Abstract

In photoacoustic imaging the ultrasonic signals are usually detected by contacting transducers. For some applications contact with the tissue should be avoided. As alternatives to contacting transducers interferometric means can be used to acquire photoacoustic signals remotely. In this paper we report on non-contact three and two dimensional photoacoustic imaging using an optical fiber-based Mach-Zehnder interferometer. A detection beam is transmitted through an optical fiber network onto the surface of the specimen. Back reflected light is collected and coupled into the same optical fiber. To achieve a high signal/noise ratio the reflected light is amplified by means of optical amplification with an erbium doped fiber amplifier before demodulation. After data acquisition the initial pressure distribution is reconstructed by a Fourier domain reconstruction algorithm. We present remote photoacoustic imaging of a tissue mimicking phantom and on chicken skin.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. V. Wang, S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
    [CrossRef] [PubMed]
  2. G. Rousseau, B. Gauthier, A. Blouin, J.-P. Monchalin, “Non-contact biomedical photoacoustic and ultrasound imaging,” J. Biomed. Opt. 17(6), 061217 (2012).
    [CrossRef] [PubMed]
  3. V. Ntziachristos, J. S. Yoo, G. M. van Dam, “Current concepts and future perspectives on surgical optical imaging in cancer,” J. Biomed. Opt. 15(6), 066024 (2010).
    [CrossRef] [PubMed]
  4. E. Z. Zhang, J. G. Laufer, R. B. Pedley, P. C. Beard, “In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol. 54(4), 1035–1046 (2009).
    [CrossRef] [PubMed]
  5. B. P. Payne, V. Venugopalan, B. B. Mikić, N. S. Nishioka, “Optoacoustic tomography using time-resolved interferometric detection of surface displacement,” J. Biomed. Opt. 8(2), 273–280 (2003).
    [CrossRef] [PubMed]
  6. S. A. Carp, A. Guerra, S. Q. Duque, V. Venugopalan, “Optoacoustic imaging using interferometric measurement of surface displacement,” Appl. Phys. Lett. 85(23), 5772–5774 (2004).
    [CrossRef]
  7. S. A. Carp, V. Venugopalan, “Optoacoustic imaging based on the interferometric measurement of surface displacement,” J. Biomed. Opt. 12(6), 064001 (2007).
    [CrossRef] [PubMed]
  8. Y. Hou, S. W. Huang, S. Ashkenazi, R. Witte, M. O’Donnell, “Thin polymer etalon arrays for high-resolution photoacoustic imaging,” J. Biomed. Opt. 13(6), 064033 (2008).
    [CrossRef] [PubMed]
  9. J. D. Hamilton, M. O’Donnell, “High frequency ultrasound imaging with optical arrays,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45(1), 216–235 (1998).
    [CrossRef] [PubMed]
  10. E. Zhang, J. Laufer, P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47(4), 561–577 (2008).
    [CrossRef] [PubMed]
  11. Y. Wang, C. Li, R. K. Wang, “Noncontact photoacoustic imaging achieved by using a low-coherence interferometer as the acoustic detector,” Opt. Lett. 36(20), 3975–3977 (2011).
    [CrossRef] [PubMed]
  12. T. Berer, A. Hochreiner, S. Zamiri, P. Burgholzer, “Remote photoacoustic imaging on solid material using a two-wave mixing interferometer,” Opt. Lett. 35(24), 4151–4153 (2010).
    [CrossRef] [PubMed]
  13. A. Hochreiner, T. Berer, H. Grün, M. Leitner, P. Burgholzer, “Photoacoustic imaging using an adaptive interferometer with a photorefractive crystal,” J Biophotonics 5(7), 508–517 (2012).
    [CrossRef] [PubMed]
  14. G. Rousseau, A. Blouin, J.-P. Monchalin, “Non-contact photoacoustic tomography and ultrasonography for tissue imaging,” Biomed. Opt. Express 3(1), 16–25 (2012).
    [CrossRef] [PubMed]
  15. S. Krishnaswami, “Theory and applications of laser-ultrasonic techniques” in Ultrasonic Nondestructive Evaluation: Engineering and Biological Material Characterization, pp. 435–494, CRC Press, 2003.
  16. J. Bauer-Marschallinger, K. Felbermayer, A. Hochreiner, H. Grün, G. Paltauf, P. Burgholzer, T. Berer, “Low-cost parallelization of optical fiber based detectors for photoacoustic imaging,” Proc. SPIE 8581, 85812M (2013).
    [CrossRef]
  17. L. J. Busse, “Three-dimensional imaging using a frequency-domain synthetic aperture focusing technique,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39(2), 174–179 (1992).
    [CrossRef] [PubMed]
  18. M. Jaeger, D. Birtill, A. Gertsch, E. O’Flynn, J. Bamber, “Clinical demonstration of epi-mode photoacoustic clutter reduction using palpation scanning,” 2011 IEEE International Ultrasonics Symposium (IUS), 2360–2363 (2011).
    [CrossRef]
  19. M. Jaeger, D. Harris-Birtill, A. Gertsch, E. O’Flynn, J. Bamber, “Deformation-compensated averaging for clutter reduction in epiphotoacoustic imaging in vivo,” J. Biomed. Opt. 17(6), 066007 (2012).
    [CrossRef] [PubMed]
  20. American National Standard for the Safe Use of Lasers, ANSI Z136.1–2007, Laser Institute of America, Orlando, FL (2007).
  21. E. Z. Zhang, B. Povazay, J. Laufer, A. Alex, B. Hofer, B. Pedley, C. Glittenberg, B. Treeby, B. Cox, P. Beard, W. Drexler, “Multimodal photoacoustic and optical coherence tomography scanner using an all optical detection scheme for 3D morphological skin imaging,” Biomed. Opt. Express 2(8), 2202–2215 (2011).
    [CrossRef] [PubMed]
  22. L. Li, K. Maslov, G. Ku, L. V. Wang, “Three-dimensional combined photoacoustic and optical coherence microscopy for in vivo microcirculation studies,” Opt. Express 17(19), 16450–16455 (2009).
    [CrossRef] [PubMed]
  23. S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K. K. Shung, C. A. Puliafito, H. F. Zhang, “Photoacoustic ophthalmoscopy for in vivo retinal imaging,” Opt. Express 18(4), 3967–3972 (2010).
    [CrossRef] [PubMed]
  24. X. Zhang, H. F. Zhang, S. Jiao, “Optical coherence photoacoustic microscopy: accomplishing optical coherence tomography and photoacoustic microscopy with a single light source,” J. Biomed. Opt. 17(3), 030502 (2012).
    [CrossRef] [PubMed]

