Abstract

Whisking motor output in awake and freely moving rat is investigated with optogenetic excitation/inhibition of the vibrissae motor cortex (vMCx) layer V. The goal of the study is to establish the direct causal relationship between the cortical activity and the whisking output using optical stimulation, excitatory or inhibitory, with different frequencies. Progression and reduction of the whisking frequency was obtained; however, the whisking frequency did not necessarily followed the entrainment stimulus. Based on our observations, the excitation of the vMCx doubled and inhibition reduced the whisking frequency to half, compared to control, at all stimulus frequencies. This result is an empirical evidence that the cortex exerted control through a central pattern generator structure since complete inhibition was not obtained and the frequency of the response was different from that of the stimulus. We suggest that the use of the optogenetic approach, which enabled us to perform the bidirectional modulation and direct readout from vMCx, has brought valid evidence for the causal connection between cortical activity and whisking motor output.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. I. Welker WI, “Analysis of sniffing of the albino rat,” Behaviour22(3/4), 223–244, (1964).
    [CrossRef]
  2. R. W. Berg and D. Kleinfeld, “Rhythmic whisking by rat: retraction as well as protraction of the vibrissae is under active muscular control,” J. Neurophysiol.89(1), 104–117, Jan. (2003).
    [CrossRef] [PubMed]
  3. G. E. Carvell and D. J. Simons, “Biometric analyses of vibrissal tactile discrimination in the rat,” J. Neurosci.10(8), 2638–2648, (1990).
    [PubMed]
  4. G. E. Carvell, S. A. Miller, and D. J. Simons, “The relationship of vibrissal motor cortex unit activity to whisking in the awake rat,” Somatosens. Mot. Res.13(2), 115–127, (1996).
    [CrossRef] [PubMed]
  5. R. W. Berg and D. Kleinfeld, “Vibrissa movement elicited by rhythmic electrical microstimulation to motor cortex in the aroused rat mimics exploratory whisking,” J. Neurophysiol.90(5), 2950–2963, (2003).
    [CrossRef] [PubMed]
  6. L. J. Herfst and M. Brecht, “Whisker movements evoked by stimulation of single motor neurons in the facial nucleus of the rat,” J. Neurophysiol.99, 2821–2832, (2008).
    [CrossRef] [PubMed]
  7. K. F. Ahrens and D. Kleinfeld, “Current flow in vibrissa motor cortex can phase-lock with exploratory rhythmic whisking in rat,” J. Neurophysiol92(3), 1700–1707, (2004).
    [CrossRef] [PubMed]
  8. F. Haiss and C. Schwarz, “Spatial segregation of different modes of movement control in the whisker representation of rat primary motor cortex,” J. Neurosci.25(6), 1579–1587, (2005).
    [CrossRef] [PubMed]
  9. R. Izraeli and L. Porter, “Vibrissal motor cortex in the rat: connections with the barrel field,” Exp. Brain. Res.104(1), 41–54, (1995).
    [CrossRef] [PubMed]
  10. D. Kleinfeld, R. W. Berg, and S. M. O’Connor, “Anatomical loops and their electrical dynamics in relation to whisking by rat,” Somatosens. Mot. Res.16(2), 69–88, (1999).
    [CrossRef] [PubMed]
  11. F. Matyas, V. Sreenivasan, F. Marbach, C. Wacongne, B. Barsy, C. Mateo, R. Aronoff, and C. Petersen, “Motor control by sensory cortex,” Science330(6008), 1240–1243, (2010).
    [CrossRef] [PubMed]
  12. M. E. Helmet and A. Keller, “Superior colliculus control of vibrissa movements,” J. Neurophysiol.100(3), 1245–1254, (2008).
    [CrossRef]
  13. A. Hattox, Y. Li, and A. Keller, “Serotonin regulates rhythmic whisking,” Neuron39(2), 343–352, (2003).
    [CrossRef] [PubMed]
  14. A. M. Hattox, C. A. Priest, and A. Keller, “Functional circuitry involved in the regulation of whisker movements,” J. Comp. Neurol.442, 266–276, (2002).
    [CrossRef] [PubMed]
  15. E. J. Lang, I. Sugihara, and R. Llins, “Olivocerebellar modulation of motor cortex ability to generate vibrissal movements in rat,” J. Physiol.571(Pt 1), 101–120, (2006).
    [CrossRef]
  16. V. Grinevich, M. Brecht, and P. Osten, “Monosynaptic pathway from rat vibrissa motor cortex to facial motor neurons revealed by lentivirus-based axonal tracing,” J. Neurosci.25(36), 8250–8258, (2005).
    [CrossRef] [PubMed]
  17. W. A. Friedman, L. M. Jones, N. P. Cramer, E. E. Kwegyir-Afful, H. P. Zeigler, and A. Keller, “Anticipatory activity of motor cortex in relation to rhythmic whisking,” J. Neurophysiol.95(2), 1274–1277, (2006).
    [CrossRef]
  18. W. A. Friedman, H. P. Zeigler, and A. Keller, “Vibrissae motor cortex unit activity during whisking,” J. Neurophysiol.107(2), 551–563, (2012).
    [CrossRef]
  19. M. A. Castro-Alamancos, “Vibrissa myoclonus (rhythmic retractions) driven by resonance of excitatory networks in motor cortex,” J. Neurophysiol.96(4), 1691–1698, (2006).
    [CrossRef] [PubMed]
  20. N. P. Cramer and A. Keller, “Cortical control of a whisking central pattern generator,” J. Neurophysiol.96(1), 209–217, (2006).
    [CrossRef] [PubMed]
  21. N. P. Cramer, Y. Li, and A. Keller, “The whisking rhythm generator: a novel mammalian network for the generation of movement,” J. Neurophysiol.97(3), 2148–258, (2007).
    [CrossRef] [PubMed]
  22. A. M. Aravanis, L. P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng.4(3), 143–156, (2007).
    [CrossRef]
  23. E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, “Millisecond-timescale, genetically targeted optical control of neural activity,” Nat. Neurosci.8(9), 1263–1268, (2005).
    [CrossRef] [PubMed]
  24. F. Zhang, V. Gradinaru, A. R. Adamantidis, R. Durand, R. D. Airan, L. de Lecea, and K. Deisseroth, “Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures,” Nat. Protoc.5(3), 439–456, (2010).
    [CrossRef] [PubMed]
  25. I. Diester, M. T. Kaufman, M. Mogri, R. Pashaie, W. Goo, O. Yizhar, C. Ramakrishnan, K. Deisseroth, and K. V. Shenoy, “An optogenetic toolbox designed for primates,” Nat. Neurosci.14(3), 387–397, (2011).
    [CrossRef] [PubMed]
  26. R. Pashaie and R. Falk, “Single optical fiber probe for fluorescence detection and optogenetic stimulation,” IEEE Trans. Biomed. Eng. (to be published).
    [PubMed]
  27. K. Frimpong and S. A. Spector, “Cotransduction of nondividing cells using lentiviral vectors,” Gene. Ther.7(18), 1562–1569, (2000).
    [CrossRef] [PubMed]
  28. O. G. Ayling, T. C. Harrison, J. D. Boyd, A. Goroshkov, and T. H. Murphy, “Automated light-based mapping of motor cortex by photoactivation of channelrhodopsin-2 transgenic mice,” Nat. Methods, 6(3), 219–224, (2009).
    [CrossRef] [PubMed]
  29. M. A. Castro-Alamancos, “Neocortical synchronized oscillations induced by thalamic disinhibition in vivo,” J. Neurosci.19(18), RC27 1–7, (1999).
  30. M. A. Castro-Alamancos, “Origin of synchronized oscillations induced by neocortical disinhibition in vivo,” J. Neurosci.20(24), 9195–9206, (2000).
    [PubMed]
  31. A. B. Ali, J. Rossier, J. F. Staiger, and E. Audinat, “Kainate receptors regulate unitary IPSCs elicited in pyramidal cells by fast-spiking interneurons in the neocortex,” J. Neurosci.21(9), 2992–2999, (2001).
    [PubMed]
  32. M. Y. Min, Z. Melyan, and D. M. Kullmann, “Synaptically released glutamate reduces gamma-aminobutyric acid (GABA)ergic inhibition in the hippocampus via kainate receptors,” Proc. Natl. Acad. Sci. USA96, 9932–9937, (1999).
    [CrossRef] [PubMed]
  33. M. Brecht, V. Grinevich, T. E. Jin, T. Margrie, and P. Osten, “Cellular mechanisms of motor control in the vibrissal system,” Pflugers. Arch.453(3), 269–281, (2006).
    [CrossRef] [PubMed]
  34. P. Gao, R. Bermejo, and H. P. Zeigler, “Whisker deafferentation and rodent whisking patterns: behavioral evidence for a central pattern generator,” J. Neurosci.21(14), 5374–5380, (2001).
    [PubMed]
  35. P. Gao, A. M. Hattox, L. M. Jones, A. Keller, and H. P. Zeigler, “Whisker motor cortex ablation and whisker movement patterns,” Somatosens. Mot. Res.20(3–4), 191–198, (2003).
    [CrossRef]
  36. D. L. Sodickson and B. P. Bean, “GABAB receptor-activated inwardly rectifying potassium current in dissociated hippocampal CA3 neurons,” J. Neurosci.16(20), 6374–6385, (1996).
    [PubMed]
  37. S. Kleinlogel, U. Terpitz, B. Legrum, D. Gkbuget, E. Boyden, C. Bamann, P. Wood, and E. Bamberg, “A gene-fusion strategy for stoichiometric and co-localized expression of light-gated membrane proteins,” Nat. Methods8(12), 1083–1088, (2011).
    [CrossRef] [PubMed]

