Kowal, “Graph-based multi-surface segmentation of OCT data using trained hard and soft constraints,” IEEE Trans. Med. Imaging32(3), 531–543 (2013).
[CrossRef] [PubMed]

Kowalczyk, A.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002).
[CrossRef] [PubMed]

Kuo, A. N.

Kwon, Y. H.

K. Lee, M. Niemeijer, M. K. Garvin, Y. H. Kwon, M. Sonka, and M. D. Abràmoff, “Segmentation of the optic disc in 3-D OCT scans of the optic nerve head,” IEEE Trans. Med. Imaging29(1), 159–168 (2010).
[CrossRef] [PubMed]

Lang, A.

LaRocca, F.

Larsen, M.

X. Q. Li, M. Larsen, and I. C. Munch, “Subfoveal choroidal thickness in relation to sex and axial length in 93 Danish university students,” Invest. Ophthalmol. Vis. Sci.52(11), 8438–8441 (2011).
[CrossRef] [PubMed]

Lee, E. C.

Lee, K.

L. Zhang, K. Lee, M. Niemeijer, R. F. Mullins, M. Sonka, and M. D. Abràmoff, “Automated segmentation of the choroid from clinical SD-OCT,” Invest. Ophthalmol. Vis. Sci.53(12), 7510–7519 (2012).
[CrossRef] [PubMed]

K. Lee, M. Niemeijer, M. K. Garvin, Y. H. Kwon, M. Sonka, and M. D. Abràmoff, “Segmentation of the optic disc in 3-D OCT scans of the optic nerve head,” IEEE Trans. Med. Imaging29(1), 159–168 (2010).
[CrossRef] [PubMed]

Lee, S.

S. Lee, N. Fallah, F. Forooghian, A. Ko, K. Pakzad-Vaezi, A. B. Merkur, A. W. Kirker, D. A. Albiani, M. Young, M. V. Sarunic, and M. F. Beg, “Comparative analysis of repeatability of manual and automated choroidal thickness measurements in nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci.54(4), 2864–2871 (2013).
[CrossRef] [PubMed]

Leitgeb, R.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002).
[CrossRef] [PubMed]

Lemij, H. G.

Li, K.

K. Li, X. Wu, D. Z. Chen, and M. Sonka, “Optimal surface segmentation in volumetric images--a graph-theoretic approach,” IEEE Trans. Pattern Anal. Mach. Intell.28(1), 119–134 (2006).
[CrossRef] [PubMed]

Li, X. Q.

X. Q. Li, M. Larsen, and I. C. Munch, “Subfoveal choroidal thickness in relation to sex and axial length in 93 Danish university students,” Invest. Ophthalmol. Vis. Sci.52(11), 8438–8441 (2011).
[CrossRef] [PubMed]

Li, X. T.

Lim, H.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Maire, M.

P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection and hierarchical image segmentation,” IEEE Trans. Pattern Anal. Mach. Intell.33(5), 898–916 (2011).
[CrossRef] [PubMed]

Makita, S.

Malik, J.

P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection and hierarchical image segmentation,” IEEE Trans. Pattern Anal. Mach. Intell.33(5), 898–916 (2011).
[CrossRef] [PubMed]

D. R. Martin, C. C. Fowlkes, and J. Malik, “Learning to detect natural image boundaries using local brightness, color, and texture cues,” IEEE Trans. Pattern Anal. Mach. Intell.26(5), 530–549 (2004).
[CrossRef] [PubMed]

Manjunath, V.

V. Manjunath, J. Goren, J. G. Fujimoto, and J. S. Duker, “Analysis of choroidal thickness in age-related macular degeneration using spectral-domain optical coherence tomography,” Am. J. Ophthalmol.152(4), 663–668 (2011).
[CrossRef] [PubMed]

V. Manjunath, M. Taha, J. G. Fujimoto, and J. S. Duker, “Choroidal thickness in normal eyes measured using Cirrus HD optical coherence tomography,” Am. J. Ophthalmol.150(3), 325–329 (2010).
[CrossRef] [PubMed]

Margolis, R.

R. Margolis and R. F. Spaide, “A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes,” Am. J. Ophthalmol.147(5), 811–815 (2009).
[CrossRef] [PubMed]

Y. Imamura, T. Fujiwara, R. Margolis, and R. F. Spaide, “Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy,” Retina29(10), 1469–1473 (2009).
[CrossRef] [PubMed]

Mari, J. M.

J. M. Mari, N. G. Strouthidis, S. C. Park, and M. J. Girard, “Enhancement of lamina cribrosa visibility in optical coherence tomography images using adaptive compensation,” Invest. Ophthalmol. Vis. Sci.54(3), 2238–2247 (2013).
[CrossRef] [PubMed]

M. J. Girard, N. G. Strouthidis, C. R. Ethier, and J. M. Mari, “Shadow removal and contrast enhancement in optical coherence tomography images of the human optic nerve head,” Invest. Ophthalmol. Vis. Sci.52(10), 7738–7748 (2011).
[CrossRef] [PubMed]

Marshall, D.

Martin, D. R.

D. R. Martin, C. C. Fowlkes, and J. Malik, “Learning to detect natural image boundaries using local brightness, color, and texture cues,” IEEE Trans. Pattern Anal. Mach. Intell.26(5), 530–549 (2004).
[CrossRef] [PubMed]

Marziliano, P.

Matsumoto, A.

M. Hirata, A. Tsujikawa, A. Matsumoto, M. Hangai, S. Ooto, K. Yamashiro, M. Akiba, and N. Yoshimura, “Macular choroidal thickness and volume in normal subjects measured by swept-source optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(8), 4971–4978 (2011).
[CrossRef] [PubMed]

McNabb, R. P.

Mehta, H.

