Abstract

The laser generation of vapor bubbles around plasmonic nanoparticles can be enhanced through the application of an ultrasound field; a technique referred to as photoacoustic cavitation. The combination of light and ultrasound allows for bubble formation at lower laser fluence and peak negative ultrasound pressure than can be achieved using either modality alone. The growth and collapse of these bubbles leads to local mechanical disruption and acoustic emission, and can potentially be used to induce and monitor tissue therapy. Photoacoustic cavitation is investigated for a broad range of ultrasound pressures and nanoparticle concentrations for gold nanorods and nanospheres. The cavitation threshold fluences for both nanoparticle types are found to drastically reduce in the presence of an ultrasound field. The results indicate that photoacoustic cavitation can potentially be produced at depth in biological tissue without exceeding the safety limits for ultrasound or laser radiation at the tissue surface.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Link and M. A. El-Sayed, “Optical properties and ultrafast dynamics of metallic nanocrystals,” Annu. Rev. Phys. Chem.54(1), 331–366 (2003).
    [CrossRef] [PubMed]
  2. X. Yang, E. W. Stein, S. Ashkenazi, and L. V. Wang, “Nanoparticles for photoacoustic imaging,” Wiley Interdiscip Rev Nanomed Nanobiotechnol1(4), 360–368 (2009).
    [CrossRef] [PubMed]
  3. S. Y. Emelianov, P.-C. Li, and M. O’Donnell, “Photoacoustics for molecular imaging and therapy,” Phys. Today62(5), 34–39 (2009).
    [CrossRef] [PubMed]
  4. T. B. Huff, L. Tong, Y. Zhao, M. N. Hansen, J.-X. Cheng, and A. Wei, “Hyperthermic effects of gold nanorods on tumor cells,” Nanomedicine (Lond)2(1), 125–132 (2007).
    [CrossRef] [PubMed]
  5. X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci.23(3), 217–228 (2008).
    [CrossRef] [PubMed]
  6. V. P. Zharov, V. Galitovsky, and M. Viegas, “Photothermal detection of local thermal effects during selective nanophotothermolysis,” Appl. Phys. Lett.83(24), 4897–4899 (2003).
    [CrossRef]
  7. D. O. Lapotko, E. Lukianova, and A. A. Oraevsky, “Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles,” Lasers Surg. Med.38(6), 631–642 (2006).
    [CrossRef] [PubMed]
  8. V. K. Pustovalov, A. S. Smetannikov, and V. P. Zharov, “Photothermal and accompanied phenomena of selective nanophotothermolysis with gold nanoparticles and laser pulses,” Laser Phys. Lett.5(11), 775–792 (2008).
    [CrossRef]
  9. X. Huang, B. Kang, W. Qian, M. A. Mackey, P.-C. Chen, A. K. Oyelere, I. H. El-Sayed, and M. A. El-Sayed, “Comparative study of photothermolysis of cancer cells with nuclear-targeted or cytoplasm-targeted gold nanospheres: continuous wave or pulsed lasers,” J. Biomed. Opt.15(5), 058002 (2010).
    [CrossRef] [PubMed]
  10. R. R. Anderson and J. A. Parrish, “Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation,” Science220(4596), 524–527 (1983).
    [CrossRef] [PubMed]
  11. V. P. Zharov, R. R. Letfullin, and E. N. Galitovskaya, “Microbubbles-overlapping mode for laser killing of cancer cells with absorbing nanoparticle clusters,” J. Phys. D Appl. Phys.38(15), 2571–2581 (2005).
    [CrossRef]
  12. D. Lapotko, E. Lukianova, A. Shnip, G. Zheltov, M. Potapnev, V. Savitsky, O. Klimovich, and A. Oraevsky, “Laser activated nanothermolysis of leukemia cells monitored by photothermal microscopy,” Proc. SPIE5697, 82–89 (2005).
    [CrossRef]
  13. L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J.-X. Cheng, “Gold nanorods mediate tumor cell death by compromising membrane integrity,” Adv. Mater. (Deerfield Beach Fla.)19(20), 3136–3141 (2007).
    [CrossRef] [PubMed]
  14. C. Ungureanu, R. Kroes, W. Petersen, T. A. M. Groothuis, F. Ungureanu, H. Janssen, F. W. B. van Leeuwen, R. P. H. Kooyman, S. Manohar, and T. G. van Leeuwen, “Light interactions with gold nanorods and cells: implications for photothermal nanotherapeutics,” Nano Lett.11(5), 1887–1894 (2011).
    [CrossRef] [PubMed]
  15. E. Y. Lukianova-Hleb, C. Santiago, D. S. Wagner, J. H. Hafner, and D. O. Lapotko, “Generation and detection of plasmonic nanobubbles in zebrafish,” Nanotechnology21(22), 225102 (2010).
    [CrossRef] [PubMed]
  16. E. Y. Lukianova-Hleb, I. I. Koneva, A. O. Oginsky, S. La Francesca, and D. O. Lapotko, “Selective and self-guided micro-ablation of tissue with plasmonic nanobubbles,” J. Surg. Res.166(1), e3–e13 (2011).
    [CrossRef] [PubMed]
  17. S. Peeters, M. Kitz, S. Preisser, A. Wetterwald, B. Rothen-Rutishauser, G. N. Thalmann, C. Brandenberger, A. Bailey, and M. Frenz, “Mechanisms of nanoparticle-mediated photomechanical cell damage,” Biomed. Opt. Express3(3), 435–446 (2012).
    [CrossRef] [PubMed]
  18. K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat Commun3, 618 (2012).
    [CrossRef] [PubMed]
  19. L. J. E. Anderson, E. Hansen, E. Y. Lukianova-Hleb, J. H. Hafner, and D. O. Lapotko, “Optically guided controlled release from liposomes with tunable plasmonic nanobubbles,” J. Control. Release144(2), 151–158 (2010).
    [CrossRef] [PubMed]
  20. V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys.124(18), 184702 (2006).
    [CrossRef] [PubMed]
  21. D. Lapotko, “Optical excitation and detection of vapor bubbles around plasmonic nanoparticles,” Opt. Express17(4), 2538–2556 (2009).
    [CrossRef] [PubMed]
  22. J.-W. Kim, E. I. Galanzha, E. V. Shashkov, H.-M. Moon, and V. P. Zharov, “Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents,” Nat. Nanotechnol.4(10), 688–694 (2009).
    [CrossRef]
  23. M. Kitz, S. Preisser, A. Wetterwald, M. Jaeger, G. N. Thalmann, and M. Frenz, “Vapor bubble generation around gold nano-particles and its application to damaging of cells,” Biomed. Opt. Express2(2), 291–304 (2011).
    [CrossRef] [PubMed]
  24. D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, and A. Oraevsky, “Method of laser activated nano-thermolysis for elimination of tumor cells,” Cancer Lett.239(1), 36–45 (2006).
    [CrossRef] [PubMed]
  25. V. P. Zharov, K. E. Mercer, E. N. Galitovskaya, and M. S. Smeltzer, “Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles,” Biophys. J.90(2), 619–627 (2006).
    [CrossRef] [PubMed]
  26. E. Y. Lukianova-Hleb, A. O. Oginsky, A. P. Samaniego, D. L. Shenefelt, D. S. Wagner, J. H. Hafner, M. C. Farach-Carson, and D. O. Lapotko, “Tunable plasmonic nanoprobes for theranostics of prostate cancer,” Theranostics1, 3–17 (2011).
    [CrossRef] [PubMed]
  27. G. Akchurin, B. Khlebtsov, G. Akchurin, V. Tuchin, V. Zharov, and N. Khlebtsov, “Gold nanoshell photomodification under a single-nanosecond laser pulse accompanied by color-shifting and bubble formation phenomena,” Nanotechnology19(1), 015701 (2008).
    [CrossRef] [PubMed]
  28. E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano4(4), 2109–2123 (2010).
    [CrossRef] [PubMed]
  29. F. Rudnitzki, M. Bever, R. Rahmanzadeh, K. Brieger, E. Endl, J. Groll, and G. Hüttmann, “Bleaching of plasmon-resonance absorption of gold nanorods decreases efficiency of cell destruction,” J. Biomed. Opt.17(5), 058003 (2012).
    [CrossRef] [PubMed]
  30. V. P. Zharov, E. N. Galitovskaya, C. Johnson, and T. Kelly, “Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy,” Lasers Surg. Med.37(3), 219–226 (2005).
    [CrossRef] [PubMed]
  31. D. Lapotko, E. Lukianova-Hleb, S. Zhdanok, B. Rostro, R. Simonette, J. Hafner, M. Konopleva, M. Andreeff, A. Conjusteau, and A. Oraevsky, “Photothermolysis by laser-induced microbubbles generated around gold nanorod clusters selectively formed in leukemia cells,” Proc. SPIE6856, 68560K, 68560K-9 (2008).
    [CrossRef]
  32. C. H. Farny, T. Wu, R. G. Holt, T. W. Murray, and R. A. Roy, “Nucleating cavitation from laser-illuminated nanoparticles,” Acoust. Res. Lett. Online6(3), 138–143 (2005).
    [CrossRef]
  33. J. R. McLaughlan, R. A. Roy, H. Ju, and T. W. Murray, “Ultrasonic enhancement of photoacoustic emissions by nanoparticle-targeted cavitation,” Opt. Lett.35(13), 2127–2129 (2010).
    [CrossRef] [PubMed]
  34. B. Krasovitski, H. Kislev, and E. Kimmel, “Modeling photothermal and acoustical induced microbubble generation and growth,” Ultrasonics47(1-4), 90–101 (2007).
    [CrossRef] [PubMed]
  35. T. Wu, C. H. Farny, R. A. Roy, and R. G. Holt, “Modeling cavitation nucleation from laser-illuminated nanoparticles subjected to acoustic stress,” J. Acoust. Soc. Am.130(5), 3252–3263 (2011).
    [CrossRef] [PubMed]
  36. H. G. Flynn and C. C. Church, “Erratum: transient pulsations of small gas bubbles in water [J. Acoust. Soc. Am. 84, 985-998 (1988)],” J. Acoust. Soc. Am.84(5), 1863–1876 (1988).
    [CrossRef] [PubMed]
  37. T. G. Leighton, The Acoustic Bubble (Academic, London, 1994).
  38. H. J. Maris, “Introduction to the physics of nucleation,” C. R. Phys.7(9-10), 946–958 (2006).
    [CrossRef]
  39. T. R. Nelson, J. B. Fowlkes, J. S. Abramowicz, and C. C. Church, “Ultrasound biosafety considerations for the practicing sonographer and sonologist,” J. Ultrasound Med.28(2), 139–150 (2009).
    [PubMed]
  40. American National Standards Institute, “American National Standard for Safe Use of Lasers,” ANSI Z136.1–2000 (Laser Institute of America, 2000).
  41. A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, and R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomed. Opt.9(6), 1143–1151 (2004).
    [CrossRef] [PubMed]

