Abstract

Rodent models are increasingly used to study refractive eye development and development of refractive errors; however, there is still some uncertainty regarding the accuracy of the optical models of the rat and mouse eye primarily due to high variability in reported ocular parameters. In this work, we have systematically evaluated the contribution of various ocular parameters, such as radii of curvature of ocular surfaces, thicknesses of ocular components, and refractive indices of ocular refractive media, using variational analysis and a computational model of the rodent eye. Variational analysis revealed that not all variation in ocular parameters has critical impact on the refractive status of the eye. Variation in the depth of the vitreous chamber, thickness of the lens, radius of the anterior surface of the cornea, radius of the anterior surface of the lens, as well as refractive indices for the lens and vitreous, appears to have the largest impact on the refractive error. The radii of the posterior surfaces of the cornea and lens have much smaller contributions to the refractive state. These data provide the framework for further refinement of the optical models of the rat and mouse eye and suggest that extra efforts should be directed towards increasing the linear resolution of the rodent eye biometry and obtaining more accurate data for the refractive indices of the lens and vitreous.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Hughes, “A schematic eye for the rat,” Vision Res. 19(5), 569–588 (1979).
    [CrossRef] [PubMed]
  2. M. C. Campbell, A. Hughes, “An analytic, gradient index schematic lens and eye for the rat which predicts aberrations for finite pupils,” Vision Res. 21(7), 1129–1148 (1981).
    [CrossRef] [PubMed]
  3. A. Chaudhuri, P. E. Hallett, J. A. Parker, “Aspheric curvatures, refractive indices and chromatic aberration for the rat eye,” Vision Res. 23(12), 1351–1363 (1983).
    [CrossRef] [PubMed]
  4. S. Remtulla, P. E. Hallett, “A schematic eye for the mouse, and comparisons with the rat,” Vision Res. 25(1), 21–31 (1985).
    [CrossRef] [PubMed]
  5. C. Schmucker, F. Schaeffel, “A paraxial schematic eye model for the growing C57BL/6 mouse,” Vision Res. 44(16), 1857–1867 (2004).
    [CrossRef] [PubMed]
  6. X. Zhou, P. Bedggood, A. Metha, “Limitations to adaptive optics image quality in rodent eyes,” Biomed. Opt. Express 3(8), 1811–1824 (2012).
    [CrossRef] [PubMed]
  7. E. G. de la Cera, G. Rodríguez, L. Llorente, F. Schaeffel, S. Marcos, “Optical aberrations in the mouse eye,” Vision Res. 46(16), 2546–2553 (2006).
    [CrossRef] [PubMed]
  8. Y. Geng, L. A. Schery, R. Sharma, A. Dubra, K. Ahmad, R. T. Libby, D. R. Williams, “Optical properties of the mouse eye,” Biomed. Opt. Express 2(4), 717–738 (2011).
    [CrossRef] [PubMed]
  9. G. Zhou, R. W. Williams, “Mouse models for the analysis of myopia: an analysis of variation in eye size of adult mice,” Optom. Vis. Sci. 76(6), 408–418 (1999).
    [CrossRef] [PubMed]
  10. A. V. Tkatchenko, Y. Shen, T. V. Tkatchenko, “Genetic background modulates refractive eye development and susceptibility to myopia in the mouse,” Invest. Ophthalmol. Vis. Sci. 53, E-Abstract 3465 (2012).
  11. M. T. Pardue, R. A. Stone, P. M. Iuvone, “Investigating mechanisms of myopia in mice,” Exp. Eye Res. 114, 96–105 (2013).
    [CrossRef] [PubMed]
  12. X. Zhou, M. Shen, J. Xie, J. Wang, L. Jiang, M. Pan, J. Qu, F. Lu, “The development of the refractive status and ocular growth in C57BL/6 mice,” Invest. Ophthalmol. Vis. Sci. 49(12), 5208–5214 (2008).
    [CrossRef] [PubMed]
  13. X. Zhou, J. An, X. Wu, R. Lu, Q. Huang, R. Xie, L. Jiang, J. Qu, “Relative axial myopia induced by prolonged light exposure in C57BL/6 mice,” Photochem. Photobiol. 86(1), 131–137 (2010).
    [CrossRef] [PubMed]
  14. X. Zhou, Q. Huang, J. An, R. Lu, X. Qin, L. Jiang, Y. Li, J. Wang, J. Chen, J. Qu, “Genetic deletion of the adenosine A2A receptor confers postnatal development of relative myopia in mice,” Invest. Ophthalmol. Vis. Sci. 51(9), 4362–4370 (2010).
    [CrossRef] [PubMed]
  15. Y. Yu, H. Chen, J. Tuo, Y. Zhu, “Effects of flickering light on refraction and changes in eye axial length of C57BL/6 mice,” Ophthalmic Res. 46(2), 80–87 (2011).
    [CrossRef] [PubMed]
  16. T. V. Tkatchenko, Y. Shen, A. V. Tkatchenko, “Analysis of postnatal eye development in the mouse with high-resolution small animal magnetic resonance imaging,” Invest. Ophthalmol. Vis. Sci. 51(1), 21–27 (2010).
    [CrossRef] [PubMed]
  17. T. V. Tkatchenko, Y. Shen, A. V. Tkatchenko, “Mouse experimental myopia has features of primate myopia,” Invest. Ophthalmol. Vis. Sci. 51(3), 1297–1303 (2010).
    [CrossRef] [PubMed]
  18. T. V. Tkatchenko, A. V. Tkatchenko, “Ketamine-xylazine anesthesia causes hyperopic refractive shift in mice,” J. Neurosci. Methods 193(1), 67–71 (2010).
    [CrossRef] [PubMed]
  19. C. Schmucker, F. Schaeffel, “Contrast sensitivity of wildtype mice wearing diffusers or spectacle lenses, and the effect of atropine,” Vision Res. 46(5), 678–687 (2006).
    [CrossRef] [PubMed]
  20. F. Schaeffel, E. Burkhardt, H. C. Howland, R. W. Williams, “Measurement of refractive state and deprivation myopia in two strains of mice,” Optom. Vis. Sci. 81(2), 99–110 (2004).
    [CrossRef] [PubMed]
  21. M. T. Pardue, A. E. Faulkner, A. Fernandes, H. Yin, F. Schaeffel, R. W. Williams, N. Pozdeyev, P. M. Iuvone, “High susceptibility to experimental myopia in a mouse model with a retinal on pathway defect,” Invest. Ophthalmol. Vis. Sci. 49(2), 706–712 (2008).
    [CrossRef] [PubMed]
  22. J. Wisard, A. Faulkner, M. A. Chrenek, T. Waxweiler, W. Waxweiler, C. Donmoyer, G. I. Liou, C. M. Craft, G. F. Schmid, J. H. Boatright, M. T. Pardue, J. M. Nickerson, “Exaggerated eye growth in IRBP-deficient mice in early development,” Invest. Ophthalmol. Vis. Sci. 52(8), 5804–5811 (2011).
    [CrossRef] [PubMed]
  23. J. Alda and J. Arasa, “Paraxial ray tracing,” in Encyclopedia of optical engineering (Marcel Dekker, New York, NY, 2004).
  24. R. J. Schechter, “Snell’s Law: optimum pathway analysis,” Surv. Ophthalmol. 21(6), 464–466 (1977).
    [CrossRef] [PubMed]
  25. J. E. Greivenkamp, Field guide to geometrical optics (SPIE Press, Bellingham, Wash., 2004).
  26. T. V. Tkatchenko, Y. Shen, R. D. Braun, G. Bawa, P. Kumar, I. Avrutsky, A. V. Tkatchenko, “Photopic visual input is necessary for emmetropization in mice,” Exp. Eye Res. 115, 87–95 (2013).
    [CrossRef] [PubMed]
  27. F. Schaeffel, H. C. Howland, “Mathematical model of emmetropization in the chicken,” J. Opt. Soc. Am. A 5(12), 2080–2086 (1988).
    [CrossRef] [PubMed]

