Abstract

Adequate modeling of light propagation in the head is important to predict the sensitivity of NIRS signal and the spatial sensitivity profile of source-detector pairs. The 3D realistic head models of which the geometry is based upon the anatomical images acquired by magnetic resonance imaging and x-ray computed tomography are constructed to investigate the influence of the frontal sinus on the NIRS signal and spatial sensitivity. Light propagation in the head is strongly affected by the presence of the frontal sinus. The light tends to propagate around the frontal sinus. The influence of the frontal sinus on the sensitivity of the NIRS signal to the brain activation is not consistent and depends on the depth of the frontal sinus, the optical properties of the superficial tissues and the relative position between the source-detector pair and the frontal sinus. The frontal sinus located in the shallow region of the skull tends to reduce the sensitivity of the NIRS signal while the deep frontal sinus can increase the sensitivity of the NIRS signal.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage (to be published).
    [PubMed]
  2. H. Koizumi, T. Yamamoto, A. Maki, Y. Yamashita, H. Sato, H. Kawaguchi, and N. Ichikawa, “Optical topography: practical problems and new applications,” Appl. Opt.42(16), 3054–3062 (2003).
    [CrossRef] [PubMed]
  3. Y. Hoshi, B. H. Tsou, V. A. Billock, M. Tanosaki, Y. Iguchi, M. Shimada, T. Shinba, Y. Yamada, and I. Oda, “Spatiotemporal characteristics of hemodynamic changes in the human lateral prefrontal cortex during working memory tasks,” Neuroimage20(3), 1493–1504 (2003).
    [CrossRef] [PubMed]
  4. G. Taga and K. Asakawa, “Selectivity and localization of cortical response to auditory and visual stimulation in awake infants aged 2 to 4 months,” Neuroimage36(4), 1246–1252 (2007).
    [CrossRef] [PubMed]
  5. K. Uludağ, J. Steinbrink, M. Kohl-Bareis, R. Wenzel, A. Villringer, and H. Obrig, “Cytochrome-c-oxidase redox changes during visual stimulation measured by near-infrared spectroscopy cannot be explained by a mere cross talk artefact,” Neuroimage22(1), 109–119 (2004).
    [CrossRef] [PubMed]
  6. H. Wabnitz, M. Moeller, A. Liebert, H. Obrig, J. Steinbrink, and R. Macdonald, “Time-resolved near-infrared spectroscopy and imaging of the adult human brain,” Adv. Exp. Med. Biol.662, 143–148 (2010).
    [CrossRef] [PubMed]
  7. M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt.11(5), 054007 (2006).
    [CrossRef] [PubMed]
  8. M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt.12(6), 062104 (2007).
    [CrossRef] [PubMed]
  9. K. Sakatani, Y. Murata, N. Fujiwara, T. Hoshino, S. Nakamura, T. Kano, and Y. Katayama, “Comparison of blood-oxygen-level-dependent functional magnetic resonance imaging and near-infrared spectroscopy recording during functional brain activation in patients with stroke and brain tumors,” J. Biomed. Opt.12(6), 062110 (2007).
    [CrossRef] [PubMed]
  10. S. Muehlschlegel, J. Selb, M. Patel, S. G. Diamond, M. A. Franceschini, A. G. Sorensen, D. A. Boas, and L. H. Schwamm, “Feasibility of NIRS in the neurointensive care unit: a pilot study in stroke using physiological oscillations,” Neurocrit. Care11(2), 288–295 (2009).
    [CrossRef] [PubMed]
  11. T. Suto, M. Fukuda, M. Ito, T. Uehara, and M. Mikuni, “Multichannel near-infrared spectroscopy in depression and schizophrenia: cognitive brain activation study,” Biol. Psychiatry55(5), 501–511 (2004).
    [CrossRef] [PubMed]
  12. I. Miyai, H. C. Tanabe, I. Sase, H. Eda, I. Oda, I. Konishi, Y. Tsunazawa, T. Suzuki, T. Yanagida, and K. Kubota, “Cortical mapping of gait in humans: a near-infrared spectroscopic topography study,” Neuroimage14(5), 1186–1192 (2001).
    [CrossRef] [PubMed]
  13. E. Watanabe, A. Maki, F. Kawaguchi, K. Takashiro, Y. Yamashita, H. Koizumi, and Y. Mayanagi, “Non-invasive assessment of language dominance with near-infrared spectroscopic mapping,” Neurosci. Lett.256(1), 49–52 (1998).
    [CrossRef] [PubMed]
  14. E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt.36(1), 21–31 (1997).
    [CrossRef] [PubMed]
  15. M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol.44(7), 1743–1753 (1999).
    [CrossRef] [PubMed]
  16. E. Okada and D. T. Delpy, “Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer,” Appl. Opt.42(16), 2906–2914 (2003).
    [CrossRef] [PubMed]
  17. D. A. Boas, J. P. Culver, J. J. Stott, and A. K. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express10(3), 159–170 (2002).
    [PubMed]
  18. Y. Fukui, Y. Ajichi, and E. Okada, “Monte Carlo prediction of near-infrared light propagation in realistic adult and neonatal head models,” Appl. Opt.42(16), 2881–2887 (2003).
    [CrossRef] [PubMed]
  19. H. Kawaguchi, T. Koyama, and E. Okada, “Effect of probe arrangement on reproducibility of images by near-infrared topography evaluated by a virtual head phantom,” Appl. Opt.46(10), 1658–1668 (2007).
    [CrossRef] [PubMed]
  20. J. Heiskala, P. Hiltunen, and I. Nissilä, “Significance of background optical properties, time-resolved information and optode arrangement in diffuse optical imaging of term neonates,” Phys. Med. Biol.54(3), 535–554 (2009).
    [CrossRef] [PubMed]
  21. M. Dehaes, L. Gagnon, F. Lesage, M. Pélégrini-Issac, A. Vignaud, R. Valabrègue, R. Grebe, F. Wallois, and H. Benali, “Quantitative investigation of the effect of the extra-cerebral vasculature in diffuse optical imaging: a simulation study,” Biomed. Opt. Express2(3), 680–695 (2011).
    [CrossRef] [PubMed]
  22. E. Okada, D. Yamamoto, N. Kiryu, A. Katagiri, N. Yokose, T. Awano, K. Igarashi, S. Nakamura, T. Hoshino, Y. Murata, T. Kano, K. Sakatani, and Y. Katayama, “Theoretical and experimental investigation of the influence of frontal sinus on the sensitivity of the NIRS signal in the adult head,” Adv. Exp. Med. Biol.662, 231–236 (2010).
    [CrossRef] [PubMed]
  23. J. Ashburner, “A fast diffeomorphic image registration algorithm,” Neuroimage38(1), 95–113 (2007).
    [CrossRef] [PubMed]
  24. J. Thiran, V. Warscotte, and B. Macq, “A queue-based region growing algorithm for accurate segmentation of multi-dimensional digital images,” Signal Process.60(1), 1–10 (1997).
    [CrossRef]
  25. C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol.43(9), 2465–2478 (1998).
    [CrossRef] [PubMed]
  26. M. Firbank, M. Hiraoka, M. Essenpreis, and D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650-950 nm,” Phys. Med. Biol.38(4), 503–510 (1993).
    [CrossRef] [PubMed]
  27. P. van der Zee, M. Essenpreis, and D. T. Delpy, “Optical properties of brain tissue,” Proc. SPIE1888, 454–465 (1993).
    [CrossRef]
  28. A. Roggan, O. Minet, C. Shröder, and G. Müller, “The determination of optical tissue properties with double integrating sphere technique and Monte Carlo simulation,” Proc. SPIE2100, 42–56 (1994).
    [CrossRef]
  29. A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H.-J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol.47(12), 2059–2073 (2002).
    [CrossRef] [PubMed]
  30. B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys.10(6), 824–830 (1983).
    [CrossRef] [PubMed]
  31. M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol.38(12), 1859–1876 (1993).
    [CrossRef] [PubMed]
  32. L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed.47(2), 131–146 (1995).
    [CrossRef]

