Abstract

In this paper we present a multimodal device for imaging fundus of human eye in vivo which combines functionality of autofluorescence by confocal SLO with Fourier domain OCT. Native fluorescence of human fundus was excited by modulated laser beam (λ = 473 nm, 20 MHz) and lock-in detection was applied resulting in improving sensitivity. The setup allows for acquisition of high resolution OCT and high contrast AF images using fluorescence excitation power of 50-65 μW without averaging consecutive images. Successful functioning of constructed device have been demonstrated for 8 healthy volunteers of different age ranging from 24 to 83 years old.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Webb, G. W. Hughes, F. C. Delori, “Confocal Scanning Laser Ophthalmoscope,” Appl. Opt. 26(8), 1492–1499 (1987).
    [CrossRef] [PubMed]
  2. A. von Rückmann, F. W. Fitzke, A. C. Bird, “Distribution of Fundus Autofluorescence with a Scanning Laser Ophthalmoscope,” Br. J. Ophthalmol. 79(5), 407–412 (1995).
    [CrossRef] [PubMed]
  3. A. von Rückmann, F. W. Fitzke, A. C. Bird, “Fundus autofluorescence in age-related macular disease imaged with a laser scanning ophthalmoscope,” Invest. Ophthalmol. Vis. Sci. 38(2), 478–486 (1997).
    [PubMed]
  4. C. Bellmann, G. S. Rubin, S. A. Kabanarou, A. C. Bird, F. W. Fitzke, “Fundus autofluorescence imaging compared with different confocal scanning laser ophthalmoscopes,” Br. J. Ophthalmol. 87(11), 1381–1386 (2003).
    [CrossRef] [PubMed]
  5. S. Schmitz-Valckenberg and F. Fitzke, “Imaging Techniques of Fundus Autofluorescence,” in Fundus autofluorescence, N. Lois and J. V. Forrester, eds. (Wolters Kluwer, Lippincott Williams & Wilkins, 2009).
  6. M. Wojtkowski, “High-speed optical coherence tomography: basics and applications,” Appl. Opt. 49(16), D30–D61 (2010).
    [CrossRef] [PubMed]
  7. M. Szkulmowski, I. Gorczynska, D. Szlag, M. Sylwestrzak, A. Kowalczyk, M. Wojtkowski, “Efficient reduction of speckle noise in Optical Coherence Tomography,” Opt. Express 20(2), 1337–1359 (2012).
    [CrossRef] [PubMed]
  8. F. C. Delori, “Spectrophotometer for Noninvasive Measurement of Intrinsic Fluorescence and Reflectance of the Ocular Fundus,” Appl. Opt. 33(31), 7439–7452 (1994).
    [CrossRef] [PubMed]
  9. F. C. Delori, C. K. Dorey, G. Staurenghi, O. Arend, D. G. Goger, J. J. Weiter, “In Vivo Fluorescence of the Ocular Fundus Exhibits Retinal Pigment Epithelium Lipofuscin Characteristics,” Invest. Ophthalmol. Vis. Sci. 36(3), 718–729 (1995).
    [PubMed]
  10. S. S. Seehafer and D. A. Pearce, “Lipofuscin: The “Wear and Tear” Pigment,” in Fundus Autofluorescence, N. Lois and J. V. Forrester, eds. (Wolters Kluwer, Lippincott Williams & Wilkins, 2009).
  11. N. Lois and J. V. Forrester, eds., Fundus Autofluorescence (Wolters Kluwer, Lippincott Williams & Wilkins, 2009).
  12. O. Strauss, “The retinal pigment epithelium in visual function,” Physiol. Rev. 85(3), 845–881 (2005).
    [CrossRef] [PubMed]
  13. M. Boulton, “Lipofuscin of the Retinal Pigment Epithelium,” in Fundus Autofluorescence, N. Lois and J. V. Forrester, eds. (Wolters Kluwer, Lippincott Williams & Wilkins, 2009).
  14. J. R. Sparrow, M. Boulton, “RPE lipofuscin and its role in retinal pathobiology,” Exp. Eye Res. 80(5), 595–606 (2005).
    [CrossRef] [PubMed]
  15. G. E. Eldred, M. R. Lasky, “Retinal Age Pigments Generated by Self-Assembling Lysosomotropic Detergents,” Nature 361(6414), 724–726 (1993).
    [CrossRef] [PubMed]
  16. M. Rózanowska, T. Sarna, “Light-induced damage to the retina: Role of rhodopsin chromophore revisited,” Photochem. Photobiol. 81(6), 1305–1330 (2005).
    [CrossRef] [PubMed]
  17. N. M. Haralampus-Grynaviski, L. E. Lamb, C. M. R. Clancy, C. Skumatz, J. M. Burke, T. Sarna, J. D. Simon, “Spectroscopic and morphological studies of human retinal lipofuscin granules,” Proc. Natl. Acad. Sci. U.S.A. 100(6), 3179–3184 (2003).
    [CrossRef] [PubMed]
  18. D. Schweitzer, A. Kolb, M. Hammer, “Autofluorescence lifetime measurements in images of the human ocular fundus,” Diagn. Opt. Spectros. Biomed. 2, 29–39 (2001).
    [CrossRef]
  19. D. Schweitzer, M. Hammer, F. Schweitzer, R. Anders, T. Doebbecke, S. Schenke, E. R. Gaillard, E. R. Gaillard, “In vivo measurement of time-resolved autofluorescence at the human fundus,” J. Biomed. Opt. 9(6), 1214–1222 (2004).
    [CrossRef] [PubMed]
  20. D. Schweitzer, S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, A. Bergmann, “Towards metabolic mapping of the human retina,” Microsc. Res. Tech. 70(5), 410–419 (2007).
    [CrossRef] [PubMed]
  21. D. Schweitzer, E. R. Gaillard, J. Dillon, R. F. Mullins, S. Russell, B. Hoffmann, S. Peters, M. Hammer, C. Biskup, “Time-Resolved Autofluorescence Imaging of Human Donor Retina Tissue from Donors with Significant Extramacular Drusen,” Invest. Ophthalmol. Vis. Sci. 53(7), 3376–3386 (2012).
    [CrossRef] [PubMed]
  22. Blue Laser Autofluorescence: the new experience” (a webpage of Heidelberg Engineering, 2013), retrieved http://bluepeakexperience.com/us .
  23. E. O. Potma, C. L. Evans, X. S. Xie, “Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging,” Opt. Lett. 31(2), 241–243 (2006).
    [CrossRef] [PubMed]
  24. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
    [CrossRef] [PubMed]
  25. B. E. Applegate, J. A. Izatt, “Molecular imaging of endogenous and exogenous chromophores using ground state recovery pump-probe optical coherence tomography,” Opt. Express 14(20), 9142–9155 (2006).
    [CrossRef] [PubMed]
  26. M. N. Slipchenko, R. A. Oglesbee, D. L. Zhang, W. Wu, J. X. Cheng, “Heterodyne detected nonlinear optical imaging in a lock-in free manner,” J Biophotonics 5(10), 801–807 (2012).
    [CrossRef] [PubMed]
  27. C. B. Ma, E. Van Keuren, “A simple three dimensional wide-angle beam propagation method,” Opt. Express 14(11), 4668–4674 (2006).
    [CrossRef] [PubMed]
  28. F. C. Delori, D. G. Goger, C. K. Dorey, “Age-related accumulation and spatial distribution of lipofuscin in RPE of normal subjects,” Invest. Ophthalmol. Vis. Sci. 42(8), 1855–1866 (2001).
    [PubMed]
  29. A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci. 46(9), 3309–3314 (2005).
    [CrossRef] [PubMed]
  30. A. Dubra, D. H. Scoles, and Y. N. Sulai, “In vivo Imaging of the Human Retinal Pigment Epithelium Cell Mosaic using Short-wavelength Autofluorescence and achromatizing lenses., ” in ARVO Annual Meeting, (Seattle, WA, USA, 2013).
  31. D. H. Scoles, Y. N. Sulai, and A. Dubra, “In vivo Imaging of the retinal pigment epithelium using dark-field SLO,” in ARVO-ISIE Imaging Conference, 2013)