2012

S. Peeters, M. Kitz, S. Preisser, A. Wetterwald, B. Rothen-Rutishauser, G. N. Thalmann, C. Brandenberger, A. Bailey, and M. Frenz, “Mechanisms of nanoparticle-mediated photomechanical cell damage,” Biomed. Opt. Express3(3), 435–446 (2012).
[CrossRef] [PubMed]

K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat Commun3, 618 (2012).
[CrossRef] [PubMed]

F. Rudnitzki, M. Bever, R. Rahmanzadeh, K. Brieger, E. Endl, J. Groll, and G. Hüttmann, “Bleaching of plasmon-resonance absorption of gold nanorods decreases efficiency of cell destruction,” J. Biomed. Opt.17(5), 058003 (2012).
[CrossRef] [PubMed]

2011

E. Y. Lukianova-Hleb, I. I. Koneva, A. O. Oginsky, S. La Francesca, and D. O. Lapotko, “Selective and self-guided micro-ablation of tissue with plasmonic nanobubbles,” J. Surg. Res.166(1), e3–e13 (2011).
[CrossRef] [PubMed]

C. Ungureanu, R. Kroes, W. Petersen, T. A. M. Groothuis, F. Ungureanu, H. Janssen, F. W. B. van Leeuwen, R. P. H. Kooyman, S. Manohar, and T. G. van Leeuwen, “Light interactions with gold nanorods and cells: implications for photothermal nanotherapeutics,” Nano Lett.11(5), 1887–1894 (2011).
[CrossRef] [PubMed]

M. Kitz, S. Preisser, A. Wetterwald, M. Jaeger, G. N. Thalmann, and M. Frenz, “Vapor bubble generation around gold nano-particles and its application to damaging of cells,” Biomed. Opt. Express2(2), 291–304 (2011).
[CrossRef] [PubMed]

E. Y. Lukianova-Hleb, A. O. Oginsky, A. P. Samaniego, D. L. Shenefelt, D. S. Wagner, J. H. Hafner, M. C. Farach-Carson, and D. O. Lapotko, “Tunable plasmonic nanoprobes for theranostics of prostate cancer,” Theranostics1, 3–17 (2011).
[CrossRef] [PubMed]

T. Wu, C. H. Farny, R. A. Roy, and R. G. Holt, “Modeling cavitation nucleation from laser-illuminated nanoparticles subjected to acoustic stress,” J. Acoust. Soc. Am.130(5), 3252–3263 (2011).
[CrossRef] [PubMed]

2010

E. Y. Lukianova-Hleb, C. Santiago, D. S. Wagner, J. H. Hafner, and D. O. Lapotko, “Generation and detection of plasmonic nanobubbles in zebrafish,” Nanotechnology21(22), 225102 (2010).
[CrossRef] [PubMed]

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano4(4), 2109–2123 (2010).
[CrossRef] [PubMed]

J. R. McLaughlan, R. A. Roy, H. Ju, and T. W. Murray, “Ultrasonic enhancement of photoacoustic emissions by nanoparticle-targeted cavitation,” Opt. Lett.35(13), 2127–2129 (2010).
[CrossRef] [PubMed]

L. J. E. Anderson, E. Hansen, E. Y. Lukianova-Hleb, J. H. Hafner, and D. O. Lapotko, “Optically guided controlled release from liposomes with tunable plasmonic nanobubbles,” J. Control. Release144(2), 151–158 (2010).
[CrossRef] [PubMed]

X. Huang, B. Kang, W. Qian, M. A. Mackey, P.-C. Chen, A. K. Oyelere, I. H. El-Sayed, and M. A. El-Sayed, “Comparative study of photothermolysis of cancer cells with nuclear-targeted or cytoplasm-targeted gold nanospheres: continuous wave or pulsed lasers,” J. Biomed. Opt.15(5), 058002 (2010).
[CrossRef] [PubMed]

2009

X. Yang, E. W. Stein, S. Ashkenazi, and L. V. Wang, “Nanoparticles for photoacoustic imaging,” Wiley Interdiscip Rev Nanomed Nanobiotechnol1(4), 360–368 (2009).
[CrossRef] [PubMed]

S. Y. Emelianov, P.-C. Li, and M. O’Donnell, “Photoacoustics for molecular imaging and therapy,” Phys. Today62(5), 34–39 (2009).
[CrossRef] [PubMed]

D. Lapotko, “Optical excitation and detection of vapor bubbles around plasmonic nanoparticles,” Opt. Express17(4), 2538–2556 (2009).
[CrossRef] [PubMed]

J.-W. Kim, E. I. Galanzha, E. V. Shashkov, H.-M. Moon, and V. P. Zharov, “Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents,” Nat. Nanotechnol.4(10), 688–694 (2009).
[CrossRef]

T. R. Nelson, J. B. Fowlkes, J. S. Abramowicz, and C. C. Church, “Ultrasound biosafety considerations for the practicing sonographer and sonologist,” J. Ultrasound Med.28(2), 139–150 (2009).
[PubMed]

2008

G. Akchurin, B. Khlebtsov, G. Akchurin, V. Tuchin, V. Zharov, and N. Khlebtsov, “Gold nanoshell photomodification under a single-nanosecond laser pulse accompanied by color-shifting and bubble formation phenomena,” Nanotechnology19(1), 015701 (2008).
[CrossRef] [PubMed]

D. Lapotko, E. Lukianova-Hleb, S. Zhdanok, B. Rostro, R. Simonette, J. Hafner, M. Konopleva, M. Andreeff, A. Conjusteau, and A. Oraevsky, “Photothermolysis by laser-induced microbubbles generated around gold nanorod clusters selectively formed in leukemia cells,” Proc. SPIE6856, 68560K, 68560K-9 (2008).
[CrossRef]

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci.23(3), 217–228 (2008).
[CrossRef] [PubMed]

V. K. Pustovalov, A. S. Smetannikov, and V. P. Zharov, “Photothermal and accompanied phenomena of selective nanophotothermolysis with gold nanoparticles and laser pulses,” Laser Phys. Lett.5(11), 775–792 (2008).
[CrossRef]

2007

L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J.-X. Cheng, “Gold nanorods mediate tumor cell death by compromising membrane integrity,” Adv. Mater. (Deerfield Beach Fla.)19(20), 3136–3141 (2007).
[CrossRef] [PubMed]

T. B. Huff, L. Tong, Y. Zhao, M. N. Hansen, J.-X. Cheng, and A. Wei, “Hyperthermic effects of gold nanorods on tumor cells,” Nanomedicine (Lond)2(1), 125–132 (2007).
[CrossRef] [PubMed]

B. Krasovitski, H. Kislev, and E. Kimmel, “Modeling photothermal and acoustical induced microbubble generation and growth,” Ultrasonics47(1-4), 90–101 (2007).
[CrossRef] [PubMed]

2006

D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, and A. Oraevsky, “Method of laser activated nano-thermolysis for elimination of tumor cells,” Cancer Lett.239(1), 36–45 (2006).
[CrossRef] [PubMed]

V. P. Zharov, K. E. Mercer, E. N. Galitovskaya, and M. S. Smeltzer, “Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles,” Biophys. J.90(2), 619–627 (2006).
[CrossRef] [PubMed]

D. O. Lapotko, E. Lukianova, and A. A. Oraevsky, “Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles,” Lasers Surg. Med.38(6), 631–642 (2006).
[CrossRef] [PubMed]

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys.124(18), 184702 (2006).
[CrossRef] [PubMed]

H. J. Maris, “Introduction to the physics of nucleation,” C. R. Phys.7(9-10), 946–958 (2006).
[CrossRef]

2005

V. P. Zharov, R. R. Letfullin, and E. N. Galitovskaya, “Microbubbles-overlapping mode for laser killing of cancer cells with absorbing nanoparticle clusters,” J. Phys. D Appl. Phys.38(15), 2571–2581 (2005).
[CrossRef]

D. Lapotko, E. Lukianova, A. Shnip, G. Zheltov, M. Potapnev, V. Savitsky, O. Klimovich, and A. Oraevsky, “Laser activated nanothermolysis of leukemia cells monitored by photothermal microscopy,” Proc. SPIE5697, 82–89 (2005).
[CrossRef]

C. H. Farny, T. Wu, R. G. Holt, T. W. Murray, and R. A. Roy, “Nucleating cavitation from laser-illuminated nanoparticles,” Acoust. Res. Lett. Online6(3), 138–143 (2005).
[CrossRef]

V. P. Zharov, E. N. Galitovskaya, C. Johnson, and T. Kelly, “Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy,” Lasers Surg. Med.37(3), 219–226 (2005).
[CrossRef] [PubMed]

2004

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, and R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomed. Opt.9(6), 1143–1151 (2004).
[CrossRef] [PubMed]

2003

S. Link and M. A. El-Sayed, “Optical properties and ultrafast dynamics of metallic nanocrystals,” Annu. Rev. Phys. Chem.54(1), 331–366 (2003).
[CrossRef] [PubMed]

V. P. Zharov, V. Galitovsky, and M. Viegas, “Photothermal detection of local thermal effects during selective nanophotothermolysis,” Appl. Phys. Lett.83(24), 4897–4899 (2003).
[CrossRef]

1988

H. G. Flynn and C. C. Church, “Erratum: transient pulsations of small gas bubbles in water [J. Acoust. Soc. Am. 84, 985-998 (1988)],” J. Acoust. Soc. Am.84(5), 1863–1876 (1988).
[CrossRef] [PubMed]

1983

R. R. Anderson and J. A. Parrish, “Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation,” Science220(4596), 524–527 (1983).
[CrossRef] [PubMed]

Abramowicz, J. S.

