Abstract

We review the development of phantoms for optical coherence tomography (OCT) designed to replicate the optical, mechanical and structural properties of a range of tissues. Such phantoms are a key requirement for the continued development of OCT techniques and applications. We focus on phantoms based on silicone, fibrin and poly(vinyl alcohol) cryogels (PVA-C), as we believe these materials hold the most promise for durable and accurate replication of tissue properties.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11(4), 041102 (2006).
    [CrossRef] [PubMed]
  2. R. J. Nordstrom, “Phantoms as standards in optical measurements,” Proc. SPIE7906, 79060H (2011).
    [CrossRef]
  3. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE, 2000).
  4. J. M. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express3(6), 199–211 (1998).
    [CrossRef] [PubMed]
  5. A. L. Oldenburg, F. J.-J. Toublan, K. S. Suslick, A. Wei, and S. A. Boppart, “Magnetomotive contrast for in vivo optical coherence tomography,” Opt. Express13(17), 6597–6614 (2005).
    [CrossRef] [PubMed]
  6. X. Li, C. Chudoba, T. Ko, C. Pitris, and J. G. Fujimoto, “Imaging needle for optical coherence tomography,” Opt. Lett.25(20), 1520–1522 (2000).
    [CrossRef] [PubMed]
  7. G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008).
    [CrossRef] [PubMed]
  8. Y. Pan, R. Birngruber, J. Rosperich, and R. Engelhardt, “Low-coherence optical tomography in turbid tissue: theoretical analysis,” Appl. Opt.34(28), 6564–6574 (1995).
    [CrossRef] [PubMed]
  9. J. Schmitt, S. Lee, and K. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun.142(4-6), 203–207 (1997).
    [CrossRef]
  10. P. D. Woolliams, R. A. Ferguson, C. Hart, A. Grimwood, and P. H. Tomlins, “Spatially deconvolved optical coherence tomography,” Appl. Opt.49(11), 2014–2021 (2010).
    [CrossRef] [PubMed]
  11. T. Moffitt, Y.-C. Chen, and S. A. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt.11(4), 041103 (2006).
    [CrossRef] [PubMed]
  12. B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, and D. D. Sampson, “In vivo dynamic optical coherence elastography using a ring actuator,” Opt. Express17(24), 21762–21772 (2009).
    [CrossRef] [PubMed]
  13. R. Bays, G. Wagnières, D. Robert, J. F. Theumann, A. Vitkin, J. F. Savary, P. Monnier, and H. van den Bergh, “Three-dimensional optical phantom and its application in photodynamic therapy,” Lasers Surg. Med.21(3), 227–234 (1997).
    [CrossRef] [PubMed]
  14. B. F. Kennedy, S. Loitsch, R. A. McLaughlin, L. Scolaro, P. Rigby, and D. D. Sampson, “Fibrin phantom for use in optical coherence tomography,” J. Biomed. Opt.15(3), 030507 (2010).
    [CrossRef] [PubMed]
  15. K. J. Surry, H. J. Austin, A. Fenster, and T. M. Peters, “Poly(vinyl alcohol) cryogel phantoms for use in ultrasound and MR imaging,” Phys. Med. Biol.49(24), 5529–5546 (2004).
    [CrossRef] [PubMed]
  16. H. Kaetsu, T. Uchida, and N. Shinya, “Increased effectiveness of fibrin sealant with a higher fibrin concentration,” Int. J. Adhes. Adhes.20(1), 27–31 (2000).
    [CrossRef]
  17. A. Kharine, S. Manohar, R. Seeton, R. G. M. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. M. de Mul, “Poly(vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography,” Phys. Med. Biol.48(3), 357–370 (2003).
    [CrossRef] [PubMed]
  18. J. C. Hebden, B. D. Price, A. P. Gibson, and G. Royle, “A soft deformable tissue-equivalent phantom for diffuse optical tomography,” Phys. Med. Biol.51(21), 5581–5590 (2006).
    [CrossRef] [PubMed]
  19. C. U. Devi, R. M. Vasu, and A. K. Sood, “Design, fabrication, and characterization of a tissue-equivalent phantom for optical elastography,” J. Biomed. Opt.10(4), 044020 (2005).
    [CrossRef] [PubMed]
  20. R. K. Wang, Z. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett.89(14), 144103 (2006).
    [CrossRef]
  21. S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express14(24), 11585–11597 (2006).
    [CrossRef] [PubMed]
  22. G. van Soest, F. Mastik, and A. F. van der Steen, “Polyvinyl alcohol cryogel-tissue mimicking material for vascular optical elastography,” in Biomedical Optics, Technical Digest (CD) (Optical Society of America, 2006), paper Tul33.
  23. M.-T. Tsai, H.-C. Lee, C.-W. Lu, Y.-M. Wang, C.-K. Lee, C. C. Yang, and C.-P. Chiang, “Delineation of an oral cancer lesion with swept-source optical coherence tomography,” J. Biomed. Opt.13(4), 044012 (2008).
    [CrossRef] [PubMed]
  24. R. A. McLaughlin, L. Scolaro, P. Robbins, C. Saunders, S. L. Jacques, and D. D. Sampson, “Parametric imaging of cancer with optical coherence tomography,” J. Biomed. Opt.15(4), 046029 (2010).
    [CrossRef] [PubMed]
  25. L. Scolaro, R. A. McLaughlin, B. R. Klyen, B. A. Wood, P. D. Robbins, C. M. Saunders, S. L. Jacques, and D. D. Sampson, “Parametric imaging of the local attenuation coefficient in human axillary lymph nodes assessed using optical coherence tomography,” Biomed. Opt. Express3(2), 366–379 (2012).