2013 (1)

J. Bauer-Marschallinger, K. Felbermayer, A. Hochreiner, H. Grün, G. Paltauf, P. Burgholzer, T. Berer, “Low-cost parallelization of optical fiber based detectors for photoacoustic imaging,” Proc. SPIE 8581, 85812M (2013).
[CrossRef]

2012 (6)

M. Jaeger, D. Harris-Birtill, A. Gertsch, E. O’Flynn, J. Bamber, “Deformation-compensated averaging for clutter reduction in epiphotoacoustic imaging in vivo,” J. Biomed. Opt. 17(6), 066007 (2012).
[CrossRef] [PubMed]

A. Hochreiner, T. Berer, H. Grün, M. Leitner, P. Burgholzer, “Photoacoustic imaging using an adaptive interferometer with a photorefractive crystal,” J Biophotonics 5(7), 508–517 (2012).
[CrossRef] [PubMed]

X. Zhang, H. F. Zhang, S. Jiao, “Optical coherence photoacoustic microscopy: accomplishing optical coherence tomography and photoacoustic microscopy with a single light source,” J. Biomed. Opt. 17(3), 030502 (2012).
[CrossRef] [PubMed]

L. V. Wang, S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[CrossRef] [PubMed]

G. Rousseau, B. Gauthier, A. Blouin, J.-P. Monchalin, “Non-contact biomedical photoacoustic and ultrasound imaging,” J. Biomed. Opt. 17(6), 061217 (2012).
[CrossRef] [PubMed]