T. R. Nelson, J. B. Fowlkes, J. S. Abramowicz, and C. C. Church, “Ultrasound biosafety considerations for the practicing sonographer and sonologist,” J. Ultrasound Med.28(2), 139–150 (2009).
[PubMed]

Akchurin, G.

G. Akchurin, B. Khlebtsov, G. Akchurin, V. Tuchin, V. Zharov, and N. Khlebtsov, “Gold nanoshell photomodification under a single-nanosecond laser pulse accompanied by color-shifting and bubble formation phenomena,” Nanotechnology19(1), 015701 (2008).
[CrossRef] [PubMed]

G. Akchurin, B. Khlebtsov, G. Akchurin, V. Tuchin, V. Zharov, and N. Khlebtsov, “Gold nanoshell photomodification under a single-nanosecond laser pulse accompanied by color-shifting and bubble formation phenomena,” Nanotechnology19(1), 015701 (2008).
[CrossRef] [PubMed]

Aleinikova, O.

D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, and A. Oraevsky, “Method of laser activated nano-thermolysis for elimination of tumor cells,” Cancer Lett.239(1), 36–45 (2006).
[CrossRef] [PubMed]

Anderson, L. J. E.

L. J. E. Anderson, E. Hansen, E. Y. Lukianova-Hleb, J. H. Hafner, and D. O. Lapotko, “Optically guided controlled release from liposomes with tunable plasmonic nanobubbles,” J. Control. Release144(2), 151–158 (2010).
[CrossRef] [PubMed]

Anderson, R. R.

R. R. Anderson and J. A. Parrish, “Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation,” Science220(4596), 524–527 (1983).
[CrossRef] [PubMed]

Andersson-Engels, S.

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, and R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomed. Opt.9(6), 1143–1151 (2004).
[CrossRef] [PubMed]

Andreeff, M.

D. Lapotko, E. Lukianova-Hleb, S. Zhdanok, B. Rostro, R. Simonette, J. Hafner, M. Konopleva, M. Andreeff, A. Conjusteau, and A. Oraevsky, “Photothermolysis by laser-induced microbubbles generated around gold nanorod clusters selectively formed in leukemia cells,” Proc. SPIE6856, 68560K, 68560K-9 (2008).
[CrossRef]

Ashkenazi, S.

X. Yang, E. W. Stein, S. Ashkenazi, and L. V. Wang, “Nanoparticles for photoacoustic imaging,” Wiley Interdiscip Rev Nanomed Nanobiotechnol1(4), 360–368 (2009).
[CrossRef] [PubMed]

Bailey, A.

Bassi, A.

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, and R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomed. Opt.9(6), 1143–1151 (2004).
[CrossRef] [PubMed]

Bever, M.

F. Rudnitzki, M. Bever, R. Rahmanzadeh, K. Brieger, E. Endl, J. Groll, and G. Hüttmann, “Bleaching of plasmon-resonance absorption of gold nanorods decreases efficiency of cell destruction,” J. Biomed. Opt.17(5), 058003 (2012).
[CrossRef] [PubMed]

Brandenberger, C.

Brieger, K.

F. Rudnitzki, M. Bever, R. Rahmanzadeh, K. Brieger, E. Endl, J. Groll, and G. Hüttmann, “Bleaching of plasmon-resonance absorption of gold nanorods decreases efficiency of cell destruction,” J. Biomed. Opt.17(5), 058003 (2012).
[CrossRef] [PubMed]

Chen, P.-C.

X. Huang, B. Kang, W. Qian, M. A. Mackey, P.-C. Chen, A. K. Oyelere, I. H. El-Sayed, and M. A. El-Sayed, “Comparative study of photothermolysis of cancer cells with nuclear-targeted or cytoplasm-targeted gold nanospheres: continuous wave or pulsed lasers,” J. Biomed. Opt.15(5), 058002 (2010).
[CrossRef] [PubMed]

Cheng, J.-X.

T. B. Huff, L. Tong, Y. Zhao, M. N. Hansen, J.-X. Cheng, and A. Wei, “Hyperthermic effects of gold nanorods on tumor cells,” Nanomedicine (Lond)2(1), 125–132 (2007).
[CrossRef] [PubMed]

L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J.-X. Cheng, “Gold nanorods mediate tumor cell death by compromising membrane integrity,” Adv. Mater. (Deerfield Beach Fla.)19(20), 3136–3141 (2007).
[CrossRef] [PubMed]

Chikoidze, E.

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, and R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomed. Opt.9(6), 1143–1151 (2004).
[CrossRef] [PubMed]

Church, C. C.

T. R. Nelson, J. B. Fowlkes, J. S. Abramowicz, and C. C. Church, “Ultrasound biosafety considerations for the practicing sonographer and sonologist,” J. Ultrasound Med.28(2), 139–150 (2009).
[PubMed]

H. G. Flynn and C. C. Church, “Erratum: transient pulsations of small gas bubbles in water [J. Acoust. Soc. Am. 84, 985-998 (1988)],” J. Acoust. Soc. Am.84(5), 1863–1876 (1988).
[CrossRef] [PubMed]

Conjusteau, A.

D. Lapotko, E. Lukianova-Hleb, S. Zhdanok, B. Rostro, R. Simonette, J. Hafner, M. Konopleva, M. Andreeff, A. Conjusteau, and A. Oraevsky, “Photothermolysis by laser-induced microbubbles generated around gold nanorod clusters selectively formed in leukemia cells,” Proc. SPIE6856, 68560K, 68560K-9 (2008).
[CrossRef]

Cubeddu, R.

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, and R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomed. Opt.9(6), 1143–1151 (2004).
[CrossRef] [PubMed]

Dahmen, C.

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys.124(18), 184702 (2006).
[CrossRef] [PubMed]

Drezek, R. A.

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano4(4), 2109–2123 (2010).
[CrossRef] [PubMed]

El-Sayed, I. H.

X. Huang, B. Kang, W. Qian, M. A. Mackey, P.-C. Chen, A. K. Oyelere, I. H. El-Sayed, and M. A. El-Sayed, “Comparative study of photothermolysis of cancer cells with nuclear-targeted or cytoplasm-targeted gold nanospheres: continuous wave or pulsed lasers,” J. Biomed. Opt.15(5), 058002 (2010).
[CrossRef] [PubMed]

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci.23(3), 217–228 (2008).
[CrossRef] [PubMed]

El-Sayed, M. A.

X. Huang, B. Kang, W. Qian, M. A. Mackey, P.-C. Chen, A. K. Oyelere, I. H. El-Sayed, and M. A. El-Sayed, “Comparative study of photothermolysis of cancer cells with nuclear-targeted or cytoplasm-targeted gold nanospheres: continuous wave or pulsed lasers,” J. Biomed. Opt.15(5), 058002 (2010).
[CrossRef] [PubMed]

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci.23(3), 217–228 (2008).
[CrossRef] [PubMed]

S. Link and M. A. El-Sayed, “Optical properties and ultrafast dynamics of metallic nanocrystals,” Annu. Rev. Phys. Chem.54(1), 331–366 (2003).
[CrossRef] [PubMed]

Emelianov, S.

K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat Commun3, 618 (2012).
[CrossRef] [PubMed]

Emelianov, S. Y.

S. Y. Emelianov, P.-C. Li, and M. O’Donnell, “Photoacoustics for molecular imaging and therapy,” Phys. Today62(5), 34–39 (2009).
[CrossRef] [PubMed]

Endl, E.

F. Rudnitzki, M. Bever, R. Rahmanzadeh, K. Brieger, E. Endl, J. Groll, and G. Hüttmann, “Bleaching of plasmon-resonance absorption of gold nanorods decreases efficiency of cell destruction,” J. Biomed. Opt.17(5), 058003 (2012).
[CrossRef] [PubMed]

Farach-Carson, M. C.

E. Y. Lukianova-Hleb, A. O. Oginsky, A. P. Samaniego, D. L. Shenefelt, D. S. Wagner, J. H. Hafner, M. C. Farach-Carson, and D. O. Lapotko, “Tunable plasmonic nanoprobes for theranostics of prostate cancer,” Theranostics1, 3–17 (2011).
[CrossRef] [PubMed]

Farny, C. H.

T. Wu, C. H. Farny, R. A. Roy, and R. G. Holt, “Modeling cavitation nucleation from laser-illuminated nanoparticles subjected to acoustic stress,” J. Acoust. Soc. Am.130(5), 3252–3263 (2011).
[CrossRef] [PubMed]

C. H. Farny, T. Wu, R. G. Holt, T. W. Murray, and R. A. Roy, “Nucleating cavitation from laser-illuminated nanoparticles,” Acoust. Res. Lett. Online6(3), 138–143 (2005).
[CrossRef]

Flynn, H. G.

H. G. Flynn and C. C. Church, “Erratum: transient pulsations of small gas bubbles in water [J. Acoust. Soc. Am. 84, 985-998 (1988)],” J. Acoust. Soc. Am.84(5), 1863–1876 (1988).
[CrossRef] [PubMed]

Fowlkes, J. B.

T. R. Nelson, J. B. Fowlkes, J. S. Abramowicz, and C. C. Church, “Ultrasound biosafety considerations for the practicing sonographer and sonologist,” J. Ultrasound Med.28(2), 139–150 (2009).
[PubMed]

Frenz, M.

Galanzha, E. I.

J.-W. Kim, E. I. Galanzha, E. V. Shashkov, H.-M. Moon, and V. P. Zharov, “Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents,” Nat. Nanotechnol.4(10), 688–694 (2009).
[CrossRef]

Galitovskaya, E. N.

V. P. Zharov, K. E. Mercer, E. N. Galitovskaya, and M. S. Smeltzer, “Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles,” Biophys. J.90(2), 619–627 (2006).
[CrossRef] [PubMed]

V. P. Zharov, E. N. Galitovskaya, C. Johnson, and T. Kelly, “Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy,” Lasers Surg. Med.37(3), 219–226 (2005).
[CrossRef] [PubMed]

V. P. Zharov, R. R. Letfullin, and E. N. Galitovskaya, “Microbubbles-overlapping mode for laser killing of cancer cells with absorbing nanoparticle clusters,” J. Phys. D Appl. Phys.38(15), 2571–2581 (2005).
[CrossRef]

Galitovsky, V.