2011 (1)

2010 (2)

E. Okada, D. Yamamoto, N. Kiryu, A. Katagiri, N. Yokose, T. Awano, K. Igarashi, S. Nakamura, T. Hoshino, Y. Murata, T. Kano, K. Sakatani, and Y. Katayama, “Theoretical and experimental investigation of the influence of frontal sinus on the sensitivity of the NIRS signal in the adult head,” Adv. Exp. Med. Biol.662, 231–236 (2010).
[CrossRef] [PubMed]

H. Wabnitz, M. Moeller, A. Liebert, H. Obrig, J. Steinbrink, and R. Macdonald, “Time-resolved near-infrared spectroscopy and imaging of the adult human brain,” Adv. Exp. Med. Biol.662, 143–148 (2010).
[CrossRef] [PubMed]

2009 (2)

S. Muehlschlegel, J. Selb, M. Patel, S. G. Diamond, M. A. Franceschini, A. G. Sorensen, D. A. Boas, and L. H. Schwamm, “Feasibility of NIRS in the neurointensive care unit: a pilot study in stroke using physiological oscillations,” Neurocrit. Care11(2), 288–295 (2009).
[CrossRef] [PubMed]

J. Heiskala, P. Hiltunen, and I. Nissilä, “Significance of background optical properties, time-resolved information and optode arrangement in diffuse optical imaging of term neonates,” Phys. Med. Biol.54(3), 535–554 (2009).
[CrossRef] [PubMed]

2007 (5)

H. Kawaguchi, T. Koyama, and E. Okada, “Effect of probe arrangement on reproducibility of images by near-infrared topography evaluated by a virtual head phantom,” Appl. Opt.46(10), 1658–1668 (2007).
[CrossRef] [PubMed]

J. Ashburner, “A fast diffeomorphic image registration algorithm,” Neuroimage38(1), 95–113 (2007).
[CrossRef] [PubMed]

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt.12(6), 062104 (2007).
[CrossRef] [PubMed]

K. Sakatani, Y. Murata, N. Fujiwara, T. Hoshino, S. Nakamura, T. Kano, and Y. Katayama, “Comparison of blood-oxygen-level-dependent functional magnetic resonance imaging and near-infrared spectroscopy recording during functional brain activation in patients with stroke and brain tumors,” J. Biomed. Opt.12(6), 062110 (2007).
[CrossRef] [PubMed]

G. Taga and K. Asakawa, “Selectivity and localization of cortical response to auditory and visual stimulation in awake infants aged 2 to 4 months,” Neuroimage36(4), 1246–1252 (2007).
[CrossRef] [PubMed]

2006 (1)

M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt.11(5), 054007 (2006).
[CrossRef] [PubMed]

2004 (2)

K. Uludağ, J. Steinbrink, M. Kohl-Bareis, R. Wenzel, A. Villringer, and H. Obrig, “Cytochrome-c-oxidase redox changes during visual stimulation measured by near-infrared spectroscopy cannot be explained by a mere cross talk artefact,” Neuroimage22(1), 109–119 (2004).
[CrossRef] [PubMed]

T. Suto, M. Fukuda, M. Ito, T. Uehara, and M. Mikuni, “Multichannel near-infrared spectroscopy in depression and schizophrenia: cognitive brain activation study,” Biol. Psychiatry55(5), 501–511 (2004).
[CrossRef] [PubMed]

2003 (4)

2002 (2)

D. A. Boas, J. P. Culver, J. J. Stott, and A. K. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express10(3), 159–170 (2002).
[PubMed]

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H.-J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol.47(12), 2059–2073 (2002).
[CrossRef] [PubMed]

2001 (1)

I. Miyai, H. C. Tanabe, I. Sase, H. Eda, I. Oda, I. Konishi, Y. Tsunazawa, T. Suzuki, T. Yanagida, and K. Kubota, “Cortical mapping of gait in humans: a near-infrared spectroscopic topography study,” Neuroimage14(5), 1186–1192 (2001).
[CrossRef] [PubMed]

1999 (1)

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol.44(7), 1743–1753 (1999).
[CrossRef] [PubMed]

1998 (2)

E. Watanabe, A. Maki, F. Kawaguchi, K. Takashiro, Y. Yamashita, H. Koizumi, and Y. Mayanagi, “Non-invasive assessment of language dominance with near-infrared spectroscopic mapping,” Neurosci. Lett.256(1), 49–52 (1998).
[CrossRef] [PubMed]

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol.43(9), 2465–2478 (1998).
[CrossRef] [PubMed]

1997 (2)

J. Thiran, V. Warscotte, and B. Macq, “A queue-based region growing algorithm for accurate segmentation of multi-dimensional digital images,” Signal Process.60(1), 1–10 (1997).
[CrossRef]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt.36(1), 21–31 (1997).
[CrossRef] [PubMed]

1995 (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed.47(2), 131–146 (1995).
[CrossRef]

1994 (1)

A. Roggan, O. Minet, C. Shröder, and G. Müller, “The determination of optical tissue properties with double integrating sphere technique and Monte Carlo simulation,” Proc. SPIE2100, 42–56 (1994).
[CrossRef]

1993 (3)

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol.38(12), 1859–1876 (1993).
[CrossRef] [PubMed]

M. Firbank, M. Hiraoka, M. Essenpreis, and D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650-950 nm,” Phys. Med. Biol.38(4), 503–510 (1993).
[CrossRef] [PubMed]

P. van der Zee, M. Essenpreis, and D. T. Delpy, “Optical properties of brain tissue,” Proc. SPIE1888, 454–465 (1993).
[CrossRef]

1983 (1)

B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys.10(6), 824–830 (1983).
[CrossRef] [PubMed]

Adam, G.

B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys.10(6), 824–830 (1983).
[CrossRef] [PubMed]

Ajichi, Y.

Arridge, S. R.

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt.36(1), 21–31 (1997).
[CrossRef] [PubMed]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol.38(12), 1859–1876 (1993).
[CrossRef] [PubMed]

Asakawa, K.

G. Taga and K. Asakawa, “Selectivity and localization of cortical response to auditory and visual stimulation in awake infants aged 2 to 4 months,” Neuroimage36(4), 1246–1252 (2007).
[CrossRef] [PubMed]

Ashburner, J.

J. Ashburner, “A fast diffeomorphic image registration algorithm,” Neuroimage38(1), 95–113 (2007).
[CrossRef] [PubMed]

Awano, T.

E. Okada, D. Yamamoto, N. Kiryu, A. Katagiri, N. Yokose, T. Awano, K. Igarashi, S. Nakamura, T. Hoshino, Y. Murata, T. Kano, K. Sakatani, and Y. Katayama, “Theoretical and experimental investigation of the influence of frontal sinus on the sensitivity of the NIRS signal in the adult head,” Adv. Exp. Med. Biol.662, 231–236 (2010).
[CrossRef] [PubMed]

Baenziger, O.

