Abstract

Resolution is an important figure of merit for imaging systems. We designed, fabricated and tested an optical phantom that mimics the simplicity of an Air Force Test Chart but can characterize both the axial and lateral resolution of optical coherence tomography systems. The phantom is simple to fabricate, simple to use and functions in versatile environments.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. E. Cerussi, R. Warren, B. Hill, D. Roblyer, A. Leproux, A. F. Durkin, T. D. O’Sullivan, S. Keene, H. Haghany, T. Quang, W. M. Mantulin, and B. J. Tromberg, “Tissue phantoms in multicenter clinical trials for diffuse optical technologies,” Biomed. Opt. Express3(5), 966–971 (2012).
    [CrossRef] [PubMed]
  2. G. Lamouche, B. F. Kennedy, K. M. Kennedy, C.-E. Bisaillon, A. Curatolo, G. Campbell, V. Pazos, and D. D. Sampson, “Review of tissue simulating phantoms with controllable optical, mechanical and structural properties for use in optical coherence tomography,” Biomed. Opt. Express3(6), 1381–1398 (2012).
    [CrossRef] [PubMed]
  3. T. T. A. Nguyen, H. N. D. Le, M. Vo, Z. Wang, L. Luu, and J. C. Ramella-Roman, “Three-dimensional phantoms for curvature correction in spatial frequency domain imaging,” Biomed. Opt. Express3(6), 1200–1214 (2012).
    [CrossRef] [PubMed]
  4. L. Luu, P. A. Roman, S. A. Mathews, and J. C. Ramella-Roman, “Microfluidics based phantoms of superficial vascular network,” Biomed. Opt. Express3(6), 1350–1364 (2012).
    [CrossRef] [PubMed]
  5. A. Agrawal, T. J. Pfefer, N. Gilani, and R. Drezek, “Three-dimensional characterization of optical coherence tomography point spread functions with a nanoparticle-embedded phantom,” Opt. Lett.35(13), 2269–2271 (2010).
    [CrossRef] [PubMed]
  6. A. Agrawal, R. Chang, M. Connors, C. Stafford, J. Hwang, and T. J. Pfefer, “System-independent assessment of OCT axial resolution with a “bar chart” phantom,” Proc. SPIE7906, 79060R (2011).
    [CrossRef]
  7. R. C. Chang, P. Johnson, C. M. Stafford, and J. Hwang, “Fabrication and characterization of a multilayered optical tissue model with embedded scattering microspheres in polymeric materials,” Biomed. Opt. Express3(6), 1326–1339 (2012).
    [CrossRef] [PubMed]
  8. A. Curatolo, B. F. Kennedy, and D. D. Sampson, “Structured three-dimensional optical phantom for optical coherence tomography,” Opt. Express19(20), 19480–19485 (2011).
    [CrossRef] [PubMed]
  9. L. V. Wang and H. Wu, “Optical Coherence Tomography,” in Biomedical Optics, 1st ed. (Wiley-Interscience, 2007).
  10. D. Qin, Y. Xia, and G. M. Whitesides, “Soft lithography for micro- and nanoscale patterning,” Nat. Protoc.5(3), 491–502 (2010).
    [CrossRef] [PubMed]
  11. A. K. Ellerbee and J. A. Izatt, “Phase retrieval in low-coherence interferometric microscopy,” Opt. Lett.32(4), 388–390 (2007).
    [CrossRef] [PubMed]
  12. M. Alexander, L. F. Rojas-Ochoa, M. Leser, and P. Schurtenberger, “Structure, dynamics, and optical properties of concentrated milk suspensions: an analogy to hard-sphere liquids,” J. Colloid Interface Sci.253(1), 35–46 (2002).
    [CrossRef] [PubMed]
  13. T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved pattern transfer in soft lithography using composite stamps,” Langmuir18(13), 5314–5320 (2002).
    [CrossRef]
  14. X.-M. Zhao, Y. Xia, and G. M. Whitesides, “Fabrication of three-dimensional micro-structures: microtransfer molding,” Adv. Mater. (Deerfield Beach Fla.)8(10), 837–840 (1996).
    [CrossRef]
  15. H. Schmid and B. Michel, “Siloxane polymers for high-resolution, high-accuracy soft lithography,” Macromolecules33(8), 3042–3049 (2000).
    [CrossRef]