2012

M. Szkulmowski, I. Gorczynska, D. Szlag, M. Sylwestrzak, A. Kowalczyk, M. Wojtkowski, “Efficient reduction of speckle noise in Optical Coherence Tomography,” Opt. Express 20(2), 1337–1359 (2012).
[CrossRef] [PubMed]

D. Schweitzer, E. R. Gaillard, J. Dillon, R. F. Mullins, S. Russell, B. Hoffmann, S. Peters, M. Hammer, C. Biskup, “Time-Resolved Autofluorescence Imaging of Human Donor Retina Tissue from Donors with Significant Extramacular Drusen,” Invest. Ophthalmol. Vis. Sci. 53(7), 3376–3386 (2012).
[CrossRef] [PubMed]

M. N. Slipchenko, R. A. Oglesbee, D. L. Zhang, W. Wu, J. X. Cheng, “Heterodyne detected nonlinear optical imaging in a lock-in free manner,” J Biophotonics 5(10), 801–807 (2012).
[CrossRef] [PubMed]

2010

2008

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

2007

D. Schweitzer, S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, A. Bergmann, “Towards metabolic mapping of the human retina,” Microsc. Res. Tech. 70(5), 410–419 (2007).
[CrossRef] [PubMed]

2006

2005

A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci. 46(9), 3309–3314 (2005).
[CrossRef] [PubMed]

O. Strauss, “The retinal pigment epithelium in visual function,” Physiol. Rev. 85(3), 845–881 (2005).
[CrossRef] [PubMed]

J. R. Sparrow, M. Boulton, “RPE lipofuscin and its role in retinal pathobiology,” Exp. Eye Res. 80(5), 595–606 (2005).
[CrossRef] [PubMed]

M. Rózanowska, T. Sarna, “Light-induced damage to the retina: Role of rhodopsin chromophore revisited,” Photochem. Photobiol. 81(6), 1305–1330 (2005).
[CrossRef] [PubMed]

2004

D. Schweitzer, M. Hammer, F. Schweitzer, R. Anders, T. Doebbecke, S. Schenke, E. R. Gaillard, E. R. Gaillard, “In vivo measurement of time-resolved autofluorescence at the human fundus,” J. Biomed. Opt. 9(6), 1214–1222 (2004).
[CrossRef] [PubMed]

2003

N. M. Haralampus-Grynaviski, L. E. Lamb, C. M. R. Clancy, C. Skumatz, J. M. Burke, T. Sarna, J. D. Simon, “Spectroscopic and morphological studies of human retinal lipofuscin granules,” Proc. Natl. Acad. Sci. U.S.A. 100(6), 3179–3184 (2003).
[CrossRef] [PubMed]

C. Bellmann, G. S. Rubin, S. A. Kabanarou, A. C. Bird, F. W. Fitzke, “Fundus autofluorescence imaging compared with different confocal scanning laser ophthalmoscopes,” Br. J. Ophthalmol. 87(11), 1381–1386 (2003).
[CrossRef] [PubMed]

2001

D. Schweitzer, A. Kolb, M. Hammer, “Autofluorescence lifetime measurements in images of the human ocular fundus,” Diagn. Opt. Spectros. Biomed. 2, 29–39 (2001).
[CrossRef]

F. C. Delori, D. G. Goger, C. K. Dorey, “Age-related accumulation and spatial distribution of lipofuscin in RPE of normal subjects,” Invest. Ophthalmol. Vis. Sci. 42(8), 1855–1866 (2001).
[PubMed]

