Abstract

The proposed device considerably reduces the measuring time of important microscopic features of tooth crown surfaces. The instrumentation is accompanied by a computer program to analyse the results. Tooth enamel is formed by ameloblasts, which demonstrate daily secretory rhythms developing tissue-specific structures known as cross striations, and longer period markings that are referred as striae of Retzius. These striae correspond to linear structures on the enamel surface. This newly developed optical measuring instrument can automatically, precisely and accurately record the number and periodicity of perikymata on the dental crown. Furthermore it can characterize the variability in periodicity of perikymata in hominids. The depth of field can be extended as desired by taking several images with different focus positions and combining them into a single composite image that contains all regions fully focused.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. C. Dean and D. Reid, “Perikymata spacing and distribution on hominid anterior teeth,” Am. J. Phys. Anthropol.116, 209–215 (2001).
    [CrossRef] [PubMed]
  2. D. Guatelli-Steinberg, B. Floyd, M. Dean, and D. Reid, “Enamel extension rate patterns in modern human teeth: two approaches designed to establish an integrated comparative context for fossil primates.” J. Hum. Evol.63, 475:86 (2012).
    [CrossRef]
  3. I. E. Barnes, “Replication techniques for the scanning electron microscope 1. history, material and techniques,” J. Dent.6, 327–341 (1978).
    [CrossRef] [PubMed]
  4. I. E. Barnes, “Replication techniques for the scanning electron microscope 2. clinical and laboratory procedures: interpretation,” J. Dent.7, 25–37 (1979).
    [CrossRef] [PubMed]
  5. F. V. Rozzi, “Dental development in plio-pleistocene hominids enamel extenxion rate in fossil hominids,” Acadmie des sciences35, 293–296 (1997).
  6. F. V. R. Rozzi, “Enamel structure and development and its application in hominid evolution and taxonomy,” J. Hum. Evol.35, 327–330 (1998).
    [CrossRef]
  7. F. V. R. Rozzi, “Can enamel microstructure be used toestablish the presence of different species of plio-pleistocene hominids from omo, ethiopia?” J. Hum. Evol.35, 543–576 (1998).
    [CrossRef]
  8. T. Watson, “A confocal optical microscope study of the morphology of the tooth/restoration interface using scotchbond 2 dentin adhesive,” J. Dent. Res.68, 1124–1131 (1989).
    [CrossRef] [PubMed]
  9. R. S. Lacruz, “Enamel microstructure of the hominid kb 5223 from kromdraai, south africa,” Am. J. Phys. Anthropol.132, 175–182 (2007).
    [CrossRef]
  10. A. Boyde, “Scanning electron microscopy studies of the completed enamen surface. in rw fearnhead and mv steack, (eds): Tooth enamel ii. its composition, properties, and fundamental structure,” Bristol: johon Wright pp. 39–42 (1971).
  11. S. Hillson and S. Bond, “Relationship of enamel hypoplasia to the pattern of tooth crown growth: A discussion,” Am. J. Phys. Anthropol.104, 89–103 (1997).
    [CrossRef] [PubMed]
  12. E. Bocaege and L. H. S. Hillson, “Technical note: a new three-dimensional technique for high resolution quantitative recording of perikymata.” Am J Phys Anthropol.141, 498–503 (2010).
  13. R. S. Lacruz and T. G. Bromage, “Blackwell publishing ltd appositional enamel growth in molars of south african fossil hominids,” Anatomical Society of Great Britain and Ireland209, 13–20 (2006).
  14. M. Yuan, “Perikymata counts in two modern human sample populations,” Ph.D. thesis, Columbia UniversityNew York (2000).
  15. J. Braga and Y. Heuze, “Quantifying variation in human dental development sequences: An evo-devo perspective,” Dental Perspectives on Human Evolution pp. 247–261 (2007).
  16. K. J. Dana, B. van Ginneken, S. K. Nayar, and J. J. Koenderin, “Reflectance and texture of real-world surfaces,” ACM Trans. Graphics18, 1–34 (1999).
    [CrossRef]
  17. L. Wilen and B. R. Dasgupta, “Spectral bidirectional reflectance distribution function measurements on well-defined textured surfaces: direct observation of shadowing, masking, inter-reflection, and transparency effects,” J. Opt. Soc. Am. A28, 2414–2427 (2011).
    [CrossRef]
  18. A. Ferrero, A. M. Rabal, J. Campos, A. Pons, and M. L. Hernanz, “Spectral and geometrical variation of the bidirectional reflectance distribution function of diffuse reflectance standards,” Appl. Opt.51, 8535–8540 (2012).
    [CrossRef] [PubMed]
  19. F. Nicodemus, “Reflectance nomenclature and directional reflectance and emissivity,” Appl. Opt.9, 1474–1475 (1970).
    [CrossRef] [PubMed]
  20. S. Nayar and M. Oren, “Visual apparence of matte surfaces,” Science267, 1153–1156 (1995).
    [CrossRef] [PubMed]
  21. A. Nolin, K. Steffen, and J. Dozier, “Measurement and modeling of the bidirectional reflectance of snow, proceedings of igarss,” IEEE International Geoscience and Remote Sensing Symposium94, 1919–1921 (1994).
  22. J. Krumm and S. Shafer, “Texture segmentation and shape in the same image,” IEEE Coference on Computer Vision pp. 121–127 (1995).
  23. B. Super and A.C. Bovik, “Shape from texture using local sprctral moments,” IEEE Transactions on Pattern Aalysis and Machine Intelligence17, 333–343 (1995).
    [CrossRef]
  24. J. Koenderink, A. van Doon, and M. Stavridi, “Bidirectinal reflection distribution function expressed in terms of surface scattering modes,” European Conference on Computer Vision pp. 28–39 (1996).
  25. T. Leung and J. Malik, “On perpendicular texture: why do we see more flowers in the distance?” IEEE Conference on CVPR pp. 807–813 (1997).
  26. B. K. P. Horn and M. J. Brooks, “Shape from shading,” The MIT Press, Cambridge, Massachusetts (1989).
  27. J. Braga and J. F. Thackeray, “Early homo at kromdraai b: probabilistic and morphological analysis of the lower dentition,” Comptes Rendus Palevol2, 269–279 (2003).
    [CrossRef]
  28. T. JF, DJ de Ruiter, L B., and N van der Merwe, “Hominid fossils from kromdraai: a revised list of specimens discovered since 1938,” Ann Transv Mus38, 43–56 (2001).
  29. G.-S. D, R. DJ, B. TA, and L. CS, “Anterior tooth growth periods in neandertals were comparable to those of modern humans,” Proc. Natl. Acad. Sci.USA102, 14197–14202 (2005).
    [CrossRef]
  30. S. Hillson, Dental Anthropology (Cambridge University Press, 1996).
    [CrossRef]