D. A. Sim, P. A. Keane, H. Mehta, S. Fung, J. Zarranz-Ventura, M. Fruttiger, P. J. Patel, C. A. Egan, and A. Tufail, “Repeatability and reproducibility of choroidal vessel layer measurements in diabetic retinopathy using enhanced depth optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.54(4), 2893–2901 (2013).
[CrossRef] [PubMed]

Mei, M.

Merkur, A. B.

S. Lee, N. Fallah, F. Forooghian, A. Ko, K. Pakzad-Vaezi, A. B. Merkur, A. W. Kirker, D. A. Albiani, M. Young, M. V. Sarunic, and M. F. Beg, “Comparative analysis of repeatability of manual and automated choroidal thickness measurements in nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci.54(4), 2864–2871 (2013).
[CrossRef] [PubMed]

Mishra, A.

Miura, M.

Mujat, M.

Mullins, R. F.

L. Zhang, K. Lee, M. Niemeijer, R. F. Mullins, M. Sonka, and M. D. Abràmoff, “Automated segmentation of the choroid from clinical SD-OCT,” Invest. Ophthalmol. Vis. Sci.53(12), 7510–7519 (2012).
[CrossRef] [PubMed]

Munch, I. C.

X. Q. Li, M. Larsen, and I. C. Munch, “Subfoveal choroidal thickness in relation to sex and axial length in 93 Danish university students,” Invest. Ophthalmol. Vis. Sci.52(11), 8438–8441 (2011).
[CrossRef] [PubMed]

Myllylä, R.

Nicholas, P.

Nickla, D. L.

D. L. Nickla and J. Wallman, “The multifunctional choroid,” Prog. Retin. Eye Res.29(2), 144–168 (2010).
[CrossRef] [PubMed]

Niemeijer, M.

L. Zhang, K. Lee, M. Niemeijer, R. F. Mullins, M. Sonka, and M. D. Abràmoff, “Automated segmentation of the choroid from clinical SD-OCT,” Invest. Ophthalmol. Vis. Sci.53(12), 7510–7519 (2012).
[CrossRef] [PubMed]

K. Lee, M. Niemeijer, M. K. Garvin, Y. H. Kwon, M. Sonka, and M. D. Abràmoff, “Segmentation of the optic disc in 3-D OCT scans of the optic nerve head,” IEEE Trans. Med. Imaging29(1), 159–168 (2010).
[CrossRef] [PubMed]

Nilsson, S. F.

A. Alm and S. F. Nilsson, “Uveoscleral outflow--a review,” Exp. Eye Res.88(4), 760–768 (2009).
[CrossRef] [PubMed]

North, R. V.

M. Esmaeelpour, B. Považay, B. Hermann, B. Hofer, V. Kajic, S. L. Hale, R. V. North, W. Drexler, and N. J. Sheen, “Mapping choroidal and retinal thickness variation in type 2 diabetes using three-dimensional 1060-nm optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(8), 5311–5316 (2011).
[CrossRef] [PubMed]

M. Esmaeelpour, B. Považay, B. Hermann, B. Hofer, V. Kajic, K. Kapoor, N. J. Sheen, R. V. North, and W. Drexler, “Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients,” Invest. Ophthalmol. Vis. Sci.51(10), 5260–5266 (2010).
[CrossRef] [PubMed]

Ooto, S.

M. Hirata, A. Tsujikawa, A. Matsumoto, M. Hangai, S. Ooto, K. Yamashiro, M. Akiba, and N. Yoshimura, “Macular choroidal thickness and volume in normal subjects measured by swept-source optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(8), 4971–4978 (2011).
[CrossRef] [PubMed]

Ouyang, Y.

Z. Hu, X. Wu, Y. Ouyang, Y. Ouyang, and S. R. Sadda, “Semiautomated segmentation of the choroid in spectral-domain optical coherence tomography volume scans,” Invest. Ophthalmol. Vis. Sci.54(3), 1722–1729 (2013).
[CrossRef] [PubMed]

Z. Hu, X. Wu, Y. Ouyang, Y. Ouyang, and S. R. Sadda, “Semiautomated segmentation of the choroid in spectral-domain optical coherence tomography volume scans,” Invest. Ophthalmol. Vis. Sci.54(3), 1722–1729 (2013).
[CrossRef] [PubMed]

Pakzad-Vaezi, K.

S. Lee, N. Fallah, F. Forooghian, A. Ko, K. Pakzad-Vaezi, A. B. Merkur, A. W. Kirker, D. A. Albiani, M. Young, M. V. Sarunic, and M. F. Beg, “Comparative analysis of repeatability of manual and automated choroidal thickness measurements in nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci.54(4), 2864–2871 (2013).
[CrossRef] [PubMed]

Park, S. C.

J. M. Mari, N. G. Strouthidis, S. C. Park, and M. J. Girard, “Enhancement of lamina cribrosa visibility in optical coherence tomography images using adaptive compensation,” Invest. Ophthalmol. Vis. Sci.54(3), 2238–2247 (2013).
[CrossRef] [PubMed]

Parver, L. M.

L. M. Parver, “Temperature modulating action of choroidal blood flow,” Eye (Lond.)5(2), 181–185 (1991).
[CrossRef] [PubMed]

Patel, P.

W. Rahman, F. K. Chen, J. Yeoh, P. Patel, A. Tufail, and L. Da Cruz, “Repeatability of manual subfoveal choroidal thickness measurements in healthy subjects using the technique of enhanced depth imaging optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(5), 2267–2271 (2011).
[CrossRef] [PubMed]

Patel, P. J.

D. A. Sim, P. A. Keane, H. Mehta, S. Fung, J. Zarranz-Ventura, M. Fruttiger, P. J. Patel, C. A. Egan, and A. Tufail, “Repeatability and reproducibility of choroidal vessel layer measurements in diabetic retinopathy using enhanced depth optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.54(4), 2893–2901 (2013).
[CrossRef] [PubMed]

Pircher, M.