1997

A. von Rückmann, F. W. Fitzke, A. C. Bird, “Fundus autofluorescence in age-related macular disease imaged with a laser scanning ophthalmoscope,” Invest. Ophthalmol. Vis. Sci. 38(2), 478–486 (1997).
[PubMed]

1995

A. von Rückmann, F. W. Fitzke, A. C. Bird, “Distribution of Fundus Autofluorescence with a Scanning Laser Ophthalmoscope,” Br. J. Ophthalmol. 79(5), 407–412 (1995).
[CrossRef] [PubMed]

F. C. Delori, C. K. Dorey, G. Staurenghi, O. Arend, D. G. Goger, J. J. Weiter, “In Vivo Fluorescence of the Ocular Fundus Exhibits Retinal Pigment Epithelium Lipofuscin Characteristics,” Invest. Ophthalmol. Vis. Sci. 36(3), 718–729 (1995).
[PubMed]

1994

1993

G. E. Eldred, M. R. Lasky, “Retinal Age Pigments Generated by Self-Assembling Lysosomotropic Detergents,” Nature 361(6414), 724–726 (1993).
[CrossRef] [PubMed]

1987

Anders, R.

D. Schweitzer, M. Hammer, F. Schweitzer, R. Anders, T. Doebbecke, S. Schenke, E. R. Gaillard, E. R. Gaillard, “In vivo measurement of time-resolved autofluorescence at the human fundus,” J. Biomed. Opt. 9(6), 1214–1222 (2004).
[CrossRef] [PubMed]

Applegate, B. E.

Arend, O.

F. C. Delori, C. K. Dorey, G. Staurenghi, O. Arend, D. G. Goger, J. J. Weiter, “In Vivo Fluorescence of the Ocular Fundus Exhibits Retinal Pigment Epithelium Lipofuscin Characteristics,” Invest. Ophthalmol. Vis. Sci. 36(3), 718–729 (1995).
[PubMed]

Becker, W.

D. Schweitzer, S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, A. Bergmann, “Towards metabolic mapping of the human retina,” Microsc. Res. Tech. 70(5), 410–419 (2007).
[CrossRef] [PubMed]

Bellmann, C.

C. Bellmann, G. S. Rubin, S. A. Kabanarou, A. C. Bird, F. W. Fitzke, “Fundus autofluorescence imaging compared with different confocal scanning laser ophthalmoscopes,” Br. J. Ophthalmol. 87(11), 1381–1386 (2003).
[CrossRef] [PubMed]

Bergmann, A.

D. Schweitzer, S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, A. Bergmann, “Towards metabolic mapping of the human retina,” Microsc. Res. Tech. 70(5), 410–419 (2007).
[CrossRef] [PubMed]

Bindewald, A.

A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci. 46(9), 3309–3314 (2005).
[CrossRef] [PubMed]

Birckner, E.

D. Schweitzer, S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, A. Bergmann, “Towards metabolic mapping of the human retina,” Microsc. Res. Tech. 70(5), 410–419 (2007).
[CrossRef] [PubMed]

Bird, A. C.

A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci. 46(9), 3309–3314 (2005).
[CrossRef] [PubMed]

C. Bellmann, G. S. Rubin, S. A. Kabanarou, A. C. Bird, F. W. Fitzke, “Fundus autofluorescence imaging compared with different confocal scanning laser ophthalmoscopes,” Br. J. Ophthalmol. 87(11), 1381–1386 (2003).
[CrossRef] [PubMed]

A. von Rückmann, F. W. Fitzke, A. C. Bird, “Fundus autofluorescence in age-related macular disease imaged with a laser scanning ophthalmoscope,” Invest. Ophthalmol. Vis. Sci. 38(2), 478–486 (1997).
[PubMed]

A. von Rückmann, F. W. Fitzke, A. C. Bird, “Distribution of Fundus Autofluorescence with a Scanning Laser Ophthalmoscope,” Br. J. Ophthalmol. 79(5), 407–412 (1995).
[CrossRef] [PubMed]

Biskup, C.

D. Schweitzer, E. R. Gaillard, J. Dillon, R. F. Mullins, S. Russell, B. Hoffmann, S. Peters, M. Hammer, C. Biskup, “Time-Resolved Autofluorescence Imaging of Human Donor Retina Tissue from Donors with Significant Extramacular Drusen,” Invest. Ophthalmol. Vis. Sci. 53(7), 3376–3386 (2012).
[CrossRef] [PubMed]

Boulton, M.

J. R. Sparrow, M. Boulton, “RPE lipofuscin and its role in retinal pathobiology,” Exp. Eye Res. 80(5), 595–606 (2005).
[CrossRef] [PubMed]

Burke, J. M.

N. M. Haralampus-Grynaviski, L. E. Lamb, C. M. R. Clancy, C. Skumatz, J. M. Burke, T. Sarna, J. D. Simon, “Spectroscopic and morphological studies of human retinal lipofuscin granules,” Proc. Natl. Acad. Sci. U.S.A. 100(6), 3179–3184 (2003).
[CrossRef] [PubMed]

Cheng, J. X.

M. N. Slipchenko, R. A. Oglesbee, D. L. Zhang, W. Wu, J. X. Cheng, “Heterodyne detected nonlinear optical imaging in a lock-in free manner,” J Biophotonics 5(10), 801–807 (2012).
[CrossRef] [PubMed]

Clancy, C. M. R.

N. M. Haralampus-Grynaviski, L. E. Lamb, C. M. R. Clancy, C. Skumatz, J. M. Burke, T. Sarna, J. D. Simon, “Spectroscopic and morphological studies of human retinal lipofuscin granules,” Proc. Natl. Acad. Sci. U.S.A. 100(6), 3179–3184 (2003).
[CrossRef] [PubMed]

Dandekar, S. S.