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol.44(7), 1743–1753 (1999).
[CrossRef] [PubMed]

Benali, H.

Billock, V. A.

Y. Hoshi, B. H. Tsou, V. A. Billock, M. Tanosaki, Y. Iguchi, M. Shimada, T. Shinba, Y. Yamada, and I. Oda, “Spatiotemporal characteristics of hemodynamic changes in the human lateral prefrontal cortex during working memory tasks,” Neuroimage20(3), 1493–1504 (2003).
[CrossRef] [PubMed]

Boas, D. A.

S. Muehlschlegel, J. Selb, M. Patel, S. G. Diamond, M. A. Franceschini, A. G. Sorensen, D. A. Boas, and L. H. Schwamm, “Feasibility of NIRS in the neurointensive care unit: a pilot study in stroke using physiological oscillations,” Neurocrit. Care11(2), 288–295 (2009).
[CrossRef] [PubMed]

M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt.11(5), 054007 (2006).
[CrossRef] [PubMed]

D. A. Boas, J. P. Culver, J. J. Stott, and A. K. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express10(3), 159–170 (2002).
[PubMed]

Bucher, H. U.

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol.44(7), 1743–1753 (1999).
[CrossRef] [PubMed]

Cope, M.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol.43(9), 2465–2478 (1998).
[CrossRef] [PubMed]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt.36(1), 21–31 (1997).
[CrossRef] [PubMed]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol.38(12), 1859–1876 (1993).
[CrossRef] [PubMed]

Culver, J. P.

Dehaes, M.

Delpy, D. T.

E. Okada and D. T. Delpy, “Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer,” Appl. Opt.42(16), 2906–2914 (2003).
[CrossRef] [PubMed]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt.36(1), 21–31 (1997).
[CrossRef] [PubMed]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol.38(12), 1859–1876 (1993).
[CrossRef] [PubMed]

M. Firbank, M. Hiraoka, M. Essenpreis, and D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650-950 nm,” Phys. Med. Biol.38(4), 503–510 (1993).
[CrossRef] [PubMed]

P. van der Zee, M. Essenpreis, and D. T. Delpy, “Optical properties of brain tissue,” Proc. SPIE1888, 454–465 (1993).
[CrossRef]

Diamond, S. G.

S. Muehlschlegel, J. Selb, M. Patel, S. G. Diamond, M. A. Franceschini, A. G. Sorensen, D. A. Boas, and L. H. Schwamm, “Feasibility of NIRS in the neurointensive care unit: a pilot study in stroke using physiological oscillations,” Neurocrit. Care11(2), 288–295 (2009).
[CrossRef] [PubMed]

M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt.11(5), 054007 (2006).
[CrossRef] [PubMed]

Dietz, V.

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol.44(7), 1743–1753 (1999).
[CrossRef] [PubMed]

Dunn, A. K.

Eda, H.

I. Miyai, H. C. Tanabe, I. Sase, H. Eda, I. Oda, I. Konishi, Y. Tsunazawa, T. Suzuki, T. Yanagida, and K. Kubota, “Cortical mapping of gait in humans: a near-infrared spectroscopic topography study,” Neuroimage14(5), 1186–1192 (2001).
[CrossRef] [PubMed]

Essenpreis, M.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol.43(9), 2465–2478 (1998).
[CrossRef] [PubMed]

M. Firbank, M. Hiraoka, M. Essenpreis, and D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650-950 nm,” Phys. Med. Biol.38(4), 503–510 (1993).
[CrossRef] [PubMed]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol.38(12), 1859–1876 (1993).
[CrossRef] [PubMed]

P. van der Zee, M. Essenpreis, and D. T. Delpy, “Optical properties of brain tissue,” Proc. SPIE1888, 454–465 (1993).
[CrossRef]

Ferrari, M.

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt.12(6), 062104 (2007).
[CrossRef] [PubMed]

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage (to be published).
[PubMed]

Firbank, M.

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt.36(1), 21–31 (1997).
[CrossRef] [PubMed]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol.38(12), 1859–1876 (1993).
[CrossRef] [PubMed]

M. Firbank, M. Hiraoka, M. Essenpreis, and D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650-950 nm,” Phys. Med. Biol.38(4), 503–510 (1993).
[CrossRef] [PubMed]

Franceschini, M. A.

S. Muehlschlegel, J. Selb, M. Patel, S. G. Diamond, M. A. Franceschini, A. G. Sorensen, D. A. Boas, and L. H. Schwamm, “Feasibility of NIRS in the neurointensive care unit: a pilot study in stroke using physiological oscillations,” Neurocrit. Care11(2), 288–295 (2009).
[CrossRef] [PubMed]

M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt.11(5), 054007 (2006).
[CrossRef] [PubMed]

Fujiwara, N.

K. Sakatani, Y. Murata, N. Fujiwara, T. Hoshino, S. Nakamura, T. Kano, and Y. Katayama, “Comparison of blood-oxygen-level-dependent functional magnetic resonance imaging and near-infrared spectroscopy recording during functional brain activation in patients with stroke and brain tumors,” J. Biomed. Opt.12(6), 062110 (2007).
[CrossRef] [PubMed]

Fukuda, M.

T. Suto, M. Fukuda, M. Ito, T. Uehara, and M. Mikuni, “Multichannel near-infrared spectroscopy in depression and schizophrenia: cognitive brain activation study,” Biol. Psychiatry55(5), 501–511 (2004).
[CrossRef] [PubMed]

Fukui, Y.

Gagnon, L.

Grebe, R.

Heiskala, J.

J. Heiskala, P. Hiltunen, and I. Nissilä, “Significance of background optical properties, time-resolved information and optode arrangement in diffuse optical imaging of term neonates,” Phys. Med. Biol.54(3), 535–554 (2009).
[CrossRef] [PubMed]

Hiltunen, P.

J. Heiskala, P. Hiltunen, and I. Nissilä, “Significance of background optical properties, time-resolved information and optode arrangement in diffuse optical imaging of term neonates,” Phys. Med. Biol.54(3), 535–554 (2009).
[CrossRef] [PubMed]

Hiraoka, M.

M. Firbank, M. Hiraoka, M. Essenpreis, and D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650-950 nm,” Phys. Med. Biol.38(4), 503–510 (1993).
[CrossRef] [PubMed]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol.38(12), 1859–1876 (1993).
[CrossRef] [PubMed]

Hoshi, Y.

Y. Hoshi, B. H. Tsou, V. A. Billock, M. Tanosaki, Y. Iguchi, M. Shimada, T. Shinba, Y. Yamada, and I. Oda, “Spatiotemporal characteristics of hemodynamic changes in the human lateral prefrontal cortex during working memory tasks,” Neuroimage20(3), 1493–1504 (2003).
[CrossRef] [PubMed]

Hoshino, T.