2012

D. Guatelli-Steinberg, B. Floyd, M. Dean, and D. Reid, “Enamel extension rate patterns in modern human teeth: two approaches designed to establish an integrated comparative context for fossil primates.” J. Hum. Evol.63, 475:86 (2012).
[CrossRef]

A. Ferrero, A. M. Rabal, J. Campos, A. Pons, and M. L. Hernanz, “Spectral and geometrical variation of the bidirectional reflectance distribution function of diffuse reflectance standards,” Appl. Opt.51, 8535–8540 (2012).
[CrossRef] [PubMed]

2011

2010

E. Bocaege and L. H. S. Hillson, “Technical note: a new three-dimensional technique for high resolution quantitative recording of perikymata.” Am J Phys Anthropol.141, 498–503 (2010).

2007

J. Braga and Y. Heuze, “Quantifying variation in human dental development sequences: An evo-devo perspective,” Dental Perspectives on Human Evolution pp. 247–261 (2007).

R. S. Lacruz, “Enamel microstructure of the hominid kb 5223 from kromdraai, south africa,” Am. J. Phys. Anthropol.132, 175–182 (2007).
[CrossRef]

2006

R. S. Lacruz and T. G. Bromage, “Blackwell publishing ltd appositional enamel growth in molars of south african fossil hominids,” Anatomical Society of Great Britain and Ireland209, 13–20 (2006).