A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci. 46(9), 3309–3314 (2005).
[CrossRef] [PubMed]

Delori, F. C.

F. C. Delori, D. G. Goger, C. K. Dorey, “Age-related accumulation and spatial distribution of lipofuscin in RPE of normal subjects,” Invest. Ophthalmol. Vis. Sci. 42(8), 1855–1866 (2001).
[PubMed]

F. C. Delori, C. K. Dorey, G. Staurenghi, O. Arend, D. G. Goger, J. J. Weiter, “In Vivo Fluorescence of the Ocular Fundus Exhibits Retinal Pigment Epithelium Lipofuscin Characteristics,” Invest. Ophthalmol. Vis. Sci. 36(3), 718–729 (1995).
[PubMed]

F. C. Delori, “Spectrophotometer for Noninvasive Measurement of Intrinsic Fluorescence and Reflectance of the Ocular Fundus,” Appl. Opt. 33(31), 7439–7452 (1994).
[CrossRef] [PubMed]

R. H. Webb, G. W. Hughes, F. C. Delori, “Confocal Scanning Laser Ophthalmoscope,” Appl. Opt. 26(8), 1492–1499 (1987).
[CrossRef] [PubMed]

Dillon, J.

D. Schweitzer, E. R. Gaillard, J. Dillon, R. F. Mullins, S. Russell, B. Hoffmann, S. Peters, M. Hammer, C. Biskup, “Time-Resolved Autofluorescence Imaging of Human Donor Retina Tissue from Donors with Significant Extramacular Drusen,” Invest. Ophthalmol. Vis. Sci. 53(7), 3376–3386 (2012).
[CrossRef] [PubMed]

Doebbecke, T.

D. Schweitzer, M. Hammer, F. Schweitzer, R. Anders, T. Doebbecke, S. Schenke, E. R. Gaillard, E. R. Gaillard, “In vivo measurement of time-resolved autofluorescence at the human fundus,” J. Biomed. Opt. 9(6), 1214–1222 (2004).
[CrossRef] [PubMed]

Dolar-Szczasny, J.

A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci. 46(9), 3309–3314 (2005).
[CrossRef] [PubMed]

Dorey, C. K.

F. C. Delori, D. G. Goger, C. K. Dorey, “Age-related accumulation and spatial distribution of lipofuscin in RPE of normal subjects,” Invest. Ophthalmol. Vis. Sci. 42(8), 1855–1866 (2001).
[PubMed]

F. C. Delori, C. K. Dorey, G. Staurenghi, O. Arend, D. G. Goger, J. J. Weiter, “In Vivo Fluorescence of the Ocular Fundus Exhibits Retinal Pigment Epithelium Lipofuscin Characteristics,” Invest. Ophthalmol. Vis. Sci. 36(3), 718–729 (1995).
[PubMed]

Dreyhaupt, J.

A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci. 46(9), 3309–3314 (2005).
[CrossRef] [PubMed]

Einbock, W.

A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci. 46(9), 3309–3314 (2005).
[CrossRef] [PubMed]

Eldred, G. E.

G. E. Eldred, M. R. Lasky, “Retinal Age Pigments Generated by Self-Assembling Lysosomotropic Detergents,” Nature 361(6414), 724–726 (1993).
[CrossRef] [PubMed]

Evans, C. L.

Fitzke, F. W.

A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci. 46(9), 3309–3314 (2005).
[CrossRef] [PubMed]

C. Bellmann, G. S. Rubin, S. A. Kabanarou, A. C. Bird, F. W. Fitzke, “Fundus autofluorescence imaging compared with different confocal scanning laser ophthalmoscopes,” Br. J. Ophthalmol. 87(11), 1381–1386 (2003).
[CrossRef] [PubMed]

A. von Rückmann, F. W. Fitzke, A. C. Bird, “Fundus autofluorescence in age-related macular disease imaged with a laser scanning ophthalmoscope,” Invest. Ophthalmol. Vis. Sci. 38(2), 478–486 (1997).
[PubMed]

A. von Rückmann, F. W. Fitzke, A. C. Bird, “Distribution of Fundus Autofluorescence with a Scanning Laser Ophthalmoscope,” Br. J. Ophthalmol. 79(5), 407–412 (1995).
[CrossRef] [PubMed]

Freudiger, C. W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Gaillard, E. R.

D. Schweitzer, E. R. Gaillard, J. Dillon, R. F. Mullins, S. Russell, B. Hoffmann, S. Peters, M. Hammer, C. Biskup, “Time-Resolved Autofluorescence Imaging of Human Donor Retina Tissue from Donors with Significant Extramacular Drusen,” Invest. Ophthalmol. Vis. Sci. 53(7), 3376–3386 (2012).
[CrossRef] [PubMed]

D. Schweitzer, M. Hammer, F. Schweitzer, R. Anders, T. Doebbecke, S. Schenke, E. R. Gaillard, E. R. Gaillard, “In vivo measurement of time-resolved autofluorescence at the human fundus,” J. Biomed. Opt. 9(6), 1214–1222 (2004).
[CrossRef] [PubMed]

D. Schweitzer, M. Hammer, F. Schweitzer, R. Anders, T. Doebbecke, S. Schenke, E. R. Gaillard, E. R. Gaillard, “In vivo measurement of time-resolved autofluorescence at the human fundus,” J. Biomed. Opt. 9(6), 1214–1222 (2004).
[CrossRef] [PubMed]

Goger, D. G.

F. C. Delori, D. G. Goger, C. K. Dorey, “Age-related accumulation and spatial distribution of lipofuscin in RPE of normal subjects,” Invest. Ophthalmol. Vis. Sci. 42(8), 1855–1866 (2001).
[PubMed]

F. C. Delori, C. K. Dorey, G. Staurenghi, O. Arend, D. G. Goger, J. J. Weiter, “In Vivo Fluorescence of the Ocular Fundus Exhibits Retinal Pigment Epithelium Lipofuscin Characteristics,” Invest. Ophthalmol. Vis. Sci. 36(3), 718–729 (1995).
[PubMed]

Gorczynska, I.

