Abstract

Using a laser trap, we have studied the properties of erythrocytes from a sickle cell anemia patient (SCA) after receiving an intravenous blood transfusion, and a normal adult individual carrying normal adult hemoglobin. The hemoglobin type and quantitation assessment was carried out by high performance liquid chromatography (HPLC). We conducted an analysis of the size distributions of the cells. By targeting those erythrocytes in the overlapping regions of size distributions, we have investigated their properties when the cells are trapped and released. The efficacy of the transfusion treatment is also studied by comparing the relative changes in deformation and the relaxation-time of the cells in the two samples.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Herrick, “Peculiar elongated and sickle-shaped red blood corpuscles in a case of severe anemia,” Arch. Intern. Med.VI(5), 517–521 (1910).
    [CrossRef]
  2. L. H. Pauling, H. A. Itano, S. J. Singer, and I. C. Wells, “Sickle cell anemia a molecular disease,” Science110(2865), 543–548 (1949).
    [CrossRef] [PubMed]
  3. V. M. Ingram, “Gene mutations in human haemoglobin: the chemical difference between normal and sickle cell haemoglobin,” Nature180(4581), 326–328 (1957).
    [CrossRef] [PubMed]
  4. C. Madigan and P. Malik, “Pathophysiology and therapy for haemoglobinopathies. Part I: sickle cell disease,” Expert Rev. Mol. Med.8(09), 1–23 (2006).
    [CrossRef] [PubMed]
  5. M. P. Aguinaga, “Newborn screening and clinical management of children with sickle cell disease,” in J. Navarro, ed, Frontiers of Science in the 21st Century (Cordillera, Lima, 2007), pp. 137–147.
  6. S. Lanzkron, J. J. Strouse, R. Wilson, M. C. Beach, C. Haywood, H. Park, C. Witkop, E. B. Bass, and J. B. Segal, “Systematic review: Hydroxyurea for the treatment of adults with sickle cell disease,” Ann. Intern. Med.148(12), 939–955 (2008).
    [PubMed]
  7. E. Beutler, M. A. Lichtma, and B. S. Coller, “The sickle cell diseases and related disorders,” in Williams Hematology, 6th ed. (McGraw-Hill, New York, 2001). pp. 581–606.
  8. A. Kutlar, F. Kutlar, J. B. Wilson, M. G. Headlee, and T. H. J. Huisman, “Quantitation of hemoglobin components by high-performance cation-exchange liquid chromatography: its use in diagnosis and in the assessment of cellular distribution of hemoglobin variants,” Am. J. Hematol.17(1), 39–53 (1984).
    [CrossRef] [PubMed]
  9. A. Ashkin, “Applications of laser radiation pressure,” Science210(4474), 1081–1088 (1980).
    [CrossRef] [PubMed]
  10. A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature330(6150), 769–771 (1987).
    [CrossRef] [PubMed]
  11. F. Bordeleau, J. Bessard, N. Marceau, and Y. Sheng, “Measuring integrated cellular mechanical stress response at focal adhesions by optical tweezers,” J. Biomed. Opt.16(9), 095005 (2011).
    [CrossRef] [PubMed]
  12. S. Rancourt-Grenier, M. T. Wei, J. J. Bai, A. Chiou, P. P. Bareil, P. L. Duval, and Y. Sheng, “Dynamic deformation of red blood cell in dual-trap optical tweezers,” Opt. Express18(10), 10462–10472 (2010).
    [CrossRef] [PubMed]
  13. D. Erenso, A. Shulman, J. Curtis, and S. Elrod, “Formation of synthetic structures with micron size silica beads using optical tweezer,” J. Mod. Opt.54(10), 1529–1536 (2007).
    [CrossRef]
  14. M. M. Brandão, A. Fontes, M. L. Barjas-Castro, L. C. Barbosa, F. F. Costa, C. L. Cesar, and S. T. Saad, “Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease,” Eur. J. Haematol.70(4), 207–211 (2003).
    [CrossRef] [PubMed]
  15. M. M. Brandão, S. T. O. Saad, C. L. Cezar, A. Fontes, F. F. Costa, and M. L. Barjas-Castro, “Elastic properties of stored red blood cells from sickle trait donor units,” Vox Sang.85(3), 213–215 (2003).
    [CrossRef] [PubMed]
  16. G. B. Liao, P. B. Bareil, Y. Sheng, and A. Chiou, “One-dimensional jumping optical tweezers for optical stretching of bi-concave human red blood cells,” Opt. Express16(3), 1996–2004 (2008).
    [CrossRef] [PubMed]
  17. G. Athanassiou, A. Moutzouri, A. Kourakli, and N. Zoumbos, “Effect of hydroxyurea on the deformability of the red blood cell membrane in patients with sickle cell anemia,” Clin. Hemorheol. Microcirc.35(1-2), 291–295 (2006).
    [PubMed]
  18. I. Dulińska, M. Targosz, W. Strojny, M. Lekka, P. Czuba, W. Balwierz, and M. Szymoński, “Stiffness of normal and pathological erythrocytes studied by means of atomic force microscopy,” J. Biochem. Biophys. Methods66(1-3), 1–11 (2006).
    [CrossRef] [PubMed]
  19. J. L. Maciaszek, B. Andemariam, and G. Lykotrafitis, “Microelasticity of red blood cells in sickle cell disease,” J. Strain Analysis Eng. Design46(5), 368–379 (2011).
    [CrossRef]