2013 (2)

M. T. Pardue, R. A. Stone, P. M. Iuvone, “Investigating mechanisms of myopia in mice,” Exp. Eye Res. 114, 96–105 (2013).
[CrossRef] [PubMed]

T. V. Tkatchenko, Y. Shen, R. D. Braun, G. Bawa, P. Kumar, I. Avrutsky, A. V. Tkatchenko, “Photopic visual input is necessary for emmetropization in mice,” Exp. Eye Res. 115, 87–95 (2013).
[CrossRef] [PubMed]

2012 (2)

A. V. Tkatchenko, Y. Shen, T. V. Tkatchenko, “Genetic background modulates refractive eye development and susceptibility to myopia in the mouse,” Invest. Ophthalmol. Vis. Sci. 53, E-Abstract 3465 (2012).

X. Zhou, P. Bedggood, A. Metha, “Limitations to adaptive optics image quality in rodent eyes,” Biomed. Opt. Express 3(8), 1811–1824 (2012).
[CrossRef] [PubMed]

2011 (3)

Y. Geng, L. A. Schery, R. Sharma, A. Dubra, K. Ahmad, R. T. Libby, D. R. Williams, “Optical properties of the mouse eye,” Biomed. Opt. Express 2(4), 717–738 (2011).
[CrossRef] [PubMed]

Y. Yu, H. Chen, J. Tuo, Y. Zhu, “Effects of flickering light on refraction and changes in eye axial length of C57BL/6 mice,” Ophthalmic Res. 46(2), 80–87 (2011).
[CrossRef] [PubMed]

J. Wisard, A. Faulkner, M. A. Chrenek, T. Waxweiler, W. Waxweiler, C. Donmoyer, G. I. Liou, C. M. Craft, G. F. Schmid, J. H. Boatright, M. T. Pardue, J. M. Nickerson, “Exaggerated eye growth in IRBP-deficient mice in early development,” Invest. Ophthalmol. Vis. Sci. 52(8), 5804–5811 (2011).
[CrossRef] [PubMed]

2010 (5)

X. Zhou, J. An, X. Wu, R. Lu, Q. Huang, R. Xie, L. Jiang, J. Qu, “Relative axial myopia induced by prolonged light exposure in C57BL/6 mice,” Photochem. Photobiol. 86(1), 131–137 (2010).
[CrossRef] [PubMed]

X. Zhou, Q. Huang, J. An, R. Lu, X. Qin, L. Jiang, Y. Li, J. Wang, J. Chen, J. Qu, “Genetic deletion of the adenosine A2A receptor confers postnatal development of relative myopia in mice,” Invest. Ophthalmol. Vis. Sci. 51(9), 4362–4370 (2010).
[CrossRef] [PubMed]

T. V. Tkatchenko, Y. Shen, A. V. Tkatchenko, “Analysis of postnatal eye development in the mouse with high-resolution small animal magnetic resonance imaging,” Invest. Ophthalmol. Vis. Sci. 51(1), 21–27 (2010).
[CrossRef] [PubMed]

T. V. Tkatchenko, Y. Shen, A. V. Tkatchenko, “Mouse experimental myopia has features of primate myopia,” Invest. Ophthalmol. Vis. Sci. 51(3), 1297–1303 (2010).
[CrossRef] [PubMed]

T. V. Tkatchenko, A. V. Tkatchenko, “Ketamine-xylazine anesthesia causes hyperopic refractive shift in mice,” J. Neurosci. Methods 193(1), 67–71 (2010).
[CrossRef] [PubMed]

2008 (2)

X. Zhou, M. Shen, J. Xie, J. Wang, L. Jiang, M. Pan, J. Qu, F. Lu, “The development of the refractive status and ocular growth in C57BL/6 mice,” Invest. Ophthalmol. Vis. Sci. 49(12), 5208–5214 (2008).
[CrossRef] [PubMed]

M. T. Pardue, A. E. Faulkner, A. Fernandes, H. Yin, F. Schaeffel, R. W. Williams, N. Pozdeyev, P. M. Iuvone, “High susceptibility to experimental myopia in a mouse model with a retinal on pathway defect,” Invest. Ophthalmol. Vis. Sci. 49(2), 706–712 (2008).
[CrossRef] [PubMed]

2006 (2)

C. Schmucker, F. Schaeffel, “Contrast sensitivity of wildtype mice wearing diffusers or spectacle lenses, and the effect of atropine,” Vision Res. 46(5), 678–687 (2006).
[CrossRef] [PubMed]

E. G. de la Cera, G. Rodríguez, L. Llorente, F. Schaeffel, S. Marcos, “Optical aberrations in the mouse eye,” Vision Res. 46(16), 2546–2553 (2006).
[CrossRef] [PubMed]

2004 (2)

C. Schmucker, F. Schaeffel, “A paraxial schematic eye model for the growing C57BL/6 mouse,” Vision Res. 44(16), 1857–1867 (2004).
[CrossRef] [PubMed]

F. Schaeffel, E. Burkhardt, H. C. Howland, R. W. Williams, “Measurement of refractive state and deprivation myopia in two strains of mice,” Optom. Vis. Sci. 81(2), 99–110 (2004).
[CrossRef] [PubMed]

1999 (1)

G. Zhou, R. W. Williams, “Mouse models for the analysis of myopia: an analysis of variation in eye size of adult mice,” Optom. Vis. Sci. 76(6), 408–418 (1999).
[CrossRef] [PubMed]

1988 (1)

1985 (1)

S. Remtulla, P. E. Hallett, “A schematic eye for the mouse, and comparisons with the rat,” Vision Res. 25(1), 21–31 (1985).
[CrossRef] [PubMed]

1983 (1)

A. Chaudhuri, P. E. Hallett, J. A. Parker, “Aspheric curvatures, refractive indices and chromatic aberration for the rat eye,” Vision Res. 23(12), 1351–1363 (1983).
[CrossRef] [PubMed]

1981 (1)

M. C. Campbell, A. Hughes, “An analytic, gradient index schematic lens and eye for the rat which predicts aberrations for finite pupils,” Vision Res. 21(7), 1129–1148 (1981).
[CrossRef] [PubMed]

1979 (1)

A. Hughes, “A schematic eye for the rat,” Vision Res. 19(5), 569–588 (1979).
[CrossRef] [PubMed]

1977 (1)

R. J. Schechter, “Snell’s Law: optimum pathway analysis,” Surv. Ophthalmol. 21(6), 464–466 (1977).
[CrossRef] [PubMed]

Ahmad, K.