Hammer, M.

D. Schweitzer, E. R. Gaillard, J. Dillon, R. F. Mullins, S. Russell, B. Hoffmann, S. Peters, M. Hammer, C. Biskup, “Time-Resolved Autofluorescence Imaging of Human Donor Retina Tissue from Donors with Significant Extramacular Drusen,” Invest. Ophthalmol. Vis. Sci. 53(7), 3376–3386 (2012).
[CrossRef] [PubMed]

D. Schweitzer, S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, A. Bergmann, “Towards metabolic mapping of the human retina,” Microsc. Res. Tech. 70(5), 410–419 (2007).
[CrossRef] [PubMed]

D. Schweitzer, M. Hammer, F. Schweitzer, R. Anders, T. Doebbecke, S. Schenke, E. R. Gaillard, E. R. Gaillard, “In vivo measurement of time-resolved autofluorescence at the human fundus,” J. Biomed. Opt. 9(6), 1214–1222 (2004).
[CrossRef] [PubMed]

D. Schweitzer, A. Kolb, M. Hammer, “Autofluorescence lifetime measurements in images of the human ocular fundus,” Diagn. Opt. Spectros. Biomed. 2, 29–39 (2001).
[CrossRef]

Haralampus-Grynaviski, N. M.

N. M. Haralampus-Grynaviski, L. E. Lamb, C. M. R. Clancy, C. Skumatz, J. M. Burke, T. Sarna, J. D. Simon, “Spectroscopic and morphological studies of human retinal lipofuscin granules,” Proc. Natl. Acad. Sci. U.S.A. 100(6), 3179–3184 (2003).
[CrossRef] [PubMed]

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Hoffmann, B.

D. Schweitzer, E. R. Gaillard, J. Dillon, R. F. Mullins, S. Russell, B. Hoffmann, S. Peters, M. Hammer, C. Biskup, “Time-Resolved Autofluorescence Imaging of Human Donor Retina Tissue from Donors with Significant Extramacular Drusen,” Invest. Ophthalmol. Vis. Sci. 53(7), 3376–3386 (2012).
[CrossRef] [PubMed]

Holtom, G. R.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Holz, F. G.

A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci. 46(9), 3309–3314 (2005).
[CrossRef] [PubMed]

Hughes, G. W.

Izatt, J. A.

Jentsch, S.

D. Schweitzer, S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, A. Bergmann, “Towards metabolic mapping of the human retina,” Microsc. Res. Tech. 70(5), 410–419 (2007).
[CrossRef] [PubMed]

Jorzik, J. J.

A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci. 46(9), 3309–3314 (2005).
[CrossRef] [PubMed]

Kabanarou, S. A.

C. Bellmann, G. S. Rubin, S. A. Kabanarou, A. C. Bird, F. W. Fitzke, “Fundus autofluorescence imaging compared with different confocal scanning laser ophthalmoscopes,” Br. J. Ophthalmol. 87(11), 1381–1386 (2003).
[CrossRef] [PubMed]

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Keilhauer, C.

A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci. 46(9), 3309–3314 (2005).
[CrossRef] [PubMed]

Kolb, A.

D. Schweitzer, A. Kolb, M. Hammer, “Autofluorescence lifetime measurements in images of the human ocular fundus,” Diagn. Opt. Spectros. Biomed. 2, 29–39 (2001).
[CrossRef]

Kowalczyk, A.

Lamb, L. E.

N. M. Haralampus-Grynaviski, L. E. Lamb, C. M. R. Clancy, C. Skumatz, J. M. Burke, T. Sarna, J. D. Simon, “Spectroscopic and morphological studies of human retinal lipofuscin granules,” Proc. Natl. Acad. Sci. U.S.A. 100(6), 3179–3184 (2003).
[CrossRef] [PubMed]

Lasky, M. R.

G. E. Eldred, M. R. Lasky, “Retinal Age Pigments Generated by Self-Assembling Lysosomotropic Detergents,” Nature 361(6414), 724–726 (1993).
[CrossRef] [PubMed]

Lois, N.

A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci. 46(9), 3309–3314 (2005).
[CrossRef] [PubMed]

Lu, S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Ma, C. B.

Min, W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Mlynski, J.

A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci. 46(9), 3309–3314 (2005).
[CrossRef] [PubMed]

Mullins, R. F.

D. Schweitzer, E. R. Gaillard, J. Dillon, R. F. Mullins, S. Russell, B. Hoffmann, S. Peters, M. Hammer, C. Biskup, “Time-Resolved Autofluorescence Imaging of Human Donor Retina Tissue from Donors with Significant Extramacular Drusen,” Invest. Ophthalmol. Vis. Sci. 53(7), 3376–3386 (2012).
[CrossRef] [PubMed]

Oglesbee, R. A.

M. N. Slipchenko, R. A. Oglesbee, D. L. Zhang, W. Wu, J. X. Cheng, “Heterodyne detected nonlinear optical imaging in a lock-in free manner,” J Biophotonics 5(10), 801–807 (2012).
[CrossRef] [PubMed]

Pauleikhoff, D.

A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci. 46(9), 3309–3314 (2005).
[CrossRef] [PubMed]

Peters, S.

D. Schweitzer, E. R. Gaillard, J. Dillon, R. F. Mullins, S. Russell, B. Hoffmann, S. Peters, M. Hammer, C. Biskup, “Time-Resolved Autofluorescence Imaging of Human Donor Retina Tissue from Donors with Significant Extramacular Drusen,” Invest. Ophthalmol. Vis. Sci. 53(7), 3376–3386 (2012).
[CrossRef] [PubMed]

Potma, E. O.

