Abstract

A fully automated, robust vessel segmentation algorithm has been developed for choroidal OCT, employing multiscale 3D edge filtering and projection of “probability cones” to determine the vessel “core”, even in the tomograms with low signal-to-noise ratio (SNR). Based on the ideal vessel response after registration and multiscale filtering, with computed depth related SNR, the vessel core estimate is dilated to quantify the full vessel diameter. As a consequence, various statistics can be computed using the 3D choroidal vessel information, such as ratios of inner (smaller) to outer (larger) choroidal vessels or the absolute/relative volume of choroid vessels. Choroidal vessel quantification can be displayed in various forms, focused and averaged within a special region of interest, or analyzed as the function of image depth. In this way, the proposed algorithm enables unique visualization of choroidal watershed zones, as well as the vessel size reduction when investigating the choroid from the sclera towards the retinal pigment epithelium (RPE). To the best of our knowledge, this is the first time that an automatic choroidal vessel segmentation algorithm is successfully applied to 1060 nm 3D OCT of healthy and diseased eyes.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Esmaeelpour, B. Povazay, B. Hermann, B. Hofer, V. Kajic, K. Kapoor, N. J. Sheen, R. V. North, and W. Drexler, “Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients,” Invest. Ophthalmol. Vis. Sci.51(10), 5260–5266 (2010).
    [CrossRef] [PubMed]
  2. R. Margolis and R. F. Spaide, “A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes,” Am. J. Ophthalmol.147(5), 811–815 (2009).
    [CrossRef] [PubMed]
  3. W. R. Green and S. N. Key, “Senile macular degeneration: a histopathologic study,” Trans. Am. Ophthalmol. Soc.75, 180–254 (1977).
    [PubMed]
  4. D. S. McLeod and G. A. Lutty, “High-resolution histologic analysis of the human choroidal vasculature,” Invest. Ophthalmol. Vis. Sci.35(11), 3799–3811 (1994).
    [PubMed]
  5. S. H. Sarks, “Ageing and degeneration in the macular region: a clinico-pathological study,” Br. J. Ophthalmol.60(5), 324–341 (1976).
    [CrossRef] [PubMed]
  6. Z. Q. Yin, T. J. Vaegan, T. J. Millar, P. Beaumont, and S. Sarks, “Widespread choroidal insufficiency in primary open-angle glaucoma,” J. Glaucoma6(1), 23–32 (1997).
    [CrossRef] [PubMed]
  7. W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer, 2008), Vol. 1.
  8. R. M. Rangayyan, F. J. Ayres, F. Oloumi, F. Oloumi, and P. Eshghzadeh-Zanjani, “Detection of blood vessels in the retina with multiscale Gabor filters,” J. Electron. Imaging17(2), 023018 (2008).
    [CrossRef]
  9. W. P. Zhou, W. X. Yu, and H. Z. Shu, “Detection of cerebral vessels in MRA based on 3D steerable filters,” Tien Tzu Hsueh PaoActa Electronica Sinica34, 1333–1336 (2006).
  10. S. Aylward, S. Pizer, D. Eberly, and E. Bullitt, “Intensity ridge and widths for tubular object segmentation and description,” in Proceedings of the Workshop on Mathematical Methods in Biomedical Image Analysis, 1996 (IEEE Computer Society, 1996), pp. 131–138.
  11. P. J. Yim, P. L. Choyke, and R. M. Summers, “Gray-scale skeletonization of small vessels in magnetic resonance angiography,” IEEE Trans. Med. Imaging19(6), 568–576 (2000).
    [CrossRef] [PubMed]
  12. N.-Y. Lee, “Automatic generation of 3D vessels model using vessels image matching based on adaptive control points,” in Sixth International Conference on Advanced Language Processing and Web Information Technology, 2007. ALPIT 2007 (2007).
  13. V. Prinet, O. Monaga, C. Ge, S. L. Xie, and S. D. Ma, “Thin network extraction in 3D images: application to medical angiograms,” in Proceedings of the 13th International Conference on Pattern Recognition, 1996 (IEEE Computer Society, 1996), Vol. 3, pp. 386–390.
  14. R. Nekovei and Y. Sun, “Back-propagation network and its configuration for blood vessel detection in angiograms,” IEEE Trans. Neural Netw.6(1), 64–72 (1995).
    [CrossRef] [PubMed]
  15. A. Chung and J. Noble, “Statistical 3D Vessel segmentation using a rician distribution,” in Medical Image Computing and Computer-Assisted Intervention—MICCAI’99, (Springer, 1999), pp. 82–89.
  16. K. Krissian, G. Malandain, N. Ayache, R. Vaillant, and Y. Trousset, “Model-Based Multiscale Detection of 3D Vessels,” in Workshop on Biomedical Image Analysis (1998), pp. 202–208.
  17. J. A. Tyrrell, E. di Tomaso, D. Fuja, R. Tong, K. Kozak, R. K. Jain, and B. Roysam, “Robust 3-D modeling of vasculature imagery using superellipsoids,” IEEE Trans. Med. Imaging26(2), 223–237 (2007).
    [CrossRef] [PubMed]
  18. C. Kirbas and F. Quek, “A review of vessel extraction techniques and algorithms,” ACM Comput. Surv.36(2), 81–121 (2004).
    [CrossRef]
  19. B. Povazay, B. Hermann, B. Hofer, V. Kajić, E. Simpson, T. Bridgford, and W. Drexler, “Wide-field optical coherence tomography of the choroid in vivo,” Invest. Ophthalmol. Vis. Sci.50(4), 1856–1863 (2009).
    [CrossRef] [PubMed]
  20. ABSoft, ” Neat Video—best noise reduction for digital video.”
  21. P. Thevenaz and M. Unser, “A pyramid approach to sub-pixel image fusion based on mutual information,” in International Conference on Image Processing, 1996. Proceedings (1996), Vol. 1, pp. 265–268.
  22. M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express3(6), 1182–1199 (2012).
    [CrossRef] [PubMed]
  23. V. Kajić, M. Esmaeelpour, B. Považay, D. Marshall, P. L. Rosin, and W. Drexler, “Automated choroidal segmentation of 1060 nm OCT in healthy and pathologic eyes using a statistical model,” Biomed. Opt. Express3(1), 86–103 (2012).
    [CrossRef] [PubMed]
  24. T. A. Chowdhury, O. Ghita, and P. F. Whelan, “Evaluation of 3D gradient filters for estimation of the surface orientation in CTC,” in IMVIP 2006—10th International Machine Vision and Image Processing Conference (2006), paper 4645.
  25. M. Esmaeelpour, B. Povazay, B. Hermann, B. Hofer, V. Kajic, S. Hale, R. V. North, W. Drexler, and N. J. Sheen, “Mapping choroidal and retinal thickness variation in type 2 diabetes using three-dimensional 1060-nm optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(8), 5311–5316 (2011).
    [CrossRef] [PubMed]
  26. R. F. Spaide, “Age-related choroidal atrophy,” Am. J. Ophthalmol.147(5), 801–810 (2009).
    [CrossRef] [PubMed]