2011

F. Bordeleau, J. Bessard, N. Marceau, and Y. Sheng, “Measuring integrated cellular mechanical stress response at focal adhesions by optical tweezers,” J. Biomed. Opt.16(9), 095005 (2011).
[CrossRef] [PubMed]

J. L. Maciaszek, B. Andemariam, and G. Lykotrafitis, “Microelasticity of red blood cells in sickle cell disease,” J. Strain Analysis Eng. Design46(5), 368–379 (2011).
[CrossRef]

2010

2008

G. B. Liao, P. B. Bareil, Y. Sheng, and A. Chiou, “One-dimensional jumping optical tweezers for optical stretching of bi-concave human red blood cells,” Opt. Express16(3), 1996–2004 (2008).
[CrossRef] [PubMed]

S. Lanzkron, J. J. Strouse, R. Wilson, M. C. Beach, C. Haywood, H. Park, C. Witkop, E. B. Bass, and J. B. Segal, “Systematic review: Hydroxyurea for the treatment of adults with sickle cell disease,” Ann. Intern. Med.148(12), 939–955 (2008).
[PubMed]

2007

D. Erenso, A. Shulman, J. Curtis, and S. Elrod, “Formation of synthetic structures with micron size silica beads using optical tweezer,” J. Mod. Opt.54(10), 1529–1536 (2007).
[CrossRef]

2006

C. Madigan and P. Malik, “Pathophysiology and therapy for haemoglobinopathies. Part I: sickle cell disease,” Expert Rev. Mol. Med.8(09), 1–23 (2006).
[CrossRef] [PubMed]

G. Athanassiou, A. Moutzouri, A. Kourakli, and N. Zoumbos, “Effect of hydroxyurea on the deformability of the red blood cell membrane in patients with sickle cell anemia,” Clin. Hemorheol. Microcirc.35(1-2), 291–295 (2006).
[PubMed]

I. Dulińska, M. Targosz, W. Strojny, M. Lekka, P. Czuba, W. Balwierz, and M. Szymoński, “Stiffness of normal and pathological erythrocytes studied by means of atomic force microscopy,” J. Biochem. Biophys. Methods66(1-3), 1–11 (2006).
[CrossRef] [PubMed]

2003

M. M. Brandão, A. Fontes, M. L. Barjas-Castro, L. C. Barbosa, F. F. Costa, C. L. Cesar, and S. T. Saad, “Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease,” Eur. J. Haematol.70(4), 207–211 (2003).
[CrossRef] [PubMed]

M. M. Brandão, S. T. O. Saad, C. L. Cezar, A. Fontes, F. F. Costa, and M. L. Barjas-Castro, “Elastic properties of stored red blood cells from sickle trait donor units,” Vox Sang.85(3), 213–215 (2003).
[CrossRef] [PubMed]

1987

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature330(6150), 769–771 (1987).
[CrossRef] [PubMed]