Rózanowska, M.

M. Rózanowska, T. Sarna, “Light-induced damage to the retina: Role of rhodopsin chromophore revisited,” Photochem. Photobiol. 81(6), 1305–1330 (2005).
[CrossRef] [PubMed]

Rubin, G. S.

C. Bellmann, G. S. Rubin, S. A. Kabanarou, A. C. Bird, F. W. Fitzke, “Fundus autofluorescence imaging compared with different confocal scanning laser ophthalmoscopes,” Br. J. Ophthalmol. 87(11), 1381–1386 (2003).
[CrossRef] [PubMed]

Russell, S.

D. Schweitzer, E. R. Gaillard, J. Dillon, R. F. Mullins, S. Russell, B. Hoffmann, S. Peters, M. Hammer, C. Biskup, “Time-Resolved Autofluorescence Imaging of Human Donor Retina Tissue from Donors with Significant Extramacular Drusen,” Invest. Ophthalmol. Vis. Sci. 53(7), 3376–3386 (2012).
[CrossRef] [PubMed]

Saar, B. G.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Sarna, T.

M. Rózanowska, T. Sarna, “Light-induced damage to the retina: Role of rhodopsin chromophore revisited,” Photochem. Photobiol. 81(6), 1305–1330 (2005).
[CrossRef] [PubMed]

N. M. Haralampus-Grynaviski, L. E. Lamb, C. M. R. Clancy, C. Skumatz, J. M. Burke, T. Sarna, J. D. Simon, “Spectroscopic and morphological studies of human retinal lipofuscin granules,” Proc. Natl. Acad. Sci. U.S.A. 100(6), 3179–3184 (2003).
[CrossRef] [PubMed]

Schenke, S.

D. Schweitzer, S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, A. Bergmann, “Towards metabolic mapping of the human retina,” Microsc. Res. Tech. 70(5), 410–419 (2007).
[CrossRef] [PubMed]

D. Schweitzer, M. Hammer, F. Schweitzer, R. Anders, T. Doebbecke, S. Schenke, E. R. Gaillard, E. R. Gaillard, “In vivo measurement of time-resolved autofluorescence at the human fundus,” J. Biomed. Opt. 9(6), 1214–1222 (2004).
[CrossRef] [PubMed]

Schweitzer, D.

D. Schweitzer, E. R. Gaillard, J. Dillon, R. F. Mullins, S. Russell, B. Hoffmann, S. Peters, M. Hammer, C. Biskup, “Time-Resolved Autofluorescence Imaging of Human Donor Retina Tissue from Donors with Significant Extramacular Drusen,” Invest. Ophthalmol. Vis. Sci. 53(7), 3376–3386 (2012).
[CrossRef] [PubMed]

D. Schweitzer, S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, A. Bergmann, “Towards metabolic mapping of the human retina,” Microsc. Res. Tech. 70(5), 410–419 (2007).
[CrossRef] [PubMed]

D. Schweitzer, M. Hammer, F. Schweitzer, R. Anders, T. Doebbecke, S. Schenke, E. R. Gaillard, E. R. Gaillard, “In vivo measurement of time-resolved autofluorescence at the human fundus,” J. Biomed. Opt. 9(6), 1214–1222 (2004).
[CrossRef] [PubMed]

D. Schweitzer, A. Kolb, M. Hammer, “Autofluorescence lifetime measurements in images of the human ocular fundus,” Diagn. Opt. Spectros. Biomed. 2, 29–39 (2001).
[CrossRef]

Schweitzer, F.

D. Schweitzer, S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, A. Bergmann, “Towards metabolic mapping of the human retina,” Microsc. Res. Tech. 70(5), 410–419 (2007).
[CrossRef] [PubMed]

D. Schweitzer, M. Hammer, F. Schweitzer, R. Anders, T. Doebbecke, S. Schenke, E. R. Gaillard, E. R. Gaillard, “In vivo measurement of time-resolved autofluorescence at the human fundus,” J. Biomed. Opt. 9(6), 1214–1222 (2004).
[CrossRef] [PubMed]

Simon, J. D.

N. M. Haralampus-Grynaviski, L. E. Lamb, C. M. R. Clancy, C. Skumatz, J. M. Burke, T. Sarna, J. D. Simon, “Spectroscopic and morphological studies of human retinal lipofuscin granules,” Proc. Natl. Acad. Sci. U.S.A. 100(6), 3179–3184 (2003).
[CrossRef] [PubMed]

Skumatz, C.

N. M. Haralampus-Grynaviski, L. E. Lamb, C. M. R. Clancy, C. Skumatz, J. M. Burke, T. Sarna, J. D. Simon, “Spectroscopic and morphological studies of human retinal lipofuscin granules,” Proc. Natl. Acad. Sci. U.S.A. 100(6), 3179–3184 (2003).
[CrossRef] [PubMed]

Slipchenko, M. N.

M. N. Slipchenko, R. A. Oglesbee, D. L. Zhang, W. Wu, J. X. Cheng, “Heterodyne detected nonlinear optical imaging in a lock-in free manner,” J Biophotonics 5(10), 801–807 (2012).
[CrossRef] [PubMed]

Sparrow, J. R.

J. R. Sparrow, M. Boulton, “RPE lipofuscin and its role in retinal pathobiology,” Exp. Eye Res. 80(5), 595–606 (2005).
[CrossRef] [PubMed]

Staurenghi, G.

A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci. 46(9), 3309–3314 (2005).
[CrossRef] [PubMed]

F. C. Delori, C. K. Dorey, G. Staurenghi, O. Arend, D. G. Goger, J. J. Weiter, “In Vivo Fluorescence of the Ocular Fundus Exhibits Retinal Pigment Epithelium Lipofuscin Characteristics,” Invest. Ophthalmol. Vis. Sci. 36(3), 718–729 (1995).
[PubMed]

Strauss, O.