E. Okada, D. Yamamoto, N. Kiryu, A. Katagiri, N. Yokose, T. Awano, K. Igarashi, S. Nakamura, T. Hoshino, Y. Murata, T. Kano, K. Sakatani, and Y. Katayama, “Theoretical and experimental investigation of the influence of frontal sinus on the sensitivity of the NIRS signal in the adult head,” Adv. Exp. Med. Biol.662, 231–236 (2010).
[CrossRef] [PubMed]

K. Sakatani, Y. Murata, N. Fujiwara, T. Hoshino, S. Nakamura, T. Kano, and Y. Katayama, “Comparison of blood-oxygen-level-dependent functional magnetic resonance imaging and near-infrared spectroscopy recording during functional brain activation in patients with stroke and brain tumors,” J. Biomed. Opt.12(6), 062110 (2007).
[CrossRef] [PubMed]

Huppert, T. J.

M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt.11(5), 054007 (2006).
[CrossRef] [PubMed]

Ichikawa, N.

Igarashi, K.

E. Okada, D. Yamamoto, N. Kiryu, A. Katagiri, N. Yokose, T. Awano, K. Igarashi, S. Nakamura, T. Hoshino, Y. Murata, T. Kano, K. Sakatani, and Y. Katayama, “Theoretical and experimental investigation of the influence of frontal sinus on the sensitivity of the NIRS signal in the adult head,” Adv. Exp. Med. Biol.662, 231–236 (2010).
[CrossRef] [PubMed]

Iguchi, Y.

Y. Hoshi, B. H. Tsou, V. A. Billock, M. Tanosaki, Y. Iguchi, M. Shimada, T. Shinba, Y. Yamada, and I. Oda, “Spatiotemporal characteristics of hemodynamic changes in the human lateral prefrontal cortex during working memory tasks,” Neuroimage20(3), 1493–1504 (2003).
[CrossRef] [PubMed]

Ito, M.

T. Suto, M. Fukuda, M. Ito, T. Uehara, and M. Mikuni, “Multichannel near-infrared spectroscopy in depression and schizophrenia: cognitive brain activation study,” Biol. Psychiatry55(5), 501–511 (2004).
[CrossRef] [PubMed]

Jacques, S. L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed.47(2), 131–146 (1995).
[CrossRef]

Joseph, D. K.

M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt.11(5), 054007 (2006).
[CrossRef] [PubMed]

Kano, T.

E. Okada, D. Yamamoto, N. Kiryu, A. Katagiri, N. Yokose, T. Awano, K. Igarashi, S. Nakamura, T. Hoshino, Y. Murata, T. Kano, K. Sakatani, and Y. Katayama, “Theoretical and experimental investigation of the influence of frontal sinus on the sensitivity of the NIRS signal in the adult head,” Adv. Exp. Med. Biol.662, 231–236 (2010).
[CrossRef] [PubMed]

K. Sakatani, Y. Murata, N. Fujiwara, T. Hoshino, S. Nakamura, T. Kano, and Y. Katayama, “Comparison of blood-oxygen-level-dependent functional magnetic resonance imaging and near-infrared spectroscopy recording during functional brain activation in patients with stroke and brain tumors,” J. Biomed. Opt.12(6), 062110 (2007).
[CrossRef] [PubMed]

Katagiri, A.

E. Okada, D. Yamamoto, N. Kiryu, A. Katagiri, N. Yokose, T. Awano, K. Igarashi, S. Nakamura, T. Hoshino, Y. Murata, T. Kano, K. Sakatani, and Y. Katayama, “Theoretical and experimental investigation of the influence of frontal sinus on the sensitivity of the NIRS signal in the adult head,” Adv. Exp. Med. Biol.662, 231–236 (2010).
[CrossRef] [PubMed]

Katayama, Y.

E. Okada, D. Yamamoto, N. Kiryu, A. Katagiri, N. Yokose, T. Awano, K. Igarashi, S. Nakamura, T. Hoshino, Y. Murata, T. Kano, K. Sakatani, and Y. Katayama, “Theoretical and experimental investigation of the influence of frontal sinus on the sensitivity of the NIRS signal in the adult head,” Adv. Exp. Med. Biol.662, 231–236 (2010).
[CrossRef] [PubMed]

K. Sakatani, Y. Murata, N. Fujiwara, T. Hoshino, S. Nakamura, T. Kano, and Y. Katayama, “Comparison of blood-oxygen-level-dependent functional magnetic resonance imaging and near-infrared spectroscopy recording during functional brain activation in patients with stroke and brain tumors,” J. Biomed. Opt.12(6), 062110 (2007).
[CrossRef] [PubMed]

Kawaguchi, F.

E. Watanabe, A. Maki, F. Kawaguchi, K. Takashiro, Y. Yamashita, H. Koizumi, and Y. Mayanagi, “Non-invasive assessment of language dominance with near-infrared spectroscopic mapping,” Neurosci. Lett.256(1), 49–52 (1998).
[CrossRef] [PubMed]

Kawaguchi, H.

Keel, M.

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol.44(7), 1743–1753 (1999).
[CrossRef] [PubMed]

Kiryu, N.

E. Okada, D. Yamamoto, N. Kiryu, A. Katagiri, N. Yokose, T. Awano, K. Igarashi, S. Nakamura, T. Hoshino, Y. Murata, T. Kano, K. Sakatani, and Y. Katayama, “Theoretical and experimental investigation of the influence of frontal sinus on the sensitivity of the NIRS signal in the adult head,” Adv. Exp. Med. Biol.662, 231–236 (2010).
[CrossRef] [PubMed]

Kohl, M.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol.43(9), 2465–2478 (1998).
[CrossRef] [PubMed]

Kohl-Bareis, M.

K. Uludağ, J. Steinbrink, M. Kohl-Bareis, R. Wenzel, A. Villringer, and H. Obrig, “Cytochrome-c-oxidase redox changes during visual stimulation measured by near-infrared spectroscopy cannot be explained by a mere cross talk artefact,” Neuroimage22(1), 109–119 (2004).
[CrossRef] [PubMed]

Koizumi, H.

H. Koizumi, T. Yamamoto, A. Maki, Y. Yamashita, H. Sato, H. Kawaguchi, and N. Ichikawa, “Optical topography: practical problems and new applications,” Appl. Opt.42(16), 3054–3062 (2003).
[CrossRef] [PubMed]

E. Watanabe, A. Maki, F. Kawaguchi, K. Takashiro, Y. Yamashita, H. Koizumi, and Y. Mayanagi, “Non-invasive assessment of language dominance with near-infrared spectroscopic mapping,” Neurosci. Lett.256(1), 49–52 (1998).
[CrossRef] [PubMed]

Konishi, I.

I. Miyai, H. C. Tanabe, I. Sase, H. Eda, I. Oda, I. Konishi, Y. Tsunazawa, T. Suzuki, T. Yanagida, and K. Kubota, “Cortical mapping of gait in humans: a near-infrared spectroscopic topography study,” Neuroimage14(5), 1186–1192 (2001).
[CrossRef] [PubMed]

Koyama, T.

Kubota, K.

I. Miyai, H. C. Tanabe, I. Sase, H. Eda, I. Oda, I. Konishi, Y. Tsunazawa, T. Suzuki, T. Yanagida, and K. Kubota, “Cortical mapping of gait in humans: a near-infrared spectroscopic topography study,” Neuroimage14(5), 1186–1192 (2001).
[CrossRef] [PubMed]

Lesage, F.

Liebert, A.

H. Wabnitz, M. Moeller, A. Liebert, H. Obrig, J. Steinbrink, and R. Macdonald, “Time-resolved near-infrared spectroscopy and imaging of the adult human brain,” Adv. Exp. Med. Biol.662, 143–148 (2010).
[CrossRef] [PubMed]

Macdonald, R.