    [CrossRef] [PubMed]
  26. P. H. Tomlins, O. Adegun, E. Hagi-Pavli, K. Piper, D. Bader, and F. Fortune, “Scattering attenuation microscopy of oral epithelial dysplasia,” J. Biomed. Opt.15(6), 066003 (2010).
    [CrossRef] [PubMed]
  27. C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt.13(3), 034003 (2008).
    [CrossRef] [PubMed]
  28. G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15(1), 011105 (2010).
    [CrossRef] [PubMed]
  29. T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.9(2), 227–233 (2003).
    [CrossRef]
  30. C.-E. Bisaillon, G. Lamouche, R. Maciejko, M. Dufour, and J. P. Monchalin, “Deformable and durable phantoms with controlled density of scatterers,” Phys. Med. Biol.53(13), N237–N247 (2008).
    [CrossRef] [PubMed]
  31. C.-E. Bisaillon, M. L. Dufour, and G. Lamouche, “Artery phantoms for intravascular optical coherence tomography: healthy arteries,” Biomed. Opt. Express2(9), 2599–2613 (2011).
    [CrossRef] [PubMed]
  32. R. K. Wang, “Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues,” Phys. Med. Biol.47(13), 2281–2299 (2002).
    [CrossRef] [PubMed]
  33. M. J. Yadlowsky, J. M. Schmitt, and R. F. Bonner, “Multiple scattering in optical coherence microscopy,” Appl. Opt.34(25), 5699–5707 (1995).
    [CrossRef] [PubMed]
  34. J. M. Schmitt, S. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt.4(1), 95 (1999).
    [CrossRef]
  35. T. R. Hillman, S. G. Adie, V. Seemann, J. J. Armstrong, S. L. Jacques, and D. D. Sampson, “Correlation of static speckle with sample properties in optical coherence tomography,” Opt. Lett.31(2), 190–192 (2006).
    [CrossRef] [PubMed]
  36. T. R. Hillman, A. Curatolo, B. F. Kennedy, and D. D. Sampson, “Detection of multiple scattering in optical coherence tomography by speckle correlation of angle-dependent B-scans,” Opt. Lett.35(12), 1998–2000 (2010).
    [CrossRef] [PubMed]
  37. B. F. Kennedy, A. Curatolo, T. R. Hillman, C. M. Saunders, and D. D. Sampson, “Speckle reduction in optical coherence tomography images using tissue viscoelasticity,” J. Biomed. Opt.16(2), 020506 (2011).
    [CrossRef] [PubMed]
  38. X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties,” Opt. Express16(15), 11052–11065 (2008).
    [CrossRef] [PubMed]
  39. D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt.15(2), 025001 (2010).
    [CrossRef] [PubMed]
  40. A. Grimwood, L. Garcia, J. Bamber, J. Holmes, P. Woolliams, P. Tomlins, and Q. A. Pankhurst, “Elastographic contrast generation in optical coherence tomography from a localized shear stress,” Phys. Med. Biol.55(18), 5515–5528 (2010).
    [CrossRef] [PubMed]
  41. A. Agrawal, T. J. Pfefer, N. Gilani, and R. Drezek, “Three-dimensional characterization of optical coherence tomography point spread functions with a nanoparticle-embedded phantom,” Opt. Lett.35(13), 2269–2271 (2010).
    [CrossRef] [PubMed]
  42. C.-E. Bisaillon, M.-M. Lanthier, M. L. Dufour, and G. Lamouche, “Durable coronary artery phantoms for optical coherence tomography,” Proc. SPIE7161, 71612E (2009).
  43. M. Lualdi, A. Colombo, B. Farina, S. Tomatis, and R. Marchesini, “A phantom with tissue-like optical properties in the visible and near infrared for use in photomedicine,” Lasers Surg. Med.28(3), 237–243 (2001).
    [CrossRef] [PubMed]
  44. D. L. Wise, Encyclopedic Handbook of Biomaterials and Bioengineering: Materials, Volume 1 (Marcel Dekker, 1995).
  45. H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt.30(31), 4507–4514 (1991).
    [CrossRef] [PubMed]
  46. I. Mano, H. Goshima, M. I. Nambu, and M. Iio, “New polyvinyl alcohol gel material for MRI phantoms,” Magn. Reson. Med.3(6), 921–926 (1986).
    [CrossRef] [PubMed]
  47. C.-E. Bisaillon, G. Campbell, C. De Grandpre, and G. Lamouche, “Multilayer tubular phantoms for optical coherence tomography,” Proc. SPIE7567, 75650I (2010).
  48. C.-E. Bisaillon, G. Campbell, V. Pazos, and G. Lamouche, “Poly (vinyl alcohol) cryogel, multi-layer artery phantoms for optical coherence tomography,” Proc. SPIE7906, 79060J (2011).
    [CrossRef]
  49. S. Hyon, W. Cha, and Y. Ikada, “Preparation of transparent poly((vinyl alcohol) hydrogel,” Polym. Bull.22(2), 119–122 (1989).
    [CrossRef]
  50. M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett.8(10), 3461–3467 (2008).
    [CrossRef] [PubMed]
  51. H. Azarnoush, S. Vergnole, B. Boulet, R. DiRaddo, and G. Lamouche, “Real-time control of angioplasty balloon inflation based on feedback from intravascular optical coherence tomography: preliminary study on an artery phantom,” IEEE Trans. Biomed. Eng.59(3), 697–705 (2012).
    [CrossRef] [PubMed]
  52. H. Azarnoush, S. Vergnole, B. Boulet, M. Sowa, and G. Lamouche, “Real-time control of angioplasty balloon inflation based on feedback from intravascular optical coherence tomography: experimental validation on an excised heart and a beating heart model,” IEEE Trans. Biomed. Eng.59(5), 1488–1495 (2012).
    [CrossRef] [PubMed]