2012 (2)

2011 (1)

M. Esmaeelpour, B. Povazay, B. Hermann, B. Hofer, V. Kajic, S. Hale, R. V. North, W. Drexler, and N. J. Sheen, “Mapping choroidal and retinal thickness variation in type 2 diabetes using three-dimensional 1060-nm optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(8), 5311–5316 (2011).
[CrossRef] [PubMed]

2010 (1)

M. Esmaeelpour, B. Povazay, B. Hermann, B. Hofer, V. Kajic, K. Kapoor, N. J. Sheen, R. V. North, and W. Drexler, “Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients,” Invest. Ophthalmol. Vis. Sci.51(10), 5260–5266 (2010).
[CrossRef] [PubMed]

2009 (3)

R. Margolis and R. F. Spaide, “A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes,” Am. J. Ophthalmol.147(5), 811–815 (2009).
[CrossRef] [PubMed]

R. F. Spaide, “Age-related choroidal atrophy,” Am. J. Ophthalmol.147(5), 801–810 (2009).
[CrossRef] [PubMed]

B. Povazay, B. Hermann, B. Hofer, V. Kajić, E. Simpson, T. Bridgford, and W. Drexler, “Wide-field optical coherence tomography of the choroid in vivo,” Invest. Ophthalmol. Vis. Sci.50(4), 1856–1863 (2009).
[CrossRef] [PubMed]

2008 (1)

R. M. Rangayyan, F. J. Ayres, F. Oloumi, F. Oloumi, and P. Eshghzadeh-Zanjani, “Detection of blood vessels in the retina with multiscale Gabor filters,” J. Electron. Imaging17(2), 023018 (2008).
[CrossRef]

2007 (1)

J. A. Tyrrell, E. di Tomaso, D. Fuja, R. Tong, K. Kozak, R. K. Jain, and B. Roysam, “Robust 3-D modeling of vasculature imagery using superellipsoids,” IEEE Trans. Med. Imaging26(2), 223–237 (2007).
[CrossRef] [PubMed]

2006 (1)

W. P. Zhou, W. X. Yu, and H. Z. Shu, “Detection of cerebral vessels in MRA based on 3D steerable filters,” Tien Tzu Hsueh PaoActa Electronica Sinica34, 1333–1336 (2006).

2004 (1)

C. Kirbas and F. Quek, “A review of vessel extraction techniques and algorithms,” ACM Comput. Surv.36(2), 81–121 (2004).
[CrossRef]

2000 (1)

P. J. Yim, P. L. Choyke, and R. M. Summers, “Gray-scale skeletonization of small vessels in magnetic resonance angiography,” IEEE Trans. Med. Imaging19(6), 568–576 (2000).
[CrossRef] [PubMed]

1997 (1)

Z. Q. Yin, T. J. Vaegan, T. J. Millar, P. Beaumont, and S. Sarks, “Widespread choroidal insufficiency in primary open-angle glaucoma,” J. Glaucoma6(1), 23–32 (1997).
[CrossRef] [PubMed]

1995 (1)

R. Nekovei and Y. Sun, “Back-propagation network and its configuration for blood vessel detection in angiograms,” IEEE Trans. Neural Netw.6(1), 64–72 (1995).
[CrossRef] [PubMed]

1994 (1)

D. S. McLeod and G. A. Lutty, “High-resolution histologic analysis of the human choroidal vasculature,” Invest. Ophthalmol. Vis. Sci.35(11), 3799–3811 (1994).
[PubMed]

1977 (1)

W. R. Green and S. N. Key, “Senile macular degeneration: a histopathologic study,” Trans. Am. Ophthalmol. Soc.75, 180–254 (1977).
[PubMed]

1976 (1)

S. H. Sarks, “Ageing and degeneration in the macular region: a clinico-pathological study,” Br. J. Ophthalmol.60(5), 324–341 (1976).
[CrossRef] [PubMed]

Ayres, F. J.