2005

G.-S. D, R. DJ, B. TA, and L. CS, “Anterior tooth growth periods in neandertals were comparable to those of modern humans,” Proc. Natl. Acad. Sci.USA102, 14197–14202 (2005).
[CrossRef]

2003

J. Braga and J. F. Thackeray, “Early homo at kromdraai b: probabilistic and morphological analysis of the lower dentition,” Comptes Rendus Palevol2, 269–279 (2003).
[CrossRef]

2001

T. JF, DJ de Ruiter, L B., and N van der Merwe, “Hominid fossils from kromdraai: a revised list of specimens discovered since 1938,” Ann Transv Mus38, 43–56 (2001).

M. C. Dean and D. Reid, “Perikymata spacing and distribution on hominid anterior teeth,” Am. J. Phys. Anthropol.116, 209–215 (2001).
[CrossRef] [PubMed]

1999

K. J. Dana, B. van Ginneken, S. K. Nayar, and J. J. Koenderin, “Reflectance and texture of real-world surfaces,” ACM Trans. Graphics18, 1–34 (1999).
[CrossRef]

1998

F. V. R. Rozzi, “Enamel structure and development and its application in hominid evolution and taxonomy,” J. Hum. Evol.35, 327–330 (1998).
[CrossRef]

F. V. R. Rozzi, “Can enamel microstructure be used toestablish the presence of different species of plio-pleistocene hominids from omo, ethiopia?” J. Hum. Evol.35, 543–576 (1998).
[CrossRef]

1997

S. Hillson and S. Bond, “Relationship of enamel hypoplasia to the pattern of tooth crown growth: A discussion,” Am. J. Phys. Anthropol.104, 89–103 (1997).
[CrossRef] [PubMed]

F. V. Rozzi, “Dental development in plio-pleistocene hominids enamel extenxion rate in fossil hominids,” Acadmie des sciences35, 293–296 (1997).

T. Leung and J. Malik, “On perpendicular texture: why do we see more flowers in the distance?” IEEE Conference on CVPR pp. 807–813 (1997).

1996

J. Koenderink, A. van Doon, and M. Stavridi, “Bidirectinal reflection distribution function expressed in terms of surface scattering modes,” European Conference on Computer Vision pp. 28–39 (1996).

1995

S. Nayar and M. Oren, “Visual apparence of matte surfaces,” Science267, 1153–1156 (1995).
[CrossRef] [PubMed]

J. Krumm and S. Shafer, “Texture segmentation and shape in the same image,” IEEE Coference on Computer Vision pp. 121–127 (1995).

B. Super and A.C. Bovik, “Shape from texture using local sprctral moments,” IEEE Transactions on Pattern Aalysis and Machine Intelligence17, 333–343 (1995).
[CrossRef]

1994

A. Nolin, K. Steffen, and J. Dozier, “Measurement and modeling of the bidirectional reflectance of snow, proceedings of igarss,” IEEE International Geoscience and Remote Sensing Symposium94, 1919–1921 (1994).

1989

T. Watson, “A confocal optical microscope study of the morphology of the tooth/restoration interface using scotchbond 2 dentin adhesive,” J. Dent. Res.68, 1124–1131 (1989).
[CrossRef] [PubMed]

1979

I. E. Barnes, “Replication techniques for the scanning electron microscope 2. clinical and laboratory procedures: interpretation,” J. Dent.7, 25–37 (1979).
[CrossRef] [PubMed]

1978

I. E. Barnes, “Replication techniques for the scanning electron microscope 1. history, material and techniques,” J. Dent.6, 327–341 (1978).
[CrossRef] [PubMed]

1970

B., L

T. JF, DJ de Ruiter, L B., and N van der Merwe, “Hominid fossils from kromdraai: a revised list of specimens discovered since 1938,” Ann Transv Mus38, 43–56 (2001).

Barnes, I. E.