An, J.

X. Zhou, J. An, X. Wu, R. Lu, Q. Huang, R. Xie, L. Jiang, J. Qu, “Relative axial myopia induced by prolonged light exposure in C57BL/6 mice,” Photochem. Photobiol. 86(1), 131–137 (2010).
[CrossRef] [PubMed]

X. Zhou, Q. Huang, J. An, R. Lu, X. Qin, L. Jiang, Y. Li, J. Wang, J. Chen, J. Qu, “Genetic deletion of the adenosine A2A receptor confers postnatal development of relative myopia in mice,” Invest. Ophthalmol. Vis. Sci. 51(9), 4362–4370 (2010).
[CrossRef] [PubMed]

Avrutsky, I.

T. V. Tkatchenko, Y. Shen, R. D. Braun, G. Bawa, P. Kumar, I. Avrutsky, A. V. Tkatchenko, “Photopic visual input is necessary for emmetropization in mice,” Exp. Eye Res. 115, 87–95 (2013).
[CrossRef] [PubMed]

Bawa, G.

T. V. Tkatchenko, Y. Shen, R. D. Braun, G. Bawa, P. Kumar, I. Avrutsky, A. V. Tkatchenko, “Photopic visual input is necessary for emmetropization in mice,” Exp. Eye Res. 115, 87–95 (2013).
[CrossRef] [PubMed]

Bedggood, P.

Boatright, J. H.

J. Wisard, A. Faulkner, M. A. Chrenek, T. Waxweiler, W. Waxweiler, C. Donmoyer, G. I. Liou, C. M. Craft, G. F. Schmid, J. H. Boatright, M. T. Pardue, J. M. Nickerson, “Exaggerated eye growth in IRBP-deficient mice in early development,” Invest. Ophthalmol. Vis. Sci. 52(8), 5804–5811 (2011).
[CrossRef] [PubMed]

Braun, R. D.

T. V. Tkatchenko, Y. Shen, R. D. Braun, G. Bawa, P. Kumar, I. Avrutsky, A. V. Tkatchenko, “Photopic visual input is necessary for emmetropization in mice,” Exp. Eye Res. 115, 87–95 (2013).
[CrossRef] [PubMed]

Burkhardt, E.

F. Schaeffel, E. Burkhardt, H. C. Howland, R. W. Williams, “Measurement of refractive state and deprivation myopia in two strains of mice,” Optom. Vis. Sci. 81(2), 99–110 (2004).
[CrossRef] [PubMed]

Campbell, M. C.

M. C. Campbell, A. Hughes, “An analytic, gradient index schematic lens and eye for the rat which predicts aberrations for finite pupils,” Vision Res. 21(7), 1129–1148 (1981).
[CrossRef] [PubMed]

Chaudhuri, A.

A. Chaudhuri, P. E. Hallett, J. A. Parker, “Aspheric curvatures, refractive indices and chromatic aberration for the rat eye,” Vision Res. 23(12), 1351–1363 (1983).
[CrossRef] [PubMed]

Chen, H.

Y. Yu, H. Chen, J. Tuo, Y. Zhu, “Effects of flickering light on refraction and changes in eye axial length of C57BL/6 mice,” Ophthalmic Res. 46(2), 80–87 (2011).
[CrossRef] [PubMed]

Chen, J.

X. Zhou, Q. Huang, J. An, R. Lu, X. Qin, L. Jiang, Y. Li, J. Wang, J. Chen, J. Qu, “Genetic deletion of the adenosine A2A receptor confers postnatal development of relative myopia in mice,” Invest. Ophthalmol. Vis. Sci. 51(9), 4362–4370 (2010).
[CrossRef] [PubMed]

Chrenek, M. A.

J. Wisard, A. Faulkner, M. A. Chrenek, T. Waxweiler, W. Waxweiler, C. Donmoyer, G. I. Liou, C. M. Craft, G. F. Schmid, J. H. Boatright, M. T. Pardue, J. M. Nickerson, “Exaggerated eye growth in IRBP-deficient mice in early development,” Invest. Ophthalmol. Vis. Sci. 52(8), 5804–5811 (2011).
[CrossRef] [PubMed]

Craft, C. M.

J. Wisard, A. Faulkner, M. A. Chrenek, T. Waxweiler, W. Waxweiler, C. Donmoyer, G. I. Liou, C. M. Craft, G. F. Schmid, J. H. Boatright, M. T. Pardue, J. M. Nickerson, “Exaggerated eye growth in IRBP-deficient mice in early development,” Invest. Ophthalmol. Vis. Sci. 52(8), 5804–5811 (2011).
[CrossRef] [PubMed]

de la Cera, E. G.

E. G. de la Cera, G. Rodríguez, L. Llorente, F. Schaeffel, S. Marcos, “Optical aberrations in the mouse eye,” Vision Res. 46(16), 2546–2553 (2006).
[CrossRef] [PubMed]

Donmoyer, C.

J. Wisard, A. Faulkner, M. A. Chrenek, T. Waxweiler, W. Waxweiler, C. Donmoyer, G. I. Liou, C. M. Craft, G. F. Schmid, J. H. Boatright, M. T. Pardue, J. M. Nickerson, “Exaggerated eye growth in IRBP-deficient mice in early development,” Invest. Ophthalmol. Vis. Sci. 52(8), 5804–5811 (2011).
[CrossRef] [PubMed]

Dubra, A.

Faulkner, A.

J. Wisard, A. Faulkner, M. A. Chrenek, T. Waxweiler, W. Waxweiler, C. Donmoyer, G. I. Liou, C. M. Craft, G. F. Schmid, J. H. Boatright, M. T. Pardue, J. M. Nickerson, “Exaggerated eye growth in IRBP-deficient mice in early development,” Invest. Ophthalmol. Vis. Sci. 52(8), 5804–5811 (2011).
[CrossRef] [PubMed]

Faulkner, A. E.

M. T. Pardue, A. E. Faulkner, A. Fernandes, H. Yin, F. Schaeffel, R. W. Williams, N. Pozdeyev, P. M. Iuvone, “High susceptibility to experimental myopia in a mouse model with a retinal on pathway defect,” Invest. Ophthalmol. Vis. Sci. 49(2), 706–712 (2008).
[CrossRef] [PubMed]

Fernandes, A.

M. T. Pardue, A. E. Faulkner, A. Fernandes, H. Yin, F. Schaeffel, R. W. Williams, N. Pozdeyev, P. M. Iuvone, “High susceptibility to experimental myopia in a mouse model with a retinal on pathway defect,” Invest. Ophthalmol. Vis. Sci. 49(2), 706–712 (2008).
[CrossRef] [PubMed]

Geng, Y.

Hallett, P. E.

S. Remtulla, P. E. Hallett, “A schematic eye for the mouse, and comparisons with the rat,” Vision Res. 25(1), 21–31 (1985).
[CrossRef] [PubMed]

A. Chaudhuri, P. E. Hallett, J. A. Parker, “Aspheric curvatures, refractive indices and chromatic aberration for the rat eye,” Vision Res. 23(12), 1351–1363 (1983).
[CrossRef] [PubMed]

Howland, H. C.