Povazay, B.

Považay, B.

V. Kajić, M. Esmaeelpour, B. Považay, D. Marshall, P. L. Rosin, and W. Drexler, “Automated choroidal segmentation of 1060 nm OCT in healthy and pathologic eyes using a statistical model,” Biomed. Opt. Express3(1), 86–103 (2012).
[CrossRef] [PubMed]

M. Esmaeelpour, B. Považay, B. Hermann, B. Hofer, V. Kajic, S. L. Hale, R. V. North, W. Drexler, and N. J. Sheen, “Mapping choroidal and retinal thickness variation in type 2 diabetes using three-dimensional 1060-nm optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(8), 5311–5316 (2011).
[CrossRef] [PubMed]

M. Esmaeelpour, B. Považay, B. Hermann, B. Hofer, V. Kajic, K. Kapoor, N. J. Sheen, R. V. North, and W. Drexler, “Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients,” Invest. Ophthalmol. Vis. Sci.51(10), 5260–5266 (2010).
[CrossRef] [PubMed]

V. Kajić, B. Považay, B. Hermann, B. Hofer, D. Marshall, P. L. Rosin, and W. Drexler, “Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis,” Opt. Express18(14), 14730–14744 (2010).
[CrossRef] [PubMed]

B. Považay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. Fercher, W. Drexler, C. Schubert, P. Ahnelt, M. Mei, R. Holzwarth, W. Wadsworth, J. Knight, and P. S. Russell, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,” Opt. Express11(17), 1980–1986 (2003).
[CrossRef] [PubMed]

Pozzonni, M. C.

R. F. Spaide, H. Koizumi, and M. C. Pozzonni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol.146(4), 496–500 (2008).
[CrossRef] [PubMed]

Prince, J. L.

Puliafito, C. A.

D. Cabrera Fernández, H. M. Salinas, and C. A. Puliafito, “Automated detection of retinal layer structures on optical coherence tomography images,” Opt. Express13(25), 10200–10216 (2005).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Rahman, W.

W. Rahman, F. K. Chen, J. Yeoh, P. Patel, A. Tufail, and L. Da Cruz, “Repeatability of manual subfoveal choroidal thickness measurements in healthy subjects using the technique of enhanced depth imaging optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(5), 2267–2271 (2011).
[CrossRef] [PubMed]

Raza, A. S.

Read, S. A.

S. A. Read, M. J. Collins, S. J. Vincent, and D. Alonso-Caneiro, “Choroidal thickness in childhood,” Invest. Ophthalmol. Vis. Sci.54(5), 3586–3593 (2013).
[CrossRef] [PubMed]

S. A. Read, M. J. Collins, S. J. Vincent, and D. Alonso-Caneiro, “Macular retinal layer thickness in childhood,” Retina. submitted.

Reisman, C. A.

Roberts, C.

D. Koozekanani, K. Boyer, and C. Roberts, “Retinal thickness measurements from optical coherence tomography using a Markov boundary model,” IEEE Trans. Med. Imaging20(9), 900–916 (2001).
[CrossRef] [PubMed]

Rosin, P. L.

Russell, P. S.

Russell, S. R.

M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging28(9), 1436–1447 (2009).
[CrossRef] [PubMed]

Sadda, S. R.

Z. Hu, X. Wu, Y. Ouyang, Y. Ouyang, and S. R. Sadda, “Semiautomated segmentation of the choroid in spectral-domain optical coherence tomography volume scans,” Invest. Ophthalmol. Vis. Sci.54(3), 1722–1729 (2013).
[CrossRef] [PubMed]

Salinas, H. M.

Sarunic, M. V.

S. Lee, N. Fallah, F. Forooghian, A. Ko, K. Pakzad-Vaezi, A. B. Merkur, A. W. Kirker, D. A. Albiani, M. Young, M. V. Sarunic, and M. F. Beg, “Comparative analysis of repeatability of manual and automated choroidal thickness measurements in nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci.54(4), 2864–2871 (2013).
[CrossRef] [PubMed]

A. Yazdanpanah, G. Hamarneh, B. R. Smith, and M. V. Sarunic, “Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach,” IEEE Trans. Med. Imaging30(2), 484–496 (2011).
[CrossRef] [PubMed]

Sattmann, H.

Schröder, S.

P. A. Dufour, L. Ceklic, H. Abdillahi, S. Schröder, S. De Dzanet, U. Wolf-Schnurrbusch, and J. Kowal, “Graph-based multi-surface segmentation of OCT data using trained hard and soft constraints,” IEEE Trans. Med. Imaging32(3), 531–543 (2013).
[CrossRef] [PubMed]

Schubert, C.

Schuman, J. S.

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.46(6), 2012–2017 (2005).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Sheen, N. J.

M. Esmaeelpour, B. Považay, B. Hermann, B. Hofer, V. Kajic, S. L. Hale, R. V. North, W. Drexler, and N. J. Sheen, “Mapping choroidal and retinal thickness variation in type 2 diabetes using three-dimensional 1060-nm optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(8), 5311–5316 (2011).
[CrossRef] [PubMed]

M. Esmaeelpour, B. Považay, B. Hermann, B. Hofer, V. Kajic, K. Kapoor, N. J. Sheen, R. V. North, and W. Drexler, “Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients,” Invest. Ophthalmol. Vis. Sci.51(10), 5260–5266 (2010).
[CrossRef] [PubMed]

Sim, D. A.

D. A. Sim, P. A. Keane, H. Mehta, S. Fung, J. Zarranz-Ventura, M. Fruttiger, P. J. Patel, C. A. Egan, and A. Tufail, “Repeatability and reproducibility of choroidal vessel layer measurements in diabetic retinopathy using enhanced depth optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.54(4), 2893–2901 (2013).
[CrossRef] [PubMed]

Smith, B. R.