2012

2011

A. Curatolo, B. F. Kennedy, and D. D. Sampson, “Structured three-dimensional optical phantom for optical coherence tomography,” Opt. Express19(20), 19480–19485 (2011).
[CrossRef] [PubMed]

A. Agrawal, R. Chang, M. Connors, C. Stafford, J. Hwang, and T. J. Pfefer, “System-independent assessment of OCT axial resolution with a “bar chart” phantom,” Proc. SPIE7906, 79060R (2011).
[CrossRef]

2010

2007

2002

M. Alexander, L. F. Rojas-Ochoa, M. Leser, and P. Schurtenberger, “Structure, dynamics, and optical properties of concentrated milk suspensions: an analogy to hard-sphere liquids,” J. Colloid Interface Sci.253(1), 35–46 (2002).
[CrossRef] [PubMed]

T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved pattern transfer in soft lithography using composite stamps,” Langmuir18(13), 5314–5320 (2002).
[CrossRef]

2000

H. Schmid and B. Michel, “Siloxane polymers for high-resolution, high-accuracy soft lithography,” Macromolecules33(8), 3042–3049 (2000).
[CrossRef]

1996

X.-M. Zhao, Y. Xia, and G. M. Whitesides, “Fabrication of three-dimensional micro-structures: microtransfer molding,” Adv. Mater. (Deerfield Beach Fla.)8(10), 837–840 (1996).
[CrossRef]

Agrawal, A.

A. Agrawal, R. Chang, M. Connors, C. Stafford, J. Hwang, and T. J. Pfefer, “System-independent assessment of OCT axial resolution with a “bar chart” phantom,” Proc. SPIE7906, 79060R (2011).
[CrossRef]

A. Agrawal, T. J. Pfefer, N. Gilani, and R. Drezek, “Three-dimensional characterization of optical coherence tomography point spread functions with a nanoparticle-embedded phantom,” Opt. Lett.35(13), 2269–2271 (2010).
[CrossRef] [PubMed]

Alexander, M.

M. Alexander, L. F. Rojas-Ochoa, M. Leser, and P. Schurtenberger, “Structure, dynamics, and optical properties of concentrated milk suspensions: an analogy to hard-sphere liquids,” J. Colloid Interface Sci.253(1), 35–46 (2002).
[CrossRef] [PubMed]

Bisaillon, C.-E.

Campbell, G.

Cerussi, A. E.

Chang, R.

A. Agrawal, R. Chang, M. Connors, C. Stafford, J. Hwang, and T. J. Pfefer, “System-independent assessment of OCT axial resolution with a “bar chart” phantom,” Proc. SPIE7906, 79060R (2011).
[CrossRef]

Chang, R. C.

Connors, M.

A. Agrawal, R. Chang, M. Connors, C. Stafford, J. Hwang, and T. J. Pfefer, “System-independent assessment of OCT axial resolution with a “bar chart” phantom,” Proc. SPIE7906, 79060R (2011).
[CrossRef]

Curatolo, A.

Drezek, R.

Durkin, A. F.

Ellerbee, A. K.

Gilani, N.

Haghany, H.

Hill, B.

Hwang, J.

R. C. Chang, P. Johnson, C. M. Stafford, and J. Hwang, “Fabrication and characterization of a multilayered optical tissue model with embedded scattering microspheres in polymeric materials,” Biomed. Opt. Express3(6), 1326–1339 (2012).
[CrossRef] [PubMed]

A. Agrawal, R. Chang, M. Connors, C. Stafford, J. Hwang, and T. J. Pfefer, “System-independent assessment of OCT axial resolution with a “bar chart” phantom,” Proc. SPIE7906, 79060R (2011).
[CrossRef]

Izatt, J. A.

Johnson, P.

Keene, S.

Kennedy, B. F.

Kennedy, K. M.

Lamouche, G.

Le, H. N. D.

Leproux, A.

Leser, M.

M. Alexander, L. F. Rojas-Ochoa, M. Leser, and P. Schurtenberger, “Structure, dynamics, and optical properties of concentrated milk suspensions: an analogy to hard-sphere liquids,” J. Colloid Interface Sci.253(1), 35–46 (2002).
[CrossRef] [PubMed]

Love, J. C.

T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved pattern transfer in soft lithography using composite stamps,” Langmuir18(13), 5314–5320 (2002).
[CrossRef]

Luu, L.

Mantulin, W. M.

Mathews, S. A.