V. P. Zharov, V. Galitovsky, and M. Viegas, “Photothermal detection of local thermal effects during selective nanophotothermolysis,” Appl. Phys. Lett.83(24), 4897–4899 (2003).
[CrossRef]

Groll, J.

F. Rudnitzki, M. Bever, R. Rahmanzadeh, K. Brieger, E. Endl, J. Groll, and G. Hüttmann, “Bleaching of plasmon-resonance absorption of gold nanorods decreases efficiency of cell destruction,” J. Biomed. Opt.17(5), 058003 (2012).
[CrossRef] [PubMed]

Groothuis, T. A. M.

C. Ungureanu, R. Kroes, W. Petersen, T. A. M. Groothuis, F. Ungureanu, H. Janssen, F. W. B. van Leeuwen, R. P. H. Kooyman, S. Manohar, and T. G. van Leeuwen, “Light interactions with gold nanorods and cells: implications for photothermal nanotherapeutics,” Nano Lett.11(5), 1887–1894 (2011).
[CrossRef] [PubMed]

Hafner, J.

D. Lapotko, E. Lukianova-Hleb, S. Zhdanok, B. Rostro, R. Simonette, J. Hafner, M. Konopleva, M. Andreeff, A. Conjusteau, and A. Oraevsky, “Photothermolysis by laser-induced microbubbles generated around gold nanorod clusters selectively formed in leukemia cells,” Proc. SPIE6856, 68560K, 68560K-9 (2008).
[CrossRef]

Hafner, J. H.

E. Y. Lukianova-Hleb, A. O. Oginsky, A. P. Samaniego, D. L. Shenefelt, D. S. Wagner, J. H. Hafner, M. C. Farach-Carson, and D. O. Lapotko, “Tunable plasmonic nanoprobes for theranostics of prostate cancer,” Theranostics1, 3–17 (2011).
[CrossRef] [PubMed]

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano4(4), 2109–2123 (2010).
[CrossRef] [PubMed]

L. J. E. Anderson, E. Hansen, E. Y. Lukianova-Hleb, J. H. Hafner, and D. O. Lapotko, “Optically guided controlled release from liposomes with tunable plasmonic nanobubbles,” J. Control. Release144(2), 151–158 (2010).
[CrossRef] [PubMed]

E. Y. Lukianova-Hleb, C. Santiago, D. S. Wagner, J. H. Hafner, and D. O. Lapotko, “Generation and detection of plasmonic nanobubbles in zebrafish,” Nanotechnology21(22), 225102 (2010).
[CrossRef] [PubMed]

Hansen, E.

L. J. E. Anderson, E. Hansen, E. Y. Lukianova-Hleb, J. H. Hafner, and D. O. Lapotko, “Optically guided controlled release from liposomes with tunable plasmonic nanobubbles,” J. Control. Release144(2), 151–158 (2010).
[CrossRef] [PubMed]

Hansen, M. N.

L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J.-X. Cheng, “Gold nanorods mediate tumor cell death by compromising membrane integrity,” Adv. Mater. (Deerfield Beach Fla.)19(20), 3136–3141 (2007).
[CrossRef] [PubMed]

T. B. Huff, L. Tong, Y. Zhao, M. N. Hansen, J.-X. Cheng, and A. Wei, “Hyperthermic effects of gold nanorods on tumor cells,” Nanomedicine (Lond)2(1), 125–132 (2007).
[CrossRef] [PubMed]

Holt, R. G.

T. Wu, C. H. Farny, R. A. Roy, and R. G. Holt, “Modeling cavitation nucleation from laser-illuminated nanoparticles subjected to acoustic stress,” J. Acoust. Soc. Am.130(5), 3252–3263 (2011).
[CrossRef] [PubMed]

C. H. Farny, T. Wu, R. G. Holt, T. W. Murray, and R. A. Roy, “Nucleating cavitation from laser-illuminated nanoparticles,” Acoust. Res. Lett. Online6(3), 138–143 (2005).
[CrossRef]

Homan, K.

K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat Commun3, 618 (2012).
[CrossRef] [PubMed]

Hu, Y.

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano4(4), 2109–2123 (2010).
[CrossRef] [PubMed]

Huang, X.

X. Huang, B. Kang, W. Qian, M. A. Mackey, P.-C. Chen, A. K. Oyelere, I. H. El-Sayed, and M. A. El-Sayed, “Comparative study of photothermolysis of cancer cells with nuclear-targeted or cytoplasm-targeted gold nanospheres: continuous wave or pulsed lasers,” J. Biomed. Opt.15(5), 058002 (2010).
[CrossRef] [PubMed]

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci.23(3), 217–228 (2008).
[CrossRef] [PubMed]

Huff, T. B.

T. B. Huff, L. Tong, Y. Zhao, M. N. Hansen, J.-X. Cheng, and A. Wei, “Hyperthermic effects of gold nanorods on tumor cells,” Nanomedicine (Lond)2(1), 125–132 (2007).
[CrossRef] [PubMed]

L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J.-X. Cheng, “Gold nanorods mediate tumor cell death by compromising membrane integrity,” Adv. Mater. (Deerfield Beach Fla.)19(20), 3136–3141 (2007).
[CrossRef] [PubMed]

Hüttmann, G.

F. Rudnitzki, M. Bever, R. Rahmanzadeh, K. Brieger, E. Endl, J. Groll, and G. Hüttmann, “Bleaching of plasmon-resonance absorption of gold nanorods decreases efficiency of cell destruction,” J. Biomed. Opt.17(5), 058003 (2012).
[CrossRef] [PubMed]

Jaeger, M.

Jain, P. K.

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci.23(3), 217–228 (2008).
[CrossRef] [PubMed]

Janssen, H.

C. Ungureanu, R. Kroes, W. Petersen, T. A. M. Groothuis, F. Ungureanu, H. Janssen, F. W. B. van Leeuwen, R. P. H. Kooyman, S. Manohar, and T. G. van Leeuwen, “Light interactions with gold nanorods and cells: implications for photothermal nanotherapeutics,” Nano Lett.11(5), 1887–1894 (2011).
[CrossRef] [PubMed]

Johnson, C.

V. P. Zharov, E. N. Galitovskaya, C. Johnson, and T. Kelly, “Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy,” Lasers Surg. Med.37(3), 219–226 (2005).
[CrossRef] [PubMed]

Ju, H.

Kang, B.

X. Huang, B. Kang, W. Qian, M. A. Mackey, P.-C. Chen, A. K. Oyelere, I. H. El-Sayed, and M. A. El-Sayed, “Comparative study of photothermolysis of cancer cells with nuclear-targeted or cytoplasm-targeted gold nanospheres: continuous wave or pulsed lasers,” J. Biomed. Opt.15(5), 058002 (2010).
[CrossRef] [PubMed]

Kelly, T.

V. P. Zharov, E. N. Galitovskaya, C. Johnson, and T. Kelly, “Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy,” Lasers Surg. Med.37(3), 219–226 (2005).
[CrossRef] [PubMed]

Khlebtsov, B.

G. Akchurin, B. Khlebtsov, G. Akchurin, V. Tuchin, V. Zharov, and N. Khlebtsov, “Gold nanoshell photomodification under a single-nanosecond laser pulse accompanied by color-shifting and bubble formation phenomena,” Nanotechnology19(1), 015701 (2008).
[CrossRef] [PubMed]

Khlebtsov, N.

G. Akchurin, B. Khlebtsov, G. Akchurin, V. Tuchin, V. Zharov, and N. Khlebtsov, “Gold nanoshell photomodification under a single-nanosecond laser pulse accompanied by color-shifting and bubble formation phenomena,” Nanotechnology19(1), 015701 (2008).
[CrossRef] [PubMed]

Kim, J.-W.

J.-W. Kim, E. I. Galanzha, E. V. Shashkov, H.-M. Moon, and V. P. Zharov, “Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents,” Nat. Nanotechnol.4(10), 688–694 (2009).
[CrossRef]

Kimmel, E.

B. Krasovitski, H. Kislev, and E. Kimmel, “Modeling photothermal and acoustical induced microbubble generation and growth,” Ultrasonics47(1-4), 90–101 (2007).
[CrossRef] [PubMed]

Kislev, H.

B. Krasovitski, H. Kislev, and E. Kimmel, “Modeling photothermal and acoustical induced microbubble generation and growth,” Ultrasonics47(1-4), 90–101 (2007).
[CrossRef] [PubMed]

Kitz, M.

Klimovich, O.

D. Lapotko, E. Lukianova, A. Shnip, G. Zheltov, M. Potapnev, V. Savitsky, O. Klimovich, and A. Oraevsky, “Laser activated nanothermolysis of leukemia cells monitored by photothermal microscopy,” Proc. SPIE5697, 82–89 (2005).
[CrossRef]

Koneva, I. I.

E. Y. Lukianova-Hleb, I. I. Koneva, A. O. Oginsky, S. La Francesca, and D. O. Lapotko, “Selective and self-guided micro-ablation of tissue with plasmonic nanobubbles,” J. Surg. Res.166(1), e3–e13 (2011).
[CrossRef] [PubMed]

Konopleva, M.

D. Lapotko, E. Lukianova-Hleb, S. Zhdanok, B. Rostro, R. Simonette, J. Hafner, M. Konopleva, M. Andreeff, A. Conjusteau, and A. Oraevsky, “Photothermolysis by laser-induced microbubbles generated around gold nanorod clusters selectively formed in leukemia cells,” Proc. SPIE6856, 68560K, 68560K-9 (2008).
[CrossRef]

Kooyman, R. P. H.

C. Ungureanu, R. Kroes, W. Petersen, T. A. M. Groothuis, F. Ungureanu, H. Janssen, F. W. B. van Leeuwen, R. P. H. Kooyman, S. Manohar, and T. G. van Leeuwen, “Light interactions with gold nanorods and cells: implications for photothermal nanotherapeutics,” Nano Lett.11(5), 1887–1894 (2011).
[CrossRef] [PubMed]

Kotaidis, V.

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys.124(18), 184702 (2006).
[CrossRef] [PubMed]

Krasovitski, B.