  53. W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Handheld optical coherence tomography scanner for primary care diagnostics,” IEEE Trans. Biomed. Eng.58(3), 741–744 (2011).
    [CrossRef] [PubMed]
  54. T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imaging20(4), 260–274 (1998).
    [PubMed]
  55. A. Samani, J. Bishop, C. Luginbuhl, and D. B. Plewes, “Measuring the elastic modulus of ex vivo small tissue samples,” Phys. Med. Biol.48(14), 2183–2198 (2003).
    [CrossRef] [PubMed]
  56. P. Wellman, R. D. Howe, E. Dalton, and K. A. Kern, “Breast tissue stiffness in compression is correlated to histological diagnosis,” Harvard BioRobotics Laboratory Technical Report (1999).
  57. N. W. Tschoegl, The Phenomenological Theory of Linear Viscoelastic Behavior: an Introduction (Springer-Verlag Berlin, 1989).
  58. Y. Fung, Biomechanics: Mechanical Properties of Living Tissues (Springer, 1993).
  59. M. F. Insana, C. Pellot-Barakat, M. Sridhar, and K. K. Lindfors, “Viscoelastic imaging of breast tumor microenvironment with ultrasound,” J. Mammary Gland Biol. Neoplasia9(4), 393–404 (2004).
    [CrossRef] [PubMed]
  60. V. Crecea, A. L. Oldenburg, X. Liang, T. S. Ralston, and S. A. Boppart, “Magnetomotive nanoparticle transducers for optical rheology of viscoelastic materials,” Opt. Express17(25), 23114–23122 (2009).
    [CrossRef] [PubMed]
  61. S. Jiang, B. W. Pogue, T. O. McBride, M. M. Doyley, S. P. Poplack, and K. D. Paulsen, “Near-infrared breast tomography calibration with optoelastic tissue simulating phantoms,” J. Electron. Imaging12(4), 613 (2003).
    [CrossRef]
  62. Wacker Silicones, “Processing RTV-2 silicone rubbers,” http://www.wacker.com/cms/media/publications/downloads/6020A_EN.pdf .
  63. F. S. Azar, D. N. Metaxas, and M. D. Schnall, “Methods for modeling and predicting mechanical deformations of the breast under external perturbations,” Med. Image Anal.6(1), 1–27 (2002).
    [CrossRef] [PubMed]
  64. L. Morriss, A. Wittek, and K. Miller, “Compression testing of very soft biological tissues using semi-confined configuration--a word of caution,” J. Biomech.41(1), 235–238 (2008).
    [CrossRef] [PubMed]
  65. W. K. Wan, G. Campbell, Z. F. Zhang, A. J. Hui, and D. R. Boughner, “Optimizing the tensile properties of polyvinyl alcohol hydrogel for the construction of a bioprosthetic heart valve stent,” J. Biomed. Mater. Res.63(6), 854–861 (2002).
    [CrossRef] [PubMed]
  66. V. Pazos, R. Mongrain, and J. C. Tardif, “Polyvinyl alcohol cryogel: optimizing the parameters of cryogenic treatment using hyperelastic models,” J. Mech. Behav. Biomed. Mater.2(5), 542–549 (2009).
    [CrossRef] [PubMed]
  67. M. Nambu, “Rubber-like poly(viny1 alcohol)) gel,” Kobunshi Ronbunshu47(9), 695–703 (1990) (In Japanese).
    [CrossRef]
  68. K. C. Chu and B. K. Rutt, “Polyvinyl alcohol cryogel: an ideal phantom material for MR studies of arterial flow and elasticity,” Magn. Reson. Med.37(2), 314–319 (1997).
    [CrossRef] [PubMed]
  69. G. Beck, N. Akgün, A. Rück, and R. Steiner, “Design and characterisation of a tissue phantom system for optical diagnostics,” Lasers Med. Sci.13(3), 160–171 (1998).
    [CrossRef]
  70. E. L. Madsen, J. A. Zagzebski, R. A. Banjavie, and R. E. Jutila, “Tissue mimicking materials for ultrasound phantoms,” Med. Phys.5(5), 391–394 (1978).
    [CrossRef] [PubMed]
  71. J. J. Rownd, E. L. Madsen, J. A. Zagzebski, G. R. Frank, and F. Dong, “Phantoms and automated system for testing the resolution of ultrasound scanners,” Ultrasound Med. Biol.23(2), 245–260 (1997).
    [CrossRef] [PubMed]
  72. Computerized Imaging Reference Systems, “Ultrasound phantoms for 2D & 3D evaluation” (CIRS 2011). http://www.cirsinc.com/products/modality/92/ultrasound-phantoms-for-2d-and-3d-evaluation/ .
  73. Y. Pan, R. Birngruber, and R. Engelhardt, “Contrast limits of coherence-gated imaging in scattering media,” Appl. Opt.36(13), 2979–2983 (1997).
    [CrossRef] [PubMed]
  74. N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by “path length encoded” angular compounding,” J. Biomed. Opt.8(2), 260–263 (2003).
    [CrossRef] [PubMed]
  75. P. H. Tomlins, G. N. Smith, P. D. Woolliams, J. Rasakanthan, and K. Sugden, “Femtosecond laser micro-inscription of optical coherence tomography resolution test artifacts,” Biomed. Opt. Express2(5), 1319–1327 (2011).
    [CrossRef] [PubMed]
  76. Y. M. Liew, R. A. McLaughlin, F. M. Wood, and D. D. Sampson, “Reduction of image artifacts in three-dimensional optical coherence tomography of skin in vivo,” J. Biomed. Opt.16(11), 116018 (2011).
    [CrossRef] [PubMed]
  77. A. Curatolo, B. F. Kennedy, and D. D. Sampson, “Structured three-dimensional optical phantom for optical coherence tomography,” Opt. Express19(20), 19480–19485 (2011).
    [CrossRef] [PubMed]
  78. C.-E. Bisaillon, M. L. Dufour, and G. Lamouche, “Durable phantoms of atherosclerotic arteries for optical coherence tomography,” Proc. SPIE7548, 75483G (2010).
    [CrossRef]