G. Rousseau, A. Blouin, J.-P. Monchalin, “Non-contact photoacoustic tomography and ultrasonography for tissue imaging,” Biomed. Opt. Express 3(1), 16–25 (2012).
[CrossRef] [PubMed]

2011 (2)

2010 (3)

2009 (2)

E. Z. Zhang, J. G. Laufer, R. B. Pedley, P. C. Beard, “In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol. 54(4), 1035–1046 (2009).
[CrossRef] [PubMed]

L. Li, K. Maslov, G. Ku, L. V. Wang, “Three-dimensional combined photoacoustic and optical coherence microscopy for in vivo microcirculation studies,” Opt. Express 17(19), 16450–16455 (2009).
[CrossRef] [PubMed]

2008 (2)

2007 (1)

S. A. Carp, V. Venugopalan, “Optoacoustic imaging based on the interferometric measurement of surface displacement,” J. Biomed. Opt. 12(6), 064001 (2007).
[CrossRef] [PubMed]

2004 (1)

S. A. Carp, A. Guerra, S. Q. Duque, V. Venugopalan, “Optoacoustic imaging using interferometric measurement of surface displacement,” Appl. Phys. Lett. 85(23), 5772–5774 (2004).
[CrossRef]

2003 (1)

B. P. Payne, V. Venugopalan, B. B. Mikić, N. S. Nishioka, “Optoacoustic tomography using time-resolved interferometric detection of surface displacement,” J. Biomed. Opt. 8(2), 273–280 (2003).
[CrossRef] [PubMed]

1998 (1)

J. D. Hamilton, M. O’Donnell, “High frequency ultrasound imaging with optical arrays,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45(1), 216–235 (1998).
[CrossRef] [PubMed]

1992 (1)

L. J. Busse, “Three-dimensional imaging using a frequency-domain synthetic aperture focusing technique,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39(2), 174–179 (1992).
[CrossRef] [PubMed]

Alex, A.

Ashkenazi, S.

Y. Hou, S. W. Huang, S. Ashkenazi, R. Witte, M. O’Donnell, “Thin polymer etalon arrays for high-resolution photoacoustic imaging,” J. Biomed. Opt. 13(6), 064033 (2008).
[CrossRef] [PubMed]

Bamber, J.

M. Jaeger, D. Harris-Birtill, A. Gertsch, E. O’Flynn, J. Bamber, “Deformation-compensated averaging for clutter reduction in epiphotoacoustic imaging in vivo,” J. Biomed. Opt. 17(6), 066007 (2012).
[CrossRef] [PubMed]

M. Jaeger, D. Birtill, A. Gertsch, E. O’Flynn, J. Bamber, “Clinical demonstration of epi-mode photoacoustic clutter reduction using palpation scanning,” 2011 IEEE International Ultrasonics Symposium (IUS), 2360–2363 (2011).
[CrossRef]

Bauer-Marschallinger, J.

J. Bauer-Marschallinger, K. Felbermayer, A. Hochreiner, H. Grün, G. Paltauf, P. Burgholzer, T. Berer, “Low-cost parallelization of optical fiber based detectors for photoacoustic imaging,” Proc. SPIE 8581, 85812M (2013).
[CrossRef]

Beard, P.

Beard, P. C.

E. Z. Zhang, J. G. Laufer, R. B. Pedley, P. C. Beard, “In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol. 54(4), 1035–1046 (2009).
[CrossRef] [PubMed]

Berer, T.

J. Bauer-Marschallinger, K. Felbermayer, A. Hochreiner, H. Grün, G. Paltauf, P. Burgholzer, T. Berer, “Low-cost parallelization of optical fiber based detectors for photoacoustic imaging,” Proc. SPIE 8581, 85812M (2013).
[CrossRef]

A. Hochreiner, T. Berer, H. Grün, M. Leitner, P. Burgholzer, “Photoacoustic imaging using an adaptive interferometer with a photorefractive crystal,” J Biophotonics 5(7), 508–517 (2012).
[CrossRef] [PubMed]

T. Berer, A. Hochreiner, S. Zamiri, P. Burgholzer, “Remote photoacoustic imaging on solid material using a two-wave mixing interferometer,” Opt. Lett. 35(24), 4151–4153 (2010).
[CrossRef] [PubMed]

Birtill, D.