I. E. Barnes, “Replication techniques for the scanning electron microscope 2. clinical and laboratory procedures: interpretation,” J. Dent.7, 25–37 (1979).
[CrossRef] [PubMed]

I. E. Barnes, “Replication techniques for the scanning electron microscope 1. history, material and techniques,” J. Dent.6, 327–341 (1978).
[CrossRef] [PubMed]

Bocaege, E.

E. Bocaege and L. H. S. Hillson, “Technical note: a new three-dimensional technique for high resolution quantitative recording of perikymata.” Am J Phys Anthropol.141, 498–503 (2010).

Bond, S.

S. Hillson and S. Bond, “Relationship of enamel hypoplasia to the pattern of tooth crown growth: A discussion,” Am. J. Phys. Anthropol.104, 89–103 (1997).
[CrossRef] [PubMed]

Bovik, A.C.

B. Super and A.C. Bovik, “Shape from texture using local sprctral moments,” IEEE Transactions on Pattern Aalysis and Machine Intelligence17, 333–343 (1995).
[CrossRef]

Boyde, A.

A. Boyde, “Scanning electron microscopy studies of the completed enamen surface. in rw fearnhead and mv steack, (eds): Tooth enamel ii. its composition, properties, and fundamental structure,” Bristol: johon Wright pp. 39–42 (1971).

Braga, J.

J. Braga and Y. Heuze, “Quantifying variation in human dental development sequences: An evo-devo perspective,” Dental Perspectives on Human Evolution pp. 247–261 (2007).

J. Braga and J. F. Thackeray, “Early homo at kromdraai b: probabilistic and morphological analysis of the lower dentition,” Comptes Rendus Palevol2, 269–279 (2003).
[CrossRef]

Bromage, T. G.

R. S. Lacruz and T. G. Bromage, “Blackwell publishing ltd appositional enamel growth in molars of south african fossil hominids,” Anatomical Society of Great Britain and Ireland209, 13–20 (2006).

Brooks, M. J.

B. K. P. Horn and M. J. Brooks, “Shape from shading,” The MIT Press, Cambridge, Massachusetts (1989).

Campos, J.

CS, L.

G.-S. D, R. DJ, B. TA, and L. CS, “Anterior tooth growth periods in neandertals were comparable to those of modern humans,” Proc. Natl. Acad. Sci.USA102, 14197–14202 (2005).
[CrossRef]

D, G.-S.

G.-S. D, R. DJ, B. TA, and L. CS, “Anterior tooth growth periods in neandertals were comparable to those of modern humans,” Proc. Natl. Acad. Sci.USA102, 14197–14202 (2005).
[CrossRef]

Dana, K. J.

K. J. Dana, B. van Ginneken, S. K. Nayar, and J. J. Koenderin, “Reflectance and texture of real-world surfaces,” ACM Trans. Graphics18, 1–34 (1999).
[CrossRef]

Dasgupta, B. R.

de Ruiter, DJ

T. JF, DJ de Ruiter, L B., and N van der Merwe, “Hominid fossils from kromdraai: a revised list of specimens discovered since 1938,” Ann Transv Mus38, 43–56 (2001).

Dean, M.

D. Guatelli-Steinberg, B. Floyd, M. Dean, and D. Reid, “Enamel extension rate patterns in modern human teeth: two approaches designed to establish an integrated comparative context for fossil primates.” J. Hum. Evol.63, 475:86 (2012).
[CrossRef]

Dean, M. C.

M. C. Dean and D. Reid, “Perikymata spacing and distribution on hominid anterior teeth,” Am. J. Phys. Anthropol.116, 209–215 (2001).
[CrossRef] [PubMed]

DJ, R.

G.-S. D, R. DJ, B. TA, and L. CS, “Anterior tooth growth periods in neandertals were comparable to those of modern humans,” Proc. Natl. Acad. Sci.USA102, 14197–14202 (2005).
[CrossRef]

Dozier, J.