2012 (3)

L. Scolaro, R. A. McLaughlin, B. R. Klyen, B. A. Wood, P. D. Robbins, C. M. Saunders, S. L. Jacques, and D. D. Sampson, “Parametric imaging of the local attenuation coefficient in human axillary lymph nodes assessed using optical coherence tomography,” Biomed. Opt. Express3(2), 366–379 (2012).
[CrossRef] [PubMed]

H. Azarnoush, S. Vergnole, B. Boulet, R. DiRaddo, and G. Lamouche, “Real-time control of angioplasty balloon inflation based on feedback from intravascular optical coherence tomography: preliminary study on an artery phantom,” IEEE Trans. Biomed. Eng.59(3), 697–705 (2012).
[CrossRef] [PubMed]

H. Azarnoush, S. Vergnole, B. Boulet, M. Sowa, and G. Lamouche, “Real-time control of angioplasty balloon inflation based on feedback from intravascular optical coherence tomography: experimental validation on an excised heart and a beating heart model,” IEEE Trans. Biomed. Eng.59(5), 1488–1495 (2012).
[CrossRef] [PubMed]

2011 (8)

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Handheld optical coherence tomography scanner for primary care diagnostics,” IEEE Trans. Biomed. Eng.58(3), 741–744 (2011).
[CrossRef] [PubMed]

C.-E. Bisaillon, G. Campbell, V. Pazos, and G. Lamouche, “Poly (vinyl alcohol) cryogel, multi-layer artery phantoms for optical coherence tomography,” Proc. SPIE7906, 79060J (2011).
[CrossRef]

P. H. Tomlins, G. N. Smith, P. D. Woolliams, J. Rasakanthan, and K. Sugden, “Femtosecond laser micro-inscription of optical coherence tomography resolution test artifacts,” Biomed. Opt. Express2(5), 1319–1327 (2011).
[CrossRef] [PubMed]

Y. M. Liew, R. A. McLaughlin, F. M. Wood, and D. D. Sampson, “Reduction of image artifacts in three-dimensional optical coherence tomography of skin in vivo,” J. Biomed. Opt.16(11), 116018 (2011).
[CrossRef] [PubMed]

A. Curatolo, B. F. Kennedy, and D. D. Sampson, “Structured three-dimensional optical phantom for optical coherence tomography,” Opt. Express19(20), 19480–19485 (2011).
[CrossRef] [PubMed]

C.-E. Bisaillon, M. L. Dufour, and G. Lamouche, “Artery phantoms for intravascular optical coherence tomography: healthy arteries,” Biomed. Opt. Express2(9), 2599–2613 (2011).
[CrossRef] [PubMed]

B. F. Kennedy, A. Curatolo, T. R. Hillman, C. M. Saunders, and D. D. Sampson, “Speckle reduction in optical coherence tomography images using tissue viscoelasticity,” J. Biomed. Opt.16(2), 020506 (2011).
[CrossRef] [PubMed]

R. J. Nordstrom, “Phantoms as standards in optical measurements,” Proc. SPIE7906, 79060H (2011).
[CrossRef]

2010 (11)

P. D. Woolliams, R. A. Ferguson, C. Hart, A. Grimwood, and P. H. Tomlins, “Spatially deconvolved optical coherence tomography,” Appl. Opt.49(11), 2014–2021 (2010).
[CrossRef] [PubMed]

B. F. Kennedy, S. Loitsch, R. A. McLaughlin, L. Scolaro, P. Rigby, and D. D. Sampson, “Fibrin phantom for use in optical coherence tomography,” J. Biomed. Opt.15(3), 030507 (2010).
[CrossRef] [PubMed]

R. A. McLaughlin, L. Scolaro, P. Robbins, C. Saunders, S. L. Jacques, and D. D. Sampson, “Parametric imaging of cancer with optical coherence tomography,” J. Biomed. Opt.15(4), 046029 (2010).
[CrossRef] [PubMed]

P. H. Tomlins, O. Adegun, E. Hagi-Pavli, K. Piper, D. Bader, and F. Fortune, “Scattering attenuation microscopy of oral epithelial dysplasia,” J. Biomed. Opt.15(6), 066003 (2010).
[CrossRef] [PubMed]

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15(1), 011105 (2010).
[CrossRef] [PubMed]

C.-E. Bisaillon, M. L. Dufour, and G. Lamouche, “Durable phantoms of atherosclerotic arteries for optical coherence tomography,” Proc. SPIE7548, 75483G (2010).
[CrossRef]

T. R. Hillman, A. Curatolo, B. F. Kennedy, and D. D. Sampson, “Detection of multiple scattering in optical coherence tomography by speckle correlation of angle-dependent B-scans,” Opt. Lett.35(12), 1998–2000 (2010).
[CrossRef] [PubMed]

C.-E. Bisaillon, G. Campbell, C. De Grandpre, and G. Lamouche, “Multilayer tubular phantoms for optical coherence tomography,” Proc. SPIE7567, 75650I (2010).

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt.15(2), 025001 (2010).
[CrossRef] [PubMed]

A. Grimwood, L. Garcia, J. Bamber, J. Holmes, P. Woolliams, P. Tomlins, and Q. A. Pankhurst, “Elastographic contrast generation in optical coherence tomography from a localized shear stress,” Phys. Med. Biol.55(18), 5515–5528 (2010).
[CrossRef] [PubMed]

A. Agrawal, T. J. Pfefer, N. Gilani, and R. Drezek, “Three-dimensional characterization of optical coherence tomography point spread functions with a nanoparticle-embedded phantom,” Opt. Lett.35(13), 2269–2271 (2010).
[CrossRef] [PubMed]

2009 (4)

C.-E. Bisaillon, M.-M. Lanthier, M. L. Dufour, and G. Lamouche, “Durable coronary artery phantoms for optical coherence tomography,” Proc. SPIE7161, 71612E (2009).