B. Krasovitski, H. Kislev, and E. Kimmel, “Modeling photothermal and acoustical induced microbubble generation and growth,” Ultrasonics47(1-4), 90–101 (2007).
[CrossRef] [PubMed]

Kroes, R.

C. Ungureanu, R. Kroes, W. Petersen, T. A. M. Groothuis, F. Ungureanu, H. Janssen, F. W. B. van Leeuwen, R. P. H. Kooyman, S. Manohar, and T. G. van Leeuwen, “Light interactions with gold nanorods and cells: implications for photothermal nanotherapeutics,” Nano Lett.11(5), 1887–1894 (2011).
[CrossRef] [PubMed]

La Francesca, S.

E. Y. Lukianova-Hleb, I. I. Koneva, A. O. Oginsky, S. La Francesca, and D. O. Lapotko, “Selective and self-guided micro-ablation of tissue with plasmonic nanobubbles,” J. Surg. Res.166(1), e3–e13 (2011).
[CrossRef] [PubMed]

Lapotko, D.

D. Lapotko, “Optical excitation and detection of vapor bubbles around plasmonic nanoparticles,” Opt. Express17(4), 2538–2556 (2009).
[CrossRef] [PubMed]

D. Lapotko, E. Lukianova-Hleb, S. Zhdanok, B. Rostro, R. Simonette, J. Hafner, M. Konopleva, M. Andreeff, A. Conjusteau, and A. Oraevsky, “Photothermolysis by laser-induced microbubbles generated around gold nanorod clusters selectively formed in leukemia cells,” Proc. SPIE6856, 68560K, 68560K-9 (2008).
[CrossRef]

D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, and A. Oraevsky, “Method of laser activated nano-thermolysis for elimination of tumor cells,” Cancer Lett.239(1), 36–45 (2006).
[CrossRef] [PubMed]

D. Lapotko, E. Lukianova, A. Shnip, G. Zheltov, M. Potapnev, V. Savitsky, O. Klimovich, and A. Oraevsky, “Laser activated nanothermolysis of leukemia cells monitored by photothermal microscopy,” Proc. SPIE5697, 82–89 (2005).
[CrossRef]

Lapotko, D. O.

E. Y. Lukianova-Hleb, I. I. Koneva, A. O. Oginsky, S. La Francesca, and D. O. Lapotko, “Selective and self-guided micro-ablation of tissue with plasmonic nanobubbles,” J. Surg. Res.166(1), e3–e13 (2011).
[CrossRef] [PubMed]

E. Y. Lukianova-Hleb, A. O. Oginsky, A. P. Samaniego, D. L. Shenefelt, D. S. Wagner, J. H. Hafner, M. C. Farach-Carson, and D. O. Lapotko, “Tunable plasmonic nanoprobes for theranostics of prostate cancer,” Theranostics1, 3–17 (2011).
[CrossRef] [PubMed]

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano4(4), 2109–2123 (2010).
[CrossRef] [PubMed]

L. J. E. Anderson, E. Hansen, E. Y. Lukianova-Hleb, J. H. Hafner, and D. O. Lapotko, “Optically guided controlled release from liposomes with tunable plasmonic nanobubbles,” J. Control. Release144(2), 151–158 (2010).
[CrossRef] [PubMed]

E. Y. Lukianova-Hleb, C. Santiago, D. S. Wagner, J. H. Hafner, and D. O. Lapotko, “Generation and detection of plasmonic nanobubbles in zebrafish,” Nanotechnology21(22), 225102 (2010).
[CrossRef] [PubMed]

D. O. Lapotko, E. Lukianova, and A. A. Oraevsky, “Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles,” Lasers Surg. Med.38(6), 631–642 (2006).
[CrossRef] [PubMed]

Latterini, L.

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano4(4), 2109–2123 (2010).
[CrossRef] [PubMed]

Lee, S.

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano4(4), 2109–2123 (2010).
[CrossRef] [PubMed]

Letfullin, R. R.

V. P. Zharov, R. R. Letfullin, and E. N. Galitovskaya, “Microbubbles-overlapping mode for laser killing of cancer cells with absorbing nanoparticle clusters,” J. Phys. D Appl. Phys.38(15), 2571–2581 (2005).
[CrossRef]

Li, P.-C.

S. Y. Emelianov, P.-C. Li, and M. O’Donnell, “Photoacoustics for molecular imaging and therapy,” Phys. Today62(5), 34–39 (2009).
[CrossRef] [PubMed]

Link, S.

S. Link and M. A. El-Sayed, “Optical properties and ultrafast dynamics of metallic nanocrystals,” Annu. Rev. Phys. Chem.54(1), 331–366 (2003).
[CrossRef] [PubMed]

Lukianova, E.

D. O. Lapotko, E. Lukianova, and A. A. Oraevsky, “Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles,” Lasers Surg. Med.38(6), 631–642 (2006).
[CrossRef] [PubMed]

D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, and A. Oraevsky, “Method of laser activated nano-thermolysis for elimination of tumor cells,” Cancer Lett.239(1), 36–45 (2006).
[CrossRef] [PubMed]

D. Lapotko, E. Lukianova, A. Shnip, G. Zheltov, M. Potapnev, V. Savitsky, O. Klimovich, and A. Oraevsky, “Laser activated nanothermolysis of leukemia cells monitored by photothermal microscopy,” Proc. SPIE5697, 82–89 (2005).
[CrossRef]

Lukianova-Hleb, E.

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano4(4), 2109–2123 (2010).
[CrossRef] [PubMed]

D. Lapotko, E. Lukianova-Hleb, S. Zhdanok, B. Rostro, R. Simonette, J. Hafner, M. Konopleva, M. Andreeff, A. Conjusteau, and A. Oraevsky, “Photothermolysis by laser-induced microbubbles generated around gold nanorod clusters selectively formed in leukemia cells,” Proc. SPIE6856, 68560K, 68560K-9 (2008).
[CrossRef]

Lukianova-Hleb, E. Y.

E. Y. Lukianova-Hleb, A. O. Oginsky, A. P. Samaniego, D. L. Shenefelt, D. S. Wagner, J. H. Hafner, M. C. Farach-Carson, and D. O. Lapotko, “Tunable plasmonic nanoprobes for theranostics of prostate cancer,” Theranostics1, 3–17 (2011).
[CrossRef] [PubMed]

E. Y. Lukianova-Hleb, I. I. Koneva, A. O. Oginsky, S. La Francesca, and D. O. Lapotko, “Selective and self-guided micro-ablation of tissue with plasmonic nanobubbles,” J. Surg. Res.166(1), e3–e13 (2011).
[CrossRef] [PubMed]

E. Y. Lukianova-Hleb, C. Santiago, D. S. Wagner, J. H. Hafner, and D. O. Lapotko, “Generation and detection of plasmonic nanobubbles in zebrafish,” Nanotechnology21(22), 225102 (2010).
[CrossRef] [PubMed]

L. J. E. Anderson, E. Hansen, E. Y. Lukianova-Hleb, J. H. Hafner, and D. O. Lapotko, “Optically guided controlled release from liposomes with tunable plasmonic nanobubbles,” J. Control. Release144(2), 151–158 (2010).
[CrossRef] [PubMed]

Mackey, M. A.

X. Huang, B. Kang, W. Qian, M. A. Mackey, P.-C. Chen, A. K. Oyelere, I. H. El-Sayed, and M. A. El-Sayed, “Comparative study of photothermolysis of cancer cells with nuclear-targeted or cytoplasm-targeted gold nanospheres: continuous wave or pulsed lasers,” J. Biomed. Opt.15(5), 058002 (2010).
[CrossRef] [PubMed]

Manohar, S.

C. Ungureanu, R. Kroes, W. Petersen, T. A. M. Groothuis, F. Ungureanu, H. Janssen, F. W. B. van Leeuwen, R. P. H. Kooyman, S. Manohar, and T. G. van Leeuwen, “Light interactions with gold nanorods and cells: implications for photothermal nanotherapeutics,” Nano Lett.11(5), 1887–1894 (2011).
[CrossRef] [PubMed]

Maris, H. J.

H. J. Maris, “Introduction to the physics of nucleation,” C. R. Phys.7(9-10), 946–958 (2006).
[CrossRef]

McLaughlan, J. R.

Mercer, K. E.

V. P. Zharov, K. E. Mercer, E. N. Galitovskaya, and M. S. Smeltzer, “Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles,” Biophys. J.90(2), 619–627 (2006).
[CrossRef] [PubMed]

Moon, H.-M.

J.-W. Kim, E. I. Galanzha, E. V. Shashkov, H.-M. Moon, and V. P. Zharov, “Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents,” Nat. Nanotechnol.4(10), 688–694 (2009).
[CrossRef]

Murray, T. W.

J. R. McLaughlan, R. A. Roy, H. Ju, and T. W. Murray, “Ultrasonic enhancement of photoacoustic emissions by nanoparticle-targeted cavitation,” Opt. Lett.35(13), 2127–2129 (2010).
[CrossRef] [PubMed]

C. H. Farny, T. Wu, R. G. Holt, T. W. Murray, and R. A. Roy, “Nucleating cavitation from laser-illuminated nanoparticles,” Acoust. Res. Lett. Online6(3), 138–143 (2005).
[CrossRef]

Nelson, T. R.

T. R. Nelson, J. B. Fowlkes, J. S. Abramowicz, and C. C. Church, “Ultrasound biosafety considerations for the practicing sonographer and sonologist,” J. Ultrasound Med.28(2), 139–150 (2009).
[PubMed]

O’Donnell, M.

S. Y. Emelianov, P.-C. Li, and M. O’Donnell, “Photoacoustics for molecular imaging and therapy,” Phys. Today62(5), 34–39 (2009).
[CrossRef] [PubMed]

Oginsky, A. O.

E. Y. Lukianova-Hleb, I. I. Koneva, A. O. Oginsky, S. La Francesca, and D. O. Lapotko, “Selective and self-guided micro-ablation of tissue with plasmonic nanobubbles,” J. Surg. Res.166(1), e3–e13 (2011).
[CrossRef] [PubMed]

E. Y. Lukianova-Hleb, A. O. Oginsky, A. P. Samaniego, D. L. Shenefelt, D. S. Wagner, J. H. Hafner, M. C. Farach-Carson, and D. O. Lapotko, “Tunable plasmonic nanoprobes for theranostics of prostate cancer,” Theranostics1, 3–17 (2011).
[CrossRef] [PubMed]

Oraevsky, A.