1984

A. Kutlar, F. Kutlar, J. B. Wilson, M. G. Headlee, and T. H. J. Huisman, “Quantitation of hemoglobin components by high-performance cation-exchange liquid chromatography: its use in diagnosis and in the assessment of cellular distribution of hemoglobin variants,” Am. J. Hematol.17(1), 39–53 (1984).
[CrossRef] [PubMed]

1980

A. Ashkin, “Applications of laser radiation pressure,” Science210(4474), 1081–1088 (1980).
[CrossRef] [PubMed]

1957

V. M. Ingram, “Gene mutations in human haemoglobin: the chemical difference between normal and sickle cell haemoglobin,” Nature180(4581), 326–328 (1957).
[CrossRef] [PubMed]

1949

L. H. Pauling, H. A. Itano, S. J. Singer, and I. C. Wells, “Sickle cell anemia a molecular disease,” Science110(2865), 543–548 (1949).
[CrossRef] [PubMed]

1910

J. B. Herrick, “Peculiar elongated and sickle-shaped red blood corpuscles in a case of severe anemia,” Arch. Intern. Med.VI(5), 517–521 (1910).
[CrossRef]

Andemariam, B.

J. L. Maciaszek, B. Andemariam, and G. Lykotrafitis, “Microelasticity of red blood cells in sickle cell disease,” J. Strain Analysis Eng. Design46(5), 368–379 (2011).
[CrossRef]

Ashkin, A.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature330(6150), 769–771 (1987).
[CrossRef] [PubMed]

A. Ashkin, “Applications of laser radiation pressure,” Science210(4474), 1081–1088 (1980).
[CrossRef] [PubMed]

Athanassiou, G.

G. Athanassiou, A. Moutzouri, A. Kourakli, and N. Zoumbos, “Effect of hydroxyurea on the deformability of the red blood cell membrane in patients with sickle cell anemia,” Clin. Hemorheol. Microcirc.35(1-2), 291–295 (2006).
[PubMed]

Bai, J. J.

Balwierz, W.

I. Dulińska, M. Targosz, W. Strojny, M. Lekka, P. Czuba, W. Balwierz, and M. Szymoński, “Stiffness of normal and pathological erythrocytes studied by means of atomic force microscopy,” J. Biochem. Biophys. Methods66(1-3), 1–11 (2006).
[CrossRef] [PubMed]

Barbosa, L. C.

M. M. Brandão, A. Fontes, M. L. Barjas-Castro, L. C. Barbosa, F. F. Costa, C. L. Cesar, and S. T. Saad, “Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease,” Eur. J. Haematol.70(4), 207–211 (2003).
[CrossRef] [PubMed]

Bareil, P. B.

Bareil, P. P.

Barjas-Castro, M. L.

M. M. Brandão, S. T. O. Saad, C. L. Cezar, A. Fontes, F. F. Costa, and M. L. Barjas-Castro, “Elastic properties of stored red blood cells from sickle trait donor units,” Vox Sang.85(3), 213–215 (2003).
[CrossRef] [PubMed]

M. M. Brandão, A. Fontes, M. L. Barjas-Castro, L. C. Barbosa, F. F. Costa, C. L. Cesar, and S. T. Saad, “Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease,” Eur. J. Haematol.70(4), 207–211 (2003).
[CrossRef] [PubMed]

Bass, E. B.

S. Lanzkron, J. J. Strouse, R. Wilson, M. C. Beach, C. Haywood, H. Park, C. Witkop, E. B. Bass, and J. B. Segal, “Systematic review: Hydroxyurea for the treatment of adults with sickle cell disease,” Ann. Intern. Med.148(12), 939–955 (2008).
[PubMed]

Beach, M. C.

S. Lanzkron, J. J. Strouse, R. Wilson, M. C. Beach, C. Haywood, H. Park, C. Witkop, E. B. Bass, and J. B. Segal, “Systematic review: Hydroxyurea for the treatment of adults with sickle cell disease,” Ann. Intern. Med.148(12), 939–955 (2008).
[PubMed]

Bessard, J.

F. Bordeleau, J. Bessard, N. Marceau, and Y. Sheng, “Measuring integrated cellular mechanical stress response at focal adhesions by optical tweezers,” J. Biomed. Opt.16(9), 095005 (2011).
[CrossRef] [PubMed]

Bordeleau, F.