A. Nolin, K. Steffen, and J. Dozier, “Measurement and modeling of the bidirectional reflectance of snow, proceedings of igarss,” IEEE International Geoscience and Remote Sensing Symposium94, 1919–1921 (1994).

Ferrero, A.

Floyd, B.

D. Guatelli-Steinberg, B. Floyd, M. Dean, and D. Reid, “Enamel extension rate patterns in modern human teeth: two approaches designed to establish an integrated comparative context for fossil primates.” J. Hum. Evol.63, 475:86 (2012).
[CrossRef]

Guatelli-Steinberg, D.

D. Guatelli-Steinberg, B. Floyd, M. Dean, and D. Reid, “Enamel extension rate patterns in modern human teeth: two approaches designed to establish an integrated comparative context for fossil primates.” J. Hum. Evol.63, 475:86 (2012).
[CrossRef]

Hernanz, M. L.

Heuze, Y.

J. Braga and Y. Heuze, “Quantifying variation in human dental development sequences: An evo-devo perspective,” Dental Perspectives on Human Evolution pp. 247–261 (2007).

Hillson, L. H. S.

E. Bocaege and L. H. S. Hillson, “Technical note: a new three-dimensional technique for high resolution quantitative recording of perikymata.” Am J Phys Anthropol.141, 498–503 (2010).

Hillson, S.

S. Hillson and S. Bond, “Relationship of enamel hypoplasia to the pattern of tooth crown growth: A discussion,” Am. J. Phys. Anthropol.104, 89–103 (1997).
[CrossRef] [PubMed]

S. Hillson, Dental Anthropology (Cambridge University Press, 1996).
[CrossRef]

Horn, B. K. P.

B. K. P. Horn and M. J. Brooks, “Shape from shading,” The MIT Press, Cambridge, Massachusetts (1989).

JF, T.

T. JF, DJ de Ruiter, L B., and N van der Merwe, “Hominid fossils from kromdraai: a revised list of specimens discovered since 1938,” Ann Transv Mus38, 43–56 (2001).

Koenderin, J. J.

K. J. Dana, B. van Ginneken, S. K. Nayar, and J. J. Koenderin, “Reflectance and texture of real-world surfaces,” ACM Trans. Graphics18, 1–34 (1999).
[CrossRef]

Koenderink, J.

J. Koenderink, A. van Doon, and M. Stavridi, “Bidirectinal reflection distribution function expressed in terms of surface scattering modes,” European Conference on Computer Vision pp. 28–39 (1996).

Krumm, J.

J. Krumm and S. Shafer, “Texture segmentation and shape in the same image,” IEEE Coference on Computer Vision pp. 121–127 (1995).

Lacruz, R. S.

R. S. Lacruz, “Enamel microstructure of the hominid kb 5223 from kromdraai, south africa,” Am. J. Phys. Anthropol.132, 175–182 (2007).
[CrossRef]

R. S. Lacruz and T. G. Bromage, “Blackwell publishing ltd appositional enamel growth in molars of south african fossil hominids,” Anatomical Society of Great Britain and Ireland209, 13–20 (2006).

Leung, T.

T. Leung and J. Malik, “On perpendicular texture: why do we see more flowers in the distance?” IEEE Conference on CVPR pp. 807–813 (1997).

Malik, J.

T. Leung and J. Malik, “On perpendicular texture: why do we see more flowers in the distance?” IEEE Conference on CVPR pp. 807–813 (1997).

Nayar, S.

S. Nayar and M. Oren, “Visual apparence of matte surfaces,” Science267, 1153–1156 (1995).
[CrossRef] [PubMed]

Nayar, S. K.

K. J. Dana, B. van Ginneken, S. K. Nayar, and J. J. Koenderin, “Reflectance and texture of real-world surfaces,” ACM Trans. Graphics18, 1–34 (1999).
[CrossRef]

Nicodemus, F.

Nolin, A.

A. Nolin, K. Steffen, and J. Dozier, “Measurement and modeling of the bidirectional reflectance of snow, proceedings of igarss,” IEEE International Geoscience and Remote Sensing Symposium94, 1919–1921 (1994).