O. Strauss, “The retinal pigment epithelium in visual function,” Physiol. Rev. 85(3), 845–881 (2005).
[CrossRef] [PubMed]

Sylwestrzak, M.

Szkulmowski, M.

Szlag, D.

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Van Keuren, E.

von Rückmann, A.

A. von Rückmann, F. W. Fitzke, A. C. Bird, “Fundus autofluorescence in age-related macular disease imaged with a laser scanning ophthalmoscope,” Invest. Ophthalmol. Vis. Sci. 38(2), 478–486 (1997).
[PubMed]

A. von Rückmann, F. W. Fitzke, A. C. Bird, “Distribution of Fundus Autofluorescence with a Scanning Laser Ophthalmoscope,” Br. J. Ophthalmol. 79(5), 407–412 (1995).
[CrossRef] [PubMed]

Webb, R. H.

Weiter, J. J.

F. C. Delori, C. K. Dorey, G. Staurenghi, O. Arend, D. G. Goger, J. J. Weiter, “In Vivo Fluorescence of the Ocular Fundus Exhibits Retinal Pigment Epithelium Lipofuscin Characteristics,” Invest. Ophthalmol. Vis. Sci. 36(3), 718–729 (1995).
[PubMed]

Wojtkowski, M.

Wolf, S.

A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci. 46(9), 3309–3314 (2005).
[CrossRef] [PubMed]

Wu, W.

M. N. Slipchenko, R. A. Oglesbee, D. L. Zhang, W. Wu, J. X. Cheng, “Heterodyne detected nonlinear optical imaging in a lock-in free manner,” J Biophotonics 5(10), 801–807 (2012).
[CrossRef] [PubMed]

Xie, X. S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

E. O. Potma, C. L. Evans, X. S. Xie, “Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging,” Opt. Lett. 31(2), 241–243 (2006).
[CrossRef] [PubMed]

Zhang, D. L.

M. N. Slipchenko, R. A. Oglesbee, D. L. Zhang, W. Wu, J. X. Cheng, “Heterodyne detected nonlinear optical imaging in a lock-in free manner,” J Biophotonics 5(10), 801–807 (2012).
[CrossRef] [PubMed]

Appl. Opt.

Br. J. Ophthalmol.

A. von Rückmann, F. W. Fitzke, A. C. Bird, “Distribution of Fundus Autofluorescence with a Scanning Laser Ophthalmoscope,” Br. J. Ophthalmol. 79(5), 407–412 (1995).
[CrossRef] [PubMed]

C. Bellmann, G. S. Rubin, S. A. Kabanarou, A. C. Bird, F. W. Fitzke, “Fundus autofluorescence imaging compared with different confocal scanning laser ophthalmoscopes,” Br. J. Ophthalmol. 87(11), 1381–1386 (2003).
[CrossRef] [PubMed]

Diagn. Opt. Spectros. Biomed.

D. Schweitzer, A. Kolb, M. Hammer, “Autofluorescence lifetime measurements in images of the human ocular fundus,” Diagn. Opt. Spectros. Biomed. 2, 29–39 (2001).
[CrossRef]

Exp. Eye Res.

J. R. Sparrow, M. Boulton, “RPE lipofuscin and its role in retinal pathobiology,” Exp. Eye Res. 80(5), 595–606 (2005).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci.

A. von Rückmann, F. W. Fitzke, A. C. Bird, “Fundus autofluorescence in age-related macular disease imaged with a laser scanning ophthalmoscope,” Invest. Ophthalmol. Vis. Sci. 38(2), 478–486 (1997).
[PubMed]

F. C. Delori, C. K. Dorey, G. Staurenghi, O. Arend, D. G. Goger, J. J. Weiter, “In Vivo Fluorescence of the Ocular Fundus Exhibits Retinal Pigment Epithelium Lipofuscin Characteristics,” Invest. Ophthalmol. Vis. Sci. 36(3), 718–729 (1995).
[PubMed]

D. Schweitzer, E. R. Gaillard, J. Dillon, R. F. Mullins, S. Russell, B. Hoffmann, S. Peters, M. Hammer, C. Biskup, “Time-Resolved Autofluorescence Imaging of Human Donor Retina Tissue from Donors with Significant Extramacular Drusen,” Invest. Ophthalmol. Vis. Sci. 53(7), 3376–3386 (2012).
[CrossRef] [PubMed]

F. C. Delori, D. G. Goger, C. K. Dorey, “Age-related accumulation and spatial distribution of lipofuscin in RPE of normal subjects,” Invest. Ophthalmol. Vis. Sci. 42(8), 1855–1866 (2001).
[PubMed]

A. Bindewald, A. C. Bird, S. S. Dandekar, J. Dolar-Szczasny, J. Dreyhaupt, F. W. Fitzke, W. Einbock, F. G. Holz, J. J. Jorzik, C. Keilhauer, N. Lois, J. Mlynski, D. Pauleikhoff, G. Staurenghi, S. Wolf, “Classification of fundus autofluorescence patterns in early age-related macular disease,” Invest. Ophthalmol. Vis. Sci. 46(9), 3309–3314 (2005).
[CrossRef] [PubMed]

J Biophotonics

M. N. Slipchenko, R. A. Oglesbee, D. L. Zhang, W. Wu, J. X. Cheng, “Heterodyne detected nonlinear optical imaging in a lock-in free manner,” J Biophotonics 5(10), 801–807 (2012).
[CrossRef] [PubMed]

J. Biomed. Opt.

D. Schweitzer, M. Hammer, F. Schweitzer, R. Anders, T. Doebbecke, S. Schenke, E. R. Gaillard, E. R. Gaillard, “In vivo measurement of time-resolved autofluorescence at the human fundus,” J. Biomed. Opt. 9(6), 1214–1222 (2004).
[CrossRef] [PubMed]

Microsc. Res. Tech.