M. Jaeger, D. Birtill, A. Gertsch, E. O’Flynn, J. Bamber, “Clinical demonstration of epi-mode photoacoustic clutter reduction using palpation scanning,” 2011 IEEE International Ultrasonics Symposium (IUS), 2360–2363 (2011).
[CrossRef]

Blouin, A.

G. Rousseau, A. Blouin, J.-P. Monchalin, “Non-contact photoacoustic tomography and ultrasonography for tissue imaging,” Biomed. Opt. Express 3(1), 16–25 (2012).
[CrossRef] [PubMed]

G. Rousseau, B. Gauthier, A. Blouin, J.-P. Monchalin, “Non-contact biomedical photoacoustic and ultrasound imaging,” J. Biomed. Opt. 17(6), 061217 (2012).
[CrossRef] [PubMed]

Burgholzer, P.

J. Bauer-Marschallinger, K. Felbermayer, A. Hochreiner, H. Grün, G. Paltauf, P. Burgholzer, T. Berer, “Low-cost parallelization of optical fiber based detectors for photoacoustic imaging,” Proc. SPIE 8581, 85812M (2013).
[CrossRef]

A. Hochreiner, T. Berer, H. Grün, M. Leitner, P. Burgholzer, “Photoacoustic imaging using an adaptive interferometer with a photorefractive crystal,” J Biophotonics 5(7), 508–517 (2012).
[CrossRef] [PubMed]

T. Berer, A. Hochreiner, S. Zamiri, P. Burgholzer, “Remote photoacoustic imaging on solid material using a two-wave mixing interferometer,” Opt. Lett. 35(24), 4151–4153 (2010).
[CrossRef] [PubMed]

Busse, L. J.

L. J. Busse, “Three-dimensional imaging using a frequency-domain synthetic aperture focusing technique,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39(2), 174–179 (1992).
[CrossRef] [PubMed]

Carp, S. A.

S. A. Carp, V. Venugopalan, “Optoacoustic imaging based on the interferometric measurement of surface displacement,” J. Biomed. Opt. 12(6), 064001 (2007).
[CrossRef] [PubMed]

S. A. Carp, A. Guerra, S. Q. Duque, V. Venugopalan, “Optoacoustic imaging using interferometric measurement of surface displacement,” Appl. Phys. Lett. 85(23), 5772–5774 (2004).
[CrossRef]

Cox, B.

Drexler, W.

Duque, S. Q.

S. A. Carp, A. Guerra, S. Q. Duque, V. Venugopalan, “Optoacoustic imaging using interferometric measurement of surface displacement,” Appl. Phys. Lett. 85(23), 5772–5774 (2004).
[CrossRef]

Fawzi, A.

Felbermayer, K.

J. Bauer-Marschallinger, K. Felbermayer, A. Hochreiner, H. Grün, G. Paltauf, P. Burgholzer, T. Berer, “Low-cost parallelization of optical fiber based detectors for photoacoustic imaging,” Proc. SPIE 8581, 85812M (2013).
[CrossRef]

Gauthier, B.

G. Rousseau, B. Gauthier, A. Blouin, J.-P. Monchalin, “Non-contact biomedical photoacoustic and ultrasound imaging,” J. Biomed. Opt. 17(6), 061217 (2012).
[CrossRef] [PubMed]

Gertsch, A.

M. Jaeger, D. Harris-Birtill, A. Gertsch, E. O’Flynn, J. Bamber, “Deformation-compensated averaging for clutter reduction in epiphotoacoustic imaging in vivo,” J. Biomed. Opt. 17(6), 066007 (2012).
[CrossRef] [PubMed]

M. Jaeger, D. Birtill, A. Gertsch, E. O’Flynn, J. Bamber, “Clinical demonstration of epi-mode photoacoustic clutter reduction using palpation scanning,” 2011 IEEE International Ultrasonics Symposium (IUS), 2360–2363 (2011).
[CrossRef]

Glittenberg, C.