A. Yazdanpanah, G. Hamarneh, B. R. Smith, and M. V. Sarunic, “Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach,” IEEE Trans. Med. Imaging30(2), 484–496 (2011).
[CrossRef] [PubMed]

Sonka, M.

L. Zhang, K. Lee, M. Niemeijer, R. F. Mullins, M. Sonka, and M. D. Abràmoff, “Automated segmentation of the choroid from clinical SD-OCT,” Invest. Ophthalmol. Vis. Sci.53(12), 7510–7519 (2012).
[CrossRef] [PubMed]

K. Lee, M. Niemeijer, M. K. Garvin, Y. H. Kwon, M. Sonka, and M. D. Abràmoff, “Segmentation of the optic disc in 3-D OCT scans of the optic nerve head,” IEEE Trans. Med. Imaging29(1), 159–168 (2010).
[CrossRef] [PubMed]

M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging28(9), 1436–1447 (2009).
[CrossRef] [PubMed]

K. Li, X. Wu, D. Z. Chen, and M. Sonka, “Optimal surface segmentation in volumetric images--a graph-theoretic approach,” IEEE Trans. Pattern Anal. Mach. Intell.28(1), 119–134 (2006).
[CrossRef] [PubMed]

Sotirchos, E. S.

Spaide, R. F.

Y. Imamura, T. Fujiwara, R. Margolis, and R. F. Spaide, “Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy,” Retina29(10), 1469–1473 (2009).
[CrossRef] [PubMed]

R. Margolis and R. F. Spaide, “A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes,” Am. J. Ophthalmol.147(5), 811–815 (2009).
[CrossRef] [PubMed]

R. F. Spaide, H. Koizumi, and M. C. Pozzonni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol.146(4), 496–500 (2008).
[CrossRef] [PubMed]

Sperber, G.

A. Bill, G. Sperber, and K. Ujiie, “Physiology of the choroidal vascular bed,” Int. Ophthalmol.6(2), 101–107 (1983).
[CrossRef] [PubMed]

Srivistava, S.

D. S. Dhoot, S. Huo, A. Yuan, D. Xu, S. Srivistava, J. P. Ehlers, E. Traboulsi, and P. K. Kaiser, “Evaluation of choroidal thickness in retinitis pigmentosa using enhanced depth imaging optical coherence tomography,” Br. J. Ophthalmol.97(1), 66–69 (2013).
[CrossRef] [PubMed]

Stein, D. M.

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.46(6), 2012–2017 (2005).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Strouthidis, N. G.

J. M. Mari, N. G. Strouthidis, S. C. Park, and M. J. Girard, “Enhancement of lamina cribrosa visibility in optical coherence tomography images using adaptive compensation,” Invest. Ophthalmol. Vis. Sci.54(3), 2238–2247 (2013).
[CrossRef] [PubMed]

M. J. Girard, N. G. Strouthidis, C. R. Ethier, and J. M. Mari, “Shadow removal and contrast enhancement in optical coherence tomography images of the human optic nerve head,” Invest. Ophthalmol. Vis. Sci.52(10), 7738–7748 (2011).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Taha, M.

V. Manjunath, M. Taha, J. G. Fujimoto, and J. S. Duker, “Choroidal thickness in normal eyes measured using Cirrus HD optical coherence tomography,” Am. J. Ophthalmol.150(3), 325–329 (2010).
[CrossRef] [PubMed]

Tian, J.

Tiemeijer, L. F.

D. Van Norren and L. F. Tiemeijer, “Spectral reflectance of the human eye,” Vision Res.26(2), 313–320 (1986).
[CrossRef] [PubMed]

Tomidokoro, A.

Torzicky, T.

Toth, C. A.

Traboulsi, E.

D. S. Dhoot, S. Huo, A. Yuan, D. Xu, S. Srivistava, J. P. Ehlers, E. Traboulsi, and P. K. Kaiser, “Evaluation of choroidal thickness in retinitis pigmentosa using enhanced depth imaging optical coherence tomography,” Br. J. Ophthalmol.97(1), 66–69 (2013).
[CrossRef] [PubMed]

Tsujikawa, A.

M. Hirata, A. Tsujikawa, A. Matsumoto, M. Hangai, S. Ooto, K. Yamashiro, M. Akiba, and N. Yoshimura, “Macular choroidal thickness and volume in normal subjects measured by swept-source optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(8), 4971–4978 (2011).
[CrossRef] [PubMed]

Tufail, A.

D. A. Sim, P. A. Keane, H. Mehta, S. Fung, J. Zarranz-Ventura, M. Fruttiger, P. J. Patel, C. A. Egan, and A. Tufail, “Repeatability and reproducibility of choroidal vessel layer measurements in diabetic retinopathy using enhanced depth optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.54(4), 2893–2901 (2013).
[CrossRef] [PubMed]

W. Rahman, F. K. Chen, J. Yeoh, P. Patel, A. Tufail, and L. Da Cruz, “Repeatability of manual subfoveal choroidal thickness measurements in healthy subjects using the technique of enhanced depth imaging optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(5), 2267–2271 (2011).
[CrossRef] [PubMed]

Tun, T. A.

Ujiie, K.

A. Bill, G. Sperber, and K. Ujiie, “Physiology of the choroidal vascular bed,” Int. Ophthalmol.6(2), 101–107 (1983).
[CrossRef] [PubMed]

Unterhuber, A.

van der Schoot, J.

Van Norren, D.

D. Van Norren and L. F. Tiemeijer, “Spectral reflectance of the human eye,” Vision Res.26(2), 313–320 (1986).
[CrossRef] [PubMed]

Vermeer, K. A.