H. Wabnitz, M. Moeller, A. Liebert, H. Obrig, J. Steinbrink, and R. Macdonald, “Time-resolved near-infrared spectroscopy and imaging of the adult human brain,” Adv. Exp. Med. Biol.662, 143–148 (2010).
[CrossRef] [PubMed]

Macq, B.

J. Thiran, V. Warscotte, and B. Macq, “A queue-based region growing algorithm for accurate segmentation of multi-dimensional digital images,” Signal Process.60(1), 1–10 (1997).
[CrossRef]

Maki, A.

H. Koizumi, T. Yamamoto, A. Maki, Y. Yamashita, H. Sato, H. Kawaguchi, and N. Ichikawa, “Optical topography: practical problems and new applications,” Appl. Opt.42(16), 3054–3062 (2003).
[CrossRef] [PubMed]

E. Watanabe, A. Maki, F. Kawaguchi, K. Takashiro, Y. Yamashita, H. Koizumi, and Y. Mayanagi, “Non-invasive assessment of language dominance with near-infrared spectroscopic mapping,” Neurosci. Lett.256(1), 49–52 (1998).
[CrossRef] [PubMed]

Mayanagi, Y.

E. Watanabe, A. Maki, F. Kawaguchi, K. Takashiro, Y. Yamashita, H. Koizumi, and Y. Mayanagi, “Non-invasive assessment of language dominance with near-infrared spectroscopic mapping,” Neurosci. Lett.256(1), 49–52 (1998).
[CrossRef] [PubMed]

Mikuni, M.

T. Suto, M. Fukuda, M. Ito, T. Uehara, and M. Mikuni, “Multichannel near-infrared spectroscopy in depression and schizophrenia: cognitive brain activation study,” Biol. Psychiatry55(5), 501–511 (2004).
[CrossRef] [PubMed]

Minet, O.

A. Roggan, O. Minet, C. Shröder, and G. Müller, “The determination of optical tissue properties with double integrating sphere technique and Monte Carlo simulation,” Proc. SPIE2100, 42–56 (1994).
[CrossRef]

Miyai, I.

I. Miyai, H. C. Tanabe, I. Sase, H. Eda, I. Oda, I. Konishi, Y. Tsunazawa, T. Suzuki, T. Yanagida, and K. Kubota, “Cortical mapping of gait in humans: a near-infrared spectroscopic topography study,” Neuroimage14(5), 1186–1192 (2001).
[CrossRef] [PubMed]

Moeller, M.

H. Wabnitz, M. Moeller, A. Liebert, H. Obrig, J. Steinbrink, and R. Macdonald, “Time-resolved near-infrared spectroscopy and imaging of the adult human brain,” Adv. Exp. Med. Biol.662, 143–148 (2010).
[CrossRef] [PubMed]

Muehlschlegel, S.

S. Muehlschlegel, J. Selb, M. Patel, S. G. Diamond, M. A. Franceschini, A. G. Sorensen, D. A. Boas, and L. H. Schwamm, “Feasibility of NIRS in the neurointensive care unit: a pilot study in stroke using physiological oscillations,” Neurocrit. Care11(2), 288–295 (2009).
[CrossRef] [PubMed]

Müller, G.

A. Roggan, O. Minet, C. Shröder, and G. Müller, “The determination of optical tissue properties with double integrating sphere technique and Monte Carlo simulation,” Proc. SPIE2100, 42–56 (1994).
[CrossRef]

Murata, Y.

E. Okada, D. Yamamoto, N. Kiryu, A. Katagiri, N. Yokose, T. Awano, K. Igarashi, S. Nakamura, T. Hoshino, Y. Murata, T. Kano, K. Sakatani, and Y. Katayama, “Theoretical and experimental investigation of the influence of frontal sinus on the sensitivity of the NIRS signal in the adult head,” Adv. Exp. Med. Biol.662, 231–236 (2010).
[CrossRef] [PubMed]

K. Sakatani, Y. Murata, N. Fujiwara, T. Hoshino, S. Nakamura, T. Kano, and Y. Katayama, “Comparison of blood-oxygen-level-dependent functional magnetic resonance imaging and near-infrared spectroscopy recording during functional brain activation in patients with stroke and brain tumors,” J. Biomed. Opt.12(6), 062110 (2007).
[CrossRef] [PubMed]

Nakamura, S.

E. Okada, D. Yamamoto, N. Kiryu, A. Katagiri, N. Yokose, T. Awano, K. Igarashi, S. Nakamura, T. Hoshino, Y. Murata, T. Kano, K. Sakatani, and Y. Katayama, “Theoretical and experimental investigation of the influence of frontal sinus on the sensitivity of the NIRS signal in the adult head,” Adv. Exp. Med. Biol.662, 231–236 (2010).
[CrossRef] [PubMed]

K. Sakatani, Y. Murata, N. Fujiwara, T. Hoshino, S. Nakamura, T. Kano, and Y. Katayama, “Comparison of blood-oxygen-level-dependent functional magnetic resonance imaging and near-infrared spectroscopy recording during functional brain activation in patients with stroke and brain tumors,” J. Biomed. Opt.12(6), 062110 (2007).
[CrossRef] [PubMed]

Nissilä, I.

J. Heiskala, P. Hiltunen, and I. Nissilä, “Significance of background optical properties, time-resolved information and optode arrangement in diffuse optical imaging of term neonates,” Phys. Med. Biol.54(3), 535–554 (2009).
[CrossRef] [PubMed]

Obrig, H.

H. Wabnitz, M. Moeller, A. Liebert, H. Obrig, J. Steinbrink, and R. Macdonald, “Time-resolved near-infrared spectroscopy and imaging of the adult human brain,” Adv. Exp. Med. Biol.662, 143–148 (2010).
[CrossRef] [PubMed]

K. Uludağ, J. Steinbrink, M. Kohl-Bareis, R. Wenzel, A. Villringer, and H. Obrig, “Cytochrome-c-oxidase redox changes during visual stimulation measured by near-infrared spectroscopy cannot be explained by a mere cross talk artefact,” Neuroimage22(1), 109–119 (2004).
[CrossRef] [PubMed]

Oda, I.

Y. Hoshi, B. H. Tsou, V. A. Billock, M. Tanosaki, Y. Iguchi, M. Shimada, T. Shinba, Y. Yamada, and I. Oda, “Spatiotemporal characteristics of hemodynamic changes in the human lateral prefrontal cortex during working memory tasks,” Neuroimage20(3), 1493–1504 (2003).
[CrossRef] [PubMed]

I. Miyai, H. C. Tanabe, I. Sase, H. Eda, I. Oda, I. Konishi, Y. Tsunazawa, T. Suzuki, T. Yanagida, and K. Kubota, “Cortical mapping of gait in humans: a near-infrared spectroscopic topography study,” Neuroimage14(5), 1186–1192 (2001).
[CrossRef] [PubMed]

Okada, E.

Patel, M.

S. Muehlschlegel, J. Selb, M. Patel, S. G. Diamond, M. A. Franceschini, A. G. Sorensen, D. A. Boas, and L. H. Schwamm, “Feasibility of NIRS in the neurointensive care unit: a pilot study in stroke using physiological oscillations,” Neurocrit. Care11(2), 288–295 (2009).
[CrossRef] [PubMed]

Pélégrini-Issac, M.

Quaresima, V.