F. Schaeffel, E. Burkhardt, H. C. Howland, R. W. Williams, “Measurement of refractive state and deprivation myopia in two strains of mice,” Optom. Vis. Sci. 81(2), 99–110 (2004).
[CrossRef] [PubMed]

F. Schaeffel, H. C. Howland, “Mathematical model of emmetropization in the chicken,” J. Opt. Soc. Am. A 5(12), 2080–2086 (1988).
[CrossRef] [PubMed]

Huang, Q.

X. Zhou, Q. Huang, J. An, R. Lu, X. Qin, L. Jiang, Y. Li, J. Wang, J. Chen, J. Qu, “Genetic deletion of the adenosine A2A receptor confers postnatal development of relative myopia in mice,” Invest. Ophthalmol. Vis. Sci. 51(9), 4362–4370 (2010).
[CrossRef] [PubMed]

X. Zhou, J. An, X. Wu, R. Lu, Q. Huang, R. Xie, L. Jiang, J. Qu, “Relative axial myopia induced by prolonged light exposure in C57BL/6 mice,” Photochem. Photobiol. 86(1), 131–137 (2010).
[CrossRef] [PubMed]

Hughes, A.

M. C. Campbell, A. Hughes, “An analytic, gradient index schematic lens and eye for the rat which predicts aberrations for finite pupils,” Vision Res. 21(7), 1129–1148 (1981).
[CrossRef] [PubMed]

A. Hughes, “A schematic eye for the rat,” Vision Res. 19(5), 569–588 (1979).
[CrossRef] [PubMed]

Iuvone, P. M.

M. T. Pardue, R. A. Stone, P. M. Iuvone, “Investigating mechanisms of myopia in mice,” Exp. Eye Res. 114, 96–105 (2013).
[CrossRef] [PubMed]

M. T. Pardue, A. E. Faulkner, A. Fernandes, H. Yin, F. Schaeffel, R. W. Williams, N. Pozdeyev, P. M. Iuvone, “High susceptibility to experimental myopia in a mouse model with a retinal on pathway defect,” Invest. Ophthalmol. Vis. Sci. 49(2), 706–712 (2008).
[CrossRef] [PubMed]

Jiang, L.

X. Zhou, Q. Huang, J. An, R. Lu, X. Qin, L. Jiang, Y. Li, J. Wang, J. Chen, J. Qu, “Genetic deletion of the adenosine A2A receptor confers postnatal development of relative myopia in mice,” Invest. Ophthalmol. Vis. Sci. 51(9), 4362–4370 (2010).
[CrossRef] [PubMed]

X. Zhou, J. An, X. Wu, R. Lu, Q. Huang, R. Xie, L. Jiang, J. Qu, “Relative axial myopia induced by prolonged light exposure in C57BL/6 mice,” Photochem. Photobiol. 86(1), 131–137 (2010).
[CrossRef] [PubMed]

X. Zhou, M. Shen, J. Xie, J. Wang, L. Jiang, M. Pan, J. Qu, F. Lu, “The development of the refractive status and ocular growth in C57BL/6 mice,” Invest. Ophthalmol. Vis. Sci. 49(12), 5208–5214 (2008).
[CrossRef] [PubMed]

Kumar, P.

T. V. Tkatchenko, Y. Shen, R. D. Braun, G. Bawa, P. Kumar, I. Avrutsky, A. V. Tkatchenko, “Photopic visual input is necessary for emmetropization in mice,” Exp. Eye Res. 115, 87–95 (2013).
[CrossRef] [PubMed]

Li, Y.

X. Zhou, Q. Huang, J. An, R. Lu, X. Qin, L. Jiang, Y. Li, J. Wang, J. Chen, J. Qu, “Genetic deletion of the adenosine A2A receptor confers postnatal development of relative myopia in mice,” Invest. Ophthalmol. Vis. Sci. 51(9), 4362–4370 (2010).
[CrossRef] [PubMed]

Libby, R. T.

Liou, G. I.

J. Wisard, A. Faulkner, M. A. Chrenek, T. Waxweiler, W. Waxweiler, C. Donmoyer, G. I. Liou, C. M. Craft, G. F. Schmid, J. H. Boatright, M. T. Pardue, J. M. Nickerson, “Exaggerated eye growth in IRBP-deficient mice in early development,” Invest. Ophthalmol. Vis. Sci. 52(8), 5804–5811 (2011).
[CrossRef] [PubMed]

Llorente, L.

E. G. de la Cera, G. Rodríguez, L. Llorente, F. Schaeffel, S. Marcos, “Optical aberrations in the mouse eye,” Vision Res. 46(16), 2546–2553 (2006).
[CrossRef] [PubMed]

Lu, F.

X. Zhou, M. Shen, J. Xie, J. Wang, L. Jiang, M. Pan, J. Qu, F. Lu, “The development of the refractive status and ocular growth in C57BL/6 mice,” Invest. Ophthalmol. Vis. Sci. 49(12), 5208–5214 (2008).
[CrossRef] [PubMed]

Lu, R.

X. Zhou, J. An, X. Wu, R. Lu, Q. Huang, R. Xie, L. Jiang, J. Qu, “Relative axial myopia induced by prolonged light exposure in C57BL/6 mice,” Photochem. Photobiol. 86(1), 131–137 (2010).
[CrossRef] [PubMed]

X. Zhou, Q. Huang, J. An, R. Lu, X. Qin, L. Jiang, Y. Li, J. Wang, J. Chen, J. Qu, “Genetic deletion of the adenosine A2A receptor confers postnatal development of relative myopia in mice,” Invest. Ophthalmol. Vis. Sci. 51(9), 4362–4370 (2010).
[CrossRef] [PubMed]

Marcos, S.

E. G. de la Cera, G. Rodríguez, L. Llorente, F. Schaeffel, S. Marcos, “Optical aberrations in the mouse eye,” Vision Res. 46(16), 2546–2553 (2006).
[CrossRef] [PubMed]

Metha, A.

Nickerson, J. M.

J. Wisard, A. Faulkner, M. A. Chrenek, T. Waxweiler, W. Waxweiler, C. Donmoyer, G. I. Liou, C. M. Craft, G. F. Schmid, J. H. Boatright, M. T. Pardue, J. M. Nickerson, “Exaggerated eye growth in IRBP-deficient mice in early development,” Invest. Ophthalmol. Vis. Sci. 52(8), 5804–5811 (2011).
[CrossRef] [PubMed]

Pan, M.

X. Zhou, M. Shen, J. Xie, J. Wang, L. Jiang, M. Pan, J. Qu, F. Lu, “The development of the refractive status and ocular growth in C57BL/6 mice,” Invest. Ophthalmol. Vis. Sci. 49(12), 5208–5214 (2008).
[CrossRef] [PubMed]

Pardue, M. T.