F. Bordeleau, J. Bessard, N. Marceau, and Y. Sheng, “Measuring integrated cellular mechanical stress response at focal adhesions by optical tweezers,” J. Biomed. Opt.16(9), 095005 (2011).
[CrossRef] [PubMed]

Brandão, M. M.

M. M. Brandão, S. T. O. Saad, C. L. Cezar, A. Fontes, F. F. Costa, and M. L. Barjas-Castro, “Elastic properties of stored red blood cells from sickle trait donor units,” Vox Sang.85(3), 213–215 (2003).
[CrossRef] [PubMed]

M. M. Brandão, A. Fontes, M. L. Barjas-Castro, L. C. Barbosa, F. F. Costa, C. L. Cesar, and S. T. Saad, “Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease,” Eur. J. Haematol.70(4), 207–211 (2003).
[CrossRef] [PubMed]

Cesar, C. L.

M. M. Brandão, A. Fontes, M. L. Barjas-Castro, L. C. Barbosa, F. F. Costa, C. L. Cesar, and S. T. Saad, “Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease,” Eur. J. Haematol.70(4), 207–211 (2003).
[CrossRef] [PubMed]

Cezar, C. L.

M. M. Brandão, S. T. O. Saad, C. L. Cezar, A. Fontes, F. F. Costa, and M. L. Barjas-Castro, “Elastic properties of stored red blood cells from sickle trait donor units,” Vox Sang.85(3), 213–215 (2003).
[CrossRef] [PubMed]

Chiou, A.

Costa, F. F.

M. M. Brandão, A. Fontes, M. L. Barjas-Castro, L. C. Barbosa, F. F. Costa, C. L. Cesar, and S. T. Saad, “Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease,” Eur. J. Haematol.70(4), 207–211 (2003).
[CrossRef] [PubMed]

M. M. Brandão, S. T. O. Saad, C. L. Cezar, A. Fontes, F. F. Costa, and M. L. Barjas-Castro, “Elastic properties of stored red blood cells from sickle trait donor units,” Vox Sang.85(3), 213–215 (2003).
[CrossRef] [PubMed]

Curtis, J.

D. Erenso, A. Shulman, J. Curtis, and S. Elrod, “Formation of synthetic structures with micron size silica beads using optical tweezer,” J. Mod. Opt.54(10), 1529–1536 (2007).
[CrossRef]

Czuba, P.

I. Dulińska, M. Targosz, W. Strojny, M. Lekka, P. Czuba, W. Balwierz, and M. Szymoński, “Stiffness of normal and pathological erythrocytes studied by means of atomic force microscopy,” J. Biochem. Biophys. Methods66(1-3), 1–11 (2006).
[CrossRef] [PubMed]

Dulinska, I.

I. Dulińska, M. Targosz, W. Strojny, M. Lekka, P. Czuba, W. Balwierz, and M. Szymoński, “Stiffness of normal and pathological erythrocytes studied by means of atomic force microscopy,” J. Biochem. Biophys. Methods66(1-3), 1–11 (2006).
[CrossRef] [PubMed]

Duval, P. L.

Dziedzic, J. M.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature330(6150), 769–771 (1987).
[CrossRef] [PubMed]

Elrod, S.

D. Erenso, A. Shulman, J. Curtis, and S. Elrod, “Formation of synthetic structures with micron size silica beads using optical tweezer,” J. Mod. Opt.54(10), 1529–1536 (2007).
[CrossRef]

Erenso, D.

D. Erenso, A. Shulman, J. Curtis, and S. Elrod, “Formation of synthetic structures with micron size silica beads using optical tweezer,” J. Mod. Opt.54(10), 1529–1536 (2007).
[CrossRef]

Fontes, A.

M. M. Brandão, S. T. O. Saad, C. L. Cezar, A. Fontes, F. F. Costa, and M. L. Barjas-Castro, “Elastic properties of stored red blood cells from sickle trait donor units,” Vox Sang.85(3), 213–215 (2003).
[CrossRef] [PubMed]

M. M. Brandão, A. Fontes, M. L. Barjas-Castro, L. C. Barbosa, F. F. Costa, C. L. Cesar, and S. T. Saad, “Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease,” Eur. J. Haematol.70(4), 207–211 (2003).
[CrossRef] [PubMed]

Haywood, C.