Oren, M.

S. Nayar and M. Oren, “Visual apparence of matte surfaces,” Science267, 1153–1156 (1995).
[CrossRef] [PubMed]

Pons, A.

Rabal, A. M.

Reid, D.

D. Guatelli-Steinberg, B. Floyd, M. Dean, and D. Reid, “Enamel extension rate patterns in modern human teeth: two approaches designed to establish an integrated comparative context for fossil primates.” J. Hum. Evol.63, 475:86 (2012).
[CrossRef]

M. C. Dean and D. Reid, “Perikymata spacing and distribution on hominid anterior teeth,” Am. J. Phys. Anthropol.116, 209–215 (2001).
[CrossRef] [PubMed]

Rozzi, F. V.

F. V. Rozzi, “Dental development in plio-pleistocene hominids enamel extenxion rate in fossil hominids,” Acadmie des sciences35, 293–296 (1997).

Rozzi, F. V. R.

F. V. R. Rozzi, “Enamel structure and development and its application in hominid evolution and taxonomy,” J. Hum. Evol.35, 327–330 (1998).
[CrossRef]

F. V. R. Rozzi, “Can enamel microstructure be used toestablish the presence of different species of plio-pleistocene hominids from omo, ethiopia?” J. Hum. Evol.35, 543–576 (1998).
[CrossRef]

Shafer, S.

J. Krumm and S. Shafer, “Texture segmentation and shape in the same image,” IEEE Coference on Computer Vision pp. 121–127 (1995).

Stavridi, M.

J. Koenderink, A. van Doon, and M. Stavridi, “Bidirectinal reflection distribution function expressed in terms of surface scattering modes,” European Conference on Computer Vision pp. 28–39 (1996).

Steffen, K.

A. Nolin, K. Steffen, and J. Dozier, “Measurement and modeling of the bidirectional reflectance of snow, proceedings of igarss,” IEEE International Geoscience and Remote Sensing Symposium94, 1919–1921 (1994).

Super, B.

B. Super and A.C. Bovik, “Shape from texture using local sprctral moments,” IEEE Transactions on Pattern Aalysis and Machine Intelligence17, 333–343 (1995).
[CrossRef]

TA, B.

G.-S. D, R. DJ, B. TA, and L. CS, “Anterior tooth growth periods in neandertals were comparable to those of modern humans,” Proc. Natl. Acad. Sci.USA102, 14197–14202 (2005).
[CrossRef]

Thackeray, J. F.

J. Braga and J. F. Thackeray, “Early homo at kromdraai b: probabilistic and morphological analysis of the lower dentition,” Comptes Rendus Palevol2, 269–279 (2003).
[CrossRef]

van der Merwe, N

T. JF, DJ de Ruiter, L B., and N van der Merwe, “Hominid fossils from kromdraai: a revised list of specimens discovered since 1938,” Ann Transv Mus38, 43–56 (2001).

van Doon, A.

J. Koenderink, A. van Doon, and M. Stavridi, “Bidirectinal reflection distribution function expressed in terms of surface scattering modes,” European Conference on Computer Vision pp. 28–39 (1996).

van Ginneken, B.

K. J. Dana, B. van Ginneken, S. K. Nayar, and J. J. Koenderin, “Reflectance and texture of real-world surfaces,” ACM Trans. Graphics18, 1–34 (1999).
[CrossRef]

Watson, T.

T. Watson, “A confocal optical microscope study of the morphology of the tooth/restoration interface using scotchbond 2 dentin adhesive,” J. Dent. Res.68, 1124–1131 (1989).
[CrossRef] [PubMed]

Wilen, L.

Yuan, M.

M. Yuan, “Perikymata counts in two modern human sample populations,” Ph.D. thesis, Columbia UniversityNew York (2000).

Acadmie des sciences

F. V. Rozzi, “Dental development in plio-pleistocene hominids enamel extenxion rate in fossil hominids,” Acadmie des sciences35, 293–296 (1997).