V. Crecea, A. L. Oldenburg, X. Liang, T. S. Ralston, and S. A. Boppart, “Magnetomotive nanoparticle transducers for optical rheology of viscoelastic materials,” Opt. Express17(25), 23114–23122 (2009).
[CrossRef] [PubMed]

V. Pazos, R. Mongrain, and J. C. Tardif, “Polyvinyl alcohol cryogel: optimizing the parameters of cryogenic treatment using hyperelastic models,” J. Mech. Behav. Biomed. Mater.2(5), 542–549 (2009).
[CrossRef] [PubMed]

B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, and D. D. Sampson, “In vivo dynamic optical coherence elastography using a ring actuator,” Opt. Express17(24), 21762–21772 (2009).
[CrossRef] [PubMed]

2008 (7)

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008).
[CrossRef] [PubMed]

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt.13(3), 034003 (2008).
[CrossRef] [PubMed]

M.-T. Tsai, H.-C. Lee, C.-W. Lu, Y.-M. Wang, C.-K. Lee, C. C. Yang, and C.-P. Chiang, “Delineation of an oral cancer lesion with swept-source optical coherence tomography,” J. Biomed. Opt.13(4), 044012 (2008).
[CrossRef] [PubMed]

C.-E. Bisaillon, G. Lamouche, R. Maciejko, M. Dufour, and J. P. Monchalin, “Deformable and durable phantoms with controlled density of scatterers,” Phys. Med. Biol.53(13), N237–N247 (2008).
[CrossRef] [PubMed]

X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties,” Opt. Express16(15), 11052–11065 (2008).
[CrossRef] [PubMed]

L. Morriss, A. Wittek, and K. Miller, “Compression testing of very soft biological tissues using semi-confined configuration--a word of caution,” J. Biomech.41(1), 235–238 (2008).
[CrossRef] [PubMed]

M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett.8(10), 3461–3467 (2008).
[CrossRef] [PubMed]

2006 (6)

T. R. Hillman, S. G. Adie, V. Seemann, J. J. Armstrong, S. L. Jacques, and D. D. Sampson, “Correlation of static speckle with sample properties in optical coherence tomography,” Opt. Lett.31(2), 190–192 (2006).
[CrossRef] [PubMed]

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett.89(14), 144103 (2006).
[CrossRef]

S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express14(24), 11585–11597 (2006).
[CrossRef] [PubMed]

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11(4), 041102 (2006).
[CrossRef] [PubMed]

T. Moffitt, Y.-C. Chen, and S. A. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt.11(4), 041103 (2006).
[CrossRef] [PubMed]

J. C. Hebden, B. D. Price, A. P. Gibson, and G. Royle, “A soft deformable tissue-equivalent phantom for diffuse optical tomography,” Phys. Med. Biol.51(21), 5581–5590 (2006).
[CrossRef] [PubMed]

2005 (2)

C. U. Devi, R. M. Vasu, and A. K. Sood, “Design, fabrication, and characterization of a tissue-equivalent phantom for optical elastography,” J. Biomed. Opt.10(4), 044020 (2005).
[CrossRef] [PubMed]

A. L. Oldenburg, F. J.-J. Toublan, K. S. Suslick, A. Wei, and S. A. Boppart, “Magnetomotive contrast for in vivo optical coherence tomography,” Opt. Express13(17), 6597–6614 (2005).
[CrossRef] [PubMed]

2004 (2)

K. J. Surry, H. J. Austin, A. Fenster, and T. M. Peters, “Poly(vinyl alcohol) cryogel phantoms for use in ultrasound and MR imaging,” Phys. Med. Biol.49(24), 5529–5546 (2004).
[CrossRef] [PubMed]

M. F. Insana, C. Pellot-Barakat, M. Sridhar, and K. K. Lindfors, “Viscoelastic imaging of breast tumor microenvironment with ultrasound,” J. Mammary Gland Biol. Neoplasia9(4), 393–404 (2004).
[CrossRef] [PubMed]

2003 (5)

N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by “path length encoded” angular compounding,” J. Biomed. Opt.8(2), 260–263 (2003).
[CrossRef] [PubMed]

A. Samani, J. Bishop, C. Luginbuhl, and D. B. Plewes, “Measuring the elastic modulus of ex vivo small tissue samples,” Phys. Med. Biol.48(14), 2183–2198 (2003).
[CrossRef] [PubMed]

S. Jiang, B. W. Pogue, T. O. McBride, M. M. Doyley, S. P. Poplack, and K. D. Paulsen, “Near-infrared breast tomography calibration with optoelastic tissue simulating phantoms,” J. Electron. Imaging12(4), 613 (2003).
[CrossRef]

A. Kharine, S. Manohar, R. Seeton, R. G. M. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. M. de Mul, “Poly(vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography,” Phys. Med. Biol.48(3), 357–370 (2003).
[CrossRef] [PubMed]

T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.9(2), 227–233 (2003).
[CrossRef]

2002 (3)

R. K. Wang, “Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues,” Phys. Med. Biol.47(13), 2281–2299 (2002).
[CrossRef] [PubMed]

F. S. Azar, D. N. Metaxas, and M. D. Schnall, “Methods for modeling and predicting mechanical deformations of the breast under external perturbations,” Med. Image Anal.6(1), 1–27 (2002).
[CrossRef] [PubMed]

W. K. Wan, G. Campbell, Z. F. Zhang, A. J. Hui, and D. R. Boughner, “Optimizing the tensile properties of polyvinyl alcohol hydrogel for the construction of a bioprosthetic heart valve stent,” J. Biomed. Mater. Res.63(6), 854–861 (2002).
[CrossRef] [PubMed]

2001 (1)