Vienola, K. V.

Vincent, S. J.

S. A. Read, M. J. Collins, S. J. Vincent, and D. Alonso-Caneiro, “Choroidal thickness in childhood,” Invest. Ophthalmol. Vis. Sci.54(5), 3586–3593 (2013).
[CrossRef] [PubMed]

S. A. Read, M. J. Collins, S. J. Vincent, and D. Alonso-Caneiro, “Macular retinal layer thickness in childhood,” Retina. submitted.

Wadsworth, W.

Wallman, J.

D. L. Nickla and J. Wallman, “The multifunctional choroid,” Prog. Retin. Eye Res.29(2), 144–168 (2010).
[CrossRef] [PubMed]

Wang, Z.

Wojtkowski, M.

M. Wojtkowski, B. Kaluzny, and R. J. Zawadzki, “New directions in ophthalmic optical coherence tomography,” Optom. Vis. Sci.89(5), 524–542 (2012).
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002).
[CrossRef] [PubMed]

Wolf-Schnurrbusch, U.

P. A. Dufour, L. Ceklic, H. Abdillahi, S. Schröder, S. De Dzanet, U. Wolf-Schnurrbusch, and J. Kowal, “Graph-based multi-surface segmentation of OCT data using trained hard and soft constraints,” IEEE Trans. Med. Imaging32(3), 531–543 (2013).
[CrossRef] [PubMed]

Wollstein, G.

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.46(6), 2012–2017 (2005).
[CrossRef] [PubMed]

Wong, A.

Wu, X.

Z. Hu, X. Wu, Y. Ouyang, Y. Ouyang, and S. R. Sadda, “Semiautomated segmentation of the choroid in spectral-domain optical coherence tomography volume scans,” Invest. Ophthalmol. Vis. Sci.54(3), 1722–1729 (2013).
[CrossRef] [PubMed]

M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging28(9), 1436–1447 (2009).
[CrossRef] [PubMed]

K. Li, X. Wu, D. Z. Chen, and M. Sonka, “Optimal surface segmentation in volumetric images--a graph-theoretic approach,” IEEE Trans. Pattern Anal. Mach. Intell.28(1), 119–134 (2006).
[CrossRef] [PubMed]

Xu, D.

D. S. Dhoot, S. Huo, A. Yuan, D. Xu, S. Srivistava, J. P. Ehlers, E. Traboulsi, and P. K. Kaiser, “Evaluation of choroidal thickness in retinitis pigmentosa using enhanced depth imaging optical coherence tomography,” Br. J. Ophthalmol.97(1), 66–69 (2013).
[CrossRef] [PubMed]

Yamanari, M.

Yamashiro, K.

M. Hirata, A. Tsujikawa, A. Matsumoto, M. Hangai, S. Ooto, K. Yamashiro, M. Akiba, and N. Yoshimura, “Macular choroidal thickness and volume in normal subjects measured by swept-source optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(8), 4971–4978 (2011).
[CrossRef] [PubMed]

Yang, Q.

Yasuno, Y.

Yatagai, T.

Yazdanpanah, A.

A. Yazdanpanah, G. Hamarneh, B. R. Smith, and M. V. Sarunic, “Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach,” IEEE Trans. Med. Imaging30(2), 484–496 (2011).
[CrossRef] [PubMed]

Yeoh, J.

W. Rahman, F. K. Chen, J. Yeoh, P. Patel, A. Tufail, and L. Da Cruz, “Repeatability of manual subfoveal choroidal thickness measurements in healthy subjects using the technique of enhanced depth imaging optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(5), 2267–2271 (2011).
[CrossRef] [PubMed]

Ying, H. S.

Yoshimura, N.

M. Hirata, A. Tsujikawa, A. Matsumoto, M. Hangai, S. Ooto, K. Yamashiro, M. Akiba, and N. Yoshimura, “Macular choroidal thickness and volume in normal subjects measured by swept-source optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(8), 4971–4978 (2011).
[CrossRef] [PubMed]

Q. Yang, C. A. Reisman, Z. Wang, Y. Fukuma, M. Hangai, N. Yoshimura, A. Tomidokoro, M. Araie, A. S. Raza, D. C. Hood, and K. Chan, “Automated layer segmentation of macular OCT images using dual-scale gradient information,” Opt. Express18(20), 21293–21307 (2010).
[CrossRef] [PubMed]

Young, M.

S. Lee, N. Fallah, F. Forooghian, A. Ko, K. Pakzad-Vaezi, A. B. Merkur, A. W. Kirker, D. A. Albiani, M. Young, M. V. Sarunic, and M. F. Beg, “Comparative analysis of repeatability of manual and automated choroidal thickness measurements in nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci.54(4), 2864–2871 (2013).
[CrossRef] [PubMed]

Yuan, A.

D. S. Dhoot, S. Huo, A. Yuan, D. Xu, S. Srivistava, J. P. Ehlers, E. Traboulsi, and P. K. Kaiser, “Evaluation of choroidal thickness in retinitis pigmentosa using enhanced depth imaging optical coherence tomography,” Br. J. Ophthalmol.97(1), 66–69 (2013).
[CrossRef] [PubMed]

Yun, S. H.

Zarranz-Ventura, J.

D. A. Sim, P. A. Keane, H. Mehta, S. Fung, J. Zarranz-Ventura, M. Fruttiger, P. J. Patel, C. A. Egan, and A. Tufail, “Repeatability and reproducibility of choroidal vessel layer measurements in diabetic retinopathy using enhanced depth optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.54(4), 2893–2901 (2013).
[CrossRef] [PubMed]

Zawadzki, R. J.

M. Wojtkowski, B. Kaluzny, and R. J. Zawadzki, “New directions in ophthalmic optical coherence tomography,” Optom. Vis. Sci.89(5), 524–542 (2012).
[CrossRef] [PubMed]

Zhang, L.