ACM Trans. Graphics

K. J. Dana, B. van Ginneken, S. K. Nayar, and J. J. Koenderin, “Reflectance and texture of real-world surfaces,” ACM Trans. Graphics18, 1–34 (1999).
[CrossRef]

Am J Phys Anthropol.

E. Bocaege and L. H. S. Hillson, “Technical note: a new three-dimensional technique for high resolution quantitative recording of perikymata.” Am J Phys Anthropol.141, 498–503 (2010).

Am. J. Phys. Anthropol.

S. Hillson and S. Bond, “Relationship of enamel hypoplasia to the pattern of tooth crown growth: A discussion,” Am. J. Phys. Anthropol.104, 89–103 (1997).
[CrossRef] [PubMed]

R. S. Lacruz, “Enamel microstructure of the hominid kb 5223 from kromdraai, south africa,” Am. J. Phys. Anthropol.132, 175–182 (2007).
[CrossRef]

M. C. Dean and D. Reid, “Perikymata spacing and distribution on hominid anterior teeth,” Am. J. Phys. Anthropol.116, 209–215 (2001).
[CrossRef] [PubMed]

Anatomical Society of Great Britain and Ireland

R. S. Lacruz and T. G. Bromage, “Blackwell publishing ltd appositional enamel growth in molars of south african fossil hominids,” Anatomical Society of Great Britain and Ireland209, 13–20 (2006).

Ann Transv Mus

T. JF, DJ de Ruiter, L B., and N van der Merwe, “Hominid fossils from kromdraai: a revised list of specimens discovered since 1938,” Ann Transv Mus38, 43–56 (2001).

Appl. Opt.

Comptes Rendus Palevol

J. Braga and J. F. Thackeray, “Early homo at kromdraai b: probabilistic and morphological analysis of the lower dentition,” Comptes Rendus Palevol2, 269–279 (2003).
[CrossRef]

Dental Perspectives on Human Evolution

J. Braga and Y. Heuze, “Quantifying variation in human dental development sequences: An evo-devo perspective,” Dental Perspectives on Human Evolution pp. 247–261 (2007).

European Conference on Computer Vision

J. Koenderink, A. van Doon, and M. Stavridi, “Bidirectinal reflection distribution function expressed in terms of surface scattering modes,” European Conference on Computer Vision pp. 28–39 (1996).

IEEE Coference on Computer Vision

J. Krumm and S. Shafer, “Texture segmentation and shape in the same image,” IEEE Coference on Computer Vision pp. 121–127 (1995).

IEEE Conference on CVPR

T. Leung and J. Malik, “On perpendicular texture: why do we see more flowers in the distance?” IEEE Conference on CVPR pp. 807–813 (1997).

IEEE International Geoscience and Remote Sensing Symposium

A. Nolin, K. Steffen, and J. Dozier, “Measurement and modeling of the bidirectional reflectance of snow, proceedings of igarss,” IEEE International Geoscience and Remote Sensing Symposium94, 1919–1921 (1994).

IEEE Transactions on Pattern Aalysis and Machine Intelligence

B. Super and A.C. Bovik, “Shape from texture using local sprctral moments,” IEEE Transactions on Pattern Aalysis and Machine Intelligence17, 333–343 (1995).
[CrossRef]

J. Dent.

I. E. Barnes, “Replication techniques for the scanning electron microscope 1. history, material and techniques,” J. Dent.6, 327–341 (1978).
[CrossRef] [PubMed]

I. E. Barnes, “Replication techniques for the scanning electron microscope 2. clinical and laboratory procedures: interpretation,” J. Dent.7, 25–37 (1979).
[CrossRef] [PubMed]

J. Dent. Res.

T. Watson, “A confocal optical microscope study of the morphology of the tooth/restoration interface using scotchbond 2 dentin adhesive,” J. Dent. Res.68, 1124–1131 (1989).
[CrossRef] [PubMed]

J. Hum. Evol.

D. Guatelli-Steinberg, B. Floyd, M. Dean, and D. Reid, “Enamel extension rate patterns in modern human teeth: two approaches designed to establish an integrated comparative context for fossil primates.” J. Hum. Evol.63, 475:86 (2012).
[CrossRef]