S. Lanzkron, J. J. Strouse, R. Wilson, M. C. Beach, C. Haywood, H. Park, C. Witkop, E. B. Bass, and J. B. Segal, “Systematic review: Hydroxyurea for the treatment of adults with sickle cell disease,” Ann. Intern. Med.148(12), 939–955 (2008).
[PubMed]

Headlee, M. G.

A. Kutlar, F. Kutlar, J. B. Wilson, M. G. Headlee, and T. H. J. Huisman, “Quantitation of hemoglobin components by high-performance cation-exchange liquid chromatography: its use in diagnosis and in the assessment of cellular distribution of hemoglobin variants,” Am. J. Hematol.17(1), 39–53 (1984).
[CrossRef] [PubMed]

Herrick, J. B.

J. B. Herrick, “Peculiar elongated and sickle-shaped red blood corpuscles in a case of severe anemia,” Arch. Intern. Med.VI(5), 517–521 (1910).
[CrossRef]

Huisman, T. H. J.

A. Kutlar, F. Kutlar, J. B. Wilson, M. G. Headlee, and T. H. J. Huisman, “Quantitation of hemoglobin components by high-performance cation-exchange liquid chromatography: its use in diagnosis and in the assessment of cellular distribution of hemoglobin variants,” Am. J. Hematol.17(1), 39–53 (1984).
[CrossRef] [PubMed]

Ingram, V. M.

V. M. Ingram, “Gene mutations in human haemoglobin: the chemical difference between normal and sickle cell haemoglobin,” Nature180(4581), 326–328 (1957).
[CrossRef] [PubMed]

Itano, H. A.

L. H. Pauling, H. A. Itano, S. J. Singer, and I. C. Wells, “Sickle cell anemia a molecular disease,” Science110(2865), 543–548 (1949).
[CrossRef] [PubMed]

Kourakli, A.

G. Athanassiou, A. Moutzouri, A. Kourakli, and N. Zoumbos, “Effect of hydroxyurea on the deformability of the red blood cell membrane in patients with sickle cell anemia,” Clin. Hemorheol. Microcirc.35(1-2), 291–295 (2006).
[PubMed]

Kutlar, A.

A. Kutlar, F. Kutlar, J. B. Wilson, M. G. Headlee, and T. H. J. Huisman, “Quantitation of hemoglobin components by high-performance cation-exchange liquid chromatography: its use in diagnosis and in the assessment of cellular distribution of hemoglobin variants,” Am. J. Hematol.17(1), 39–53 (1984).
[CrossRef] [PubMed]

Kutlar, F.

A. Kutlar, F. Kutlar, J. B. Wilson, M. G. Headlee, and T. H. J. Huisman, “Quantitation of hemoglobin components by high-performance cation-exchange liquid chromatography: its use in diagnosis and in the assessment of cellular distribution of hemoglobin variants,” Am. J. Hematol.17(1), 39–53 (1984).
[CrossRef] [PubMed]

Lanzkron, S.

S. Lanzkron, J. J. Strouse, R. Wilson, M. C. Beach, C. Haywood, H. Park, C. Witkop, E. B. Bass, and J. B. Segal, “Systematic review: Hydroxyurea for the treatment of adults with sickle cell disease,” Ann. Intern. Med.148(12), 939–955 (2008).
[PubMed]

Lekka, M.

I. Dulińska, M. Targosz, W. Strojny, M. Lekka, P. Czuba, W. Balwierz, and M. Szymoński, “Stiffness of normal and pathological erythrocytes studied by means of atomic force microscopy,” J. Biochem. Biophys. Methods66(1-3), 1–11 (2006).
[CrossRef] [PubMed]

Liao, G. B.

Lykotrafitis, G.

J. L. Maciaszek, B. Andemariam, and G. Lykotrafitis, “Microelasticity of red blood cells in sickle cell disease,” J. Strain Analysis Eng. Design46(5), 368–379 (2011).
[CrossRef]

Maciaszek, J. L.

J. L. Maciaszek, B. Andemariam, and G. Lykotrafitis, “Microelasticity of red blood cells in sickle cell disease,” J. Strain Analysis Eng. Design46(5), 368–379 (2011).
[CrossRef]

Madigan, C.