D. Lapotko, E. Lukianova-Hleb, S. Zhdanok, B. Rostro, R. Simonette, J. Hafner, M. Konopleva, M. Andreeff, A. Conjusteau, and A. Oraevsky, “Photothermolysis by laser-induced microbubbles generated around gold nanorod clusters selectively formed in leukemia cells,” Proc. SPIE6856, 68560K, 68560K-9 (2008).
[CrossRef]

D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, and A. Oraevsky, “Method of laser activated nano-thermolysis for elimination of tumor cells,” Cancer Lett.239(1), 36–45 (2006).
[CrossRef] [PubMed]

D. Lapotko, E. Lukianova, A. Shnip, G. Zheltov, M. Potapnev, V. Savitsky, O. Klimovich, and A. Oraevsky, “Laser activated nanothermolysis of leukemia cells monitored by photothermal microscopy,” Proc. SPIE5697, 82–89 (2005).
[CrossRef]

Oraevsky, A. A.

D. O. Lapotko, E. Lukianova, and A. A. Oraevsky, “Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles,” Lasers Surg. Med.38(6), 631–642 (2006).
[CrossRef] [PubMed]

Oyelere, A. K.

X. Huang, B. Kang, W. Qian, M. A. Mackey, P.-C. Chen, A. K. Oyelere, I. H. El-Sayed, and M. A. El-Sayed, “Comparative study of photothermolysis of cancer cells with nuclear-targeted or cytoplasm-targeted gold nanospheres: continuous wave or pulsed lasers,” J. Biomed. Opt.15(5), 058002 (2010).
[CrossRef] [PubMed]

Parrish, J. A.

R. R. Anderson and J. A. Parrish, “Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation,” Science220(4596), 524–527 (1983).
[CrossRef] [PubMed]

Peeters, S.

Petersen, W.

C. Ungureanu, R. Kroes, W. Petersen, T. A. M. Groothuis, F. Ungureanu, H. Janssen, F. W. B. van Leeuwen, R. P. H. Kooyman, S. Manohar, and T. G. van Leeuwen, “Light interactions with gold nanorods and cells: implications for photothermal nanotherapeutics,” Nano Lett.11(5), 1887–1894 (2011).
[CrossRef] [PubMed]

Pifferi, A.

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, and R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomed. Opt.9(6), 1143–1151 (2004).
[CrossRef] [PubMed]

Plech, A.

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys.124(18), 184702 (2006).
[CrossRef] [PubMed]

Potapnev, M.

D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, and A. Oraevsky, “Method of laser activated nano-thermolysis for elimination of tumor cells,” Cancer Lett.239(1), 36–45 (2006).
[CrossRef] [PubMed]

D. Lapotko, E. Lukianova, A. Shnip, G. Zheltov, M. Potapnev, V. Savitsky, O. Klimovich, and A. Oraevsky, “Laser activated nanothermolysis of leukemia cells monitored by photothermal microscopy,” Proc. SPIE5697, 82–89 (2005).
[CrossRef]

Preisser, S.

Pustovalov, V. K.

V. K. Pustovalov, A. S. Smetannikov, and V. P. Zharov, “Photothermal and accompanied phenomena of selective nanophotothermolysis with gold nanoparticles and laser pulses,” Laser Phys. Lett.5(11), 775–792 (2008).
[CrossRef]

Qian, W.

X. Huang, B. Kang, W. Qian, M. A. Mackey, P.-C. Chen, A. K. Oyelere, I. H. El-Sayed, and M. A. El-Sayed, “Comparative study of photothermolysis of cancer cells with nuclear-targeted or cytoplasm-targeted gold nanospheres: continuous wave or pulsed lasers,” J. Biomed. Opt.15(5), 058002 (2010).
[CrossRef] [PubMed]

Rahmanzadeh, R.

F. Rudnitzki, M. Bever, R. Rahmanzadeh, K. Brieger, E. Endl, J. Groll, and G. Hüttmann, “Bleaching of plasmon-resonance absorption of gold nanorods decreases efficiency of cell destruction,” J. Biomed. Opt.17(5), 058003 (2012).
[CrossRef] [PubMed]

Rostro, B.

D. Lapotko, E. Lukianova-Hleb, S. Zhdanok, B. Rostro, R. Simonette, J. Hafner, M. Konopleva, M. Andreeff, A. Conjusteau, and A. Oraevsky, “Photothermolysis by laser-induced microbubbles generated around gold nanorod clusters selectively formed in leukemia cells,” Proc. SPIE6856, 68560K, 68560K-9 (2008).
[CrossRef]

Rothen-Rutishauser, B.

Roy, R. A.

T. Wu, C. H. Farny, R. A. Roy, and R. G. Holt, “Modeling cavitation nucleation from laser-illuminated nanoparticles subjected to acoustic stress,” J. Acoust. Soc. Am.130(5), 3252–3263 (2011).
[CrossRef] [PubMed]

J. R. McLaughlan, R. A. Roy, H. Ju, and T. W. Murray, “Ultrasonic enhancement of photoacoustic emissions by nanoparticle-targeted cavitation,” Opt. Lett.35(13), 2127–2129 (2010).
[CrossRef] [PubMed]

C. H. Farny, T. Wu, R. G. Holt, T. W. Murray, and R. A. Roy, “Nucleating cavitation from laser-illuminated nanoparticles,” Acoust. Res. Lett. Online6(3), 138–143 (2005).
[CrossRef]

Rudnitzki, F.

F. Rudnitzki, M. Bever, R. Rahmanzadeh, K. Brieger, E. Endl, J. Groll, and G. Hüttmann, “Bleaching of plasmon-resonance absorption of gold nanorods decreases efficiency of cell destruction,” J. Biomed. Opt.17(5), 058003 (2012).
[CrossRef] [PubMed]

Samaniego, A. P.

E. Y. Lukianova-Hleb, A. O. Oginsky, A. P. Samaniego, D. L. Shenefelt, D. S. Wagner, J. H. Hafner, M. C. Farach-Carson, and D. O. Lapotko, “Tunable plasmonic nanoprobes for theranostics of prostate cancer,” Theranostics1, 3–17 (2011).
[CrossRef] [PubMed]

Santiago, C.

E. Y. Lukianova-Hleb, C. Santiago, D. S. Wagner, J. H. Hafner, and D. O. Lapotko, “Generation and detection of plasmonic nanobubbles in zebrafish,” Nanotechnology21(22), 225102 (2010).
[CrossRef] [PubMed]

Savitsky, V.

D. Lapotko, E. Lukianova, A. Shnip, G. Zheltov, M. Potapnev, V. Savitsky, O. Klimovich, and A. Oraevsky, “Laser activated nanothermolysis of leukemia cells monitored by photothermal microscopy,” Proc. SPIE5697, 82–89 (2005).
[CrossRef]

Shashkov, E. V.

J.-W. Kim, E. I. Galanzha, E. V. Shashkov, H.-M. Moon, and V. P. Zharov, “Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents,” Nat. Nanotechnol.4(10), 688–694 (2009).
[CrossRef]

Shenefelt, D. L.

E. Y. Lukianova-Hleb, A. O. Oginsky, A. P. Samaniego, D. L. Shenefelt, D. S. Wagner, J. H. Hafner, M. C. Farach-Carson, and D. O. Lapotko, “Tunable plasmonic nanoprobes for theranostics of prostate cancer,” Theranostics1, 3–17 (2011).
[CrossRef] [PubMed]

Shnip, A.

D. Lapotko, E. Lukianova, A. Shnip, G. Zheltov, M. Potapnev, V. Savitsky, O. Klimovich, and A. Oraevsky, “Laser activated nanothermolysis of leukemia cells monitored by photothermal microscopy,” Proc. SPIE5697, 82–89 (2005).
[CrossRef]

Simonette, R.

D. Lapotko, E. Lukianova-Hleb, S. Zhdanok, B. Rostro, R. Simonette, J. Hafner, M. Konopleva, M. Andreeff, A. Conjusteau, and A. Oraevsky, “Photothermolysis by laser-induced microbubbles generated around gold nanorod clusters selectively formed in leukemia cells,” Proc. SPIE6856, 68560K, 68560K-9 (2008).
[CrossRef]

Smeltzer, M. S.

V. P. Zharov, K. E. Mercer, E. N. Galitovskaya, and M. S. Smeltzer, “Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles,” Biophys. J.90(2), 619–627 (2006).
[CrossRef] [PubMed]

Smetannikov, A. S.

V. K. Pustovalov, A. S. Smetannikov, and V. P. Zharov, “Photothermal and accompanied phenomena of selective nanophotothermolysis with gold nanoparticles and laser pulses,” Laser Phys. Lett.5(11), 775–792 (2008).
[CrossRef]

Springer, F.

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys.124(18), 184702 (2006).
[CrossRef] [PubMed]

Stein, E. W.

X. Yang, E. W. Stein, S. Ashkenazi, and L. V. Wang, “Nanoparticles for photoacoustic imaging,” Wiley Interdiscip Rev Nanomed Nanobiotechnol1(4), 360–368 (2009).
[CrossRef] [PubMed]

Swartling, J.

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, and R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomed. Opt.9(6), 1143–1151 (2004).
[CrossRef] [PubMed]

Taroni, P.

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, and R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomed. Opt.9(6), 1143–1151 (2004).
[CrossRef] [PubMed]

Tarpani, L.

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano4(4), 2109–2123 (2010).
[CrossRef] [PubMed]

Thalmann, G. N.

Tong, L.

T. B. Huff, L. Tong, Y. Zhao, M. N. Hansen, J.-X. Cheng, and A. Wei, “Hyperthermic effects of gold nanorods on tumor cells,” Nanomedicine (Lond)2(1), 125–132 (2007).
[CrossRef] [PubMed]

L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J.-X. Cheng, “Gold nanorods mediate tumor cell death by compromising membrane integrity,” Adv. Mater. (Deerfield Beach Fla.)19(20), 3136–3141 (2007).
[CrossRef] [PubMed]

Torricelli, A.

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, and R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomed. Opt.9(6), 1143–1151 (2004).
[CrossRef] [PubMed]

Tuchin, V.