R. M. Rangayyan, F. J. Ayres, F. Oloumi, F. Oloumi, and P. Eshghzadeh-Zanjani, “Detection of blood vessels in the retina with multiscale Gabor filters,” J. Electron. Imaging17(2), 023018 (2008).
[CrossRef]

Baumann, B.

Beaumont, P.

Z. Q. Yin, T. J. Vaegan, T. J. Millar, P. Beaumont, and S. Sarks, “Widespread choroidal insufficiency in primary open-angle glaucoma,” J. Glaucoma6(1), 23–32 (1997).
[CrossRef] [PubMed]

Bock, R.

Bridgford, T.

B. Povazay, B. Hermann, B. Hofer, V. Kajić, E. Simpson, T. Bridgford, and W. Drexler, “Wide-field optical coherence tomography of the choroid in vivo,” Invest. Ophthalmol. Vis. Sci.50(4), 1856–1863 (2009).
[CrossRef] [PubMed]

Choyke, P. L.

P. J. Yim, P. L. Choyke, and R. M. Summers, “Gray-scale skeletonization of small vessels in magnetic resonance angiography,” IEEE Trans. Med. Imaging19(6), 568–576 (2000).
[CrossRef] [PubMed]

di Tomaso, E.

J. A. Tyrrell, E. di Tomaso, D. Fuja, R. Tong, K. Kozak, R. K. Jain, and B. Roysam, “Robust 3-D modeling of vasculature imagery using superellipsoids,” IEEE Trans. Med. Imaging26(2), 223–237 (2007).
[CrossRef] [PubMed]

Drexler, W.

V. Kajić, M. Esmaeelpour, B. Považay, D. Marshall, P. L. Rosin, and W. Drexler, “Automated choroidal segmentation of 1060 nm OCT in healthy and pathologic eyes using a statistical model,” Biomed. Opt. Express3(1), 86–103 (2012).
[CrossRef] [PubMed]

M. Esmaeelpour, B. Povazay, B. Hermann, B. Hofer, V. Kajic, S. Hale, R. V. North, W. Drexler, and N. J. Sheen, “Mapping choroidal and retinal thickness variation in type 2 diabetes using three-dimensional 1060-nm optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(8), 5311–5316 (2011).
[CrossRef] [PubMed]

M. Esmaeelpour, B. Povazay, B. Hermann, B. Hofer, V. Kajic, K. Kapoor, N. J. Sheen, R. V. North, and W. Drexler, “Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients,” Invest. Ophthalmol. Vis. Sci.51(10), 5260–5266 (2010).
[CrossRef] [PubMed]

B. Povazay, B. Hermann, B. Hofer, V. Kajić, E. Simpson, T. Bridgford, and W. Drexler, “Wide-field optical coherence tomography of the choroid in vivo,” Invest. Ophthalmol. Vis. Sci.50(4), 1856–1863 (2009).
[CrossRef] [PubMed]

Eshghzadeh-Zanjani, P.

R. M. Rangayyan, F. J. Ayres, F. Oloumi, F. Oloumi, and P. Eshghzadeh-Zanjani, “Detection of blood vessels in the retina with multiscale Gabor filters,” J. Electron. Imaging17(2), 023018 (2008).
[CrossRef]

Esmaeelpour, M.

V. Kajić, M. Esmaeelpour, B. Považay, D. Marshall, P. L. Rosin, and W. Drexler, “Automated choroidal segmentation of 1060 nm OCT in healthy and pathologic eyes using a statistical model,” Biomed. Opt. Express3(1), 86–103 (2012).
[CrossRef] [PubMed]

M. Esmaeelpour, B. Povazay, B. Hermann, B. Hofer, V. Kajic, S. Hale, R. V. North, W. Drexler, and N. J. Sheen, “Mapping choroidal and retinal thickness variation in type 2 diabetes using three-dimensional 1060-nm optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(8), 5311–5316 (2011).
[CrossRef] [PubMed]

M. Esmaeelpour, B. Povazay, B. Hermann, B. Hofer, V. Kajic, K. Kapoor, N. J. Sheen, R. V. North, and W. Drexler, “Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients,” Invest. Ophthalmol. Vis. Sci.51(10), 5260–5266 (2010).
[CrossRef] [PubMed]

Fuja, D.