M. T. Pardue, R. A. Stone, P. M. Iuvone, “Investigating mechanisms of myopia in mice,” Exp. Eye Res. 114, 96–105 (2013).
[CrossRef] [PubMed]

J. Wisard, A. Faulkner, M. A. Chrenek, T. Waxweiler, W. Waxweiler, C. Donmoyer, G. I. Liou, C. M. Craft, G. F. Schmid, J. H. Boatright, M. T. Pardue, J. M. Nickerson, “Exaggerated eye growth in IRBP-deficient mice in early development,” Invest. Ophthalmol. Vis. Sci. 52(8), 5804–5811 (2011).
[CrossRef] [PubMed]

M. T. Pardue, A. E. Faulkner, A. Fernandes, H. Yin, F. Schaeffel, R. W. Williams, N. Pozdeyev, P. M. Iuvone, “High susceptibility to experimental myopia in a mouse model with a retinal on pathway defect,” Invest. Ophthalmol. Vis. Sci. 49(2), 706–712 (2008).
[CrossRef] [PubMed]

Parker, J. A.

A. Chaudhuri, P. E. Hallett, J. A. Parker, “Aspheric curvatures, refractive indices and chromatic aberration for the rat eye,” Vision Res. 23(12), 1351–1363 (1983).
[CrossRef] [PubMed]

Pozdeyev, N.

M. T. Pardue, A. E. Faulkner, A. Fernandes, H. Yin, F. Schaeffel, R. W. Williams, N. Pozdeyev, P. M. Iuvone, “High susceptibility to experimental myopia in a mouse model with a retinal on pathway defect,” Invest. Ophthalmol. Vis. Sci. 49(2), 706–712 (2008).
[CrossRef] [PubMed]

Qin, X.

X. Zhou, Q. Huang, J. An, R. Lu, X. Qin, L. Jiang, Y. Li, J. Wang, J. Chen, J. Qu, “Genetic deletion of the adenosine A2A receptor confers postnatal development of relative myopia in mice,” Invest. Ophthalmol. Vis. Sci. 51(9), 4362–4370 (2010).
[CrossRef] [PubMed]

Qu, J.

X. Zhou, Q. Huang, J. An, R. Lu, X. Qin, L. Jiang, Y. Li, J. Wang, J. Chen, J. Qu, “Genetic deletion of the adenosine A2A receptor confers postnatal development of relative myopia in mice,” Invest. Ophthalmol. Vis. Sci. 51(9), 4362–4370 (2010).
[CrossRef] [PubMed]

X. Zhou, J. An, X. Wu, R. Lu, Q. Huang, R. Xie, L. Jiang, J. Qu, “Relative axial myopia induced by prolonged light exposure in C57BL/6 mice,” Photochem. Photobiol. 86(1), 131–137 (2010).
[CrossRef] [PubMed]

X. Zhou, M. Shen, J. Xie, J. Wang, L. Jiang, M. Pan, J. Qu, F. Lu, “The development of the refractive status and ocular growth in C57BL/6 mice,” Invest. Ophthalmol. Vis. Sci. 49(12), 5208–5214 (2008).
[CrossRef] [PubMed]

Remtulla, S.

S. Remtulla, P. E. Hallett, “A schematic eye for the mouse, and comparisons with the rat,” Vision Res. 25(1), 21–31 (1985).
[CrossRef] [PubMed]

Rodríguez, G.

E. G. de la Cera, G. Rodríguez, L. Llorente, F. Schaeffel, S. Marcos, “Optical aberrations in the mouse eye,” Vision Res. 46(16), 2546–2553 (2006).
[CrossRef] [PubMed]

Schaeffel, F.

M. T. Pardue, A. E. Faulkner, A. Fernandes, H. Yin, F. Schaeffel, R. W. Williams, N. Pozdeyev, P. M. Iuvone, “High susceptibility to experimental myopia in a mouse model with a retinal on pathway defect,” Invest. Ophthalmol. Vis. Sci. 49(2), 706–712 (2008).
[CrossRef] [PubMed]

E. G. de la Cera, G. Rodríguez, L. Llorente, F. Schaeffel, S. Marcos, “Optical aberrations in the mouse eye,” Vision Res. 46(16), 2546–2553 (2006).
[CrossRef] [PubMed]

C. Schmucker, F. Schaeffel, “Contrast sensitivity of wildtype mice wearing diffusers or spectacle lenses, and the effect of atropine,” Vision Res. 46(5), 678–687 (2006).
[CrossRef] [PubMed]

C. Schmucker, F. Schaeffel, “A paraxial schematic eye model for the growing C57BL/6 mouse,” Vision Res. 44(16), 1857–1867 (2004).
[CrossRef] [PubMed]

F. Schaeffel, E. Burkhardt, H. C. Howland, R. W. Williams, “Measurement of refractive state and deprivation myopia in two strains of mice,” Optom. Vis. Sci. 81(2), 99–110 (2004).
[CrossRef] [PubMed]

F. Schaeffel, H. C. Howland, “Mathematical model of emmetropization in the chicken,” J. Opt. Soc. Am. A 5(12), 2080–2086 (1988).
[CrossRef] [PubMed]

Schechter, R. J.

R. J. Schechter, “Snell’s Law: optimum pathway analysis,” Surv. Ophthalmol. 21(6), 464–466 (1977).
[CrossRef] [PubMed]

Schery, L. A.

Schmid, G. F.

J. Wisard, A. Faulkner, M. A. Chrenek, T. Waxweiler, W. Waxweiler, C. Donmoyer, G. I. Liou, C. M. Craft, G. F. Schmid, J. H. Boatright, M. T. Pardue, J. M. Nickerson, “Exaggerated eye growth in IRBP-deficient mice in early development,” Invest. Ophthalmol. Vis. Sci. 52(8), 5804–5811 (2011).
[CrossRef] [PubMed]

Schmucker, C.

C. Schmucker, F. Schaeffel, “Contrast sensitivity of wildtype mice wearing diffusers or spectacle lenses, and the effect of atropine,” Vision Res. 46(5), 678–687 (2006).
[CrossRef] [PubMed]

C. Schmucker, F. Schaeffel, “A paraxial schematic eye model for the growing C57BL/6 mouse,” Vision Res. 44(16), 1857–1867 (2004).
[CrossRef] [PubMed]

Sharma, R.

Shen, M.

X. Zhou, M. Shen, J. Xie, J. Wang, L. Jiang, M. Pan, J. Qu, F. Lu, “The development of the refractive status and ocular growth in C57BL/6 mice,” Invest. Ophthalmol. Vis. Sci. 49(12), 5208–5214 (2008).
[CrossRef] [PubMed]

Shen, Y.

T. V. Tkatchenko, Y. Shen, R. D. Braun, G. Bawa, P. Kumar, I. Avrutsky, A. V. Tkatchenko, “Photopic visual input is necessary for emmetropization in mice,” Exp. Eye Res. 115, 87–95 (2013).
[CrossRef] [PubMed]

A. V. Tkatchenko, Y. Shen, T. V. Tkatchenko, “Genetic background modulates refractive eye development and susceptibility to myopia in the mouse,” Invest. Ophthalmol. Vis. Sci. 53, E-Abstract 3465 (2012).

T. V. Tkatchenko, Y. Shen, A. V. Tkatchenko, “Mouse experimental myopia has features of primate myopia,” Invest. Ophthalmol. Vis. Sci. 51(3), 1297–1303 (2010).
[CrossRef] [PubMed]

T. V. Tkatchenko, Y. Shen, A. V. Tkatchenko, “Analysis of postnatal eye development in the mouse with high-resolution small animal magnetic resonance imaging,” Invest. Ophthalmol. Vis. Sci. 51(1), 21–27 (2010).
[CrossRef] [PubMed]

Stone, R. A.