L. Zhang, K. Lee, M. Niemeijer, R. F. Mullins, M. Sonka, and M. D. Abràmoff, “Automated segmentation of the choroid from clinical SD-OCT,” Invest. Ophthalmol. Vis. Sci.53(12), 7510–7519 (2012).
[CrossRef] [PubMed]

Zotter, S.

Am. J. Ophthalmol. (4)

R. Margolis and R. F. Spaide, “A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes,” Am. J. Ophthalmol.147(5), 811–815 (2009).
[CrossRef] [PubMed]

V. Manjunath, M. Taha, J. G. Fujimoto, and J. S. Duker, “Choroidal thickness in normal eyes measured using Cirrus HD optical coherence tomography,” Am. J. Ophthalmol.150(3), 325–329 (2010).
[CrossRef] [PubMed]

V. Manjunath, J. Goren, J. G. Fujimoto, and J. S. Duker, “Analysis of choroidal thickness in age-related macular degeneration using spectral-domain optical coherence tomography,” Am. J. Ophthalmol.152(4), 663–668 (2011).
[CrossRef] [PubMed]

R. F. Spaide, H. Koizumi, and M. C. Pozzonni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol.146(4), 496–500 (2008).
[CrossRef] [PubMed]

Biomed. Opt. Express (5)

Br. J. Ophthalmol. (1)

D. S. Dhoot, S. Huo, A. Yuan, D. Xu, S. Srivistava, J. P. Ehlers, E. Traboulsi, and P. K. Kaiser, “Evaluation of choroidal thickness in retinitis pigmentosa using enhanced depth imaging optical coherence tomography,” Br. J. Ophthalmol.97(1), 66–69 (2013).
[CrossRef] [PubMed]

Exp. Eye Res. (1)

A. Alm and S. F. Nilsson, “Uveoscleral outflow--a review,” Exp. Eye Res.88(4), 760–768 (2009).
[CrossRef] [PubMed]

Eye (Lond.) (1)

L. M. Parver, “Temperature modulating action of choroidal blood flow,” Eye (Lond.)5(2), 181–185 (1991).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging (5)

A. Yazdanpanah, G. Hamarneh, B. R. Smith, and M. V. Sarunic, “Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach,” IEEE Trans. Med. Imaging30(2), 484–496 (2011).
[CrossRef] [PubMed]

K. Lee, M. Niemeijer, M. K. Garvin, Y. H. Kwon, M. Sonka, and M. D. Abràmoff, “Segmentation of the optic disc in 3-D OCT scans of the optic nerve head,” IEEE Trans. Med. Imaging29(1), 159–168 (2010).
[CrossRef] [PubMed]

D. Koozekanani, K. Boyer, and C. Roberts, “Retinal thickness measurements from optical coherence tomography using a Markov boundary model,” IEEE Trans. Med. Imaging20(9), 900–916 (2001).
[CrossRef] [PubMed]

M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging28(9), 1436–1447 (2009).
[CrossRef] [PubMed]

P. A. Dufour, L. Ceklic, H. Abdillahi, S. Schröder, S. De Dzanet, U. Wolf-Schnurrbusch, and J. Kowal, “Graph-based multi-surface segmentation of OCT data using trained hard and soft constraints,” IEEE Trans. Med. Imaging32(3), 531–543 (2013).
[CrossRef] [PubMed]

IEEE Trans. Pattern Anal. Mach. Intell. (4)

K. Li, X. Wu, D. Z. Chen, and M. Sonka, “Optimal surface segmentation in volumetric images--a graph-theoretic approach,” IEEE Trans. Pattern Anal. Mach. Intell.28(1), 119–134 (2006).
[CrossRef] [PubMed]

P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection and hierarchical image segmentation,” IEEE Trans. Pattern Anal. Mach. Intell.33(5), 898–916 (2011).
[CrossRef] [PubMed]

D. R. Martin, C. C. Fowlkes, and J. Malik, “Learning to detect natural image boundaries using local brightness, color, and texture cues,” IEEE Trans. Pattern Anal. Mach. Intell.26(5), 530–549 (2004).
[CrossRef] [PubMed]

J. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern Anal. Mach. Intell.679–698 (1986).

Int. Ophthalmol. (1)

A. Bill, G. Sperber, and K. Ujiie, “Physiology of the choroidal vascular bed,” Int. Ophthalmol.6(2), 101–107 (1983).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (13)

S. A. Read, M. J. Collins, S. J. Vincent, and D. Alonso-Caneiro, “Choroidal thickness in childhood,” Invest. Ophthalmol. Vis. Sci.54(5), 3586–3593 (2013).
[CrossRef] [PubMed]

M. Esmaeelpour, B. Považay, B. Hermann, B. Hofer, V. Kajic, K. Kapoor, N. J. Sheen, R. V. North, and W. Drexler, “Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients,” Invest. Ophthalmol. Vis. Sci.51(10), 5260–5266 (2010).
[CrossRef] [PubMed]

M. Hirata, A. Tsujikawa, A. Matsumoto, M. Hangai, S. Ooto, K. Yamashiro, M. Akiba, and N. Yoshimura, “Macular choroidal thickness and volume in normal subjects measured by swept-source optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(8), 4971–4978 (2011).
[CrossRef] [PubMed]

X. Q. Li, M. Larsen, and I. C. Munch, “Subfoveal choroidal thickness in relation to sex and axial length in 93 Danish university students,” Invest. Ophthalmol. Vis. Sci.52(11), 8438–8441 (2011).
[CrossRef] [PubMed]