J. A. Tyrrell, E. di Tomaso, D. Fuja, R. Tong, K. Kozak, R. K. Jain, and B. Roysam, “Robust 3-D modeling of vasculature imagery using superellipsoids,” IEEE Trans. Med. Imaging26(2), 223–237 (2007).
[CrossRef] [PubMed]

Fujimoto, J. G.

Green, W. R.

W. R. Green and S. N. Key, “Senile macular degeneration: a histopathologic study,” Trans. Am. Ophthalmol. Soc.75, 180–254 (1977).
[PubMed]

Hale, S.

M. Esmaeelpour, B. Povazay, B. Hermann, B. Hofer, V. Kajic, S. Hale, R. V. North, W. Drexler, and N. J. Sheen, “Mapping choroidal and retinal thickness variation in type 2 diabetes using three-dimensional 1060-nm optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(8), 5311–5316 (2011).
[CrossRef] [PubMed]

Hermann, B.

M. Esmaeelpour, B. Povazay, B. Hermann, B. Hofer, V. Kajic, S. Hale, R. V. North, W. Drexler, and N. J. Sheen, “Mapping choroidal and retinal thickness variation in type 2 diabetes using three-dimensional 1060-nm optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(8), 5311–5316 (2011).
[CrossRef] [PubMed]

M. Esmaeelpour, B. Povazay, B. Hermann, B. Hofer, V. Kajic, K. Kapoor, N. J. Sheen, R. V. North, and W. Drexler, “Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients,” Invest. Ophthalmol. Vis. Sci.51(10), 5260–5266 (2010).
[CrossRef] [PubMed]

B. Povazay, B. Hermann, B. Hofer, V. Kajić, E. Simpson, T. Bridgford, and W. Drexler, “Wide-field optical coherence tomography of the choroid in vivo,” Invest. Ophthalmol. Vis. Sci.50(4), 1856–1863 (2009).
[CrossRef] [PubMed]

Hofer, B.

M. Esmaeelpour, B. Povazay, B. Hermann, B. Hofer, V. Kajic, S. Hale, R. V. North, W. Drexler, and N. J. Sheen, “Mapping choroidal and retinal thickness variation in type 2 diabetes using three-dimensional 1060-nm optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(8), 5311–5316 (2011).
[CrossRef] [PubMed]

M. Esmaeelpour, B. Povazay, B. Hermann, B. Hofer, V. Kajic, K. Kapoor, N. J. Sheen, R. V. North, and W. Drexler, “Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients,” Invest. Ophthalmol. Vis. Sci.51(10), 5260–5266 (2010).
[CrossRef] [PubMed]

B. Povazay, B. Hermann, B. Hofer, V. Kajić, E. Simpson, T. Bridgford, and W. Drexler, “Wide-field optical coherence tomography of the choroid in vivo,” Invest. Ophthalmol. Vis. Sci.50(4), 1856–1863 (2009).
[CrossRef] [PubMed]

Hornegger, J.

Jain, R. K.

J. A. Tyrrell, E. di Tomaso, D. Fuja, R. Tong, K. Kozak, R. K. Jain, and B. Roysam, “Robust 3-D modeling of vasculature imagery using superellipsoids,” IEEE Trans. Med. Imaging26(2), 223–237 (2007).
[CrossRef] [PubMed]

Kajic, V.

V. Kajić, M. Esmaeelpour, B. Považay, D. Marshall, P. L. Rosin, and W. Drexler, “Automated choroidal segmentation of 1060 nm OCT in healthy and pathologic eyes using a statistical model,” Biomed. Opt. Express3(1), 86–103 (2012).
[CrossRef] [PubMed]

M. Esmaeelpour, B. Povazay, B. Hermann, B. Hofer, V. Kajic, S. Hale, R. V. North, W. Drexler, and N. J. Sheen, “Mapping choroidal and retinal thickness variation in type 2 diabetes using three-dimensional 1060-nm optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(8), 5311–5316 (2011).
[CrossRef] [PubMed]

M. Esmaeelpour, B. Povazay, B. Hermann, B. Hofer, V. Kajic, K. Kapoor, N. J. Sheen, R. V. North, and W. Drexler, “Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients,” Invest. Ophthalmol. Vis. Sci.51(10), 5260–5266 (2010).
[CrossRef] [PubMed]

B. Povazay, B. Hermann, B. Hofer, V. Kajić, E. Simpson, T. Bridgford, and W. Drexler, “Wide-field optical coherence tomography of the choroid in vivo,” Invest. Ophthalmol. Vis. Sci.50(4), 1856–1863 (2009).
[CrossRef] [PubMed]

Kapoor, K.

M. Esmaeelpour, B. Povazay, B. Hermann, B. Hofer, V. Kajic, K. Kapoor, N. J. Sheen, R. V. North, and W. Drexler, “Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients,” Invest. Ophthalmol. Vis. Sci.51(10), 5260–5266 (2010).
[CrossRef] [PubMed]

Key, S. N.

W. R. Green and S. N. Key, “Senile macular degeneration: a histopathologic study,” Trans. Am. Ophthalmol. Soc.75, 180–254 (1977).
[PubMed]

Kirbas, C.