M. T. Pardue, R. A. Stone, P. M. Iuvone, “Investigating mechanisms of myopia in mice,” Exp. Eye Res. 114, 96–105 (2013).
[CrossRef] [PubMed]

Tkatchenko, A. V.

T. V. Tkatchenko, Y. Shen, R. D. Braun, G. Bawa, P. Kumar, I. Avrutsky, A. V. Tkatchenko, “Photopic visual input is necessary for emmetropization in mice,” Exp. Eye Res. 115, 87–95 (2013).
[CrossRef] [PubMed]

A. V. Tkatchenko, Y. Shen, T. V. Tkatchenko, “Genetic background modulates refractive eye development and susceptibility to myopia in the mouse,” Invest. Ophthalmol. Vis. Sci. 53, E-Abstract 3465 (2012).

T. V. Tkatchenko, Y. Shen, A. V. Tkatchenko, “Mouse experimental myopia has features of primate myopia,” Invest. Ophthalmol. Vis. Sci. 51(3), 1297–1303 (2010).
[CrossRef] [PubMed]

T. V. Tkatchenko, Y. Shen, A. V. Tkatchenko, “Analysis of postnatal eye development in the mouse with high-resolution small animal magnetic resonance imaging,” Invest. Ophthalmol. Vis. Sci. 51(1), 21–27 (2010).
[CrossRef] [PubMed]

T. V. Tkatchenko, A. V. Tkatchenko, “Ketamine-xylazine anesthesia causes hyperopic refractive shift in mice,” J. Neurosci. Methods 193(1), 67–71 (2010).
[CrossRef] [PubMed]

Tkatchenko, T. V.

T. V. Tkatchenko, Y. Shen, R. D. Braun, G. Bawa, P. Kumar, I. Avrutsky, A. V. Tkatchenko, “Photopic visual input is necessary for emmetropization in mice,” Exp. Eye Res. 115, 87–95 (2013).
[CrossRef] [PubMed]

A. V. Tkatchenko, Y. Shen, T. V. Tkatchenko, “Genetic background modulates refractive eye development and susceptibility to myopia in the mouse,” Invest. Ophthalmol. Vis. Sci. 53, E-Abstract 3465 (2012).

T. V. Tkatchenko, Y. Shen, A. V. Tkatchenko, “Mouse experimental myopia has features of primate myopia,” Invest. Ophthalmol. Vis. Sci. 51(3), 1297–1303 (2010).
[CrossRef] [PubMed]

T. V. Tkatchenko, A. V. Tkatchenko, “Ketamine-xylazine anesthesia causes hyperopic refractive shift in mice,” J. Neurosci. Methods 193(1), 67–71 (2010).
[CrossRef] [PubMed]

T. V. Tkatchenko, Y. Shen, A. V. Tkatchenko, “Analysis of postnatal eye development in the mouse with high-resolution small animal magnetic resonance imaging,” Invest. Ophthalmol. Vis. Sci. 51(1), 21–27 (2010).
[CrossRef] [PubMed]

Tuo, J.

Y. Yu, H. Chen, J. Tuo, Y. Zhu, “Effects of flickering light on refraction and changes in eye axial length of C57BL/6 mice,” Ophthalmic Res. 46(2), 80–87 (2011).
[CrossRef] [PubMed]

Wang, J.

X. Zhou, Q. Huang, J. An, R. Lu, X. Qin, L. Jiang, Y. Li, J. Wang, J. Chen, J. Qu, “Genetic deletion of the adenosine A2A receptor confers postnatal development of relative myopia in mice,” Invest. Ophthalmol. Vis. Sci. 51(9), 4362–4370 (2010).
[CrossRef] [PubMed]

X. Zhou, M. Shen, J. Xie, J. Wang, L. Jiang, M. Pan, J. Qu, F. Lu, “The development of the refractive status and ocular growth in C57BL/6 mice,” Invest. Ophthalmol. Vis. Sci. 49(12), 5208–5214 (2008).
[CrossRef] [PubMed]

Waxweiler, T.

J. Wisard, A. Faulkner, M. A. Chrenek, T. Waxweiler, W. Waxweiler, C. Donmoyer, G. I. Liou, C. M. Craft, G. F. Schmid, J. H. Boatright, M. T. Pardue, J. M. Nickerson, “Exaggerated eye growth in IRBP-deficient mice in early development,” Invest. Ophthalmol. Vis. Sci. 52(8), 5804–5811 (2011).
[CrossRef] [PubMed]

Waxweiler, W.

J. Wisard, A. Faulkner, M. A. Chrenek, T. Waxweiler, W. Waxweiler, C. Donmoyer, G. I. Liou, C. M. Craft, G. F. Schmid, J. H. Boatright, M. T. Pardue, J. M. Nickerson, “Exaggerated eye growth in IRBP-deficient mice in early development,” Invest. Ophthalmol. Vis. Sci. 52(8), 5804–5811 (2011).
[CrossRef] [PubMed]

Williams, D. R.

Williams, R. W.

M. T. Pardue, A. E. Faulkner, A. Fernandes, H. Yin, F. Schaeffel, R. W. Williams, N. Pozdeyev, P. M. Iuvone, “High susceptibility to experimental myopia in a mouse model with a retinal on pathway defect,” Invest. Ophthalmol. Vis. Sci. 49(2), 706–712 (2008).
[CrossRef] [PubMed]

F. Schaeffel, E. Burkhardt, H. C. Howland, R. W. Williams, “Measurement of refractive state and deprivation myopia in two strains of mice,” Optom. Vis. Sci. 81(2), 99–110 (2004).
[CrossRef] [PubMed]

G. Zhou, R. W. Williams, “Mouse models for the analysis of myopia: an analysis of variation in eye size of adult mice,” Optom. Vis. Sci. 76(6), 408–418 (1999).
[CrossRef] [PubMed]

Wisard, J.

J. Wisard, A. Faulkner, M. A. Chrenek, T. Waxweiler, W. Waxweiler, C. Donmoyer, G. I. Liou, C. M. Craft, G. F. Schmid, J. H. Boatright, M. T. Pardue, J. M. Nickerson, “Exaggerated eye growth in IRBP-deficient mice in early development,” Invest. Ophthalmol. Vis. Sci. 52(8), 5804–5811 (2011).
[CrossRef] [PubMed]

Wu, X.

X. Zhou, J. An, X. Wu, R. Lu, Q. Huang, R. Xie, L. Jiang, J. Qu, “Relative axial myopia induced by prolonged light exposure in C57BL/6 mice,” Photochem. Photobiol. 86(1), 131–137 (2010).
[CrossRef] [PubMed]

Xie, J.

X. Zhou, M. Shen, J. Xie, J. Wang, L. Jiang, M. Pan, J. Qu, F. Lu, “The development of the refractive status and ocular growth in C57BL/6 mice,” Invest. Ophthalmol. Vis. Sci. 49(12), 5208–5214 (2008).
[CrossRef] [PubMed]

Xie, R.