Michel, B.

H. Schmid and B. Michel, “Siloxane polymers for high-resolution, high-accuracy soft lithography,” Macromolecules33(8), 3042–3049 (2000).
[CrossRef]

Nguyen, T. T. A.

O’Sullivan, T. D.

Odom, T. W.

T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved pattern transfer in soft lithography using composite stamps,” Langmuir18(13), 5314–5320 (2002).
[CrossRef]

Paul, K. E.

T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved pattern transfer in soft lithography using composite stamps,” Langmuir18(13), 5314–5320 (2002).
[CrossRef]

Pazos, V.

Pfefer, T. J.

A. Agrawal, R. Chang, M. Connors, C. Stafford, J. Hwang, and T. J. Pfefer, “System-independent assessment of OCT axial resolution with a “bar chart” phantom,” Proc. SPIE7906, 79060R (2011).
[CrossRef]

A. Agrawal, T. J. Pfefer, N. Gilani, and R. Drezek, “Three-dimensional characterization of optical coherence tomography point spread functions with a nanoparticle-embedded phantom,” Opt. Lett.35(13), 2269–2271 (2010).
[CrossRef] [PubMed]

Qin, D.

D. Qin, Y. Xia, and G. M. Whitesides, “Soft lithography for micro- and nanoscale patterning,” Nat. Protoc.5(3), 491–502 (2010).
[CrossRef] [PubMed]

Quang, T.

Ramella-Roman, J. C.

Roblyer, D.

Rojas-Ochoa, L. F.

M. Alexander, L. F. Rojas-Ochoa, M. Leser, and P. Schurtenberger, “Structure, dynamics, and optical properties of concentrated milk suspensions: an analogy to hard-sphere liquids,” J. Colloid Interface Sci.253(1), 35–46 (2002).
[CrossRef] [PubMed]

Roman, P. A.

Sampson, D. D.

Schmid, H.

H. Schmid and B. Michel, “Siloxane polymers for high-resolution, high-accuracy soft lithography,” Macromolecules33(8), 3042–3049 (2000).
[CrossRef]

Schurtenberger, P.

M. Alexander, L. F. Rojas-Ochoa, M. Leser, and P. Schurtenberger, “Structure, dynamics, and optical properties of concentrated milk suspensions: an analogy to hard-sphere liquids,” J. Colloid Interface Sci.253(1), 35–46 (2002).
[CrossRef] [PubMed]

Stafford, C.

A. Agrawal, R. Chang, M. Connors, C. Stafford, J. Hwang, and T. J. Pfefer, “System-independent assessment of OCT axial resolution with a “bar chart” phantom,” Proc. SPIE7906, 79060R (2011).
[CrossRef]

Stafford, C. M.

Tromberg, B. J.

Vo, M.

Wang, Z.

Warren, R.

Whitesides, G. M.

D. Qin, Y. Xia, and G. M. Whitesides, “Soft lithography for micro- and nanoscale patterning,” Nat. Protoc.5(3), 491–502 (2010).
[CrossRef] [PubMed]

T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved pattern transfer in soft lithography using composite stamps,” Langmuir18(13), 5314–5320 (2002).
[CrossRef]

X.-M. Zhao, Y. Xia, and G. M. Whitesides, “Fabrication of three-dimensional micro-structures: microtransfer molding,” Adv. Mater. (Deerfield Beach Fla.)8(10), 837–840 (1996).
[CrossRef]

Wolfe, D. B.

T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved pattern transfer in soft lithography using composite stamps,” Langmuir18(13), 5314–5320 (2002).
[CrossRef]

Xia, Y.

D. Qin, Y. Xia, and G. M. Whitesides, “Soft lithography for micro- and nanoscale patterning,” Nat. Protoc.5(3), 491–502 (2010).
[CrossRef] [PubMed]

X.-M. Zhao, Y. Xia, and G. M. Whitesides, “Fabrication of three-dimensional micro-structures: microtransfer molding,” Adv. Mater. (Deerfield Beach Fla.)8(10), 837–840 (1996).
[CrossRef]

Zhao, X.-M.

X.-M. Zhao, Y. Xia, and G. M. Whitesides, “Fabrication of three-dimensional micro-structures: microtransfer molding,” Adv. Mater. (Deerfield Beach Fla.)8(10), 837–840 (1996).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.)