C. Kirbas and F. Quek, “A review of vessel extraction techniques and algorithms,” ACM Comput. Surv.36(2), 81–121 (2004).
[CrossRef]

Kozak, K.

J. A. Tyrrell, E. di Tomaso, D. Fuja, R. Tong, K. Kozak, R. K. Jain, and B. Roysam, “Robust 3-D modeling of vasculature imagery using superellipsoids,” IEEE Trans. Med. Imaging26(2), 223–237 (2007).
[CrossRef] [PubMed]

Kraus, M. F.

Liu, J. J.

Lutty, G. A.

D. S. McLeod and G. A. Lutty, “High-resolution histologic analysis of the human choroidal vasculature,” Invest. Ophthalmol. Vis. Sci.35(11), 3799–3811 (1994).
[PubMed]

Margolis, R.

R. Margolis and R. F. Spaide, “A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes,” Am. J. Ophthalmol.147(5), 811–815 (2009).
[CrossRef] [PubMed]

Marshall, D.

Mayer, M. A.

McLeod, D. S.

D. S. McLeod and G. A. Lutty, “High-resolution histologic analysis of the human choroidal vasculature,” Invest. Ophthalmol. Vis. Sci.35(11), 3799–3811 (1994).
[PubMed]

Millar, T. J.

Z. Q. Yin, T. J. Vaegan, T. J. Millar, P. Beaumont, and S. Sarks, “Widespread choroidal insufficiency in primary open-angle glaucoma,” J. Glaucoma6(1), 23–32 (1997).
[CrossRef] [PubMed]

Nekovei, R.

R. Nekovei and Y. Sun, “Back-propagation network and its configuration for blood vessel detection in angiograms,” IEEE Trans. Neural Netw.6(1), 64–72 (1995).
[CrossRef] [PubMed]

North, R. V.

M. Esmaeelpour, B. Povazay, B. Hermann, B. Hofer, V. Kajic, S. Hale, R. V. North, W. Drexler, and N. J. Sheen, “Mapping choroidal and retinal thickness variation in type 2 diabetes using three-dimensional 1060-nm optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(8), 5311–5316 (2011).
[CrossRef] [PubMed]

M. Esmaeelpour, B. Povazay, B. Hermann, B. Hofer, V. Kajic, K. Kapoor, N. J. Sheen, R. V. North, and W. Drexler, “Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients,” Invest. Ophthalmol. Vis. Sci.51(10), 5260–5266 (2010).
[CrossRef] [PubMed]

Oloumi, F.

R. M. Rangayyan, F. J. Ayres, F. Oloumi, F. Oloumi, and P. Eshghzadeh-Zanjani, “Detection of blood vessels in the retina with multiscale Gabor filters,” J. Electron. Imaging17(2), 023018 (2008).
[CrossRef]

R. M. Rangayyan, F. J. Ayres, F. Oloumi, F. Oloumi, and P. Eshghzadeh-Zanjani, “Detection of blood vessels in the retina with multiscale Gabor filters,” J. Electron. Imaging17(2), 023018 (2008).
[CrossRef]

Potsaid, B.

Povazay, B.

M. Esmaeelpour, B. Povazay, B. Hermann, B. Hofer, V. Kajic, S. Hale, R. V. North, W. Drexler, and N. J. Sheen, “Mapping choroidal and retinal thickness variation in type 2 diabetes using three-dimensional 1060-nm optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(8), 5311–5316 (2011).
[CrossRef] [PubMed]

M. Esmaeelpour, B. Povazay, B. Hermann, B. Hofer, V. Kajic, K. Kapoor, N. J. Sheen, R. V. North, and W. Drexler, “Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients,” Invest. Ophthalmol. Vis. Sci.51(10), 5260–5266 (2010).
[CrossRef] [PubMed]

B. Povazay, B. Hermann, B. Hofer, V. Kajić, E. Simpson, T. Bridgford, and W. Drexler, “Wide-field optical coherence tomography of the choroid in vivo,” Invest. Ophthalmol. Vis. Sci.50(4), 1856–1863 (2009).
[CrossRef] [PubMed]

Považay, B.

Quek, F.

C. Kirbas and F. Quek, “A review of vessel extraction techniques and algorithms,” ACM Comput. Surv.36(2), 81–121 (2004).
[CrossRef]

Rangayyan, R. M.

R. M. Rangayyan, F. J. Ayres, F. Oloumi, F. Oloumi, and P. Eshghzadeh-Zanjani, “Detection of blood vessels in the retina with multiscale Gabor filters,” J. Electron. Imaging17(2), 023018 (2008).
[CrossRef]

Rosin, P. L.

Roysam, B.

J. A. Tyrrell, E. di Tomaso, D. Fuja, R. Tong, K. Kozak, R. K. Jain, and B. Roysam, “Robust 3-D modeling of vasculature imagery using superellipsoids,” IEEE Trans. Med. Imaging26(2), 223–237 (2007).
[CrossRef] [PubMed]

Sarks, S.

Z. Q. Yin, T. J. Vaegan, T. J. Millar, P. Beaumont, and S. Sarks, “Widespread choroidal insufficiency in primary open-angle glaucoma,” J. Glaucoma6(1), 23–32 (1997).
[CrossRef] [PubMed]

Sarks, S. H.