Grün, H.

J. Bauer-Marschallinger, K. Felbermayer, A. Hochreiner, H. Grün, G. Paltauf, P. Burgholzer, T. Berer, “Low-cost parallelization of optical fiber based detectors for photoacoustic imaging,” Proc. SPIE 8581, 85812M (2013).
[CrossRef]

A. Hochreiner, T. Berer, H. Grün, M. Leitner, P. Burgholzer, “Photoacoustic imaging using an adaptive interferometer with a photorefractive crystal,” J Biophotonics 5(7), 508–517 (2012).
[CrossRef] [PubMed]

Guerra, A.

S. A. Carp, A. Guerra, S. Q. Duque, V. Venugopalan, “Optoacoustic imaging using interferometric measurement of surface displacement,” Appl. Phys. Lett. 85(23), 5772–5774 (2004).
[CrossRef]

Hamilton, J. D.

J. D. Hamilton, M. O’Donnell, “High frequency ultrasound imaging with optical arrays,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45(1), 216–235 (1998).
[CrossRef] [PubMed]

Harris-Birtill, D.

M. Jaeger, D. Harris-Birtill, A. Gertsch, E. O’Flynn, J. Bamber, “Deformation-compensated averaging for clutter reduction in epiphotoacoustic imaging in vivo,” J. Biomed. Opt. 17(6), 066007 (2012).
[CrossRef] [PubMed]

Hochreiner, A.

J. Bauer-Marschallinger, K. Felbermayer, A. Hochreiner, H. Grün, G. Paltauf, P. Burgholzer, T. Berer, “Low-cost parallelization of optical fiber based detectors for photoacoustic imaging,” Proc. SPIE 8581, 85812M (2013).
[CrossRef]

A. Hochreiner, T. Berer, H. Grün, M. Leitner, P. Burgholzer, “Photoacoustic imaging using an adaptive interferometer with a photorefractive crystal,” J Biophotonics 5(7), 508–517 (2012).
[CrossRef] [PubMed]

T. Berer, A. Hochreiner, S. Zamiri, P. Burgholzer, “Remote photoacoustic imaging on solid material using a two-wave mixing interferometer,” Opt. Lett. 35(24), 4151–4153 (2010).
[CrossRef] [PubMed]

Hofer, B.

Hou, Y.

Y. Hou, S. W. Huang, S. Ashkenazi, R. Witte, M. O’Donnell, “Thin polymer etalon arrays for high-resolution photoacoustic imaging,” J. Biomed. Opt. 13(6), 064033 (2008).
[CrossRef] [PubMed]

Hu, J.

Hu, S.

L. V. Wang, S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[CrossRef] [PubMed]

Huang, S. W.

Y. Hou, S. W. Huang, S. Ashkenazi, R. Witte, M. O’Donnell, “Thin polymer etalon arrays for high-resolution photoacoustic imaging,” J. Biomed. Opt. 13(6), 064033 (2008).
[CrossRef] [PubMed]

Jaeger, M.

M. Jaeger, D. Harris-Birtill, A. Gertsch, E. O’Flynn, J. Bamber, “Deformation-compensated averaging for clutter reduction in epiphotoacoustic imaging in vivo,” J. Biomed. Opt. 17(6), 066007 (2012).
[CrossRef] [PubMed]

M. Jaeger, D. Birtill, A. Gertsch, E. O’Flynn, J. Bamber, “Clinical demonstration of epi-mode photoacoustic clutter reduction using palpation scanning,” 2011 IEEE International Ultrasonics Symposium (IUS), 2360–2363 (2011).
[CrossRef]

Jiang, M.

Jiao, S.

X. Zhang, H. F. Zhang, S. Jiao, “Optical coherence photoacoustic microscopy: accomplishing optical coherence tomography and photoacoustic microscopy with a single light source,” J. Biomed. Opt. 17(3), 030502 (2012).
[CrossRef] [PubMed]

S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K. K. Shung, C. A. Puliafito, H. F. Zhang, “Photoacoustic ophthalmoscopy for in vivo retinal imaging,” Opt. Express 18(4), 3967–3972 (2010).
[CrossRef] [PubMed]

Ku, G.