2012 (1)

W. A. Friedman, H. P. Zeigler, and A. Keller, “Vibrissae motor cortex unit activity during whisking,” J. Neurophysiol.107(2), 551–563, (2012).
[CrossRef]

2011 (2)

I. Diester, M. T. Kaufman, M. Mogri, R. Pashaie, W. Goo, O. Yizhar, C. Ramakrishnan, K. Deisseroth, and K. V. Shenoy, “An optogenetic toolbox designed for primates,” Nat. Neurosci.14(3), 387–397, (2011).
[CrossRef] [PubMed]

S. Kleinlogel, U. Terpitz, B. Legrum, D. Gkbuget, E. Boyden, C. Bamann, P. Wood, and E. Bamberg, “A gene-fusion strategy for stoichiometric and co-localized expression of light-gated membrane proteins,” Nat. Methods8(12), 1083–1088, (2011).
[CrossRef] [PubMed]

2010 (2)

F. Zhang, V. Gradinaru, A. R. Adamantidis, R. Durand, R. D. Airan, L. de Lecea, and K. Deisseroth, “Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures,” Nat. Protoc.5(3), 439–456, (2010).
[CrossRef] [PubMed]

F. Matyas, V. Sreenivasan, F. Marbach, C. Wacongne, B. Barsy, C. Mateo, R. Aronoff, and C. Petersen, “Motor control by sensory cortex,” Science330(6008), 1240–1243, (2010).
[CrossRef] [PubMed]

2009 (1)

O. G. Ayling, T. C. Harrison, J. D. Boyd, A. Goroshkov, and T. H. Murphy, “Automated light-based mapping of motor cortex by photoactivation of channelrhodopsin-2 transgenic mice,” Nat. Methods, 6(3), 219–224, (2009).
[CrossRef] [PubMed]

2008 (2)

M. E. Helmet and A. Keller, “Superior colliculus control of vibrissa movements,” J. Neurophysiol.100(3), 1245–1254, (2008).
[CrossRef]

L. J. Herfst and M. Brecht, “Whisker movements evoked by stimulation of single motor neurons in the facial nucleus of the rat,” J. Neurophysiol.99, 2821–2832, (2008).
[CrossRef] [PubMed]

2007 (2)

N. P. Cramer, Y. Li, and A. Keller, “The whisking rhythm generator: a novel mammalian network for the generation of movement,” J. Neurophysiol.97(3), 2148–258, (2007).
[CrossRef] [PubMed]

A. M. Aravanis, L. P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng.4(3), 143–156, (2007).
[CrossRef]

2006 (5)

M. A. Castro-Alamancos, “Vibrissa myoclonus (rhythmic retractions) driven by resonance of excitatory networks in motor cortex,” J. Neurophysiol.96(4), 1691–1698, (2006).
[CrossRef] [PubMed]

N. P. Cramer and A. Keller, “Cortical control of a whisking central pattern generator,” J. Neurophysiol.96(1), 209–217, (2006).
[CrossRef] [PubMed]

W. A. Friedman, L. M. Jones, N. P. Cramer, E. E. Kwegyir-Afful, H. P. Zeigler, and A. Keller, “Anticipatory activity of motor cortex in relation to rhythmic whisking,” J. Neurophysiol.95(2), 1274–1277, (2006).
[CrossRef]

M. Brecht, V. Grinevich, T. E. Jin, T. Margrie, and P. Osten, “Cellular mechanisms of motor control in the vibrissal system,” Pflugers. Arch.453(3), 269–281, (2006).
[CrossRef] [PubMed]

E. J. Lang, I. Sugihara, and R. Llins, “Olivocerebellar modulation of motor cortex ability to generate vibrissal movements in rat,” J. Physiol.571(Pt 1), 101–120, (2006).
[CrossRef]

2005 (3)

V. Grinevich, M. Brecht, and P. Osten, “Monosynaptic pathway from rat vibrissa motor cortex to facial motor neurons revealed by lentivirus-based axonal tracing,” J. Neurosci.25(36), 8250–8258, (2005).
[CrossRef] [PubMed]

F. Haiss and C. Schwarz, “Spatial segregation of different modes of movement control in the whisker representation of rat primary motor cortex,” J. Neurosci.25(6), 1579–1587, (2005).
[CrossRef] [PubMed]

E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, “Millisecond-timescale, genetically targeted optical control of neural activity,” Nat. Neurosci.8(9), 1263–1268, (2005).
[CrossRef] [PubMed]

2004 (1)

K. F. Ahrens and D. Kleinfeld, “Current flow in vibrissa motor cortex can phase-lock with exploratory rhythmic whisking in rat,” J. Neurophysiol92(3), 1700–1707, (2004).
[CrossRef] [PubMed]

2003 (4)

R. W. Berg and D. Kleinfeld, “Rhythmic whisking by rat: retraction as well as protraction of the vibrissae is under active muscular control,” J. Neurophysiol.89(1), 104–117, Jan. (2003).
[CrossRef] [PubMed]

R. W. Berg and D. Kleinfeld, “Vibrissa movement elicited by rhythmic electrical microstimulation to motor cortex in the aroused rat mimics exploratory whisking,” J. Neurophysiol.90(5), 2950–2963, (2003).
[CrossRef] [PubMed]

A. Hattox, Y. Li, and A. Keller, “Serotonin regulates rhythmic whisking,” Neuron39(2), 343–352, (2003).
[CrossRef] [PubMed]

P. Gao, A. M. Hattox, L. M. Jones, A. Keller, and H. P. Zeigler, “Whisker motor cortex ablation and whisker movement patterns,” Somatosens. Mot. Res.20(3–4), 191–198, (2003).
[CrossRef]

2002 (1)

A. M. Hattox, C. A. Priest, and A. Keller, “Functional circuitry involved in the regulation of whisker movements,” J. Comp. Neurol.442, 266–276, (2002).
[CrossRef] [PubMed]

2001 (2)

P. Gao, R. Bermejo, and H. P. Zeigler, “Whisker deafferentation and rodent whisking patterns: behavioral evidence for a central pattern generator,” J. Neurosci.21(14), 5374–5380, (2001).
[PubMed]

A. B. Ali, J. Rossier, J. F. Staiger, and E. Audinat, “Kainate receptors regulate unitary IPSCs elicited in pyramidal cells by fast-spiking interneurons in the neocortex,” J. Neurosci.21(9), 2992–2999, (2001).
[PubMed]

2000 (2)

K. Frimpong and S. A. Spector, “Cotransduction of nondividing cells using lentiviral vectors,” Gene. Ther.7(18), 1562–1569, (2000).
[CrossRef] [PubMed]

M. A. Castro-Alamancos, “Origin of synchronized oscillations induced by neocortical disinhibition in vivo,” J. Neurosci.20(24), 9195–9206, (2000).
[PubMed]

1999 (3)

M. Y. Min, Z. Melyan, and D. M. Kullmann, “Synaptically released glutamate reduces gamma-aminobutyric acid (GABA)ergic inhibition in the hippocampus via kainate receptors,” Proc. Natl. Acad. Sci. USA96, 9932–9937, (1999).
[CrossRef] [PubMed]

M. A. Castro-Alamancos, “Neocortical synchronized oscillations induced by thalamic disinhibition in vivo,” J. Neurosci.19(18), RC27 1–7, (1999).