M. Esmaeelpour, B. Považay, B. Hermann, B. Hofer, V. Kajic, S. L. Hale, R. V. North, W. Drexler, and N. J. Sheen, “Mapping choroidal and retinal thickness variation in type 2 diabetes using three-dimensional 1060-nm optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(8), 5311–5316 (2011).
[CrossRef] [PubMed]

D. A. Sim, P. A. Keane, H. Mehta, S. Fung, J. Zarranz-Ventura, M. Fruttiger, P. J. Patel, C. A. Egan, and A. Tufail, “Repeatability and reproducibility of choroidal vessel layer measurements in diabetic retinopathy using enhanced depth optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.54(4), 2893–2901 (2013).
[CrossRef] [PubMed]

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.46(6), 2012–2017 (2005).
[CrossRef] [PubMed]

W. Rahman, F. K. Chen, J. Yeoh, P. Patel, A. Tufail, and L. Da Cruz, “Repeatability of manual subfoveal choroidal thickness measurements in healthy subjects using the technique of enhanced depth imaging optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(5), 2267–2271 (2011).
[CrossRef] [PubMed]

M. J. Girard, N. G. Strouthidis, C. R. Ethier, and J. M. Mari, “Shadow removal and contrast enhancement in optical coherence tomography images of the human optic nerve head,” Invest. Ophthalmol. Vis. Sci.52(10), 7738–7748 (2011).
[CrossRef] [PubMed]

J. M. Mari, N. G. Strouthidis, S. C. Park, and M. J. Girard, “Enhancement of lamina cribrosa visibility in optical coherence tomography images using adaptive compensation,” Invest. Ophthalmol. Vis. Sci.54(3), 2238–2247 (2013).
[CrossRef] [PubMed]

S. Lee, N. Fallah, F. Forooghian, A. Ko, K. Pakzad-Vaezi, A. B. Merkur, A. W. Kirker, D. A. Albiani, M. Young, M. V. Sarunic, and M. F. Beg, “Comparative analysis of repeatability of manual and automated choroidal thickness measurements in nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci.54(4), 2864–2871 (2013).
[CrossRef] [PubMed]

L. Zhang, K. Lee, M. Niemeijer, R. F. Mullins, M. Sonka, and M. D. Abràmoff, “Automated segmentation of the choroid from clinical SD-OCT,” Invest. Ophthalmol. Vis. Sci.53(12), 7510–7519 (2012).
[CrossRef] [PubMed]

Z. Hu, X. Wu, Y. Ouyang, Y. Ouyang, and S. R. Sadda, “Semiautomated segmentation of the choroid in spectral-domain optical coherence tomography volume scans,” Invest. Ophthalmol. Vis. Sci.54(3), 1722–1729 (2013).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002).
[CrossRef] [PubMed]

Numerische Mathematik (1)

E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische Mathematik1(1), 269–271 (1959).
[CrossRef]

Opt. Express (14)

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express18(18), 19413–19428 (2010).
[CrossRef] [PubMed]

Q. Yang, C. A. Reisman, Z. Wang, Y. Fukuma, M. Hangai, N. Yoshimura, A. Tomidokoro, M. Araie, A. S. Raza, D. C. Hood, and K. Chan, “Automated layer segmentation of macular OCT images using dual-scale gradient information,” Opt. Express18(20), 21293–21307 (2010).
[CrossRef] [PubMed]

T. Fabritius, S. Makita, M. Miura, R. Myllylä, and Y. Yasuno, “Automated segmentation of the macula by optical coherence tomography,” Opt. Express17(18), 15659–15669 (2009).
[CrossRef] [PubMed]

D. Cabrera Fernández, H. M. Salinas, and C. A. Puliafito, “Automated detection of retinal layer structures on optical coherence tomography images,” Opt. Express13(25), 10200–10216 (2005).
[CrossRef] [PubMed]

A. Mishra, A. Wong, K. Bizheva, and D. A. Clausi, “Intra-retinal layer segmentation in optical coherence tomography images,” Opt. Express17(26), 23719–23728 (2009).
[CrossRef] [PubMed]

V. Kajić, B. Považay, B. Hermann, B. Hofer, D. Marshall, P. L. Rosin, and W. Drexler, “Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis,” Opt. Express18(14), 14730–14744 (2010).
[CrossRef] [PubMed]

B. Považay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. Fercher, W. Drexler, C. Schubert, P. Ahnelt, M. Mei, R. Holzwarth, W. Wadsworth, J. Knight, and P. S. Russell, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,” Opt. Express11(17), 1980–1986 (2003).
[CrossRef] [PubMed]

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid,” Opt. Express13(9), 3252–3258 (2005).
[CrossRef] [PubMed]

E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, “In vivo optical frequency domain imaging of human retina and choroid,” Opt. Express14(10), 4403–4411 (2006).
[CrossRef] [PubMed]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1- um swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express15(10), 6121–6139 (2007).
[CrossRef] [PubMed]

L. Duan, M. Yamanari, and Y. Yasuno, “Automated phase retardation oriented segmentation of chorio-scleral interface by polarization sensitive optical coherence tomography,” Opt. Express20(3), 3353–3366 (2012).
[CrossRef] [PubMed]

T. Torzicky, M. Pircher, S. Zotter, M. Bonesi, E. Götzinger, and C. K. Hitzenberger, “Automated measurement of choroidal thickness in the human eye by polarization sensitive optical coherence tomography,” Opt. Express20(7), 7564–7574 (2012).
[CrossRef] [PubMed]

F. Jaillon, S. Makita, and Y. Yasuno, “Variable velocity range imaging of the choroid with dual-beam optical coherence angiography,” Opt. Express20(1), 385–396 (2012).
[CrossRef] [PubMed]

B. Braaf, K. A. Vermeer, K. V. Vienola, and J. F. de Boer, “Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans,” Opt. Express20(18), 20516–20534 (2012).
[CrossRef] [PubMed]

Optom. Vis. Sci. (1)