Laufer, J.

Laufer, J. G.

E. Z. Zhang, J. G. Laufer, R. B. Pedley, P. C. Beard, “In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol. 54(4), 1035–1046 (2009).
[CrossRef] [PubMed]

Leitner, M.

A. Hochreiner, T. Berer, H. Grün, M. Leitner, P. Burgholzer, “Photoacoustic imaging using an adaptive interferometer with a photorefractive crystal,” J Biophotonics 5(7), 508–517 (2012).
[CrossRef] [PubMed]

Li, C.

Li, L.

Maslov, K.

Mikic, B. B.

B. P. Payne, V. Venugopalan, B. B. Mikić, N. S. Nishioka, “Optoacoustic tomography using time-resolved interferometric detection of surface displacement,” J. Biomed. Opt. 8(2), 273–280 (2003).
[CrossRef] [PubMed]

Monchalin, J.-P.

G. Rousseau, B. Gauthier, A. Blouin, J.-P. Monchalin, “Non-contact biomedical photoacoustic and ultrasound imaging,” J. Biomed. Opt. 17(6), 061217 (2012).
[CrossRef] [PubMed]

G. Rousseau, A. Blouin, J.-P. Monchalin, “Non-contact photoacoustic tomography and ultrasonography for tissue imaging,” Biomed. Opt. Express 3(1), 16–25 (2012).
[CrossRef] [PubMed]

Nishioka, N. S.

B. P. Payne, V. Venugopalan, B. B. Mikić, N. S. Nishioka, “Optoacoustic tomography using time-resolved interferometric detection of surface displacement,” J. Biomed. Opt. 8(2), 273–280 (2003).
[CrossRef] [PubMed]

Ntziachristos, V.

V. Ntziachristos, J. S. Yoo, G. M. van Dam, “Current concepts and future perspectives on surgical optical imaging in cancer,” J. Biomed. Opt. 15(6), 066024 (2010).
[CrossRef] [PubMed]

O’Donnell, M.

Y. Hou, S. W. Huang, S. Ashkenazi, R. Witte, M. O’Donnell, “Thin polymer etalon arrays for high-resolution photoacoustic imaging,” J. Biomed. Opt. 13(6), 064033 (2008).
[CrossRef] [PubMed]

J. D. Hamilton, M. O’Donnell, “High frequency ultrasound imaging with optical arrays,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45(1), 216–235 (1998).
[CrossRef] [PubMed]

O’Flynn, E.

M. Jaeger, D. Harris-Birtill, A. Gertsch, E. O’Flynn, J. Bamber, “Deformation-compensated averaging for clutter reduction in epiphotoacoustic imaging in vivo,” J. Biomed. Opt. 17(6), 066007 (2012).
[CrossRef] [PubMed]

M. Jaeger, D. Birtill, A. Gertsch, E. O’Flynn, J. Bamber, “Clinical demonstration of epi-mode photoacoustic clutter reduction using palpation scanning,” 2011 IEEE International Ultrasonics Symposium (IUS), 2360–2363 (2011).
[CrossRef]

Paltauf, G.

J. Bauer-Marschallinger, K. Felbermayer, A. Hochreiner, H. Grün, G. Paltauf, P. Burgholzer, T. Berer, “Low-cost parallelization of optical fiber based detectors for photoacoustic imaging,” Proc. SPIE 8581, 85812M (2013).
[CrossRef]

Payne, B. P.

B. P. Payne, V. Venugopalan, B. B. Mikić, N. S. Nishioka, “Optoacoustic tomography using time-resolved interferometric detection of surface displacement,” J. Biomed. Opt. 8(2), 273–280 (2003).
[CrossRef] [PubMed]

Pedley, B.

Pedley, R. B.

E. Z. Zhang, J. G. Laufer, R. B. Pedley, P. C. Beard, “In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol. 54(4), 1035–1046 (2009).
[CrossRef] [PubMed]

Povazay, B.

Puliafito, C. A.

Rousseau, G.