D. Kleinfeld, R. W. Berg, and S. M. O’Connor, “Anatomical loops and their electrical dynamics in relation to whisking by rat,” Somatosens. Mot. Res.16(2), 69–88, (1999).
[CrossRef] [PubMed]

1996 (2)

G. E. Carvell, S. A. Miller, and D. J. Simons, “The relationship of vibrissal motor cortex unit activity to whisking in the awake rat,” Somatosens. Mot. Res.13(2), 115–127, (1996).
[CrossRef] [PubMed]

D. L. Sodickson and B. P. Bean, “GABAB receptor-activated inwardly rectifying potassium current in dissociated hippocampal CA3 neurons,” J. Neurosci.16(20), 6374–6385, (1996).
[PubMed]

1995 (1)

R. Izraeli and L. Porter, “Vibrissal motor cortex in the rat: connections with the barrel field,” Exp. Brain. Res.104(1), 41–54, (1995).
[CrossRef] [PubMed]

1990 (1)

G. E. Carvell and D. J. Simons, “Biometric analyses of vibrissal tactile discrimination in the rat,” J. Neurosci.10(8), 2638–2648, (1990).
[PubMed]

1964 (1)

W. I. Welker WI, “Analysis of sniffing of the albino rat,” Behaviour22(3/4), 223–244, (1964).
[CrossRef]

Adamantidis, A. R.

F. Zhang, V. Gradinaru, A. R. Adamantidis, R. Durand, R. D. Airan, L. de Lecea, and K. Deisseroth, “Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures,” Nat. Protoc.5(3), 439–456, (2010).
[CrossRef] [PubMed]

Ahrens, K. F.

K. F. Ahrens and D. Kleinfeld, “Current flow in vibrissa motor cortex can phase-lock with exploratory rhythmic whisking in rat,” J. Neurophysiol92(3), 1700–1707, (2004).
[CrossRef] [PubMed]

Airan, R. D.

F. Zhang, V. Gradinaru, A. R. Adamantidis, R. Durand, R. D. Airan, L. de Lecea, and K. Deisseroth, “Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures,” Nat. Protoc.5(3), 439–456, (2010).
[CrossRef] [PubMed]

Ali, A. B.

A. B. Ali, J. Rossier, J. F. Staiger, and E. Audinat, “Kainate receptors regulate unitary IPSCs elicited in pyramidal cells by fast-spiking interneurons in the neocortex,” J. Neurosci.21(9), 2992–2999, (2001).
[PubMed]

Aravanis, A. M.

A. M. Aravanis, L. P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng.4(3), 143–156, (2007).
[CrossRef]

Aronoff, R.

F. Matyas, V. Sreenivasan, F. Marbach, C. Wacongne, B. Barsy, C. Mateo, R. Aronoff, and C. Petersen, “Motor control by sensory cortex,” Science330(6008), 1240–1243, (2010).
[CrossRef] [PubMed]

Audinat, E.

A. B. Ali, J. Rossier, J. F. Staiger, and E. Audinat, “Kainate receptors regulate unitary IPSCs elicited in pyramidal cells by fast-spiking interneurons in the neocortex,” J. Neurosci.21(9), 2992–2999, (2001).
[PubMed]

Ayling, O. G.

O. G. Ayling, T. C. Harrison, J. D. Boyd, A. Goroshkov, and T. H. Murphy, “Automated light-based mapping of motor cortex by photoactivation of channelrhodopsin-2 transgenic mice,” Nat. Methods, 6(3), 219–224, (2009).
[CrossRef] [PubMed]

Bamann, C.

S. Kleinlogel, U. Terpitz, B. Legrum, D. Gkbuget, E. Boyden, C. Bamann, P. Wood, and E. Bamberg, “A gene-fusion strategy for stoichiometric and co-localized expression of light-gated membrane proteins,” Nat. Methods8(12), 1083–1088, (2011).
[CrossRef] [PubMed]

Bamberg, E.

S. Kleinlogel, U. Terpitz, B. Legrum, D. Gkbuget, E. Boyden, C. Bamann, P. Wood, and E. Bamberg, “A gene-fusion strategy for stoichiometric and co-localized expression of light-gated membrane proteins,” Nat. Methods8(12), 1083–1088, (2011).
[CrossRef] [PubMed]

E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, “Millisecond-timescale, genetically targeted optical control of neural activity,” Nat. Neurosci.8(9), 1263–1268, (2005).
[CrossRef] [PubMed]

Barsy, B.

F. Matyas, V. Sreenivasan, F. Marbach, C. Wacongne, B. Barsy, C. Mateo, R. Aronoff, and C. Petersen, “Motor control by sensory cortex,” Science330(6008), 1240–1243, (2010).
[CrossRef] [PubMed]

Bean, B. P.

D. L. Sodickson and B. P. Bean, “GABAB receptor-activated inwardly rectifying potassium current in dissociated hippocampal CA3 neurons,” J. Neurosci.16(20), 6374–6385, (1996).
[PubMed]

Berg, R. W.

R. W. Berg and D. Kleinfeld, “Rhythmic whisking by rat: retraction as well as protraction of the vibrissae is under active muscular control,” J. Neurophysiol.89(1), 104–117, Jan. (2003).
[CrossRef] [PubMed]

R. W. Berg and D. Kleinfeld, “Vibrissa movement elicited by rhythmic electrical microstimulation to motor cortex in the aroused rat mimics exploratory whisking,” J. Neurophysiol.90(5), 2950–2963, (2003).
[CrossRef] [PubMed]

D. Kleinfeld, R. W. Berg, and S. M. O’Connor, “Anatomical loops and their electrical dynamics in relation to whisking by rat,” Somatosens. Mot. Res.16(2), 69–88, (1999).
[CrossRef] [PubMed]

Bermejo, R.

P. Gao, R. Bermejo, and H. P. Zeigler, “Whisker deafferentation and rodent whisking patterns: behavioral evidence for a central pattern generator,” J. Neurosci.21(14), 5374–5380, (2001).
[PubMed]

Boyd, J. D.

O. G. Ayling, T. C. Harrison, J. D. Boyd, A. Goroshkov, and T. H. Murphy, “Automated light-based mapping of motor cortex by photoactivation of channelrhodopsin-2 transgenic mice,” Nat. Methods, 6(3), 219–224, (2009).
[CrossRef] [PubMed]

Boyden, E.

S. Kleinlogel, U. Terpitz, B. Legrum, D. Gkbuget, E. Boyden, C. Bamann, P. Wood, and E. Bamberg, “A gene-fusion strategy for stoichiometric and co-localized expression of light-gated membrane proteins,” Nat. Methods8(12), 1083–1088, (2011).
[CrossRef] [PubMed]

Boyden, E. S.