M. Lualdi, A. Colombo, B. Farina, S. Tomatis, and R. Marchesini, “A phantom with tissue-like optical properties in the visible and near infrared for use in photomedicine,” Lasers Surg. Med.28(3), 237–243 (2001).
[CrossRef] [PubMed]

2000 (2)

H. Kaetsu, T. Uchida, and N. Shinya, “Increased effectiveness of fibrin sealant with a higher fibrin concentration,” Int. J. Adhes. Adhes.20(1), 27–31 (2000).
[CrossRef]

X. Li, C. Chudoba, T. Ko, C. Pitris, and J. G. Fujimoto, “Imaging needle for optical coherence tomography,” Opt. Lett.25(20), 1520–1522 (2000).
[CrossRef] [PubMed]

1999 (1)

J. M. Schmitt, S. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt.4(1), 95 (1999).
[CrossRef]

1998 (3)

J. M. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express3(6), 199–211 (1998).
[CrossRef] [PubMed]

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imaging20(4), 260–274 (1998).
[PubMed]

G. Beck, N. Akgün, A. Rück, and R. Steiner, “Design and characterisation of a tissue phantom system for optical diagnostics,” Lasers Med. Sci.13(3), 160–171 (1998).
[CrossRef]

1997 (5)

K. C. Chu and B. K. Rutt, “Polyvinyl alcohol cryogel: an ideal phantom material for MR studies of arterial flow and elasticity,” Magn. Reson. Med.37(2), 314–319 (1997).
[CrossRef] [PubMed]

J. J. Rownd, E. L. Madsen, J. A. Zagzebski, G. R. Frank, and F. Dong, “Phantoms and automated system for testing the resolution of ultrasound scanners,” Ultrasound Med. Biol.23(2), 245–260 (1997).
[CrossRef] [PubMed]

Y. Pan, R. Birngruber, and R. Engelhardt, “Contrast limits of coherence-gated imaging in scattering media,” Appl. Opt.36(13), 2979–2983 (1997).
[CrossRef] [PubMed]

J. Schmitt, S. Lee, and K. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun.142(4-6), 203–207 (1997).
[CrossRef]

R. Bays, G. Wagnières, D. Robert, J. F. Theumann, A. Vitkin, J. F. Savary, P. Monnier, and H. van den Bergh, “Three-dimensional optical phantom and its application in photodynamic therapy,” Lasers Surg. Med.21(3), 227–234 (1997).
[CrossRef] [PubMed]

1995 (2)

1991 (1)

1990 (1)

M. Nambu, “Rubber-like poly(viny1 alcohol)) gel,” Kobunshi Ronbunshu47(9), 695–703 (1990) (In Japanese).
[CrossRef]

1989 (1)

S. Hyon, W. Cha, and Y. Ikada, “Preparation of transparent poly((vinyl alcohol) hydrogel,” Polym. Bull.22(2), 119–122 (1989).
[CrossRef]

1986 (1)

I. Mano, H. Goshima, M. I. Nambu, and M. Iio, “New polyvinyl alcohol gel material for MRI phantoms,” Magn. Reson. Med.3(6), 921–926 (1986).
[CrossRef] [PubMed]

1978 (1)

E. L. Madsen, J. A. Zagzebski, R. A. Banjavie, and R. E. Jutila, “Tissue mimicking materials for ultrasound phantoms,” Med. Phys.5(5), 391–394 (1978).
[CrossRef] [PubMed]

Aalders, M. C.

T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.9(2), 227–233 (2003).
[CrossRef]

Adegun, O.

P. H. Tomlins, O. Adegun, E. Hagi-Pavli, K. Piper, D. Bader, and F. Fortune, “Scattering attenuation microscopy of oral epithelial dysplasia,” J. Biomed. Opt.15(6), 066003 (2010).
[CrossRef] [PubMed]

Adie, S. G.

Agrawal, A.

Akgün, N.

G. Beck, N. Akgün, A. Rück, and R. Steiner, “Design and characterisation of a tissue phantom system for optical diagnostics,” Lasers Med. Sci.13(3), 160–171 (1998).
[CrossRef]

Armstrong, J. J.

Austin, H. J.

K. J. Surry, H. J. Austin, A. Fenster, and T. M. Peters, “Poly(vinyl alcohol) cryogel phantoms for use in ultrasound and MR imaging,” Phys. Med. Biol.49(24), 5529–5546 (2004).
[CrossRef] [PubMed]

Azar, F. S.

F. S. Azar, D. N. Metaxas, and M. D. Schnall, “Methods for modeling and predicting mechanical deformations of the breast under external perturbations,” Med. Image Anal.6(1), 1–27 (2002).
[CrossRef] [PubMed]

Azarnoush, H.

H. Azarnoush, S. Vergnole, B. Boulet, R. DiRaddo, and G. Lamouche, “Real-time control of angioplasty balloon inflation based on feedback from intravascular optical coherence tomography: preliminary study on an artery phantom,” IEEE Trans. Biomed. Eng.59(3), 697–705 (2012).
[CrossRef] [PubMed]

H. Azarnoush, S. Vergnole, B. Boulet, M. Sowa, and G. Lamouche, “Real-time control of angioplasty balloon inflation based on feedback from intravascular optical coherence tomography: experimental validation on an excised heart and a beating heart model,” IEEE Trans. Biomed. Eng.59(5), 1488–1495 (2012).
[CrossRef] [PubMed]

Bader, D.

P. H. Tomlins, O. Adegun, E. Hagi-Pavli, K. Piper, D. Bader, and F. Fortune, “Scattering attenuation microscopy of oral epithelial dysplasia,” J. Biomed. Opt.15(6), 066003 (2010).
[CrossRef] [PubMed]

Bamber, J.

A. Grimwood, L. Garcia, J. Bamber, J. Holmes, P. Woolliams, P. Tomlins, and Q. A. Pankhurst, “Elastographic contrast generation in optical coherence tomography from a localized shear stress,” Phys. Med. Biol.55(18), 5515–5528 (2010).
[CrossRef] [PubMed]

Banjavie, R. A.