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt.12(6), 062104 (2007).
[CrossRef] [PubMed]

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage (to be published).
[PubMed]

Roggan, A.

A. Roggan, O. Minet, C. Shröder, and G. Müller, “The determination of optical tissue properties with double integrating sphere technique and Monte Carlo simulation,” Proc. SPIE2100, 42–56 (1994).
[CrossRef]

Sakatani, K.

E. Okada, D. Yamamoto, N. Kiryu, A. Katagiri, N. Yokose, T. Awano, K. Igarashi, S. Nakamura, T. Hoshino, Y. Murata, T. Kano, K. Sakatani, and Y. Katayama, “Theoretical and experimental investigation of the influence of frontal sinus on the sensitivity of the NIRS signal in the adult head,” Adv. Exp. Med. Biol.662, 231–236 (2010).
[CrossRef] [PubMed]

K. Sakatani, Y. Murata, N. Fujiwara, T. Hoshino, S. Nakamura, T. Kano, and Y. Katayama, “Comparison of blood-oxygen-level-dependent functional magnetic resonance imaging and near-infrared spectroscopy recording during functional brain activation in patients with stroke and brain tumors,” J. Biomed. Opt.12(6), 062110 (2007).
[CrossRef] [PubMed]

Sase, I.

I. Miyai, H. C. Tanabe, I. Sase, H. Eda, I. Oda, I. Konishi, Y. Tsunazawa, T. Suzuki, T. Yanagida, and K. Kubota, “Cortical mapping of gait in humans: a near-infrared spectroscopic topography study,” Neuroimage14(5), 1186–1192 (2001).
[CrossRef] [PubMed]

Sato, H.

Schober, R.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H.-J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol.47(12), 2059–2073 (2002).
[CrossRef] [PubMed]

Schulze, P. C.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H.-J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol.47(12), 2059–2073 (2002).
[CrossRef] [PubMed]

Schwamm, L. H.

S. Muehlschlegel, J. Selb, M. Patel, S. G. Diamond, M. A. Franceschini, A. G. Sorensen, D. A. Boas, and L. H. Schwamm, “Feasibility of NIRS in the neurointensive care unit: a pilot study in stroke using physiological oscillations,” Neurocrit. Care11(2), 288–295 (2009).
[CrossRef] [PubMed]

Schwarzmaier, H.-J.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H.-J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol.47(12), 2059–2073 (2002).
[CrossRef] [PubMed]

Schweiger, M.

Selb, J.

S. Muehlschlegel, J. Selb, M. Patel, S. G. Diamond, M. A. Franceschini, A. G. Sorensen, D. A. Boas, and L. H. Schwamm, “Feasibility of NIRS in the neurointensive care unit: a pilot study in stroke using physiological oscillations,” Neurocrit. Care11(2), 288–295 (2009).
[CrossRef] [PubMed]

Shimada, M.

Y. Hoshi, B. H. Tsou, V. A. Billock, M. Tanosaki, Y. Iguchi, M. Shimada, T. Shinba, Y. Yamada, and I. Oda, “Spatiotemporal characteristics of hemodynamic changes in the human lateral prefrontal cortex during working memory tasks,” Neuroimage20(3), 1493–1504 (2003).
[CrossRef] [PubMed]

Shinba, T.

Y. Hoshi, B. H. Tsou, V. A. Billock, M. Tanosaki, Y. Iguchi, M. Shimada, T. Shinba, Y. Yamada, and I. Oda, “Spatiotemporal characteristics of hemodynamic changes in the human lateral prefrontal cortex during working memory tasks,” Neuroimage20(3), 1493–1504 (2003).
[CrossRef] [PubMed]

Shröder, C.

A. Roggan, O. Minet, C. Shröder, and G. Müller, “The determination of optical tissue properties with double integrating sphere technique and Monte Carlo simulation,” Proc. SPIE2100, 42–56 (1994).
[CrossRef]

Simpson, C. R.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol.43(9), 2465–2478 (1998).
[CrossRef] [PubMed]

Sorensen, A. G.

S. Muehlschlegel, J. Selb, M. Patel, S. G. Diamond, M. A. Franceschini, A. G. Sorensen, D. A. Boas, and L. H. Schwamm, “Feasibility of NIRS in the neurointensive care unit: a pilot study in stroke using physiological oscillations,” Neurocrit. Care11(2), 288–295 (2009).
[CrossRef] [PubMed]

Steinbrink, J.

H. Wabnitz, M. Moeller, A. Liebert, H. Obrig, J. Steinbrink, and R. Macdonald, “Time-resolved near-infrared spectroscopy and imaging of the adult human brain,” Adv. Exp. Med. Biol.662, 143–148 (2010).
[CrossRef] [PubMed]

K. Uludağ, J. Steinbrink, M. Kohl-Bareis, R. Wenzel, A. Villringer, and H. Obrig, “Cytochrome-c-oxidase redox changes during visual stimulation measured by near-infrared spectroscopy cannot be explained by a mere cross talk artefact,” Neuroimage22(1), 109–119 (2004).
[CrossRef] [PubMed]

Stott, J. J.

Suto, T.

T. Suto, M. Fukuda, M. Ito, T. Uehara, and M. Mikuni, “Multichannel near-infrared spectroscopy in depression and schizophrenia: cognitive brain activation study,” Biol. Psychiatry55(5), 501–511 (2004).
[CrossRef] [PubMed]

Suzuki, T.

I. Miyai, H. C. Tanabe, I. Sase, H. Eda, I. Oda, I. Konishi, Y. Tsunazawa, T. Suzuki, T. Yanagida, and K. Kubota, “Cortical mapping of gait in humans: a near-infrared spectroscopic topography study,” Neuroimage14(5), 1186–1192 (2001).
[CrossRef] [PubMed]

Taga, G.

G. Taga and K. Asakawa, “Selectivity and localization of cortical response to auditory and visual stimulation in awake infants aged 2 to 4 months,” Neuroimage36(4), 1246–1252 (2007).
[CrossRef] [PubMed]

Takashiro, K.

E. Watanabe, A. Maki, F. Kawaguchi, K. Takashiro, Y. Yamashita, H. Koizumi, and Y. Mayanagi, “Non-invasive assessment of language dominance with near-infrared spectroscopic mapping,” Neurosci. Lett.256(1), 49–52 (1998).
[CrossRef] [PubMed]

Tanabe, H. C.

I. Miyai, H. C. Tanabe, I. Sase, H. Eda, I. Oda, I. Konishi, Y. Tsunazawa, T. Suzuki, T. Yanagida, and K. Kubota, “Cortical mapping of gait in humans: a near-infrared spectroscopic topography study,” Neuroimage14(5), 1186–1192 (2001).
[CrossRef] [PubMed]

Tanosaki, M.

Y. Hoshi, B. H. Tsou, V. A. Billock, M. Tanosaki, Y. Iguchi, M. Shimada, T. Shinba, Y. Yamada, and I. Oda, “Spatiotemporal characteristics of hemodynamic changes in the human lateral prefrontal cortex during working memory tasks,” Neuroimage20(3), 1493–1504 (2003).
[CrossRef] [PubMed]

Thiran, J.

J. Thiran, V. Warscotte, and B. Macq, “A queue-based region growing algorithm for accurate segmentation of multi-dimensional digital images,” Signal Process.60(1), 1–10 (1997).
[CrossRef]

Tsou, B. H.