G. Rousseau, B. Gauthier, A. Blouin, J.-P. Monchalin, “Non-contact biomedical photoacoustic and ultrasound imaging,” J. Biomed. Opt. 17(6), 061217 (2012).
[CrossRef] [PubMed]

G. Rousseau, A. Blouin, J.-P. Monchalin, “Non-contact photoacoustic tomography and ultrasonography for tissue imaging,” Biomed. Opt. Express 3(1), 16–25 (2012).
[CrossRef] [PubMed]

Shung, K. K.

Treeby, B.

van Dam, G. M.

V. Ntziachristos, J. S. Yoo, G. M. van Dam, “Current concepts and future perspectives on surgical optical imaging in cancer,” J. Biomed. Opt. 15(6), 066024 (2010).
[CrossRef] [PubMed]

Venugopalan, V.

S. A. Carp, V. Venugopalan, “Optoacoustic imaging based on the interferometric measurement of surface displacement,” J. Biomed. Opt. 12(6), 064001 (2007).
[CrossRef] [PubMed]

S. A. Carp, A. Guerra, S. Q. Duque, V. Venugopalan, “Optoacoustic imaging using interferometric measurement of surface displacement,” Appl. Phys. Lett. 85(23), 5772–5774 (2004).
[CrossRef]

B. P. Payne, V. Venugopalan, B. B. Mikić, N. S. Nishioka, “Optoacoustic tomography using time-resolved interferometric detection of surface displacement,” J. Biomed. Opt. 8(2), 273–280 (2003).
[CrossRef] [PubMed]

Wang, L. V.

Wang, R. K.

Wang, Y.

Witte, R.

Y. Hou, S. W. Huang, S. Ashkenazi, R. Witte, M. O’Donnell, “Thin polymer etalon arrays for high-resolution photoacoustic imaging,” J. Biomed. Opt. 13(6), 064033 (2008).
[CrossRef] [PubMed]

Yoo, J. S.

V. Ntziachristos, J. S. Yoo, G. M. van Dam, “Current concepts and future perspectives on surgical optical imaging in cancer,” J. Biomed. Opt. 15(6), 066024 (2010).
[CrossRef] [PubMed]

Zamiri, S.

Zhang, E.

Zhang, E. Z.

Zhang, H. F.

X. Zhang, H. F. Zhang, S. Jiao, “Optical coherence photoacoustic microscopy: accomplishing optical coherence tomography and photoacoustic microscopy with a single light source,” J. Biomed. Opt. 17(3), 030502 (2012).
[CrossRef] [PubMed]

S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K. K. Shung, C. A. Puliafito, H. F. Zhang, “Photoacoustic ophthalmoscopy for in vivo retinal imaging,” Opt. Express 18(4), 3967–3972 (2010).
[CrossRef] [PubMed]

Zhang, X.

X. Zhang, H. F. Zhang, S. Jiao, “Optical coherence photoacoustic microscopy: accomplishing optical coherence tomography and photoacoustic microscopy with a single light source,” J. Biomed. Opt. 17(3), 030502 (2012).
[CrossRef] [PubMed]

Zhou, Q.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

S. A. Carp, A. Guerra, S. Q. Duque, V. Venugopalan, “Optoacoustic imaging using interferometric measurement of surface displacement,” Appl. Phys. Lett. 85(23), 5772–5774 (2004).
[CrossRef]

Biomed. Opt. Express (2)

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (2)

J. D. Hamilton, M. O’Donnell, “High frequency ultrasound imaging with optical arrays,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45(1), 216–235 (1998).
[CrossRef] [PubMed]

L. J. Busse, “Three-dimensional imaging using a frequency-domain synthetic aperture focusing technique,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39(2), 174–179 (1992).
[CrossRef] [PubMed]

J Biophotonics (1)

A. Hochreiner, T. Berer, H. Grün, M. Leitner, P. Burgholzer, “Photoacoustic imaging using an adaptive interferometer with a photorefractive crystal,” J Biophotonics 5(7), 508–517 (2012).
[CrossRef] [PubMed]