D. Schweitzer, S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, A. Bergmann, “Towards metabolic mapping of the human retina,” Microsc. Res. Tech. 70(5), 410–419 (2007).
[CrossRef] [PubMed]

Nature

G. E. Eldred, M. R. Lasky, “Retinal Age Pigments Generated by Self-Assembling Lysosomotropic Detergents,” Nature 361(6414), 724–726 (1993).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Photochem. Photobiol.

M. Rózanowska, T. Sarna, “Light-induced damage to the retina: Role of rhodopsin chromophore revisited,” Photochem. Photobiol. 81(6), 1305–1330 (2005).
[CrossRef] [PubMed]

Physiol. Rev.

O. Strauss, “The retinal pigment epithelium in visual function,” Physiol. Rev. 85(3), 845–881 (2005).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A.

N. M. Haralampus-Grynaviski, L. E. Lamb, C. M. R. Clancy, C. Skumatz, J. M. Burke, T. Sarna, J. D. Simon, “Spectroscopic and morphological studies of human retinal lipofuscin granules,” Proc. Natl. Acad. Sci. U.S.A. 100(6), 3179–3184 (2003).
[CrossRef] [PubMed]

Science

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Other

Blue Laser Autofluorescence: the new experience” (a webpage of Heidelberg Engineering, 2013), retrieved http://bluepeakexperience.com/us .

A. Dubra, D. H. Scoles, and Y. N. Sulai, “In vivo Imaging of the Human Retinal Pigment Epithelium Cell Mosaic using Short-wavelength Autofluorescence and achromatizing lenses., ” in ARVO Annual Meeting, (Seattle, WA, USA, 2013).

D. H. Scoles, Y. N. Sulai, and A. Dubra, “In vivo Imaging of the retinal pigment epithelium using dark-field SLO,” in ARVO-ISIE Imaging Conference, 2013)

M. Boulton, “Lipofuscin of the Retinal Pigment Epithelium,” in Fundus Autofluorescence, N. Lois and J. V. Forrester, eds. (Wolters Kluwer, Lippincott Williams & Wilkins, 2009).

S. S. Seehafer and D. A. Pearce, “Lipofuscin: The “Wear and Tear” Pigment,” in Fundus Autofluorescence, N. Lois and J. V. Forrester, eds. (Wolters Kluwer, Lippincott Williams & Wilkins, 2009).

N. Lois and J. V. Forrester, eds., Fundus Autofluorescence (Wolters Kluwer, Lippincott Williams & Wilkins, 2009).

S. Schmitz-Valckenberg and F. Fitzke, “Imaging Techniques of Fundus Autofluorescence,” in Fundus autofluorescence, N. Lois and J. V. Forrester, eds. (Wolters Kluwer, Lippincott Williams & Wilkins, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Two set-ups of the multimodal instrument for in vivo imaging of fundus autofluorescence by using lock-in detection of signal with additional modality of Fourier-domain Optical Coherence Tomography; a: device type A – blue beam is introduced into optical path of the instrument along with the near infrared beam, by 80/20 coupler; b: device type B – separate optics for pump and OCT beams, beams were combined right before the galvo scanners GS by dichroic mirrors DM1 and DM2. Detailed description is provided in a main text.

Fig. 2
Fig. 2

Voltage waveforms for X-scanner (fast), Y-scanner (slow) and trigger. For version A repetition time for AF (τrepAF) is typically equal to 20 μs and for OCT (τrepOCT) - 40 μs, both times are marked on the picture. For version B – both modalities are triggered by ascending slope of the signal.

Fig. 3
Fig. 3

Simulation of the 473 nm beam propagation in the fiber coupler designed for 800 nm. a: geometry of considered coupler (cross-section through the center of the fiber cores), b: field distribution in direct output, c: modal content in direct output expressed as a function of in effective refractive index, d: calculated field distribution in indirect output, e: calculated modal content in indirect output.

Fig. 4
Fig. 4

The relative increase in the output voltage of lock-in amplifier versus optical power of point source placed in the detection plane of the system.

Fig. 5
Fig. 5

Images of the phantom pigment sample (stained with cresyl violet) acquired with (a) and without (b-f) lock-in detection.

Fig. 6
Fig. 6

Streaking effect along X-axis observed on USAF 1951 for images with increasing repetition frequency.

Fig. 7
Fig. 7

Deterioration of PSF along X-axis (fast scanner) with ascending repetition frequency.

Fig. 8
Fig. 8

a: Autofluorescence images of the fundus of the left eye of 32 years old healthy volunteer; b-d: images taken from smaller regions from superior part of the fundus; e-g: images taken from the region central superior periphery of the macula. All images were obtained with device type A, average power of the exciting beam was set to 56 μW. All presented images are single frames, without averaging.

Fig. 9
Fig. 9

OCT imaging mode of FAF/OCT multimodal instrument, the left eye of 32 years old healthy volunteer; a: en face projection of fundus 500x500 pixels; b-d: B-scans originating from regions of fundus indicated with yellow lines; e: high resolution (2048 A-scans) B-scan from the center of the fovea. The OCT data were purchased by version A of described system.

Fig. 10
Fig. 10

FAF images of fundus of the left eye of 32 years old healthy volunteer for small powers of exciting beam for device type A. All presented images are single frames, without averaging.

Fig. 11
Fig. 11

FAF and OCT images obtained for volunteers of different age groups with device type B. Beam powers were set to 800 μW for OCT and 65 μW for FAF. All presented FAF images are single frames, without averaging. FAF images for 24y., 36y. and 83 y. subjects are displayed in the same grayscale.

Tables (1)

Tables Icon

Table 1 Technical parameters of both versions of the laboratory FAF-OCT system.

Metrics