M. Wojtkowski, B. Kaluzny, and R. J. Zawadzki, “New directions in ophthalmic optical coherence tomography,” Optom. Vis. Sci.89(5), 524–542 (2012).
[CrossRef] [PubMed]

Prog. Retin. Eye Res. (1)

D. L. Nickla and J. Wallman, “The multifunctional choroid,” Prog. Retin. Eye Res.29(2), 144–168 (2010).
[CrossRef] [PubMed]

Retina (1)

Y. Imamura, T. Fujiwara, R. Margolis, and R. F. Spaide, “Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy,” Retina29(10), 1469–1473 (2009).
[CrossRef] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Vision Res. (1)

D. Van Norren and L. F. Tiemeijer, “Spectral reflectance of the human eye,” Vision Res.26(2), 313–320 (1986).
[CrossRef] [PubMed]

Other (4)

M. Haeker, M. Sonka, R. Kardon, V. A. Shah, X. Wu, and M. D. Abràmoff, “Automated segmentation of intraretinal layers from macular optical coherence tomography images,” in Medical Imaging, (International Society for Optics and Photonics, 2007), 651214–651214–651211.

B. J. Antony, M. D. Abràmoff, M. Sonka, Y. H. Kwon, and M. K. Garvin, “Incorporation of texture-based features in optimal graph-theoretic approach with application to the 3D segmentation of intraretinal surfaces in SD-OCT volumes,” in SPIE Medical Imaging, (International Society for Optics and Photonics, 2012), 83141G–83141G–83111.

S. A. Read, M. J. Collins, S. J. Vincent, and D. Alonso-Caneiro, “Choroidal thickness in myopic and non-myopic children assessed with enhanced depth imaging optical coherence tomography,” Invest Ophth Vis Sci, in press (accepted 21/10/2013).

S. A. Read, M. J. Collins, S. J. Vincent, and D. Alonso-Caneiro, “Macular retinal layer thickness in childhood,” Retina. submitted.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Example of the retinal fundus en face image showing the scanning protocol (a) and the spectral domain OCT B-scan captured using the instrument’s high resolution scanning protocol (b). The two layers to be detected are the inner choroidal boundary (ICB-green) and the outer choroidal boundary (OCB-red), where the ICB coincides with the lower boundary of the retinal pigment epithelium/Bruch’s membrane complex and the OCB marks the transition between choroid and sclera (c). For completeness, an image artifact (IA) sometimes observed during acquisition is shown. (d) the foveal center is magnified to better appreciate the location of the layers.

Fig. 2
Fig. 2

Example of the inner choroidal boundary segmentation steps, including the original B-scan (a), the pre-processed image (b), the vertical gradient information shown at the same scale as the original (c) and the original image with the segmented ICB result as a solid green line (d). For completeness the potential edge effect created by the two retinal layers is marked (IS/OS, NFL).

Fig. 3
Fig. 3

Original B-scan (a) and its equivalent flattened version (b). The red dotted box represents the cropped region of interest (~565 microns thick), to be used during the OCB segmentation.

Fig. 4
Fig. 4

Example of the image enhancement of a B-scan with artifacts (mirror image artifact marked by arrows). The proposed method uniquely enhances the region of interest after cropping (b) versus enhancing the whole B-scan and then extracting the region of interest (c).

Fig. 5
Fig. 5

Example of the outer choroidal boundary segmentation steps, including the original cropped region (a), the enhanced and intensity-adjusted transformation (b), the masked and smoothed B-scan (c), individual gradient outputs (d,e), the final dual gradient output and (f) and the original region with the segmented boundary (g).

Fig. 6
Fig. 6

Six B-scans from six different subjects are shown with the derived inner and outer choroidal boundaries (left), along with the original B-Scan images (right). The B-scans represent a range of different examples (i.e. with typical variations in overall choroidal thickness, thickness profiles and choroidal contrast). The images have been arranged in decreasing order in terms of the contrast at the OCB layer. The segmentation based on the manual analysis (yellow) and the automatic analysis (red) for the OCBs is shown as well as the automatic segmentation of the ICB (green). The manual ICB was not included since it matches closely to the automatic. The first five B-scans are from pediatric subjects and the last B-scans from an adult.

Fig. 7
Fig. 7

Correlation between the automatic and manual methods for measurements of central choroidal thickness (black dotted line indicates the line of equality between the two measures) (a). Bland–Altman plot of the difference vs. the mean of the two methods for measurements of central choroidal thickness (b). The red circles represent the pediatric sample and the blue squares the adult sample.

Fig. 8
Fig. 8

Example of four B-scans with disagreement between the manual (yellow line) and automatic methods (red line), due to the choroidal vessels (a, arrow), the ciliary vessel travelling through the sclera (b,asterisks) and the changes in intensity in the choroidal boundary (c,d, plus-sign). The last two panels (c,d) correspond to consecutive scans from the same subject and illustrate how the intensity changes cause a manual segmentation error.

Tables (2)

Tables Icon

Table 1 Difference in boundary position between the proposed algorithm and the manual observer for the entire pediatric data set (1083 B-scans) and the adult data set (90 B-scans). The results are reported in mean values and (standard deviation) in two units (pixels and microns).

Tables Icon

Table 2 Difference in choroidal thickness between the proposed algorithm and the manual observer for the entire pediatric data set (1083 B-scans) and the adult data set (90 B-scans). The observer repeatability is also given in a random selected subset of images (120 B-scans).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

W ab =2( g a + g b )+ w min
L(i,j)= I raw n (i,j) 2 k=i p I raw n (i,j)
I(i,j)=255 I raw (i,j) 4
I raw (i,j)= ( I(i,j) 255 ) 4
Χ 2 (k,h)= 1 2 s (k(s)h(s)) 2 k(s)+h(s)

Metrics