S. H. Sarks, “Ageing and degeneration in the macular region: a clinico-pathological study,” Br. J. Ophthalmol.60(5), 324–341 (1976).
[CrossRef] [PubMed]

Sheen, N. J.

M. Esmaeelpour, B. Povazay, B. Hermann, B. Hofer, V. Kajic, S. Hale, R. V. North, W. Drexler, and N. J. Sheen, “Mapping choroidal and retinal thickness variation in type 2 diabetes using three-dimensional 1060-nm optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(8), 5311–5316 (2011).
[CrossRef] [PubMed]

M. Esmaeelpour, B. Povazay, B. Hermann, B. Hofer, V. Kajic, K. Kapoor, N. J. Sheen, R. V. North, and W. Drexler, “Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients,” Invest. Ophthalmol. Vis. Sci.51(10), 5260–5266 (2010).
[CrossRef] [PubMed]

Shu, H. Z.

W. P. Zhou, W. X. Yu, and H. Z. Shu, “Detection of cerebral vessels in MRA based on 3D steerable filters,” Tien Tzu Hsueh PaoActa Electronica Sinica34, 1333–1336 (2006).

Simpson, E.

B. Povazay, B. Hermann, B. Hofer, V. Kajić, E. Simpson, T. Bridgford, and W. Drexler, “Wide-field optical coherence tomography of the choroid in vivo,” Invest. Ophthalmol. Vis. Sci.50(4), 1856–1863 (2009).
[CrossRef] [PubMed]

Spaide, R. F.

R. F. Spaide, “Age-related choroidal atrophy,” Am. J. Ophthalmol.147(5), 801–810 (2009).
[CrossRef] [PubMed]

R. Margolis and R. F. Spaide, “A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes,” Am. J. Ophthalmol.147(5), 811–815 (2009).
[CrossRef] [PubMed]

Summers, R. M.

P. J. Yim, P. L. Choyke, and R. M. Summers, “Gray-scale skeletonization of small vessels in magnetic resonance angiography,” IEEE Trans. Med. Imaging19(6), 568–576 (2000).
[CrossRef] [PubMed]

Sun, Y.

R. Nekovei and Y. Sun, “Back-propagation network and its configuration for blood vessel detection in angiograms,” IEEE Trans. Neural Netw.6(1), 64–72 (1995).
[CrossRef] [PubMed]

Tong, R.

J. A. Tyrrell, E. di Tomaso, D. Fuja, R. Tong, K. Kozak, R. K. Jain, and B. Roysam, “Robust 3-D modeling of vasculature imagery using superellipsoids,” IEEE Trans. Med. Imaging26(2), 223–237 (2007).
[CrossRef] [PubMed]

Tyrrell, J. A.

J. A. Tyrrell, E. di Tomaso, D. Fuja, R. Tong, K. Kozak, R. K. Jain, and B. Roysam, “Robust 3-D modeling of vasculature imagery using superellipsoids,” IEEE Trans. Med. Imaging26(2), 223–237 (2007).
[CrossRef] [PubMed]

Vaegan, T. J.

Z. Q. Yin, T. J. Vaegan, T. J. Millar, P. Beaumont, and S. Sarks, “Widespread choroidal insufficiency in primary open-angle glaucoma,” J. Glaucoma6(1), 23–32 (1997).
[CrossRef] [PubMed]

Yim, P. J.

P. J. Yim, P. L. Choyke, and R. M. Summers, “Gray-scale skeletonization of small vessels in magnetic resonance angiography,” IEEE Trans. Med. Imaging19(6), 568–576 (2000).
[CrossRef] [PubMed]

Yin, Z. Q.

Z. Q. Yin, T. J. Vaegan, T. J. Millar, P. Beaumont, and S. Sarks, “Widespread choroidal insufficiency in primary open-angle glaucoma,” J. Glaucoma6(1), 23–32 (1997).
[CrossRef] [PubMed]

Yu, W. X.

W. P. Zhou, W. X. Yu, and H. Z. Shu, “Detection of cerebral vessels in MRA based on 3D steerable filters,” Tien Tzu Hsueh PaoActa Electronica Sinica34, 1333–1336 (2006).

Zhou, W. P.

W. P. Zhou, W. X. Yu, and H. Z. Shu, “Detection of cerebral vessels in MRA based on 3D steerable filters,” Tien Tzu Hsueh PaoActa Electronica Sinica34, 1333–1336 (2006).