E. L. Madsen, J. A. Zagzebski, R. A. Banjavie, and R. E. Jutila, “Tissue mimicking materials for ultrasound phantoms,” Med. Phys.5(5), 391–394 (1978).
[CrossRef] [PubMed]

Bartlett, L. A.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008).
[CrossRef] [PubMed]

Bays, R.

R. Bays, G. Wagnières, D. Robert, J. F. Theumann, A. Vitkin, J. F. Savary, P. Monnier, and H. van den Bergh, “Three-dimensional optical phantom and its application in photodynamic therapy,” Lasers Surg. Med.21(3), 227–234 (1997).
[CrossRef] [PubMed]

Beck, G.

G. Beck, N. Akgün, A. Rück, and R. Steiner, “Design and characterisation of a tissue phantom system for optical diagnostics,” Lasers Med. Sci.13(3), 160–171 (1998).
[CrossRef]

Birngruber, R.

Bisaillon, C.-E.

C.-E. Bisaillon, M. L. Dufour, and G. Lamouche, “Artery phantoms for intravascular optical coherence tomography: healthy arteries,” Biomed. Opt. Express2(9), 2599–2613 (2011).
[CrossRef] [PubMed]

C.-E. Bisaillon, G. Campbell, V. Pazos, and G. Lamouche, “Poly (vinyl alcohol) cryogel, multi-layer artery phantoms for optical coherence tomography,” Proc. SPIE7906, 79060J (2011).
[CrossRef]

C.-E. Bisaillon, G. Campbell, C. De Grandpre, and G. Lamouche, “Multilayer tubular phantoms for optical coherence tomography,” Proc. SPIE7567, 75650I (2010).

C.-E. Bisaillon, M. L. Dufour, and G. Lamouche, “Durable phantoms of atherosclerotic arteries for optical coherence tomography,” Proc. SPIE7548, 75483G (2010).
[CrossRef]

C.-E. Bisaillon, M.-M. Lanthier, M. L. Dufour, and G. Lamouche, “Durable coronary artery phantoms for optical coherence tomography,” Proc. SPIE7161, 71612E (2009).

C.-E. Bisaillon, G. Lamouche, R. Maciejko, M. Dufour, and J. P. Monchalin, “Deformable and durable phantoms with controlled density of scatterers,” Phys. Med. Biol.53(13), N237–N247 (2008).
[CrossRef] [PubMed]

Bishop, J.

A. Samani, J. Bishop, C. Luginbuhl, and D. B. Plewes, “Measuring the elastic modulus of ex vivo small tissue samples,” Phys. Med. Biol.48(14), 2183–2198 (2003).
[CrossRef] [PubMed]

Bolt, R. A.

A. Kharine, S. Manohar, R. Seeton, R. G. M. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. M. de Mul, “Poly(vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography,” Phys. Med. Biol.48(3), 357–370 (2003).
[CrossRef] [PubMed]

Bonner, R. F.

Boppart, S. A.

Boughner, D. R.

W. K. Wan, G. Campbell, Z. F. Zhang, A. J. Hui, and D. R. Boughner, “Optimizing the tensile properties of polyvinyl alcohol hydrogel for the construction of a bioprosthetic heart valve stent,” J. Biomed. Mater. Res.63(6), 854–861 (2002).
[CrossRef] [PubMed]

Boulet, B.

H. Azarnoush, S. Vergnole, B. Boulet, M. Sowa, and G. Lamouche, “Real-time control of angioplasty balloon inflation based on feedback from intravascular optical coherence tomography: experimental validation on an excised heart and a beating heart model,” IEEE Trans. Biomed. Eng.59(5), 1488–1495 (2012).
[CrossRef] [PubMed]

H. Azarnoush, S. Vergnole, B. Boulet, R. DiRaddo, and G. Lamouche, “Real-time control of angioplasty balloon inflation based on feedback from intravascular optical coherence tomography: preliminary study on an artery phantom,” IEEE Trans. Biomed. Eng.59(3), 697–705 (2012).
[CrossRef] [PubMed]

Bouma, B. E.

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15(1), 011105 (2010).
[CrossRef] [PubMed]

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008).
[CrossRef] [PubMed]

N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by “path length encoded” angular compounding,” J. Biomed. Opt.8(2), 260–263 (2003).
[CrossRef] [PubMed]

Bremmer, R. H.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt.15(2), 025001 (2010).
[CrossRef] [PubMed]

Campbell, G.

C.-E. Bisaillon, G. Campbell, V. Pazos, and G. Lamouche, “Poly (vinyl alcohol) cryogel, multi-layer artery phantoms for optical coherence tomography,” Proc. SPIE7906, 79060J (2011).
[CrossRef]

C.-E. Bisaillon, G. Campbell, C. De Grandpre, and G. Lamouche, “Multilayer tubular phantoms for optical coherence tomography,” Proc. SPIE7567, 75650I (2010).

W. K. Wan, G. Campbell, Z. F. Zhang, A. J. Hui, and D. R. Boughner, “Optimizing the tensile properties of polyvinyl alcohol hydrogel for the construction of a bioprosthetic heart valve stent,” J. Biomed. Mater. Res.63(6), 854–861 (2002).
[CrossRef] [PubMed]

Carlier, S. G.

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt.13(3), 034003 (2008).
[CrossRef] [PubMed]

Cha, W.

S. Hyon, W. Cha, and Y. Ikada, “Preparation of transparent poly((vinyl alcohol) hydrogel,” Polym. Bull.22(2), 119–122 (1989).
[CrossRef]

Chaney, E. J.

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Handheld optical coherence tomography scanner for primary care diagnostics,” IEEE Trans. Biomed. Eng.58(3), 741–744 (2011).
[CrossRef] [PubMed]

X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties,” Opt. Express16(15), 11052–11065 (2008).
[CrossRef] [PubMed]

Chen, Y.-C.