E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, “Millisecond-timescale, genetically targeted optical control of neural activity,” Nat. Neurosci.8(9), 1263–1268, (2005).
[CrossRef] [PubMed]

Brecht, M.

L. J. Herfst and M. Brecht, “Whisker movements evoked by stimulation of single motor neurons in the facial nucleus of the rat,” J. Neurophysiol.99, 2821–2832, (2008).
[CrossRef] [PubMed]

M. Brecht, V. Grinevich, T. E. Jin, T. Margrie, and P. Osten, “Cellular mechanisms of motor control in the vibrissal system,” Pflugers. Arch.453(3), 269–281, (2006).
[CrossRef] [PubMed]

V. Grinevich, M. Brecht, and P. Osten, “Monosynaptic pathway from rat vibrissa motor cortex to facial motor neurons revealed by lentivirus-based axonal tracing,” J. Neurosci.25(36), 8250–8258, (2005).
[CrossRef] [PubMed]

Carvell, G. E.

G. E. Carvell, S. A. Miller, and D. J. Simons, “The relationship of vibrissal motor cortex unit activity to whisking in the awake rat,” Somatosens. Mot. Res.13(2), 115–127, (1996).
[CrossRef] [PubMed]

G. E. Carvell and D. J. Simons, “Biometric analyses of vibrissal tactile discrimination in the rat,” J. Neurosci.10(8), 2638–2648, (1990).
[PubMed]

Castro-Alamancos, M. A.

M. A. Castro-Alamancos, “Vibrissa myoclonus (rhythmic retractions) driven by resonance of excitatory networks in motor cortex,” J. Neurophysiol.96(4), 1691–1698, (2006).
[CrossRef] [PubMed]

M. A. Castro-Alamancos, “Origin of synchronized oscillations induced by neocortical disinhibition in vivo,” J. Neurosci.20(24), 9195–9206, (2000).
[PubMed]

M. A. Castro-Alamancos, “Neocortical synchronized oscillations induced by thalamic disinhibition in vivo,” J. Neurosci.19(18), RC27 1–7, (1999).

Cramer, N. P.

N. P. Cramer, Y. Li, and A. Keller, “The whisking rhythm generator: a novel mammalian network for the generation of movement,” J. Neurophysiol.97(3), 2148–258, (2007).
[CrossRef] [PubMed]

W. A. Friedman, L. M. Jones, N. P. Cramer, E. E. Kwegyir-Afful, H. P. Zeigler, and A. Keller, “Anticipatory activity of motor cortex in relation to rhythmic whisking,” J. Neurophysiol.95(2), 1274–1277, (2006).
[CrossRef]

N. P. Cramer and A. Keller, “Cortical control of a whisking central pattern generator,” J. Neurophysiol.96(1), 209–217, (2006).
[CrossRef] [PubMed]

de Lecea, L.

F. Zhang, V. Gradinaru, A. R. Adamantidis, R. Durand, R. D. Airan, L. de Lecea, and K. Deisseroth, “Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures,” Nat. Protoc.5(3), 439–456, (2010).
[CrossRef] [PubMed]

Deisseroth, K.

I. Diester, M. T. Kaufman, M. Mogri, R. Pashaie, W. Goo, O. Yizhar, C. Ramakrishnan, K. Deisseroth, and K. V. Shenoy, “An optogenetic toolbox designed for primates,” Nat. Neurosci.14(3), 387–397, (2011).
[CrossRef] [PubMed]

F. Zhang, V. Gradinaru, A. R. Adamantidis, R. Durand, R. D. Airan, L. de Lecea, and K. Deisseroth, “Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures,” Nat. Protoc.5(3), 439–456, (2010).
[CrossRef] [PubMed]

A. M. Aravanis, L. P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng.4(3), 143–156, (2007).
[CrossRef]

E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, “Millisecond-timescale, genetically targeted optical control of neural activity,” Nat. Neurosci.8(9), 1263–1268, (2005).
[CrossRef] [PubMed]

Diester, I.

I. Diester, M. T. Kaufman, M. Mogri, R. Pashaie, W. Goo, O. Yizhar, C. Ramakrishnan, K. Deisseroth, and K. V. Shenoy, “An optogenetic toolbox designed for primates,” Nat. Neurosci.14(3), 387–397, (2011).
[CrossRef] [PubMed]

Durand, R.

F. Zhang, V. Gradinaru, A. R. Adamantidis, R. Durand, R. D. Airan, L. de Lecea, and K. Deisseroth, “Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures,” Nat. Protoc.5(3), 439–456, (2010).
[CrossRef] [PubMed]

Falk, R.

R. Pashaie and R. Falk, “Single optical fiber probe for fluorescence detection and optogenetic stimulation,” IEEE Trans. Biomed. Eng. (to be published).
[PubMed]

Friedman, W. A.

W. A. Friedman, H. P. Zeigler, and A. Keller, “Vibrissae motor cortex unit activity during whisking,” J. Neurophysiol.107(2), 551–563, (2012).
[CrossRef]

W. A. Friedman, L. M. Jones, N. P. Cramer, E. E. Kwegyir-Afful, H. P. Zeigler, and A. Keller, “Anticipatory activity of motor cortex in relation to rhythmic whisking,” J. Neurophysiol.95(2), 1274–1277, (2006).
[CrossRef]

Frimpong, K.

K. Frimpong and S. A. Spector, “Cotransduction of nondividing cells using lentiviral vectors,” Gene. Ther.7(18), 1562–1569, (2000).
[CrossRef] [PubMed]

Gao, P.

P. Gao, A. M. Hattox, L. M. Jones, A. Keller, and H. P. Zeigler, “Whisker motor cortex ablation and whisker movement patterns,” Somatosens. Mot. Res.20(3–4), 191–198, (2003).
[CrossRef]

P. Gao, R. Bermejo, and H. P. Zeigler, “Whisker deafferentation and rodent whisking patterns: behavioral evidence for a central pattern generator,” J. Neurosci.21(14), 5374–5380, (2001).
[PubMed]

Gkbuget, D.

S. Kleinlogel, U. Terpitz, B. Legrum, D. Gkbuget, E. Boyden, C. Bamann, P. Wood, and E. Bamberg, “A gene-fusion strategy for stoichiometric and co-localized expression of light-gated membrane proteins,” Nat. Methods8(12), 1083–1088, (2011).
[CrossRef] [PubMed]

Goo, W.

I. Diester, M. T. Kaufman, M. Mogri, R. Pashaie, W. Goo, O. Yizhar, C. Ramakrishnan, K. Deisseroth, and K. V. Shenoy, “An optogenetic toolbox designed for primates,” Nat. Neurosci.14(3), 387–397, (2011).
[CrossRef] [PubMed]

Goroshkov, A.

O. G. Ayling, T. C. Harrison, J. D. Boyd, A. Goroshkov, and T. H. Murphy, “Automated light-based mapping of motor cortex by photoactivation of channelrhodopsin-2 transgenic mice,” Nat. Methods, 6(3), 219–224, (2009).
[CrossRef] [PubMed]

Gradinaru, V.

F. Zhang, V. Gradinaru, A. R. Adamantidis, R. Durand, R. D. Airan, L. de Lecea, and K. Deisseroth, “Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures,” Nat. Protoc.5(3), 439–456, (2010).
[CrossRef] [PubMed]

Grinevich, V.

M. Brecht, V. Grinevich, T. E. Jin, T. Margrie, and P. Osten, “Cellular mechanisms of motor control in the vibrissal system,” Pflugers. Arch.453(3), 269–281, (2006).
[CrossRef] [PubMed]

V. Grinevich, M. Brecht, and P. Osten, “Monosynaptic pathway from rat vibrissa motor cortex to facial motor neurons revealed by lentivirus-based axonal tracing,” J. Neurosci.25(36), 8250–8258, (2005).
[CrossRef] [PubMed]

Haiss, F.

F. Haiss and C. Schwarz, “Spatial segregation of different modes of movement control in the whisker representation of rat primary motor cortex,” J. Neurosci.25(6), 1579–1587, (2005).
[CrossRef] [PubMed]

Harrison, T. C.