ACM Comput. Surv. (1)

C. Kirbas and F. Quek, “A review of vessel extraction techniques and algorithms,” ACM Comput. Surv.36(2), 81–121 (2004).
[CrossRef]

Am. J. Ophthalmol. (2)

R. Margolis and R. F. Spaide, “A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes,” Am. J. Ophthalmol.147(5), 811–815 (2009).
[CrossRef] [PubMed]

R. F. Spaide, “Age-related choroidal atrophy,” Am. J. Ophthalmol.147(5), 801–810 (2009).
[CrossRef] [PubMed]

Biomed. Opt. Express (2)

Br. J. Ophthalmol. (1)

S. H. Sarks, “Ageing and degeneration in the macular region: a clinico-pathological study,” Br. J. Ophthalmol.60(5), 324–341 (1976).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging (2)

P. J. Yim, P. L. Choyke, and R. M. Summers, “Gray-scale skeletonization of small vessels in magnetic resonance angiography,” IEEE Trans. Med. Imaging19(6), 568–576 (2000).
[CrossRef] [PubMed]

J. A. Tyrrell, E. di Tomaso, D. Fuja, R. Tong, K. Kozak, R. K. Jain, and B. Roysam, “Robust 3-D modeling of vasculature imagery using superellipsoids,” IEEE Trans. Med. Imaging26(2), 223–237 (2007).
[CrossRef] [PubMed]

IEEE Trans. Neural Netw. (1)

R. Nekovei and Y. Sun, “Back-propagation network and its configuration for blood vessel detection in angiograms,” IEEE Trans. Neural Netw.6(1), 64–72 (1995).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (4)

B. Povazay, B. Hermann, B. Hofer, V. Kajić, E. Simpson, T. Bridgford, and W. Drexler, “Wide-field optical coherence tomography of the choroid in vivo,” Invest. Ophthalmol. Vis. Sci.50(4), 1856–1863 (2009).
[CrossRef] [PubMed]

M. Esmaeelpour, B. Povazay, B. Hermann, B. Hofer, V. Kajic, K. Kapoor, N. J. Sheen, R. V. North, and W. Drexler, “Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients,” Invest. Ophthalmol. Vis. Sci.51(10), 5260–5266 (2010).
[CrossRef] [PubMed]

D. S. McLeod and G. A. Lutty, “High-resolution histologic analysis of the human choroidal vasculature,” Invest. Ophthalmol. Vis. Sci.35(11), 3799–3811 (1994).
[PubMed]

M. Esmaeelpour, B. Povazay, B. Hermann, B. Hofer, V. Kajic, S. Hale, R. V. North, W. Drexler, and N. J. Sheen, “Mapping choroidal and retinal thickness variation in type 2 diabetes using three-dimensional 1060-nm optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(8), 5311–5316 (2011).
[CrossRef] [PubMed]

J. Electron. Imaging (1)

R. M. Rangayyan, F. J. Ayres, F. Oloumi, F. Oloumi, and P. Eshghzadeh-Zanjani, “Detection of blood vessels in the retina with multiscale Gabor filters,” J. Electron. Imaging17(2), 023018 (2008).
[CrossRef]

J. Glaucoma (1)

Z. Q. Yin, T. J. Vaegan, T. J. Millar, P. Beaumont, and S. Sarks, “Widespread choroidal insufficiency in primary open-angle glaucoma,” J. Glaucoma6(1), 23–32 (1997).
[CrossRef] [PubMed]

Tien Tzu Hsueh PaoActa Electronica Sinica (1)

W. P. Zhou, W. X. Yu, and H. Z. Shu, “Detection of cerebral vessels in MRA based on 3D steerable filters,” Tien Tzu Hsueh PaoActa Electronica Sinica34, 1333–1336 (2006).

Trans. Am. Ophthalmol. Soc. (1)

W. R. Green and S. N. Key, “Senile macular degeneration: a histopathologic study,” Trans. Am. Ophthalmol. Soc.75, 180–254 (1977).
[PubMed]

Other (9)

S. Aylward, S. Pizer, D. Eberly, and E. Bullitt, “Intensity ridge and widths for tubular object segmentation and description,” in Proceedings of the Workshop on Mathematical Methods in Biomedical Image Analysis, 1996 (IEEE Computer Society, 1996), pp. 131–138.

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer, 2008), Vol. 1.

ABSoft, ” Neat Video—best noise reduction for digital video.”

P. Thevenaz and M. Unser, “A pyramid approach to sub-pixel image fusion based on mutual information,” in International Conference on Image Processing, 1996. Proceedings (1996), Vol. 1, pp. 265–268.

A. Chung and J. Noble, “Statistical 3D Vessel segmentation using a rician distribution,” in Medical Image Computing and Computer-Assisted Intervention—MICCAI’99, (Springer, 1999), pp. 82–89.

K. Krissian, G. Malandain, N. Ayache, R. Vaillant, and Y. Trousset, “Model-Based Multiscale Detection of 3D Vessels,” in Workshop on Biomedical Image Analysis (1998), pp. 202–208.

N.-Y. Lee, “Automatic generation of 3D vessels model using vessels image matching based on adaptive control points,” in Sixth International Conference on Advanced Language Processing and Web Information Technology, 2007. ALPIT 2007 (2007).

V. Prinet, O. Monaga, C. Ge, S. L. Xie, and S. D. Ma, “Thin network extraction in 3D images: application to medical angiograms,” in Proceedings of the 13th International Conference on Pattern Recognition, 1996 (IEEE Computer Society, 1996), Vol. 3, pp. 386–390.

T. A. Chowdhury, O. Ghita, and P. F. Whelan, “Evaluation of 3D gradient filters for estimation of the surface orientation in CTC,” in IMVIP 2006—10th International Machine Vision and Image Processing Conference (2006), paper 4645.