G. Akchurin, B. Khlebtsov, G. Akchurin, V. Tuchin, V. Zharov, and N. Khlebtsov, “Gold nanoshell photomodification under a single-nanosecond laser pulse accompanied by color-shifting and bubble formation phenomena,” Nanotechnology19(1), 015701 (2008).
[CrossRef] [PubMed]

Ungureanu, C.

C. Ungureanu, R. Kroes, W. Petersen, T. A. M. Groothuis, F. Ungureanu, H. Janssen, F. W. B. van Leeuwen, R. P. H. Kooyman, S. Manohar, and T. G. van Leeuwen, “Light interactions with gold nanorods and cells: implications for photothermal nanotherapeutics,” Nano Lett.11(5), 1887–1894 (2011).
[CrossRef] [PubMed]

Ungureanu, F.

C. Ungureanu, R. Kroes, W. Petersen, T. A. M. Groothuis, F. Ungureanu, H. Janssen, F. W. B. van Leeuwen, R. P. H. Kooyman, S. Manohar, and T. G. van Leeuwen, “Light interactions with gold nanorods and cells: implications for photothermal nanotherapeutics,” Nano Lett.11(5), 1887–1894 (2011).
[CrossRef] [PubMed]

van Leeuwen, F. W. B.

C. Ungureanu, R. Kroes, W. Petersen, T. A. M. Groothuis, F. Ungureanu, H. Janssen, F. W. B. van Leeuwen, R. P. H. Kooyman, S. Manohar, and T. G. van Leeuwen, “Light interactions with gold nanorods and cells: implications for photothermal nanotherapeutics,” Nano Lett.11(5), 1887–1894 (2011).
[CrossRef] [PubMed]

van Leeuwen, T. G.

C. Ungureanu, R. Kroes, W. Petersen, T. A. M. Groothuis, F. Ungureanu, H. Janssen, F. W. B. van Leeuwen, R. P. H. Kooyman, S. Manohar, and T. G. van Leeuwen, “Light interactions with gold nanorods and cells: implications for photothermal nanotherapeutics,” Nano Lett.11(5), 1887–1894 (2011).
[CrossRef] [PubMed]

Viegas, M.

V. P. Zharov, V. Galitovsky, and M. Viegas, “Photothermal detection of local thermal effects during selective nanophotothermolysis,” Appl. Phys. Lett.83(24), 4897–4899 (2003).
[CrossRef]

von Plessen, G.

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys.124(18), 184702 (2006).
[CrossRef] [PubMed]

Wagner, D. S.

E. Y. Lukianova-Hleb, A. O. Oginsky, A. P. Samaniego, D. L. Shenefelt, D. S. Wagner, J. H. Hafner, M. C. Farach-Carson, and D. O. Lapotko, “Tunable plasmonic nanoprobes for theranostics of prostate cancer,” Theranostics1, 3–17 (2011).
[CrossRef] [PubMed]

E. Y. Lukianova-Hleb, C. Santiago, D. S. Wagner, J. H. Hafner, and D. O. Lapotko, “Generation and detection of plasmonic nanobubbles in zebrafish,” Nanotechnology21(22), 225102 (2010).
[CrossRef] [PubMed]

Wang, L. V.

X. Yang, E. W. Stein, S. Ashkenazi, and L. V. Wang, “Nanoparticles for photoacoustic imaging,” Wiley Interdiscip Rev Nanomed Nanobiotechnol1(4), 360–368 (2009).
[CrossRef] [PubMed]

Wei, A.

T. B. Huff, L. Tong, Y. Zhao, M. N. Hansen, J.-X. Cheng, and A. Wei, “Hyperthermic effects of gold nanorods on tumor cells,” Nanomedicine (Lond)2(1), 125–132 (2007).
[CrossRef] [PubMed]

L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J.-X. Cheng, “Gold nanorods mediate tumor cell death by compromising membrane integrity,” Adv. Mater. (Deerfield Beach Fla.)19(20), 3136–3141 (2007).
[CrossRef] [PubMed]

Wetterwald, A.

Wilson, K.

K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat Commun3, 618 (2012).
[CrossRef] [PubMed]

Wu, T.

T. Wu, C. H. Farny, R. A. Roy, and R. G. Holt, “Modeling cavitation nucleation from laser-illuminated nanoparticles subjected to acoustic stress,” J. Acoust. Soc. Am.130(5), 3252–3263 (2011).
[CrossRef] [PubMed]

C. H. Farny, T. Wu, R. G. Holt, T. W. Murray, and R. A. Roy, “Nucleating cavitation from laser-illuminated nanoparticles,” Acoust. Res. Lett. Online6(3), 138–143 (2005).
[CrossRef]

Yang, X.

X. Yang, E. W. Stein, S. Ashkenazi, and L. V. Wang, “Nanoparticles for photoacoustic imaging,” Wiley Interdiscip Rev Nanomed Nanobiotechnol1(4), 360–368 (2009).
[CrossRef] [PubMed]

Zhao, Y.

T. B. Huff, L. Tong, Y. Zhao, M. N. Hansen, J.-X. Cheng, and A. Wei, “Hyperthermic effects of gold nanorods on tumor cells,” Nanomedicine (Lond)2(1), 125–132 (2007).
[CrossRef] [PubMed]

L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J.-X. Cheng, “Gold nanorods mediate tumor cell death by compromising membrane integrity,” Adv. Mater. (Deerfield Beach Fla.)19(20), 3136–3141 (2007).
[CrossRef] [PubMed]

Zharov, V.

G. Akchurin, B. Khlebtsov, G. Akchurin, V. Tuchin, V. Zharov, and N. Khlebtsov, “Gold nanoshell photomodification under a single-nanosecond laser pulse accompanied by color-shifting and bubble formation phenomena,” Nanotechnology19(1), 015701 (2008).
[CrossRef] [PubMed]

Zharov, V. P.

J.-W. Kim, E. I. Galanzha, E. V. Shashkov, H.-M. Moon, and V. P. Zharov, “Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents,” Nat. Nanotechnol.4(10), 688–694 (2009).
[CrossRef]

V. K. Pustovalov, A. S. Smetannikov, and V. P. Zharov, “Photothermal and accompanied phenomena of selective nanophotothermolysis with gold nanoparticles and laser pulses,” Laser Phys. Lett.5(11), 775–792 (2008).
[CrossRef]

V. P. Zharov, K. E. Mercer, E. N. Galitovskaya, and M. S. Smeltzer, “Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles,” Biophys. J.90(2), 619–627 (2006).
[CrossRef] [PubMed]

V. P. Zharov, E. N. Galitovskaya, C. Johnson, and T. Kelly, “Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy,” Lasers Surg. Med.37(3), 219–226 (2005).
[CrossRef] [PubMed]

V. P. Zharov, R. R. Letfullin, and E. N. Galitovskaya, “Microbubbles-overlapping mode for laser killing of cancer cells with absorbing nanoparticle clusters,” J. Phys. D Appl. Phys.38(15), 2571–2581 (2005).
[CrossRef]

V. P. Zharov, V. Galitovsky, and M. Viegas, “Photothermal detection of local thermal effects during selective nanophotothermolysis,” Appl. Phys. Lett.83(24), 4897–4899 (2003).
[CrossRef]

Zhdanok, S.

D. Lapotko, E. Lukianova-Hleb, S. Zhdanok, B. Rostro, R. Simonette, J. Hafner, M. Konopleva, M. Andreeff, A. Conjusteau, and A. Oraevsky, “Photothermolysis by laser-induced microbubbles generated around gold nanorod clusters selectively formed in leukemia cells,” Proc. SPIE6856, 68560K, 68560K-9 (2008).
[CrossRef]

Zheltov, G.

D. Lapotko, E. Lukianova, A. Shnip, G. Zheltov, M. Potapnev, V. Savitsky, O. Klimovich, and A. Oraevsky, “Laser activated nanothermolysis of leukemia cells monitored by photothermal microscopy,” Proc. SPIE5697, 82–89 (2005).
[CrossRef]

Acoust. Res. Lett. Online

C. H. Farny, T. Wu, R. G. Holt, T. W. Murray, and R. A. Roy, “Nucleating cavitation from laser-illuminated nanoparticles,” Acoust. Res. Lett. Online6(3), 138–143 (2005).
[CrossRef]

ACS Nano

E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano4(4), 2109–2123 (2010).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.)

L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J.-X. Cheng, “Gold nanorods mediate tumor cell death by compromising membrane integrity,” Adv. Mater. (Deerfield Beach Fla.)19(20), 3136–3141 (2007).
[CrossRef] [PubMed]

Annu. Rev. Phys. Chem.

S. Link and M. A. El-Sayed, “Optical properties and ultrafast dynamics of metallic nanocrystals,” Annu. Rev. Phys. Chem.54(1), 331–366 (2003).
[CrossRef] [PubMed]

Appl. Phys. Lett.

V. P. Zharov, V. Galitovsky, and M. Viegas, “Photothermal detection of local thermal effects during selective nanophotothermolysis,” Appl. Phys. Lett.83(24), 4897–4899 (2003).
[CrossRef]

Biomed. Opt. Express

Biophys. J.

V. P. Zharov, K. E. Mercer, E. N. Galitovskaya, and M. S. Smeltzer, “Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles,” Biophys. J.90(2), 619–627 (2006).
[CrossRef] [PubMed]

C. R. Phys.

H. J. Maris, “Introduction to the physics of nucleation,” C. R. Phys.7(9-10), 946–958 (2006).
[CrossRef]

Cancer Lett.