X. Zhou, J. An, X. Wu, R. Lu, Q. Huang, R. Xie, L. Jiang, J. Qu, “Relative axial myopia induced by prolonged light exposure in C57BL/6 mice,” Photochem. Photobiol. 86(1), 131–137 (2010).
[CrossRef] [PubMed]

Yin, H.

M. T. Pardue, A. E. Faulkner, A. Fernandes, H. Yin, F. Schaeffel, R. W. Williams, N. Pozdeyev, P. M. Iuvone, “High susceptibility to experimental myopia in a mouse model with a retinal on pathway defect,” Invest. Ophthalmol. Vis. Sci. 49(2), 706–712 (2008).
[CrossRef] [PubMed]

Yu, Y.

Y. Yu, H. Chen, J. Tuo, Y. Zhu, “Effects of flickering light on refraction and changes in eye axial length of C57BL/6 mice,” Ophthalmic Res. 46(2), 80–87 (2011).
[CrossRef] [PubMed]

Zhou, G.

G. Zhou, R. W. Williams, “Mouse models for the analysis of myopia: an analysis of variation in eye size of adult mice,” Optom. Vis. Sci. 76(6), 408–418 (1999).
[CrossRef] [PubMed]

Zhou, X.

X. Zhou, P. Bedggood, A. Metha, “Limitations to adaptive optics image quality in rodent eyes,” Biomed. Opt. Express 3(8), 1811–1824 (2012).
[CrossRef] [PubMed]

X. Zhou, Q. Huang, J. An, R. Lu, X. Qin, L. Jiang, Y. Li, J. Wang, J. Chen, J. Qu, “Genetic deletion of the adenosine A2A receptor confers postnatal development of relative myopia in mice,” Invest. Ophthalmol. Vis. Sci. 51(9), 4362–4370 (2010).
[CrossRef] [PubMed]

X. Zhou, J. An, X. Wu, R. Lu, Q. Huang, R. Xie, L. Jiang, J. Qu, “Relative axial myopia induced by prolonged light exposure in C57BL/6 mice,” Photochem. Photobiol. 86(1), 131–137 (2010).
[CrossRef] [PubMed]

X. Zhou, M. Shen, J. Xie, J. Wang, L. Jiang, M. Pan, J. Qu, F. Lu, “The development of the refractive status and ocular growth in C57BL/6 mice,” Invest. Ophthalmol. Vis. Sci. 49(12), 5208–5214 (2008).
[CrossRef] [PubMed]

Zhu, Y.

Y. Yu, H. Chen, J. Tuo, Y. Zhu, “Effects of flickering light on refraction and changes in eye axial length of C57BL/6 mice,” Ophthalmic Res. 46(2), 80–87 (2011).
[CrossRef] [PubMed]

Biomed. Opt. Express (2)

Exp. Eye Res. (2)

M. T. Pardue, R. A. Stone, P. M. Iuvone, “Investigating mechanisms of myopia in mice,” Exp. Eye Res. 114, 96–105 (2013).
[CrossRef] [PubMed]

T. V. Tkatchenko, Y. Shen, R. D. Braun, G. Bawa, P. Kumar, I. Avrutsky, A. V. Tkatchenko, “Photopic visual input is necessary for emmetropization in mice,” Exp. Eye Res. 115, 87–95 (2013).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (7)

X. Zhou, Q. Huang, J. An, R. Lu, X. Qin, L. Jiang, Y. Li, J. Wang, J. Chen, J. Qu, “Genetic deletion of the adenosine A2A receptor confers postnatal development of relative myopia in mice,” Invest. Ophthalmol. Vis. Sci. 51(9), 4362–4370 (2010).
[CrossRef] [PubMed]

M. T. Pardue, A. E. Faulkner, A. Fernandes, H. Yin, F. Schaeffel, R. W. Williams, N. Pozdeyev, P. M. Iuvone, “High susceptibility to experimental myopia in a mouse model with a retinal on pathway defect,” Invest. Ophthalmol. Vis. Sci. 49(2), 706–712 (2008).
[CrossRef] [PubMed]

J. Wisard, A. Faulkner, M. A. Chrenek, T. Waxweiler, W. Waxweiler, C. Donmoyer, G. I. Liou, C. M. Craft, G. F. Schmid, J. H. Boatright, M. T. Pardue, J. M. Nickerson, “Exaggerated eye growth in IRBP-deficient mice in early development,” Invest. Ophthalmol. Vis. Sci. 52(8), 5804–5811 (2011).
[CrossRef] [PubMed]

X. Zhou, M. Shen, J. Xie, J. Wang, L. Jiang, M. Pan, J. Qu, F. Lu, “The development of the refractive status and ocular growth in C57BL/6 mice,” Invest. Ophthalmol. Vis. Sci. 49(12), 5208–5214 (2008).
[CrossRef] [PubMed]

A. V. Tkatchenko, Y. Shen, T. V. Tkatchenko, “Genetic background modulates refractive eye development and susceptibility to myopia in the mouse,” Invest. Ophthalmol. Vis. Sci. 53, E-Abstract 3465 (2012).

T. V. Tkatchenko, Y. Shen, A. V. Tkatchenko, “Analysis of postnatal eye development in the mouse with high-resolution small animal magnetic resonance imaging,” Invest. Ophthalmol. Vis. Sci. 51(1), 21–27 (2010).
[CrossRef] [PubMed]

T. V. Tkatchenko, Y. Shen, A. V. Tkatchenko, “Mouse experimental myopia has features of primate myopia,” Invest. Ophthalmol. Vis. Sci. 51(3), 1297–1303 (2010).
[CrossRef] [PubMed]

J. Neurosci. Methods (1)

T. V. Tkatchenko, A. V. Tkatchenko, “Ketamine-xylazine anesthesia causes hyperopic refractive shift in mice,” J. Neurosci. Methods 193(1), 67–71 (2010).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Ophthalmic Res. (1)

Y. Yu, H. Chen, J. Tuo, Y. Zhu, “Effects of flickering light on refraction and changes in eye axial length of C57BL/6 mice,” Ophthalmic Res. 46(2), 80–87 (2011).
[CrossRef] [PubMed]

Optom. Vis. Sci. (2)

G. Zhou, R. W. Williams, “Mouse models for the analysis of myopia: an analysis of variation in eye size of adult mice,” Optom. Vis. Sci. 76(6), 408–418 (1999).
[CrossRef] [PubMed]

F. Schaeffel, E. Burkhardt, H. C. Howland, R. W. Williams, “Measurement of refractive state and deprivation myopia in two strains of mice,” Optom. Vis. Sci. 81(2), 99–110 (2004).
[CrossRef] [PubMed]

Photochem. Photobiol. (1)

X. Zhou, J. An, X. Wu, R. Lu, Q. Huang, R. Xie, L. Jiang, J. Qu, “Relative axial myopia induced by prolonged light exposure in C57BL/6 mice,” Photochem. Photobiol. 86(1), 131–137 (2010).
[CrossRef] [PubMed]

Surv. Ophthalmol. (1)

R. J. Schechter, “Snell’s Law: optimum pathway analysis,” Surv. Ophthalmol. 21(6), 464–466 (1977).
[CrossRef] [PubMed]

Vision Res. (7)