C. Madigan and P. Malik, “Pathophysiology and therapy for haemoglobinopathies. Part I: sickle cell disease,” Expert Rev. Mol. Med.8(09), 1–23 (2006).
[CrossRef] [PubMed]

Malik, P.

C. Madigan and P. Malik, “Pathophysiology and therapy for haemoglobinopathies. Part I: sickle cell disease,” Expert Rev. Mol. Med.8(09), 1–23 (2006).
[CrossRef] [PubMed]

Marceau, N.

F. Bordeleau, J. Bessard, N. Marceau, and Y. Sheng, “Measuring integrated cellular mechanical stress response at focal adhesions by optical tweezers,” J. Biomed. Opt.16(9), 095005 (2011).
[CrossRef] [PubMed]

Moutzouri, A.

G. Athanassiou, A. Moutzouri, A. Kourakli, and N. Zoumbos, “Effect of hydroxyurea on the deformability of the red blood cell membrane in patients with sickle cell anemia,” Clin. Hemorheol. Microcirc.35(1-2), 291–295 (2006).
[PubMed]

Park, H.

S. Lanzkron, J. J. Strouse, R. Wilson, M. C. Beach, C. Haywood, H. Park, C. Witkop, E. B. Bass, and J. B. Segal, “Systematic review: Hydroxyurea for the treatment of adults with sickle cell disease,” Ann. Intern. Med.148(12), 939–955 (2008).
[PubMed]

Pauling, L. H.

L. H. Pauling, H. A. Itano, S. J. Singer, and I. C. Wells, “Sickle cell anemia a molecular disease,” Science110(2865), 543–548 (1949).
[CrossRef] [PubMed]

Rancourt-Grenier, S.

Saad, S. T.

M. M. Brandão, A. Fontes, M. L. Barjas-Castro, L. C. Barbosa, F. F. Costa, C. L. Cesar, and S. T. Saad, “Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease,” Eur. J. Haematol.70(4), 207–211 (2003).
[CrossRef] [PubMed]

Saad, S. T. O.

M. M. Brandão, S. T. O. Saad, C. L. Cezar, A. Fontes, F. F. Costa, and M. L. Barjas-Castro, “Elastic properties of stored red blood cells from sickle trait donor units,” Vox Sang.85(3), 213–215 (2003).
[CrossRef] [PubMed]

Segal, J. B.

S. Lanzkron, J. J. Strouse, R. Wilson, M. C. Beach, C. Haywood, H. Park, C. Witkop, E. B. Bass, and J. B. Segal, “Systematic review: Hydroxyurea for the treatment of adults with sickle cell disease,” Ann. Intern. Med.148(12), 939–955 (2008).
[PubMed]

Sheng, Y.

Shulman, A.

D. Erenso, A. Shulman, J. Curtis, and S. Elrod, “Formation of synthetic structures with micron size silica beads using optical tweezer,” J. Mod. Opt.54(10), 1529–1536 (2007).
[CrossRef]

Singer, S. J.

L. H. Pauling, H. A. Itano, S. J. Singer, and I. C. Wells, “Sickle cell anemia a molecular disease,” Science110(2865), 543–548 (1949).
[CrossRef] [PubMed]

Strojny, W.

I. Dulińska, M. Targosz, W. Strojny, M. Lekka, P. Czuba, W. Balwierz, and M. Szymoński, “Stiffness of normal and pathological erythrocytes studied by means of atomic force microscopy,” J. Biochem. Biophys. Methods66(1-3), 1–11 (2006).
[CrossRef] [PubMed]

Strouse, J. J.

S. Lanzkron, J. J. Strouse, R. Wilson, M. C. Beach, C. Haywood, H. Park, C. Witkop, E. B. Bass, and J. B. Segal, “Systematic review: Hydroxyurea for the treatment of adults with sickle cell disease,” Ann. Intern. Med.148(12), 939–955 (2008).
[PubMed]

Szymonski, M.

I. Dulińska, M. Targosz, W. Strojny, M. Lekka, P. Czuba, W. Balwierz, and M. Szymoński, “Stiffness of normal and pathological erythrocytes studied by means of atomic force microscopy,” J. Biochem. Biophys. Methods66(1-3), 1–11 (2006).
[CrossRef] [PubMed]

Targosz, M.