J. Biomed. Opt. (7)

M. Jaeger, D. Harris-Birtill, A. Gertsch, E. O’Flynn, J. Bamber, “Deformation-compensated averaging for clutter reduction in epiphotoacoustic imaging in vivo,” J. Biomed. Opt. 17(6), 066007 (2012).
[CrossRef] [PubMed]

S. A. Carp, V. Venugopalan, “Optoacoustic imaging based on the interferometric measurement of surface displacement,” J. Biomed. Opt. 12(6), 064001 (2007).
[CrossRef] [PubMed]

Y. Hou, S. W. Huang, S. Ashkenazi, R. Witte, M. O’Donnell, “Thin polymer etalon arrays for high-resolution photoacoustic imaging,” J. Biomed. Opt. 13(6), 064033 (2008).
[CrossRef] [PubMed]

G. Rousseau, B. Gauthier, A. Blouin, J.-P. Monchalin, “Non-contact biomedical photoacoustic and ultrasound imaging,” J. Biomed. Opt. 17(6), 061217 (2012).
[CrossRef] [PubMed]

V. Ntziachristos, J. S. Yoo, G. M. van Dam, “Current concepts and future perspectives on surgical optical imaging in cancer,” J. Biomed. Opt. 15(6), 066024 (2010).
[CrossRef] [PubMed]

B. P. Payne, V. Venugopalan, B. B. Mikić, N. S. Nishioka, “Optoacoustic tomography using time-resolved interferometric detection of surface displacement,” J. Biomed. Opt. 8(2), 273–280 (2003).
[CrossRef] [PubMed]

X. Zhang, H. F. Zhang, S. Jiao, “Optical coherence photoacoustic microscopy: accomplishing optical coherence tomography and photoacoustic microscopy with a single light source,” J. Biomed. Opt. 17(3), 030502 (2012).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Phys. Med. Biol. (1)

E. Z. Zhang, J. G. Laufer, R. B. Pedley, P. C. Beard, “In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol. 54(4), 1035–1046 (2009).
[CrossRef] [PubMed]

Proc. SPIE (1)

J. Bauer-Marschallinger, K. Felbermayer, A. Hochreiner, H. Grün, G. Paltauf, P. Burgholzer, T. Berer, “Low-cost parallelization of optical fiber based detectors for photoacoustic imaging,” Proc. SPIE 8581, 85812M (2013).
[CrossRef]

Science (1)

L. V. Wang, S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[CrossRef] [PubMed]

Other (3)

American National Standard for the Safe Use of Lasers, ANSI Z136.1–2007, Laser Institute of America, Orlando, FL (2007).

M. Jaeger, D. Birtill, A. Gertsch, E. O’Flynn, J. Bamber, “Clinical demonstration of epi-mode photoacoustic clutter reduction using palpation scanning,” 2011 IEEE International Ultrasonics Symposium (IUS), 2360–2363 (2011).
[CrossRef]

S. Krishnaswami, “Theory and applications of laser-ultrasonic techniques” in Ultrasonic Nondestructive Evaluation: Engineering and Biological Material Characterization, pp. 435–494, CRC Press, 2003.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the remote photoacoustic imaging setup (see text).

Fig. 2
Fig. 2

Schematic of the sample consisting of knotted silicone tube filled with black ink. The tube has an outer diameter and an inner diameter of 600 µm and 300 µm, respectively. The loop is immersed in a tank filled with a milk/water emulsion.

Fig. 3
Fig. 3

(a)-(c) Maximum intensity projections of a silicone loop filled with ink along the z-, x-, and y-direction, respectively. Data were acquired by single-shot measurements, i.e. without averaging. (d) Photograph of the ink-filled tube taken after the measurement.

Fig. 4
Fig. 4

Photoacoustic images of two ink-filled silicon tubes in chicken thigh. The photoacoustic signals were acquired on the chicken skin without averaging. (a) Reconstruction from a line scan with 201 points. (b) Maximum intensity projection from three line scans with 201 × 3 points. The colorbar belongs to both images.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d S = 4 λ f L M 2 π d C ,
u min = 1 k o p t M i h ν B η ( P s i g + P r e f ) ,
M i = 2 P r e f P s i g P r e f + P s i g .
p min = π Z u min f ,

Metrics