C. Schmucker, F. Schaeffel, “Contrast sensitivity of wildtype mice wearing diffusers or spectacle lenses, and the effect of atropine,” Vision Res. 46(5), 678–687 (2006).
[CrossRef] [PubMed]

A. Hughes, “A schematic eye for the rat,” Vision Res. 19(5), 569–588 (1979).
[CrossRef] [PubMed]

M. C. Campbell, A. Hughes, “An analytic, gradient index schematic lens and eye for the rat which predicts aberrations for finite pupils,” Vision Res. 21(7), 1129–1148 (1981).
[CrossRef] [PubMed]

A. Chaudhuri, P. E. Hallett, J. A. Parker, “Aspheric curvatures, refractive indices and chromatic aberration for the rat eye,” Vision Res. 23(12), 1351–1363 (1983).
[CrossRef] [PubMed]

S. Remtulla, P. E. Hallett, “A schematic eye for the mouse, and comparisons with the rat,” Vision Res. 25(1), 21–31 (1985).
[CrossRef] [PubMed]

C. Schmucker, F. Schaeffel, “A paraxial schematic eye model for the growing C57BL/6 mouse,” Vision Res. 44(16), 1857–1867 (2004).
[CrossRef] [PubMed]

E. G. de la Cera, G. Rodríguez, L. Llorente, F. Schaeffel, S. Marcos, “Optical aberrations in the mouse eye,” Vision Res. 46(16), 2546–2553 (2006).
[CrossRef] [PubMed]

Other (2)

J. Alda and J. Arasa, “Paraxial ray tracing,” in Encyclopedia of optical engineering (Marcel Dekker, New York, NY, 2004).

J. E. Greivenkamp, Field guide to geometrical optics (SPIE Press, Bellingham, Wash., 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Paraxial schematic model of the emmetropic rodent eye. Paraxial rays meet at the focal point located at the level of photoreceptors. The eye consists of six main refracting surfaces, i.e., anterior cornea, posterior cornea, anterior lens, posterior lens, anterior retina, and posterior retina. The main volume of a rodent eye is occupied by the crystalline lens, followed by the vitreous chamber, anterior chamber, and retina respectively. Fp: front principal plane; Bp: back principal plane; Ff: front focal plane; Bf: back focal plane; Fn: front nodal point; Bn: back nodal point; n c : refractive index of cornea; n acd : refractive index of the aqueous; n l : refractive index of the lens; n vcd : refractive index of the vitreous; n r : refractive index of the retina; tt c : thickness of the cornea; tt acd : anterior chamber depth; tt l : thickness of the lens; tt vcd : vitreous chamber depth; tt r : thickness of the retina.

Tables (4)

Tables Icon

Table 1 Summary of the ocular parameters used for the optical model of the rat eye*

Tables Icon

Table 2 Summary of the ocular parameters used for the optical model of the mouse eye*

Tables Icon

Table 3 Variational analysis of optical parameters for the rat eye*

Tables Icon

Table 4 Variational analysis of optical parameters for the mouse eye*

Equations (32)

Equations on this page are rendered with MathJax. Learn more.

X ( 1 ) = X min
Y ( 1 ) = y 0 + t 0 X ( 1 )
If we have N surfaces , the equations of ray tracing are given as: X ( N ) = [ r ( N 1 ) + s ( N 1 ) t ( N 2 ) Y ( N 1 ) + t ( N 2 ) 2 X ( N 1 ) ± A B ] ( 1 + t 2 ( N 2 ) )
where A = [ r ( N 1 ) + s ( N 1 ) t ( N 2 ) Y ( N 1 ) + t ( N 2 ) 2 X ( N 1 ) ] 2
B = ( 1 + t ( N 2 ) 2 ) { [ Y ( N 1 ) ] 2 r ( N 1 ) 2 + ( r ( N 1 ) + s ( N 1 ) ) 2 + t ( N 2 ) 2 [ X ( N 1 ) ] 2 2 t ( N 2 ) Y ( N 1 ) X ( N 1 ) }
Y ( N ) = Y ( N 1 ) + t ( N 2 ) [ X ( N ) X ( N 1 ) ]
t ( N 1 ) = tan [ sin 1 { ( n ( N 1 ) n N ) sin ( tan 1 t ( N 2 ) + sin 1 ( Y ( N ) r ( N 1 ) ) ) } sin 1 ( Y ( N ) r ( N 1 ) ) ]
X b ( N ) = [ s ( N 1 ) + r ( N 1 ) Y b ( N + 1 ) t b ( N 1 ) + t b ( N 1 ) 2 X b ( N + 1 ) ± A b B b ] ( 1 + t b ( N 1 ) 2 )
where A b = [ s ( N 1 ) + r ( N 1 ) Y b ( N + 1 ) t b ( N 1 ) + t b ( N 1 ) 2 X b ( N + 1 ) ] 2
B b = ( 1 + t b ( N 1 ) 2 ) { [ Y b ( N + 1 ) ] 2 + t b ( N 1 ) 2 [ X b ( N + 1 ) ] 2 2 Y b ( N + 1 ) t b ( N 1 ) X b ( N + 1 ) + s ( N 1 ) 2 + 2 s ( N 1 ) r ( N 1 ) }
Y b ( N ) = Y b ( N + 1 ) t b ( N 1 ) [ X b ( N + 1 ) X b ( N ) ]
t b ( N 2 ) = tan [ sin 1 { ( n ( N ) n ( N 1 ) ) sin ( sin 1 ( Y b ( N ) r ( N 1 ) ) + tan 1 t b ( N 1 ) ) } sin 1 ( Y b ( N ) r ( N 1 ) ) ]
( Back Paraxial Focal Plane ) B f = X ( N 1 ) [ Y ( N 1 ) t ( N 2 ) ]
( Back Principal Plane ) B p = X ( N 1 ) + [ Y ( 1 ) Y ( N 1 ) t ( N 2 ) ]
( Front Paraxial Focal Plane ) F f = X b ( 2 ) [ Y b ( 2 ) t b 0 ]
( Back Principal Plane ) F p = X b ( 2 ) + [ Y b ( N + 1 ) Y b ( 2 ) t b 0 ]
( Front Nodal Plane ) F n = F f + B f B p
( Back Nodal Plane ) B n = B f ( F p F f )
A = 10 6 [ ( B f B p ) ( F f + F p ) B f S ( 6 ) + F f B p ]
r = [ r a c , r p c , r a l , r p l , r a r , r p r ]
t t = [ t t c , t t a c d , t t l , t t v c d , t t r ]
n = [ n c , n a c d , n l , n v c d , n r ]
r = [ r a c + d , r p c , r a l , r p l , r a r , r p r ]
t t = [ t t c , t t a c d , t t l , t t v c d , t t r ]
n = [ n c , n a c d , n l , n v c d , n r ]
d r a c = A 1 A
Threshold d t t = Δ A / Δ t
Δ t = t / d
Δ t = 23 / 1 = 23
Threshold d t t = 1.2 / 23 = 0.0522
Threshold d r = Δ A / Δ r = 1.2 / 26 = 0.0462
Threshold d n = Δ A / Δ n = 1.2 / 20 = 0.06

Metrics