O. G. Ayling, T. C. Harrison, J. D. Boyd, A. Goroshkov, and T. H. Murphy, “Automated light-based mapping of motor cortex by photoactivation of channelrhodopsin-2 transgenic mice,” Nat. Methods, 6(3), 219–224, (2009).
[CrossRef] [PubMed]

Hattox, A.

A. Hattox, Y. Li, and A. Keller, “Serotonin regulates rhythmic whisking,” Neuron39(2), 343–352, (2003).
[CrossRef] [PubMed]

Hattox, A. M.

P. Gao, A. M. Hattox, L. M. Jones, A. Keller, and H. P. Zeigler, “Whisker motor cortex ablation and whisker movement patterns,” Somatosens. Mot. Res.20(3–4), 191–198, (2003).
[CrossRef]

A. M. Hattox, C. A. Priest, and A. Keller, “Functional circuitry involved in the regulation of whisker movements,” J. Comp. Neurol.442, 266–276, (2002).
[CrossRef] [PubMed]

Helmet, M. E.

M. E. Helmet and A. Keller, “Superior colliculus control of vibrissa movements,” J. Neurophysiol.100(3), 1245–1254, (2008).
[CrossRef]

Herfst, L. J.

L. J. Herfst and M. Brecht, “Whisker movements evoked by stimulation of single motor neurons in the facial nucleus of the rat,” J. Neurophysiol.99, 2821–2832, (2008).
[CrossRef] [PubMed]

Izraeli, R.

R. Izraeli and L. Porter, “Vibrissal motor cortex in the rat: connections with the barrel field,” Exp. Brain. Res.104(1), 41–54, (1995).
[CrossRef] [PubMed]

Jin, T. E.

M. Brecht, V. Grinevich, T. E. Jin, T. Margrie, and P. Osten, “Cellular mechanisms of motor control in the vibrissal system,” Pflugers. Arch.453(3), 269–281, (2006).
[CrossRef] [PubMed]

Jones, L. M.

W. A. Friedman, L. M. Jones, N. P. Cramer, E. E. Kwegyir-Afful, H. P. Zeigler, and A. Keller, “Anticipatory activity of motor cortex in relation to rhythmic whisking,” J. Neurophysiol.95(2), 1274–1277, (2006).
[CrossRef]

P. Gao, A. M. Hattox, L. M. Jones, A. Keller, and H. P. Zeigler, “Whisker motor cortex ablation and whisker movement patterns,” Somatosens. Mot. Res.20(3–4), 191–198, (2003).
[CrossRef]

Kaufman, M. T.

I. Diester, M. T. Kaufman, M. Mogri, R. Pashaie, W. Goo, O. Yizhar, C. Ramakrishnan, K. Deisseroth, and K. V. Shenoy, “An optogenetic toolbox designed for primates,” Nat. Neurosci.14(3), 387–397, (2011).
[CrossRef] [PubMed]

Keller, A.

W. A. Friedman, H. P. Zeigler, and A. Keller, “Vibrissae motor cortex unit activity during whisking,” J. Neurophysiol.107(2), 551–563, (2012).
[CrossRef]

M. E. Helmet and A. Keller, “Superior colliculus control of vibrissa movements,” J. Neurophysiol.100(3), 1245–1254, (2008).
[CrossRef]

N. P. Cramer, Y. Li, and A. Keller, “The whisking rhythm generator: a novel mammalian network for the generation of movement,” J. Neurophysiol.97(3), 2148–258, (2007).
[CrossRef] [PubMed]

N. P. Cramer and A. Keller, “Cortical control of a whisking central pattern generator,” J. Neurophysiol.96(1), 209–217, (2006).
[CrossRef] [PubMed]

W. A. Friedman, L. M. Jones, N. P. Cramer, E. E. Kwegyir-Afful, H. P. Zeigler, and A. Keller, “Anticipatory activity of motor cortex in relation to rhythmic whisking,” J. Neurophysiol.95(2), 1274–1277, (2006).
[CrossRef]

P. Gao, A. M. Hattox, L. M. Jones, A. Keller, and H. P. Zeigler, “Whisker motor cortex ablation and whisker movement patterns,” Somatosens. Mot. Res.20(3–4), 191–198, (2003).
[CrossRef]

A. Hattox, Y. Li, and A. Keller, “Serotonin regulates rhythmic whisking,” Neuron39(2), 343–352, (2003).
[CrossRef] [PubMed]

A. M. Hattox, C. A. Priest, and A. Keller, “Functional circuitry involved in the regulation of whisker movements,” J. Comp. Neurol.442, 266–276, (2002).
[CrossRef] [PubMed]

Kleinfeld, D.

K. F. Ahrens and D. Kleinfeld, “Current flow in vibrissa motor cortex can phase-lock with exploratory rhythmic whisking in rat,” J. Neurophysiol92(3), 1700–1707, (2004).
[CrossRef] [PubMed]

R. W. Berg and D. Kleinfeld, “Vibrissa movement elicited by rhythmic electrical microstimulation to motor cortex in the aroused rat mimics exploratory whisking,” J. Neurophysiol.90(5), 2950–2963, (2003).
[CrossRef] [PubMed]

R. W. Berg and D. Kleinfeld, “Rhythmic whisking by rat: retraction as well as protraction of the vibrissae is under active muscular control,” J. Neurophysiol.89(1), 104–117, Jan. (2003).
[CrossRef] [PubMed]

D. Kleinfeld, R. W. Berg, and S. M. O’Connor, “Anatomical loops and their electrical dynamics in relation to whisking by rat,” Somatosens. Mot. Res.16(2), 69–88, (1999).
[CrossRef] [PubMed]

Kleinlogel, S.

S. Kleinlogel, U. Terpitz, B. Legrum, D. Gkbuget, E. Boyden, C. Bamann, P. Wood, and E. Bamberg, “A gene-fusion strategy for stoichiometric and co-localized expression of light-gated membrane proteins,” Nat. Methods8(12), 1083–1088, (2011).
[CrossRef] [PubMed]

Kullmann, D. M.

M. Y. Min, Z. Melyan, and D. M. Kullmann, “Synaptically released glutamate reduces gamma-aminobutyric acid (GABA)ergic inhibition in the hippocampus via kainate receptors,” Proc. Natl. Acad. Sci. USA96, 9932–9937, (1999).
[CrossRef] [PubMed]

Kwegyir-Afful, E. E.

W. A. Friedman, L. M. Jones, N. P. Cramer, E. E. Kwegyir-Afful, H. P. Zeigler, and A. Keller, “Anticipatory activity of motor cortex in relation to rhythmic whisking,” J. Neurophysiol.95(2), 1274–1277, (2006).
[CrossRef]

Lang, E. J.

E. J. Lang, I. Sugihara, and R. Llins, “Olivocerebellar modulation of motor cortex ability to generate vibrissal movements in rat,” J. Physiol.571(Pt 1), 101–120, (2006).
[CrossRef]

Legrum, B.

S. Kleinlogel, U. Terpitz, B. Legrum, D. Gkbuget, E. Boyden, C. Bamann, P. Wood, and E. Bamberg, “A gene-fusion strategy for stoichiometric and co-localized expression of light-gated membrane proteins,” Nat. Methods8(12), 1083–1088, (2011).
[CrossRef] [PubMed]

Li, Y.

N. P. Cramer, Y. Li, and A. Keller, “The whisking rhythm generator: a novel mammalian network for the generation of movement,” J. Neurophysiol.97(3), 2148–258, (2007).
[CrossRef] [PubMed]

A. Hattox, Y. Li, and A. Keller, “Serotonin regulates rhythmic whisking,” Neuron39(2), 343–352, (2003).
[CrossRef] [PubMed]

Llins, R.