D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, and A. Oraevsky, “Method of laser activated nano-thermolysis for elimination of tumor cells,” Cancer Lett.239(1), 36–45 (2006).
[CrossRef] [PubMed]

J. Acoust. Soc. Am.

T. Wu, C. H. Farny, R. A. Roy, and R. G. Holt, “Modeling cavitation nucleation from laser-illuminated nanoparticles subjected to acoustic stress,” J. Acoust. Soc. Am.130(5), 3252–3263 (2011).
[CrossRef] [PubMed]

H. G. Flynn and C. C. Church, “Erratum: transient pulsations of small gas bubbles in water [J. Acoust. Soc. Am. 84, 985-998 (1988)],” J. Acoust. Soc. Am.84(5), 1863–1876 (1988).
[CrossRef] [PubMed]

J. Biomed. Opt.

A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, and R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J. Biomed. Opt.9(6), 1143–1151 (2004).
[CrossRef] [PubMed]

F. Rudnitzki, M. Bever, R. Rahmanzadeh, K. Brieger, E. Endl, J. Groll, and G. Hüttmann, “Bleaching of plasmon-resonance absorption of gold nanorods decreases efficiency of cell destruction,” J. Biomed. Opt.17(5), 058003 (2012).
[CrossRef] [PubMed]

X. Huang, B. Kang, W. Qian, M. A. Mackey, P.-C. Chen, A. K. Oyelere, I. H. El-Sayed, and M. A. El-Sayed, “Comparative study of photothermolysis of cancer cells with nuclear-targeted or cytoplasm-targeted gold nanospheres: continuous wave or pulsed lasers,” J. Biomed. Opt.15(5), 058002 (2010).
[CrossRef] [PubMed]

J. Chem. Phys.

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys.124(18), 184702 (2006).
[CrossRef] [PubMed]

J. Control. Release

L. J. E. Anderson, E. Hansen, E. Y. Lukianova-Hleb, J. H. Hafner, and D. O. Lapotko, “Optically guided controlled release from liposomes with tunable plasmonic nanobubbles,” J. Control. Release144(2), 151–158 (2010).
[CrossRef] [PubMed]

J. Phys. D Appl. Phys.

V. P. Zharov, R. R. Letfullin, and E. N. Galitovskaya, “Microbubbles-overlapping mode for laser killing of cancer cells with absorbing nanoparticle clusters,” J. Phys. D Appl. Phys.38(15), 2571–2581 (2005).
[CrossRef]

J. Surg. Res.

E. Y. Lukianova-Hleb, I. I. Koneva, A. O. Oginsky, S. La Francesca, and D. O. Lapotko, “Selective and self-guided micro-ablation of tissue with plasmonic nanobubbles,” J. Surg. Res.166(1), e3–e13 (2011).
[CrossRef] [PubMed]

J. Ultrasound Med.

T. R. Nelson, J. B. Fowlkes, J. S. Abramowicz, and C. C. Church, “Ultrasound biosafety considerations for the practicing sonographer and sonologist,” J. Ultrasound Med.28(2), 139–150 (2009).
[PubMed]

Laser Phys. Lett.

V. K. Pustovalov, A. S. Smetannikov, and V. P. Zharov, “Photothermal and accompanied phenomena of selective nanophotothermolysis with gold nanoparticles and laser pulses,” Laser Phys. Lett.5(11), 775–792 (2008).
[CrossRef]

Lasers Med. Sci.

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci.23(3), 217–228 (2008).
[CrossRef] [PubMed]

Lasers Surg. Med.

D. O. Lapotko, E. Lukianova, and A. A. Oraevsky, “Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles,” Lasers Surg. Med.38(6), 631–642 (2006).
[CrossRef] [PubMed]

V. P. Zharov, E. N. Galitovskaya, C. Johnson, and T. Kelly, “Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy,” Lasers Surg. Med.37(3), 219–226 (2005).
[CrossRef] [PubMed]

Nano Lett.

C. Ungureanu, R. Kroes, W. Petersen, T. A. M. Groothuis, F. Ungureanu, H. Janssen, F. W. B. van Leeuwen, R. P. H. Kooyman, S. Manohar, and T. G. van Leeuwen, “Light interactions with gold nanorods and cells: implications for photothermal nanotherapeutics,” Nano Lett.11(5), 1887–1894 (2011).
[CrossRef] [PubMed]

Nanomedicine (Lond)

T. B. Huff, L. Tong, Y. Zhao, M. N. Hansen, J.-X. Cheng, and A. Wei, “Hyperthermic effects of gold nanorods on tumor cells,” Nanomedicine (Lond)2(1), 125–132 (2007).
[CrossRef] [PubMed]

Nanotechnology

E. Y. Lukianova-Hleb, C. Santiago, D. S. Wagner, J. H. Hafner, and D. O. Lapotko, “Generation and detection of plasmonic nanobubbles in zebrafish,” Nanotechnology21(22), 225102 (2010).
[CrossRef] [PubMed]

G. Akchurin, B. Khlebtsov, G. Akchurin, V. Tuchin, V. Zharov, and N. Khlebtsov, “Gold nanoshell photomodification under a single-nanosecond laser pulse accompanied by color-shifting and bubble formation phenomena,” Nanotechnology19(1), 015701 (2008).
[CrossRef] [PubMed]

Nat Commun

K. Wilson, K. Homan, and S. Emelianov, “Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,” Nat Commun3, 618 (2012).
[CrossRef] [PubMed]

Nat. Nanotechnol.

J.-W. Kim, E. I. Galanzha, E. V. Shashkov, H.-M. Moon, and V. P. Zharov, “Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents,” Nat. Nanotechnol.4(10), 688–694 (2009).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Today

S. Y. Emelianov, P.-C. Li, and M. O’Donnell, “Photoacoustics for molecular imaging and therapy,” Phys. Today62(5), 34–39 (2009).
[CrossRef] [PubMed]

Proc. SPIE

D. Lapotko, E. Lukianova, A. Shnip, G. Zheltov, M. Potapnev, V. Savitsky, O. Klimovich, and A. Oraevsky, “Laser activated nanothermolysis of leukemia cells monitored by photothermal microscopy,” Proc. SPIE5697, 82–89 (2005).
[CrossRef]

D. Lapotko, E. Lukianova-Hleb, S. Zhdanok, B. Rostro, R. Simonette, J. Hafner, M. Konopleva, M. Andreeff, A. Conjusteau, and A. Oraevsky, “Photothermolysis by laser-induced microbubbles generated around gold nanorod clusters selectively formed in leukemia cells,” Proc. SPIE6856, 68560K, 68560K-9 (2008).
[CrossRef]

Science

R. R. Anderson and J. A. Parrish, “Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation,” Science220(4596), 524–527 (1983).
[CrossRef] [PubMed]

Theranostics

E. Y. Lukianova-Hleb, A. O. Oginsky, A. P. Samaniego, D. L. Shenefelt, D. S. Wagner, J. H. Hafner, M. C. Farach-Carson, and D. O. Lapotko, “Tunable plasmonic nanoprobes for theranostics of prostate cancer,” Theranostics1, 3–17 (2011).
[CrossRef] [PubMed]

Ultrasonics

B. Krasovitski, H. Kislev, and E. Kimmel, “Modeling photothermal and acoustical induced microbubble generation and growth,” Ultrasonics47(1-4), 90–101 (2007).
[CrossRef] [PubMed]

Wiley Interdiscip Rev Nanomed Nanobiotechnol

X. Yang, E. W. Stein, S. Ashkenazi, and L. V. Wang, “Nanoparticles for photoacoustic imaging,” Wiley Interdiscip Rev Nanomed Nanobiotechnol1(4), 360–368 (2009).
[CrossRef] [PubMed]

Other

American National Standards Institute, “American National Standard for Safe Use of Lasers,” ANSI Z136.1–2000 (Laser Institute of America, 2000).

T. G. Leighton, The Acoustic Bubble (Academic, London, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the experimental setup. Abbreviations: IMB, impedance matching box; BS, beam splitter; PD, photodetector; HIFU, high intensity focused ultrasound; PCD, passive cavitation detector.

Fig. 2
Fig. 2

(a) Acoustic signals from a photoacoustic cavitation event and a non-event around gold nanospheres (2.2 × 108 nanoparticles/ml) at a peak negative HIFU pressure of 1.5 MPa and a laser fluence of 4.8 mJ/cm2. (b) Cavitation probability as a function of laser fluence around gold nanospheres (2.2 × 108 nanoparticles/ml) at peak negative pressures of 1.5, 2.0, 2.5 and 3.0 MPa. Solid lines are fitted using Eq. (1).

Fig. 3
Fig. 3

Cavitation probability around mixed (solid circles) and unmixed (open circles) gold nanorods (5.7 × 108 nanoparticles/ml) as a function of laser fluence at peak negative pressures of (a) 1.8 MPa and (b) 2.5 MPa. Vertical dash lines show the nanorod damage threshold. Solid lines are fitted using Eq. (1).

Fig. 4
Fig. 4

(a) Cavitation probability as a function of laser fluence around mixed gold nanorods (5.7 × 108 nanoparticles/ml) at peak negative pressures of 1.8, 2.0, 2.5 and 3.0 MPa. Solid lines are fitted using Eq. (1). (b) Cavitation threshold fluences around gold nanospheres (2.2 × 108 nanoparticles/ml) and gold nanorods (5.7 × 108 nanoparticles/ml) at different peak negative pressures. The vertical dashed line is the mechanical index limit for diagnostic ultrasound at 1.0 MHz. The horizontal dashed line is the nanorod damage threshold.

Fig. 5
Fig. 5

(a) Acoustic signals emitted from photoacoustic cavitation events around mixed gold nanorods (5.7 × 108 nanoparticles/ml) at a peak negative pressure of 1.8 MPa and fluences of 1.3 mJ/cm2 (black line), 4.1 mJ/cm2 (red line), and 13.0 mJ/cm2 (blue line). (b) Peak-to-peak amplitude of the acoustic signals from photoacoustic cavitation events around gold nanorods (5.7 × 108 nanoparticles/ml) as a function of laser fluence at a peak negative pressure of 1.8 MPa. Symbols and error bars are the mean values and standard deviations of the amplitude.

Fig. 6
Fig. 6

Cavitation probability as a function of nanoparticle concentration around gold nanospheres at peak negative pressures of (a) 2.0 MPa and (b) 3.0 MPa and fluences of (●) 7.6 mJ/cm2, (▲) 6.5 mJ/cm2 and (■) 5.4 mJ/cm2. Solid lines are fitted using Eq. (2). Inset of (b) is a zoom-in of the probability curves at 3.0 MPa.

Fig. 7
Fig. 7

Cavitation probability as a function of nanoparticle concentration around gold nanorods at a peak negative pressure of 3.0 MPa and a fluence of 1.8 mJ/cm2. Solid line is fitted using Eq. (2).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P n =1exp[ αexp( γ/F ) ],
P=1exp( ρV ),

Metrics