X.-M. Zhao, Y. Xia, and G. M. Whitesides, “Fabrication of three-dimensional micro-structures: microtransfer molding,” Adv. Mater. (Deerfield Beach Fla.)8(10), 837–840 (1996).
[CrossRef]

Biomed. Opt. Express

J. Colloid Interface Sci.

M. Alexander, L. F. Rojas-Ochoa, M. Leser, and P. Schurtenberger, “Structure, dynamics, and optical properties of concentrated milk suspensions: an analogy to hard-sphere liquids,” J. Colloid Interface Sci.253(1), 35–46 (2002).
[CrossRef] [PubMed]

Langmuir

T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved pattern transfer in soft lithography using composite stamps,” Langmuir18(13), 5314–5320 (2002).
[CrossRef]

Macromolecules

H. Schmid and B. Michel, “Siloxane polymers for high-resolution, high-accuracy soft lithography,” Macromolecules33(8), 3042–3049 (2000).
[CrossRef]

Nat. Protoc.

D. Qin, Y. Xia, and G. M. Whitesides, “Soft lithography for micro- and nanoscale patterning,” Nat. Protoc.5(3), 491–502 (2010).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Proc. SPIE

A. Agrawal, R. Chang, M. Connors, C. Stafford, J. Hwang, and T. J. Pfefer, “System-independent assessment of OCT axial resolution with a “bar chart” phantom,” Proc. SPIE7906, 79060R (2011).
[CrossRef]

Other

L. V. Wang and H. Wu, “Optical Coherence Tomography,” in Biomedical Optics, 1st ed. (Wiley-Interscience, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

3-D rendered (above) and schematic (below) layouts of the optical phantom. Submerged structures (bars) are shown in black in the schematic top view. The location of the side-view cross section is shown by the red line in the 3-D rendered view. Axes map to definitions of depth, width and length referred to throughout this paper. Within each group, only one dimension (either width or length) varies between the six resolving bars; these are listed in Table 1. Dimensions are not to scale.

Fig. 2
Fig. 2

Layout, en face OCT scans and simulated B-scans of the axial resolving group and lateral resolving group of the optical phantom. Reflectivity (in dB) is mapped to inverted brightness or brightness of the image for the en face scans or simulations, respectively. The en face OCT scan was acquired at the y = 0 plane of the phantom. Note that the view of the simulated B-scan (x-z plane) is perpendicular to that of the phantom layout and en face OCT scans. Scale bars = 250 μm.

Fig. 3
Fig. 3

Representative steps in the soft lithography process used to fabricate phantom. The figures show schematic representations of the phantom as cross-sections viewed from the side. Dimensions are not to scale.

Fig. 4
Fig. 4

B-scans of the axial (a) and lateral (b) resolving bars in air (row 1). Rows 2 and 3 show simulated cases for the reduced axial and lateral resolutions given as ordinate pairs: (lateral, axial). Asterisks denote the smallest resolvable structures. Scale box = 100 μm x 100 μm.

Fig. 5
Fig. 5

Reflectivity profile along the smallest (squares) axial bar (a) or lateral gap (b) from the numbered rows in Fig. 4 at the location of the red arrows. The −6dB line marks the threshold for resolvability. Minimum reflectivity between all bars (c) and gaps (d) in Fig. 4; the smallest resolvable structure in each row is denoted by filled markers.

Fig. 6
Fig. 6

B-scans of the axial (a) and lateral (b) resolving bars when submerged in various liquid media. Scale boxes = 75 μm x 75 μm.

Tables (1)

Tables Icon

Table 1 Scheme for encoding the group number and dimensions of the resolving bars

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

20 log 10 ( min [ ( δ d / 2 ( z ) + δ d / 2 ( z ) ) exp ( 4 ln ( 2 ) z 2 / z f w h m 2 ) ] max [ ( δ d / 2 ( z ) + δ d / 2 ( z ) ) exp ( 4 ln ( 2 ) z 2 / z f w h m 2 ) ] ) = 6  dB,
20 log 10 ( min [ ( Π ( x g / 2 g ) + Π ( x + g / 2 2 1 / 6 g ) ) exp ( 4 ln ( 2 ) x 2 / x f w h m 2 ) ] max [ ( Π ( x g / 2 g ) + Π ( x + g / 2 2 1 / 6 g ) ) exp ( 4 ln ( 2 ) x 2 / x f w h m 2 ) ] ) = 6  dB,

Metrics