E. J. Lang, I. Sugihara, and R. Llins, “Olivocerebellar modulation of motor cortex ability to generate vibrissal movements in rat,” J. Physiol.571(Pt 1), 101–120, (2006).
[CrossRef]

Marbach, F.

F. Matyas, V. Sreenivasan, F. Marbach, C. Wacongne, B. Barsy, C. Mateo, R. Aronoff, and C. Petersen, “Motor control by sensory cortex,” Science330(6008), 1240–1243, (2010).
[CrossRef] [PubMed]

Margrie, T.

M. Brecht, V. Grinevich, T. E. Jin, T. Margrie, and P. Osten, “Cellular mechanisms of motor control in the vibrissal system,” Pflugers. Arch.453(3), 269–281, (2006).
[CrossRef] [PubMed]

Mateo, C.

F. Matyas, V. Sreenivasan, F. Marbach, C. Wacongne, B. Barsy, C. Mateo, R. Aronoff, and C. Petersen, “Motor control by sensory cortex,” Science330(6008), 1240–1243, (2010).
[CrossRef] [PubMed]

Matyas, F.

F. Matyas, V. Sreenivasan, F. Marbach, C. Wacongne, B. Barsy, C. Mateo, R. Aronoff, and C. Petersen, “Motor control by sensory cortex,” Science330(6008), 1240–1243, (2010).
[CrossRef] [PubMed]

Meltzer, L. A.

A. M. Aravanis, L. P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng.4(3), 143–156, (2007).
[CrossRef]

Melyan, Z.

M. Y. Min, Z. Melyan, and D. M. Kullmann, “Synaptically released glutamate reduces gamma-aminobutyric acid (GABA)ergic inhibition in the hippocampus via kainate receptors,” Proc. Natl. Acad. Sci. USA96, 9932–9937, (1999).
[CrossRef] [PubMed]

Miller, S. A.

G. E. Carvell, S. A. Miller, and D. J. Simons, “The relationship of vibrissal motor cortex unit activity to whisking in the awake rat,” Somatosens. Mot. Res.13(2), 115–127, (1996).
[CrossRef] [PubMed]

Min, M. Y.

M. Y. Min, Z. Melyan, and D. M. Kullmann, “Synaptically released glutamate reduces gamma-aminobutyric acid (GABA)ergic inhibition in the hippocampus via kainate receptors,” Proc. Natl. Acad. Sci. USA96, 9932–9937, (1999).
[CrossRef] [PubMed]

Mogri, M.

I. Diester, M. T. Kaufman, M. Mogri, R. Pashaie, W. Goo, O. Yizhar, C. Ramakrishnan, K. Deisseroth, and K. V. Shenoy, “An optogenetic toolbox designed for primates,” Nat. Neurosci.14(3), 387–397, (2011).
[CrossRef] [PubMed]

Mogri, M. Z.

A. M. Aravanis, L. P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng.4(3), 143–156, (2007).
[CrossRef]

Murphy, T. H.

O. G. Ayling, T. C. Harrison, J. D. Boyd, A. Goroshkov, and T. H. Murphy, “Automated light-based mapping of motor cortex by photoactivation of channelrhodopsin-2 transgenic mice,” Nat. Methods, 6(3), 219–224, (2009).
[CrossRef] [PubMed]

Nagel, G.

E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, “Millisecond-timescale, genetically targeted optical control of neural activity,” Nat. Neurosci.8(9), 1263–1268, (2005).
[CrossRef] [PubMed]

O’Connor, S. M.

D. Kleinfeld, R. W. Berg, and S. M. O’Connor, “Anatomical loops and their electrical dynamics in relation to whisking by rat,” Somatosens. Mot. Res.16(2), 69–88, (1999).
[CrossRef] [PubMed]

Osten, P.

M. Brecht, V. Grinevich, T. E. Jin, T. Margrie, and P. Osten, “Cellular mechanisms of motor control in the vibrissal system,” Pflugers. Arch.453(3), 269–281, (2006).
[CrossRef] [PubMed]

V. Grinevich, M. Brecht, and P. Osten, “Monosynaptic pathway from rat vibrissa motor cortex to facial motor neurons revealed by lentivirus-based axonal tracing,” J. Neurosci.25(36), 8250–8258, (2005).
[CrossRef] [PubMed]

Pashaie, R.

I. Diester, M. T. Kaufman, M. Mogri, R. Pashaie, W. Goo, O. Yizhar, C. Ramakrishnan, K. Deisseroth, and K. V. Shenoy, “An optogenetic toolbox designed for primates,” Nat. Neurosci.14(3), 387–397, (2011).
[CrossRef] [PubMed]

R. Pashaie and R. Falk, “Single optical fiber probe for fluorescence detection and optogenetic stimulation,” IEEE Trans. Biomed. Eng. (to be published).
[PubMed]

Petersen, C.

F. Matyas, V. Sreenivasan, F. Marbach, C. Wacongne, B. Barsy, C. Mateo, R. Aronoff, and C. Petersen, “Motor control by sensory cortex,” Science330(6008), 1240–1243, (2010).
[CrossRef] [PubMed]

Porter, L.

R. Izraeli and L. Porter, “Vibrissal motor cortex in the rat: connections with the barrel field,” Exp. Brain. Res.104(1), 41–54, (1995).
[CrossRef] [PubMed]

Priest, C. A.

A. M. Hattox, C. A. Priest, and A. Keller, “Functional circuitry involved in the regulation of whisker movements,” J. Comp. Neurol.442, 266–276, (2002).
[CrossRef] [PubMed]

Ramakrishnan, C.

I. Diester, M. T. Kaufman, M. Mogri, R. Pashaie, W. Goo, O. Yizhar, C. Ramakrishnan, K. Deisseroth, and K. V. Shenoy, “An optogenetic toolbox designed for primates,” Nat. Neurosci.14(3), 387–397, (2011).
[CrossRef] [PubMed]

Rossier, J.

A. B. Ali, J. Rossier, J. F. Staiger, and E. Audinat, “Kainate receptors regulate unitary IPSCs elicited in pyramidal cells by fast-spiking interneurons in the neocortex,” J. Neurosci.21(9), 2992–2999, (2001).
[PubMed]

Schneider, M. B.

A. M. Aravanis, L. P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng.4(3), 143–156, (2007).
[CrossRef]

Schwarz, C.

F. Haiss and C. Schwarz, “Spatial segregation of different modes of movement control in the whisker representation of rat primary motor cortex,” J. Neurosci.25(6), 1579–1587, (2005).
[CrossRef] [PubMed]

Shenoy, K. V.

I. Diester, M. T. Kaufman, M. Mogri, R. Pashaie, W. Goo, O. Yizhar, C. Ramakrishnan, K. Deisseroth, and K. V. Shenoy, “An optogenetic toolbox designed for primates,” Nat. Neurosci.14(3), 387–397, (2011).
[CrossRef] [PubMed]

Simons, D. J.

G. E. Carvell, S. A. Miller, and D. J. Simons, “The relationship of vibrissal motor cortex unit activity to whisking in the awake rat,” Somatosens. Mot. Res.13(2), 115–127, (1996).
[CrossRef] [PubMed]

G. E. Carvell and D. J. Simons, “Biometric analyses of vibrissal tactile discrimination in the rat,” J. Neurosci.10(8), 2638–2648, (1990).
[PubMed]

Sodickson, D. L.

D. L. Sodickson and B. P. Bean, “GABAB receptor-activated inwardly rectifying potassium current in dissociated hippocampal CA3 neurons,” J. Neurosci.16(20), 6374–6385, (1996).
[PubMed]

Spector, S. A.

K. Frimpong and S. A. Spector, “Cotransduction of nondividing cells using lentiviral vectors,” Gene. Ther.7(18), 1562–1569, (2000).
[CrossRef] [PubMed]

Sreenivasan, V.

F. Matyas, V. Sreenivasan, F. Marbach, C. Wacongne, B. Barsy, C. Mateo, R. Aronoff, and C. Petersen, “Motor control by sensory cortex,” Science330(6008), 1240–1243, (2010).
[CrossRef] [PubMed]

Staiger, J. F.