I. Dulińska, M. Targosz, W. Strojny, M. Lekka, P. Czuba, W. Balwierz, and M. Szymoński, “Stiffness of normal and pathological erythrocytes studied by means of atomic force microscopy,” J. Biochem. Biophys. Methods66(1-3), 1–11 (2006).
[CrossRef] [PubMed]

Wei, M. T.

Wells, I. C.

L. H. Pauling, H. A. Itano, S. J. Singer, and I. C. Wells, “Sickle cell anemia a molecular disease,” Science110(2865), 543–548 (1949).
[CrossRef] [PubMed]

Wilson, J. B.

A. Kutlar, F. Kutlar, J. B. Wilson, M. G. Headlee, and T. H. J. Huisman, “Quantitation of hemoglobin components by high-performance cation-exchange liquid chromatography: its use in diagnosis and in the assessment of cellular distribution of hemoglobin variants,” Am. J. Hematol.17(1), 39–53 (1984).
[CrossRef] [PubMed]

Wilson, R.

S. Lanzkron, J. J. Strouse, R. Wilson, M. C. Beach, C. Haywood, H. Park, C. Witkop, E. B. Bass, and J. B. Segal, “Systematic review: Hydroxyurea for the treatment of adults with sickle cell disease,” Ann. Intern. Med.148(12), 939–955 (2008).
[PubMed]

Witkop, C.

S. Lanzkron, J. J. Strouse, R. Wilson, M. C. Beach, C. Haywood, H. Park, C. Witkop, E. B. Bass, and J. B. Segal, “Systematic review: Hydroxyurea for the treatment of adults with sickle cell disease,” Ann. Intern. Med.148(12), 939–955 (2008).
[PubMed]

Yamane, T.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature330(6150), 769–771 (1987).
[CrossRef] [PubMed]

Zoumbos, N.

G. Athanassiou, A. Moutzouri, A. Kourakli, and N. Zoumbos, “Effect of hydroxyurea on the deformability of the red blood cell membrane in patients with sickle cell anemia,” Clin. Hemorheol. Microcirc.35(1-2), 291–295 (2006).
[PubMed]

Am. J. Hematol.

A. Kutlar, F. Kutlar, J. B. Wilson, M. G. Headlee, and T. H. J. Huisman, “Quantitation of hemoglobin components by high-performance cation-exchange liquid chromatography: its use in diagnosis and in the assessment of cellular distribution of hemoglobin variants,” Am. J. Hematol.17(1), 39–53 (1984).
[CrossRef] [PubMed]

Ann. Intern. Med.

S. Lanzkron, J. J. Strouse, R. Wilson, M. C. Beach, C. Haywood, H. Park, C. Witkop, E. B. Bass, and J. B. Segal, “Systematic review: Hydroxyurea for the treatment of adults with sickle cell disease,” Ann. Intern. Med.148(12), 939–955 (2008).
[PubMed]

Arch. Intern. Med.

J. B. Herrick, “Peculiar elongated and sickle-shaped red blood corpuscles in a case of severe anemia,” Arch. Intern. Med.VI(5), 517–521 (1910).
[CrossRef]

Clin. Hemorheol. Microcirc.

G. Athanassiou, A. Moutzouri, A. Kourakli, and N. Zoumbos, “Effect of hydroxyurea on the deformability of the red blood cell membrane in patients with sickle cell anemia,” Clin. Hemorheol. Microcirc.35(1-2), 291–295 (2006).
[PubMed]

Eur. J. Haematol.

M. M. Brandão, A. Fontes, M. L. Barjas-Castro, L. C. Barbosa, F. F. Costa, C. L. Cesar, and S. T. Saad, “Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease,” Eur. J. Haematol.70(4), 207–211 (2003).
[CrossRef] [PubMed]

Expert Rev. Mol. Med.