Y. Hoshi, B. H. Tsou, V. A. Billock, M. Tanosaki, Y. Iguchi, M. Shimada, T. Shinba, Y. Yamada, and I. Oda, “Spatiotemporal characteristics of hemodynamic changes in the human lateral prefrontal cortex during working memory tasks,” Neuroimage20(3), 1493–1504 (2003).
[CrossRef] [PubMed]

Tsunazawa, Y.

I. Miyai, H. C. Tanabe, I. Sase, H. Eda, I. Oda, I. Konishi, Y. Tsunazawa, T. Suzuki, T. Yanagida, and K. Kubota, “Cortical mapping of gait in humans: a near-infrared spectroscopic topography study,” Neuroimage14(5), 1186–1192 (2001).
[CrossRef] [PubMed]

Uehara, T.

T. Suto, M. Fukuda, M. Ito, T. Uehara, and M. Mikuni, “Multichannel near-infrared spectroscopy in depression and schizophrenia: cognitive brain activation study,” Biol. Psychiatry55(5), 501–511 (2004).
[CrossRef] [PubMed]

Ulrich, F.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H.-J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol.47(12), 2059–2073 (2002).
[CrossRef] [PubMed]

Uludag, K.

K. Uludağ, J. Steinbrink, M. Kohl-Bareis, R. Wenzel, A. Villringer, and H. Obrig, “Cytochrome-c-oxidase redox changes during visual stimulation measured by near-infrared spectroscopy cannot be explained by a mere cross talk artefact,” Neuroimage22(1), 109–119 (2004).
[CrossRef] [PubMed]

Valabrègue, R.

van der Zee, P.

P. van der Zee, M. Essenpreis, and D. T. Delpy, “Optical properties of brain tissue,” Proc. SPIE1888, 454–465 (1993).
[CrossRef]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol.38(12), 1859–1876 (1993).
[CrossRef] [PubMed]

Vignaud, A.

Villringer, A.

K. Uludağ, J. Steinbrink, M. Kohl-Bareis, R. Wenzel, A. Villringer, and H. Obrig, “Cytochrome-c-oxidase redox changes during visual stimulation measured by near-infrared spectroscopy cannot be explained by a mere cross talk artefact,” Neuroimage22(1), 109–119 (2004).
[CrossRef] [PubMed]

von Siebenthal, K.

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol.44(7), 1743–1753 (1999).
[CrossRef] [PubMed]

Wabnitz, H.

H. Wabnitz, M. Moeller, A. Liebert, H. Obrig, J. Steinbrink, and R. Macdonald, “Time-resolved near-infrared spectroscopy and imaging of the adult human brain,” Adv. Exp. Med. Biol.662, 143–148 (2010).
[CrossRef] [PubMed]

Wallois, F.

Wang, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed.47(2), 131–146 (1995).
[CrossRef]

Warscotte, V.

J. Thiran, V. Warscotte, and B. Macq, “A queue-based region growing algorithm for accurate segmentation of multi-dimensional digital images,” Signal Process.60(1), 1–10 (1997).
[CrossRef]

Watanabe, E.

E. Watanabe, A. Maki, F. Kawaguchi, K. Takashiro, Y. Yamashita, H. Koizumi, and Y. Mayanagi, “Non-invasive assessment of language dominance with near-infrared spectroscopic mapping,” Neurosci. Lett.256(1), 49–52 (1998).
[CrossRef] [PubMed]

Wenzel, R.

K. Uludağ, J. Steinbrink, M. Kohl-Bareis, R. Wenzel, A. Villringer, and H. Obrig, “Cytochrome-c-oxidase redox changes during visual stimulation measured by near-infrared spectroscopy cannot be explained by a mere cross talk artefact,” Neuroimage22(1), 109–119 (2004).
[CrossRef] [PubMed]

Wilson, B. C.

B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys.10(6), 824–830 (1983).
[CrossRef] [PubMed]

Wolf, M.

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt.12(6), 062104 (2007).
[CrossRef] [PubMed]

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol.44(7), 1743–1753 (1999).
[CrossRef] [PubMed]

Yamada, Y.

Y. Hoshi, B. H. Tsou, V. A. Billock, M. Tanosaki, Y. Iguchi, M. Shimada, T. Shinba, Y. Yamada, and I. Oda, “Spatiotemporal characteristics of hemodynamic changes in the human lateral prefrontal cortex during working memory tasks,” Neuroimage20(3), 1493–1504 (2003).
[CrossRef] [PubMed]

Yamamoto, D.

E. Okada, D. Yamamoto, N. Kiryu, A. Katagiri, N. Yokose, T. Awano, K. Igarashi, S. Nakamura, T. Hoshino, Y. Murata, T. Kano, K. Sakatani, and Y. Katayama, “Theoretical and experimental investigation of the influence of frontal sinus on the sensitivity of the NIRS signal in the adult head,” Adv. Exp. Med. Biol.662, 231–236 (2010).
[CrossRef] [PubMed]

Yamamoto, T.

Yamashita, Y.

H. Koizumi, T. Yamamoto, A. Maki, Y. Yamashita, H. Sato, H. Kawaguchi, and N. Ichikawa, “Optical topography: practical problems and new applications,” Appl. Opt.42(16), 3054–3062 (2003).
[CrossRef] [PubMed]

E. Watanabe, A. Maki, F. Kawaguchi, K. Takashiro, Y. Yamashita, H. Koizumi, and Y. Mayanagi, “Non-invasive assessment of language dominance with near-infrared spectroscopic mapping,” Neurosci. Lett.256(1), 49–52 (1998).
[CrossRef] [PubMed]

Yanagida, T.

I. Miyai, H. C. Tanabe, I. Sase, H. Eda, I. Oda, I. Konishi, Y. Tsunazawa, T. Suzuki, T. Yanagida, and K. Kubota, “Cortical mapping of gait in humans: a near-infrared spectroscopic topography study,” Neuroimage14(5), 1186–1192 (2001).
[CrossRef] [PubMed]

Yaroslavsky, A. N.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H.-J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol.47(12), 2059–2073 (2002).
[CrossRef] [PubMed]

Yaroslavsky, I. V.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H.-J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol.47(12), 2059–2073 (2002).
[CrossRef] [PubMed]

Yokose, N.

E. Okada, D. Yamamoto, N. Kiryu, A. Katagiri, N. Yokose, T. Awano, K. Igarashi, S. Nakamura, T. Hoshino, Y. Murata, T. Kano, K. Sakatani, and Y. Katayama, “Theoretical and experimental investigation of the influence of frontal sinus on the sensitivity of the NIRS signal in the adult head,” Adv. Exp. Med. Biol.662, 231–236 (2010).
[CrossRef] [PubMed]

Zheng, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed.47(2), 131–146 (1995).
[CrossRef]

Adv. Exp. Med. Biol. (1)

H. Wabnitz, M. Moeller, A. Liebert, H. Obrig, J. Steinbrink, and R. Macdonald, “Time-resolved near-infrared spectroscopy and imaging of the adult human brain,” Adv. Exp. Med. Biol.662, 143–148 (2010).
[CrossRef] [PubMed]

Adv. Exp. Med. Biol. (1)

E. Okada, D. Yamamoto, N. Kiryu, A. Katagiri, N. Yokose, T. Awano, K. Igarashi, S. Nakamura, T. Hoshino, Y. Murata, T. Kano, K. Sakatani, and Y. Katayama, “Theoretical and experimental investigation of the influence of frontal sinus on the sensitivity of the NIRS signal in the adult head,” Adv. Exp. Med. Biol.662, 231–236 (2010).
[CrossRef] [PubMed]