A. B. Ali, J. Rossier, J. F. Staiger, and E. Audinat, “Kainate receptors regulate unitary IPSCs elicited in pyramidal cells by fast-spiking interneurons in the neocortex,” J. Neurosci.21(9), 2992–2999, (2001).
[PubMed]

Sugihara, I.

E. J. Lang, I. Sugihara, and R. Llins, “Olivocerebellar modulation of motor cortex ability to generate vibrissal movements in rat,” J. Physiol.571(Pt 1), 101–120, (2006).
[CrossRef]

Terpitz, U.

S. Kleinlogel, U. Terpitz, B. Legrum, D. Gkbuget, E. Boyden, C. Bamann, P. Wood, and E. Bamberg, “A gene-fusion strategy for stoichiometric and co-localized expression of light-gated membrane proteins,” Nat. Methods8(12), 1083–1088, (2011).
[CrossRef] [PubMed]

Wacongne, C.

F. Matyas, V. Sreenivasan, F. Marbach, C. Wacongne, B. Barsy, C. Mateo, R. Aronoff, and C. Petersen, “Motor control by sensory cortex,” Science330(6008), 1240–1243, (2010).
[CrossRef] [PubMed]

Wang, L. P.

A. M. Aravanis, L. P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng.4(3), 143–156, (2007).
[CrossRef]

Welker WI, W. I.

W. I. Welker WI, “Analysis of sniffing of the albino rat,” Behaviour22(3/4), 223–244, (1964).
[CrossRef]

Wood, P.

S. Kleinlogel, U. Terpitz, B. Legrum, D. Gkbuget, E. Boyden, C. Bamann, P. Wood, and E. Bamberg, “A gene-fusion strategy for stoichiometric and co-localized expression of light-gated membrane proteins,” Nat. Methods8(12), 1083–1088, (2011).
[CrossRef] [PubMed]

Yizhar, O.

I. Diester, M. T. Kaufman, M. Mogri, R. Pashaie, W. Goo, O. Yizhar, C. Ramakrishnan, K. Deisseroth, and K. V. Shenoy, “An optogenetic toolbox designed for primates,” Nat. Neurosci.14(3), 387–397, (2011).
[CrossRef] [PubMed]

Zeigler, H. P.

W. A. Friedman, H. P. Zeigler, and A. Keller, “Vibrissae motor cortex unit activity during whisking,” J. Neurophysiol.107(2), 551–563, (2012).
[CrossRef]

W. A. Friedman, L. M. Jones, N. P. Cramer, E. E. Kwegyir-Afful, H. P. Zeigler, and A. Keller, “Anticipatory activity of motor cortex in relation to rhythmic whisking,” J. Neurophysiol.95(2), 1274–1277, (2006).
[CrossRef]

P. Gao, A. M. Hattox, L. M. Jones, A. Keller, and H. P. Zeigler, “Whisker motor cortex ablation and whisker movement patterns,” Somatosens. Mot. Res.20(3–4), 191–198, (2003).
[CrossRef]

P. Gao, R. Bermejo, and H. P. Zeigler, “Whisker deafferentation and rodent whisking patterns: behavioral evidence for a central pattern generator,” J. Neurosci.21(14), 5374–5380, (2001).
[PubMed]

Zhang, F.

F. Zhang, V. Gradinaru, A. R. Adamantidis, R. Durand, R. D. Airan, L. de Lecea, and K. Deisseroth, “Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures,” Nat. Protoc.5(3), 439–456, (2010).
[CrossRef] [PubMed]

A. M. Aravanis, L. P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng.4(3), 143–156, (2007).
[CrossRef]

E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, “Millisecond-timescale, genetically targeted optical control of neural activity,” Nat. Neurosci.8(9), 1263–1268, (2005).
[CrossRef] [PubMed]

Behaviour (1)

W. I. Welker WI, “Analysis of sniffing of the albino rat,” Behaviour22(3/4), 223–244, (1964).
[CrossRef]

Exp. Brain. Res. (1)

R. Izraeli and L. Porter, “Vibrissal motor cortex in the rat: connections with the barrel field,” Exp. Brain. Res.104(1), 41–54, (1995).
[CrossRef] [PubMed]

Gene. Ther. (1)

K. Frimpong and S. A. Spector, “Cotransduction of nondividing cells using lentiviral vectors,” Gene. Ther.7(18), 1562–1569, (2000).
[CrossRef] [PubMed]

J. Comp. Neurol. (1)

A. M. Hattox, C. A. Priest, and A. Keller, “Functional circuitry involved in the regulation of whisker movements,” J. Comp. Neurol.442, 266–276, (2002).
[CrossRef] [PubMed]

J. Neural Eng. (1)

A. M. Aravanis, L. P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng.4(3), 143–156, (2007).
[CrossRef]

J. Neurophysiol (1)

K. F. Ahrens and D. Kleinfeld, “Current flow in vibrissa motor cortex can phase-lock with exploratory rhythmic whisking in rat,” J. Neurophysiol92(3), 1700–1707, (2004).
[CrossRef] [PubMed]

J. Neurophysiol. (9)

R. W. Berg and D. Kleinfeld, “Vibrissa movement elicited by rhythmic electrical microstimulation to motor cortex in the aroused rat mimics exploratory whisking,” J. Neurophysiol.90(5), 2950–2963, (2003).
[CrossRef] [PubMed]

L. J. Herfst and M. Brecht, “Whisker movements evoked by stimulation of single motor neurons in the facial nucleus of the rat,” J. Neurophysiol.99, 2821–2832, (2008).
[CrossRef] [PubMed]

R. W. Berg and D. Kleinfeld, “Rhythmic whisking by rat: retraction as well as protraction of the vibrissae is under active muscular control,” J. Neurophysiol.89(1), 104–117, Jan. (2003).
[CrossRef] [PubMed]

M. E. Helmet and A. Keller, “Superior colliculus control of vibrissa movements,” J. Neurophysiol.100(3), 1245–1254, (2008).
[CrossRef]

W. A. Friedman, L. M. Jones, N. P. Cramer, E. E. Kwegyir-Afful, H. P. Zeigler, and A. Keller, “Anticipatory activity of motor cortex in relation to rhythmic whisking,” J. Neurophysiol.95(2), 1274–1277, (2006).
[CrossRef]

W. A. Friedman, H. P. Zeigler, and A. Keller, “Vibrissae motor cortex unit activity during whisking,” J. Neurophysiol.107(2), 551–563, (2012).
[CrossRef]

M. A. Castro-Alamancos, “Vibrissa myoclonus (rhythmic retractions) driven by resonance of excitatory networks in motor cortex,” J. Neurophysiol.96(4), 1691–1698, (2006).
[CrossRef] [PubMed]

N. P. Cramer and A. Keller, “Cortical control of a whisking central pattern generator,” J. Neurophysiol.96(1), 209–217, (2006).
[CrossRef] [PubMed]

N. P. Cramer, Y. Li, and A. Keller, “The whisking rhythm generator: a novel mammalian network for the generation of movement,” J. Neurophysiol.97(3), 2148–258, (2007).
[CrossRef] [PubMed]

J. Neurosci. (8)

P. Gao, R. Bermejo, and H. P. Zeigler, “Whisker deafferentation and rodent whisking patterns: behavioral evidence for a central pattern generator,” J. Neurosci.21(14), 5374–5380, (2001).
[PubMed]

M. A. Castro-Alamancos, “Neocortical synchronized oscillations induced by thalamic disinhibition in vivo,” J. Neurosci.19(18), RC27 1–7, (1999).