Supplementary Material (16)

» Media 1: AVI (5246 KB)     
» Media 2: AVI (5282 KB)     
» Media 3: AVI (7843 KB)     
» Media 4: AVI (7902 KB)     
» Media 5: AVI (6928 KB)     
» Media 6: AVI (6946 KB)     
» Media 7: AVI (6280 KB)     
» Media 8: AVI (6273 KB)     
» Media 9: AVI (7049 KB)     
» Media 10: AVI (3645 KB)     
» Media 11: AVI (6993 KB)     
» Media 12: AVI (3874 KB)     
» Media 13: AVI (7319 KB)     
» Media 14: AVI (3833 KB)     
» Media 15: AVI (7048 KB)     
» Media 16: AVI (3281 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

Projected probability cones mark the likely position of the vessel core. The actual algorithm operates fully in 3D, the concept is presented in 2D. Notice the high probability where the cones intersect.

Fig. 2
Fig. 2

Algorithm overview: the data passes through the pre-processing block, giving the choroidal boundary, before being decomposed into multiscale representation and filtered independently to locate vessel estimates. Subsequently, all the estimates are combined to obtain the full vasculature.

Fig. 3
Fig. 3

The two contributing factors to the probability profile, that will cover at least the distance x or longer

Fig. 4
Fig. 4

An ideal vessel profile, with the vessel core marked in red, and the probability profile below in blue.

Fig. 5
Fig. 5

1060 nm OCT scan of a healthy eye with a deep choroid that presents a vessel segmentation challenge (top). The depth related SNR is computed and is used to adjust the thresholding parameters (bottom).

Fig. 6
Fig. 6

A cross-sectional 1060 nm OCT tomogram of a healthy eye, using a single scan (top). The same tomogram is shown with choroidal vessel segmentation (bottom).

Fig. 7
Fig. 7

The same tomogram obtained by performing a double orthogonal scan and merging the data after registration (top), with choroidal vessel segmentation displayed (bottom).

Fig. 8
Fig. 8

A tomogram from a healthy eye with good SNR, using double scan (top, Media 1), with choroidal vessel segmentation overlaid (bottom, Media 2). Sub-chorio-scleral junction vessels are also detected.

Fig. 9
Fig. 9

A tomogram from a healthy eye with deep choroid, using double scan (top, Media 3), with choroidal vessel segmentation overlaid (bottom, Media 4). Vessels close to the sclera are also detected, despite low SNR.

Fig. 10
Fig. 10

A tomogram from a patient with wet AMD, using double scan (top, Media 5), with choroidal vessel segmentation overlaid (bottom, Media 6). Vessels are detected even below the RPE detachment.

Fig. 11
Fig. 11

Tomograms from a patient with dry AMD, using double scan (top, Media 7), with choroidal vessel segmentation overlaid (bottom, Media 8). Vessels are detected despite significant contrast changes and grainy artifacts.

Fig. 12
Fig. 12

Inner to outer pixel ratio, corresponding to the proportion of larger vessels, from sclera towards the RPE in a healthy subject with good SNR data (Fig. 8, Fig. 15)

Fig. 13
Fig. 13

Inner to outer pixel ratio, corresponding to the proportion of larger vessels, from sclera towards the RPE in a patient with wet AMD (Fig. 10, Fig. 17)

Fig. 14
Fig. 14

Healthy eye (subfigures (a), (c), (e)) and a wet AMD (subfigures (b), (d), (f)). (a) and (b) is the ratio of inner pixels and total choroid thickness, (c) and (d) is the ratio of inner pixels and total vessel pixels, (e) and (f) is the ratio of outer pixels and total choroid thickness.

Fig. 15
Fig. 15

A normal eye with good SNR (Fig. 8). Subfigure (a) shows the overlay (Media 9), (b) is a deep cross cut, in (c) the watershed zone can be distinguished (Media 10). The axes show the relative dimensions ratio. The ON label points to the optic nerve

Fig. 16
Fig. 16

A healthy thick choroid (Fig. 9). Subfigure (a) shows the overlay (Media 11), (b) is a surface cross cut, showing the mostly vertical growth of smaller vessels (Media 12). The ON label points to the optic nerve

Fig. 17
Fig. 17

Wet AMD (Fig. 10). Subfigure (a) shows the overlay (Media 13), (b) is a deep cross cut (Media 14). The ON label points to the optic nerve

Fig. 18
Fig. 18

Dry AMD (Fig. 11). Subfigure (a) shows the overlay (Media 15), (b) is a deep cross cut, (c) shows that there are hardly any smaller vessels in the upper choroid (Media 16). The ON label points to the optic nerve

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

k = N N d k = 0 , k = N N d k k = 0 .
A = 8 r 2 Π tan ( α ) γ 1 + γ 2 360 , γ 1 = arcsin ( r sin ( α ) x ) + α , γ 2 = Π ( Π arcsin ( r sin ( α ) x ) + α ) = arcsin ( r sin ( α ) x ) α .
arg max r ( n u m ( r ) 4 r 2 Π tan ( α ) ) .

Metrics