F. V. R. Rozzi, “Enamel structure and development and its application in hominid evolution and taxonomy,” J. Hum. Evol.35, 327–330 (1998).
[CrossRef]

F. V. R. Rozzi, “Can enamel microstructure be used toestablish the presence of different species of plio-pleistocene hominids from omo, ethiopia?” J. Hum. Evol.35, 543–576 (1998).
[CrossRef]

J. Opt. Soc. Am. A

Proc. Natl. Acad. Sci.USA

G.-S. D, R. DJ, B. TA, and L. CS, “Anterior tooth growth periods in neandertals were comparable to those of modern humans,” Proc. Natl. Acad. Sci.USA102, 14197–14202 (2005).
[CrossRef]

Science

S. Nayar and M. Oren, “Visual apparence of matte surfaces,” Science267, 1153–1156 (1995).
[CrossRef] [PubMed]

Other

M. Yuan, “Perikymata counts in two modern human sample populations,” Ph.D. thesis, Columbia UniversityNew York (2000).

A. Boyde, “Scanning electron microscopy studies of the completed enamen surface. in rw fearnhead and mv steack, (eds): Tooth enamel ii. its composition, properties, and fundamental structure,” Bristol: johon Wright pp. 39–42 (1971).

S. Hillson, Dental Anthropology (Cambridge University Press, 1996).
[CrossRef]

B. K. P. Horn and M. J. Brooks, “Shape from shading,” The MIT Press, Cambridge, Massachusetts (1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Micro-roughness off the crown: (a) Image of perikymata, (b) 3D profile of the selected area in (a), (c) 2D profile segment on figure(b).

Fig. 2
Fig. 2

Illustration of Shadow Types.

Fig. 3
Fig. 3

(a) Determination of the number of images Nimages with zero viewing angle. (b) Determining the number of normals for a viewing angle θ.

Fig. 4
Fig. 4

Spot image obtained (×10).

Fig. 5
Fig. 5

(a) Principle of reading 2D profile of the tooth. (b) 2D profile of the lower right permanent central incisor of KB5223, a fossil hominin from Kromdraai B (South Africa).

Fig. 6
Fig. 6

(a) Medium shot profile of a step profile total tooth, (b) Representation of the medium plane of the 3D topography of a region, the crown of the tooth.

Fig. 7
Fig. 7

Principle of image reconstruction of the texture of an area.

Fig. 8
Fig. 8

Alignment of the normal mean plane, with the bisector of the angle between the camera and the source.

Fig. 9
Fig. 9

Surface texture of the lower right permanent central incisor of KB5223 (see Fig. 13), a fossil hominin from Kromdraai B (South Africa) (see Fig. 5(b)).

Fig. 10
Fig. 10

(a) Optical system for measuring perikymata.(b) Optical schematic for measuring perikymata.

Fig. 11
Fig. 11

Surface texture of the lower right permanent central incisor of KB5223, a fossil hominin from Kromdraai B (South Africa).

Fig. 12
Fig. 12

(a) Images of perikymata and profile of a line. (b) Perikymata tally of the tooth. (c) Period perikymata area explored.

Fig. 13
Fig. 13

The lower right permanent central incisor of KB5223, a fossil hominin from Kromdraai B (South Africa) (views 1 to 4), (1) vestibular, (2) distal, (3) lingual, (4) mesial.

Fig. 14
Fig. 14

Periodicity of perikymata the lower right permanent central incisor of KB5223, a fossil hominin from Kromdraai B (South Africa).

Fig. 15
Fig. 15

The lower right permanent lateral incisor of KB5223, a fossil hominin from Kromdraai B (South Africa) (views 1 to 4), (1) vestibular, (2) distal, (3) lingual, (4) mesial.

Fig. 16
Fig. 16

Periodicity of perikymata the lower right permanent lateral incisor of KB5223, a fossil hominin from Kromdraai B (South Africa).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

N images = Δ Z δ ; δ : the depth of field

Metrics