M. A. Castro-Alamancos, “Origin of synchronized oscillations induced by neocortical disinhibition in vivo,” J. Neurosci.20(24), 9195–9206, (2000).
[PubMed]

A. B. Ali, J. Rossier, J. F. Staiger, and E. Audinat, “Kainate receptors regulate unitary IPSCs elicited in pyramidal cells by fast-spiking interneurons in the neocortex,” J. Neurosci.21(9), 2992–2999, (2001).
[PubMed]

V. Grinevich, M. Brecht, and P. Osten, “Monosynaptic pathway from rat vibrissa motor cortex to facial motor neurons revealed by lentivirus-based axonal tracing,” J. Neurosci.25(36), 8250–8258, (2005).
[CrossRef] [PubMed]

G. E. Carvell and D. J. Simons, “Biometric analyses of vibrissal tactile discrimination in the rat,” J. Neurosci.10(8), 2638–2648, (1990).
[PubMed]

F. Haiss and C. Schwarz, “Spatial segregation of different modes of movement control in the whisker representation of rat primary motor cortex,” J. Neurosci.25(6), 1579–1587, (2005).
[CrossRef] [PubMed]

D. L. Sodickson and B. P. Bean, “GABAB receptor-activated inwardly rectifying potassium current in dissociated hippocampal CA3 neurons,” J. Neurosci.16(20), 6374–6385, (1996).
[PubMed]

J. Physiol. (1)

E. J. Lang, I. Sugihara, and R. Llins, “Olivocerebellar modulation of motor cortex ability to generate vibrissal movements in rat,” J. Physiol.571(Pt 1), 101–120, (2006).
[CrossRef]

Nat. Methods (2)

O. G. Ayling, T. C. Harrison, J. D. Boyd, A. Goroshkov, and T. H. Murphy, “Automated light-based mapping of motor cortex by photoactivation of channelrhodopsin-2 transgenic mice,” Nat. Methods, 6(3), 219–224, (2009).
[CrossRef] [PubMed]

S. Kleinlogel, U. Terpitz, B. Legrum, D. Gkbuget, E. Boyden, C. Bamann, P. Wood, and E. Bamberg, “A gene-fusion strategy for stoichiometric and co-localized expression of light-gated membrane proteins,” Nat. Methods8(12), 1083–1088, (2011).
[CrossRef] [PubMed]

Nat. Neurosci. (2)

E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, “Millisecond-timescale, genetically targeted optical control of neural activity,” Nat. Neurosci.8(9), 1263–1268, (2005).
[CrossRef] [PubMed]

I. Diester, M. T. Kaufman, M. Mogri, R. Pashaie, W. Goo, O. Yizhar, C. Ramakrishnan, K. Deisseroth, and K. V. Shenoy, “An optogenetic toolbox designed for primates,” Nat. Neurosci.14(3), 387–397, (2011).
[CrossRef] [PubMed]

Nat. Protoc. (1)

F. Zhang, V. Gradinaru, A. R. Adamantidis, R. Durand, R. D. Airan, L. de Lecea, and K. Deisseroth, “Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures,” Nat. Protoc.5(3), 439–456, (2010).
[CrossRef] [PubMed]

Neuron (1)

A. Hattox, Y. Li, and A. Keller, “Serotonin regulates rhythmic whisking,” Neuron39(2), 343–352, (2003).
[CrossRef] [PubMed]

Pflugers. Arch. (1)

M. Brecht, V. Grinevich, T. E. Jin, T. Margrie, and P. Osten, “Cellular mechanisms of motor control in the vibrissal system,” Pflugers. Arch.453(3), 269–281, (2006).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

M. Y. Min, Z. Melyan, and D. M. Kullmann, “Synaptically released glutamate reduces gamma-aminobutyric acid (GABA)ergic inhibition in the hippocampus via kainate receptors,” Proc. Natl. Acad. Sci. USA96, 9932–9937, (1999).
[CrossRef] [PubMed]

Science (1)

F. Matyas, V. Sreenivasan, F. Marbach, C. Wacongne, B. Barsy, C. Mateo, R. Aronoff, and C. Petersen, “Motor control by sensory cortex,” Science330(6008), 1240–1243, (2010).
[CrossRef] [PubMed]

Somatosens. Mot. Res. (3)

D. Kleinfeld, R. W. Berg, and S. M. O’Connor, “Anatomical loops and their electrical dynamics in relation to whisking by rat,” Somatosens. Mot. Res.16(2), 69–88, (1999).
[CrossRef] [PubMed]

G. E. Carvell, S. A. Miller, and D. J. Simons, “The relationship of vibrissal motor cortex unit activity to whisking in the awake rat,” Somatosens. Mot. Res.13(2), 115–127, (1996).
[CrossRef] [PubMed]

P. Gao, A. M. Hattox, L. M. Jones, A. Keller, and H. P. Zeigler, “Whisker motor cortex ablation and whisker movement patterns,” Somatosens. Mot. Res.20(3–4), 191–198, (2003).
[CrossRef]

Other (1)

R. Pashaie and R. Falk, “Single optical fiber probe for fluorescence detection and optogenetic stimulation,” IEEE Trans. Biomed. Eng. (to be published).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Fluorescence images that displays the EYFP expression in a fresh coronal slice at the site of lentivirus injection. (a) 20X magnification. (b) 40X magnification.

Fig. 2
Fig. 2

(a) Rat with optical fiber implant inside the arena, (b) Fluorescence measurement in-vivo. The fluorescence signal presented in arbitrary units, was measured for 25s in an EYFP negative brain for calibration and then it was measured for the same period in the brain of an EYFP positive rat at the injection site in vibrissa motor cortex. Notice the exponential photo bleaching in the calibration brain comparative to the steady signal in the EYFP positive brain.

Fig. 3
Fig. 3

Mean rate of whisker twitching pre-stimulus, intra-stimulus and post-stimulus. The mean number of whisker twitching events dramatically increases in the ChR2+/eNpHR+ (lentivirus injected) rats under continuous and chirped blue light (473nm) stimulation for 20s compared to ChR2-/eNpHR- rats (vehicle injected) (a), (b), *p < 0.05, and significantly reduced when stimulated with continuous or chirped yellow laser pulses (593nm) for 20s (c), (d), *p < 0.05.

Fig. 4
Fig. 4

Optical control of motor output in rat. The mean number of whisker twitching events was significantly greater in the ChR2+/eNpHR+ rats (lentivirus injected) compared to the ChR2-/eNpHR- rats (PBS injected) stimulated with 20s train of 10ms (10Hz–25Hz), 5ms (50Hz–70Hz) and 2ms (90Hz) pulses of 473nm light (a), (c), (e), (g), (i), (k), (m), (o), *p < 0.05, and significantly smaller when stimulated with 20s train of 10ms (10Hz–25Hz), 5ms (50Hz–70Hz) and 2ms (90Hz) pulses of 593nm light for 20s (b), (d), (f), (h), (j), (l), (n), (p) *p < 0.05.

Fig. 5
Fig. 5

Changes in frequency characteristics of whisking activity produced by optical stimulation. In this analysis, we looked at two frequency bands of whicker twitching data which are 0Hz – 1Hz and 2Hz – 4Hz, (a) Under blue light (473nm) illumination, the activity recorded in both frequency bands more or less increased for stimulation frequencies of 5Hz – 20Hz but only the activity in the second band, 2Hz – 4Hz, increased for 25Hz – 90Hz stimulation pulses. At all frequencies the magnitude of the signal in the 2Hz – 4Hz band was more than the 0Hz – 1Hz band. (b) Activity in 2Hz – 4Hz frequency band reduced at all stimulus frequencies under 573nm exposure and the magnitude of the signal was, in general, larger in the 0Hz – 1Hz band. Except stimulus frequencies of 15Hz and 20Hz, the activity in the 0Hz – 1Hz band also reduced under 573nm illumination.

Fig. 6
Fig. 6

Mean whisker deflection amplitude at various frequencies of optical stimulation. (a) Mean whisker deflection amplitude significantly increased at all stimulation frequencies under blue light exposure, *p < 0.05. (b) Mean whisker deflection amplitude significantly decreased at all stimulation frequencies under yellow light exposure, *p < 0.05.

Metrics