C. Madigan and P. Malik, “Pathophysiology and therapy for haemoglobinopathies. Part I: sickle cell disease,” Expert Rev. Mol. Med.8(09), 1–23 (2006).
[CrossRef] [PubMed]

J. Biochem. Biophys. Methods

I. Dulińska, M. Targosz, W. Strojny, M. Lekka, P. Czuba, W. Balwierz, and M. Szymoński, “Stiffness of normal and pathological erythrocytes studied by means of atomic force microscopy,” J. Biochem. Biophys. Methods66(1-3), 1–11 (2006).
[CrossRef] [PubMed]

J. Biomed. Opt.

F. Bordeleau, J. Bessard, N. Marceau, and Y. Sheng, “Measuring integrated cellular mechanical stress response at focal adhesions by optical tweezers,” J. Biomed. Opt.16(9), 095005 (2011).
[CrossRef] [PubMed]

J. Mod. Opt.

D. Erenso, A. Shulman, J. Curtis, and S. Elrod, “Formation of synthetic structures with micron size silica beads using optical tweezer,” J. Mod. Opt.54(10), 1529–1536 (2007).
[CrossRef]

J. Strain Analysis Eng. Design

J. L. Maciaszek, B. Andemariam, and G. Lykotrafitis, “Microelasticity of red blood cells in sickle cell disease,” J. Strain Analysis Eng. Design46(5), 368–379 (2011).
[CrossRef]

Nature

V. M. Ingram, “Gene mutations in human haemoglobin: the chemical difference between normal and sickle cell haemoglobin,” Nature180(4581), 326–328 (1957).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature330(6150), 769–771 (1987).
[CrossRef] [PubMed]

Opt. Express

Science

L. H. Pauling, H. A. Itano, S. J. Singer, and I. C. Wells, “Sickle cell anemia a molecular disease,” Science110(2865), 543–548 (1949).
[CrossRef] [PubMed]

A. Ashkin, “Applications of laser radiation pressure,” Science210(4474), 1081–1088 (1980).
[CrossRef] [PubMed]

Vox Sang.

M. M. Brandão, S. T. O. Saad, C. L. Cezar, A. Fontes, F. F. Costa, and M. L. Barjas-Castro, “Elastic properties of stored red blood cells from sickle trait donor units,” Vox Sang.85(3), 213–215 (2003).
[CrossRef] [PubMed]

Other

E. Beutler, M. A. Lichtma, and B. S. Coller, “The sickle cell diseases and related disorders,” in Williams Hematology, 6th ed. (McGraw-Hill, New York, 2001). pp. 581–606.

M. P. Aguinaga, “Newborn screening and clinical management of children with sickle cell disease,” in J. Navarro, ed, Frontiers of Science in the 21st Century (Cordillera, Lima, 2007), pp. 137–147.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Three blood samples diluted in fetal bovine serum [left to right: Normal Hb A (Fresh), Normal Hb A (stored), and transfused SCA patient. In the second row objects colored red represent the bright objects selected by Image-Pro for measurement.

Fig. 2
Fig. 2

The mean diameter of the RBCs distribution: SCA transfused blood sample (red), fresh (blue), and stored at 2°C (cyan). The last two are normal blood samples.

Fig. 3
Fig. 3

The experimental set-up for single laser trap.

Fig. 4
Fig. 4

Images of a cell (from the transfused SCA patient) trapped at 30mW (1st row) and at 230mW (2nd row) as it relaxes to its normal size and shape. These powers are measured at the laser port. From left to right it represents free cell, trapped cell, and sequence of released cell from the trap.

Fig. 5
Fig. 5

The percentage change in the maximum (a) and minimum (b) diameters of the cell inside the trap relative to the diameter of the cell when it is free as function of the laser power. Healthy (blue) and transfused SCA (red).

Fig. 6
Fig. 6

The percent difference of the average maximum diameter of the cells released from the trap relative to the corresponding free cells as a function of time at 30mW (red), 80mW (green), 130mW (yellow), 180mW (blue), 230mW(cyan) and 280mW (magenta): (a) For RBCs (fresh) from a normal Hb A and (b) RBCs from a transfused SCA patient.

Fig. 7
Fig. 7

The relaxation time constant of the cells after it is released from the trap as function of power. Normal Hb A individual (blue) and transfused SCA patient (red).

Tables (1)

Tables Icon

Table 1 Relative Percentage of Hemoglobin types by HPLC and RBCs size measurements by Image-Pro

Metrics