Appl. Opt. (5)

Biol. Psychiatry (1)

T. Suto, M. Fukuda, M. Ito, T. Uehara, and M. Mikuni, “Multichannel near-infrared spectroscopy in depression and schizophrenia: cognitive brain activation study,” Biol. Psychiatry55(5), 501–511 (2004).
[CrossRef] [PubMed]

Biomed. Opt. Express (1)

Comput. Methods Programs Biomed. (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed.47(2), 131–146 (1995).
[CrossRef]

J. Biomed. Opt. (1)

K. Sakatani, Y. Murata, N. Fujiwara, T. Hoshino, S. Nakamura, T. Kano, and Y. Katayama, “Comparison of blood-oxygen-level-dependent functional magnetic resonance imaging and near-infrared spectroscopy recording during functional brain activation in patients with stroke and brain tumors,” J. Biomed. Opt.12(6), 062110 (2007).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt.11(5), 054007 (2006).
[CrossRef] [PubMed]

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt.12(6), 062104 (2007).
[CrossRef] [PubMed]

Med. Phys. (1)

B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys.10(6), 824–830 (1983).
[CrossRef] [PubMed]

Neurocrit. Care (1)

S. Muehlschlegel, J. Selb, M. Patel, S. G. Diamond, M. A. Franceschini, A. G. Sorensen, D. A. Boas, and L. H. Schwamm, “Feasibility of NIRS in the neurointensive care unit: a pilot study in stroke using physiological oscillations,” Neurocrit. Care11(2), 288–295 (2009).
[CrossRef] [PubMed]

Neuroimage (6)

I. Miyai, H. C. Tanabe, I. Sase, H. Eda, I. Oda, I. Konishi, Y. Tsunazawa, T. Suzuki, T. Yanagida, and K. Kubota, “Cortical mapping of gait in humans: a near-infrared spectroscopic topography study,” Neuroimage14(5), 1186–1192 (2001).
[CrossRef] [PubMed]

Y. Hoshi, B. H. Tsou, V. A. Billock, M. Tanosaki, Y. Iguchi, M. Shimada, T. Shinba, Y. Yamada, and I. Oda, “Spatiotemporal characteristics of hemodynamic changes in the human lateral prefrontal cortex during working memory tasks,” Neuroimage20(3), 1493–1504 (2003).
[CrossRef] [PubMed]

G. Taga and K. Asakawa, “Selectivity and localization of cortical response to auditory and visual stimulation in awake infants aged 2 to 4 months,” Neuroimage36(4), 1246–1252 (2007).
[CrossRef] [PubMed]

K. Uludağ, J. Steinbrink, M. Kohl-Bareis, R. Wenzel, A. Villringer, and H. Obrig, “Cytochrome-c-oxidase redox changes during visual stimulation measured by near-infrared spectroscopy cannot be explained by a mere cross talk artefact,” Neuroimage22(1), 109–119 (2004).
[CrossRef] [PubMed]

J. Ashburner, “A fast diffeomorphic image registration algorithm,” Neuroimage38(1), 95–113 (2007).
[CrossRef] [PubMed]

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage (to be published).
[PubMed]

Neurosci. Lett. (1)

E. Watanabe, A. Maki, F. Kawaguchi, K. Takashiro, Y. Yamashita, H. Koizumi, and Y. Mayanagi, “Non-invasive assessment of language dominance with near-infrared spectroscopic mapping,” Neurosci. Lett.256(1), 49–52 (1998).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Med. Biol. (2)

J. Heiskala, P. Hiltunen, and I. Nissilä, “Significance of background optical properties, time-resolved information and optode arrangement in diffuse optical imaging of term neonates,” Phys. Med. Biol.54(3), 535–554 (2009).
[CrossRef] [PubMed]

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H.-J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol.47(12), 2059–2073 (2002).
[CrossRef] [PubMed]

Phys. Med. Biol. (4)

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol.38(12), 1859–1876 (1993).
[CrossRef] [PubMed]

M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol.44(7), 1743–1753 (1999).
[CrossRef] [PubMed]

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol.43(9), 2465–2478 (1998).
[CrossRef] [PubMed]

M. Firbank, M. Hiraoka, M. Essenpreis, and D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650-950 nm,” Phys. Med. Biol.38(4), 503–510 (1993).
[CrossRef] [PubMed]

Proc. SPIE (2)

P. van der Zee, M. Essenpreis, and D. T. Delpy, “Optical properties of brain tissue,” Proc. SPIE1888, 454–465 (1993).
[CrossRef]

A. Roggan, O. Minet, C. Shröder, and G. Müller, “The determination of optical tissue properties with double integrating sphere technique and Monte Carlo simulation,” Proc. SPIE2100, 42–56 (1994).
[CrossRef]

Signal Process. (1)

J. Thiran, V. Warscotte, and B. Macq, “A queue-based region growing algorithm for accurate segmentation of multi-dimensional digital images,” Signal Process.60(1), 1–10 (1997).
[CrossRef]

Supplementary Material (1)

» Media 1: AVI (1318 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a1) An axial slice of MR image. (a2) A sagittal slice of MR image. (b1) An axial slice of CT image. (b2) A sagittal slice of CT image. The MR and CT images are in the same plane. White lines in (a1) and (a2) indicate the plane of the sagittal and axial slices, respectively.

Fig. 2
Fig. 2

(a) An axial slice of the segmented image of the realistic head model. (b) 3D segmented geometry of the realistic head model. The outer surfaces of the whole head, FS and brain are only represented.

Fig. 3
Fig. 3

An axial slice of the head models for evaluation of the influence of the FS on light propagation in the head. (a) The model with the whole FS, (b) the model without the FS, (c) the model with the shallow FS, (d) the model with the deep FS.

Fig. 4
Fig. 4

Frame from a movie (Media 1) of light propagation in the head model with the whole FS and without the FS. The red region indicates the FS.

Fig. 5
Fig. 5

The influence of the FS on the spatial sensitivity profile for the source at position A and detector. (a) The model with the whole FS, (b) the model without the FS, (c) the model with the shallow FS, (d) the model with the deep FS. The line in the figures represents the position of the depth profile shown in Fig. 6.

Fig. 6
Fig. 6

The depth profile of the spatial sensitivity profile in the four head models. The position of the profile is shown in Fig. 5.

Fig. 7
Fig. 7

The influence of the frontal sinus on the spatial sensitivity profile on the brain surface. (a) The model with the whole FS, (b) the model without the FS, (c) the model with the shallow FS, (d) the model with the deep FS. Dashed line indicates the position of the FS.

Fig. 8
Fig. 8

The influence of the optical properties of the head model on the partial optical path length in the gray matter. The partial optical path length in the gray matter for the head models with the FS is normalized by that for the head model without the FS. Each parameter set is listed in Table 1.

Fig. 9
Fig. 9

The influence of the FS on the spatial sensitivity profile for the source at position B and detector. (a) The model with the whole FS. The FS is almost outside of the distribution of the light path connecting the source and detector. (b) The model without the FS.

Tables (2)

Tables Icon

Table 1 Optical properties of each type of tissues in the head model

Tables Icon

Table 2 Intensity and path length of detected light for the head models with different types of FS

Metrics