T. Moffitt, Y.-C. Chen, and S. A. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt.11(4), 041103 (2006).
[CrossRef] [PubMed]

Chiang, C.-P.

M.-T. Tsai, H.-C. Lee, C.-W. Lu, Y.-M. Wang, C.-K. Lee, C. C. Yang, and C.-P. Chiang, “Delineation of an oral cancer lesion with swept-source optical coherence tomography,” J. Biomed. Opt.13(4), 044012 (2008).
[CrossRef] [PubMed]

Chu, K. C.

K. C. Chu and B. K. Rutt, “Polyvinyl alcohol cryogel: an ideal phantom material for MR studies of arterial flow and elasticity,” Magn. Reson. Med.37(2), 314–319 (1997).
[CrossRef] [PubMed]

Chudoba, C.

Colombo, A.

M. Lualdi, A. Colombo, B. Farina, S. Tomatis, and R. Marchesini, “A phantom with tissue-like optical properties in the visible and near infrared for use in photomedicine,” Lasers Surg. Med.28(3), 237–243 (2001).
[CrossRef] [PubMed]

Crecea, V.

Crow, M. J.

M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett.8(10), 3461–3467 (2008).
[CrossRef] [PubMed]

Curatolo, A.

de Bruin, D. M.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt.15(2), 025001 (2010).
[CrossRef] [PubMed]

De Grandpre, C.

C.-E. Bisaillon, G. Campbell, C. De Grandpre, and G. Lamouche, “Multilayer tubular phantoms for optical coherence tomography,” Proc. SPIE7567, 75650I (2010).

de Kinkelder, R.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt.15(2), 025001 (2010).
[CrossRef] [PubMed]

de Mul, F. F. M.

A. Kharine, S. Manohar, R. Seeton, R. G. M. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. M. de Mul, “Poly(vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography,” Phys. Med. Biol.48(3), 357–370 (2003).
[CrossRef] [PubMed]

Desjardins, A. E.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008).
[CrossRef] [PubMed]

Devi, C. U.

C. U. Devi, R. M. Vasu, and A. K. Sood, “Design, fabrication, and characterization of a tissue-equivalent phantom for optical elastography,” J. Biomed. Opt.10(4), 044020 (2005).
[CrossRef] [PubMed]

DiRaddo, R.

H. Azarnoush, S. Vergnole, B. Boulet, R. DiRaddo, and G. Lamouche, “Real-time control of angioplasty balloon inflation based on feedback from intravascular optical coherence tomography: preliminary study on an artery phantom,” IEEE Trans. Biomed. Eng.59(3), 697–705 (2012).
[CrossRef] [PubMed]

Dong, F.

J. J. Rownd, E. L. Madsen, J. A. Zagzebski, G. R. Frank, and F. Dong, “Phantoms and automated system for testing the resolution of ultrasound scanners,” Ultrasound Med. Biol.23(2), 245–260 (1997).
[CrossRef] [PubMed]

Doyley, M. M.

S. Jiang, B. W. Pogue, T. O. McBride, M. M. Doyley, S. P. Poplack, and K. D. Paulsen, “Near-infrared breast tomography calibration with optoelastic tissue simulating phantoms,” J. Electron. Imaging12(4), 613 (2003).
[CrossRef]

Drezek, R.

Dufour, M.

C.-E. Bisaillon, G. Lamouche, R. Maciejko, M. Dufour, and J. P. Monchalin, “Deformable and durable phantoms with controlled density of scatterers,” Phys. Med. Biol.53(13), N237–N247 (2008).
[CrossRef] [PubMed]

Dufour, M. L.

C.-E. Bisaillon, M. L. Dufour, and G. Lamouche, “Artery phantoms for intravascular optical coherence tomography: healthy arteries,” Biomed. Opt. Express2(9), 2599–2613 (2011).
[CrossRef] [PubMed]

C.-E. Bisaillon, M. L. Dufour, and G. Lamouche, “Durable phantoms of atherosclerotic arteries for optical coherence tomography,” Proc. SPIE7548, 75483G (2010).
[CrossRef]

C.-E. Bisaillon, M.-M. Lanthier, M. L. Dufour, and G. Lamouche, “Durable coronary artery phantoms for optical coherence tomography,” Proc. SPIE7161, 71612E (2009).

Duncan, D. D.

Engelhardt, R.

Faber, D. J.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt.15(2), 025001 (2010).
[CrossRef] [PubMed]

T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.9(2), 227–233 (2003).
[CrossRef]

Farina, B.

M. Lualdi, A. Colombo, B. Farina, S. Tomatis, and R. Marchesini, “A phantom with tissue-like optical properties in the visible and near infrared for use in photomedicine,” Lasers Surg. Med.28(3), 237–243 (2001).
[CrossRef] [PubMed]

Fenster, A.

K. J. Surry, H. J. Austin, A. Fenster, and T. M. Peters, “Poly(vinyl alcohol) cryogel phantoms for use in ultrasound and MR imaging,” Phys. Med. Biol.49(24), 5529–5546 (2004).
[CrossRef] [PubMed]

Ferguson, R. A.

Fortune, F.

P. H. Tomlins, O. Adegun, E. Hagi-Pavli, K. Piper, D. Bader, and F. Fortune, “Scattering attenuation microscopy of oral epithelial dysplasia,” J. Biomed. Opt.15(6), 066003 (2010).
[CrossRef] [PubMed]

Frank, G. R.

J. J. Rownd, E. L. Madsen, J. A. Zagzebski, G. R. Frank, and F. Dong, “Phantoms and automated system for testing the resolution of ultrasound scanners,” Ultrasound Med. Biol.23(2), 245–260 (1997).
[CrossRef] [PubMed]

Freilich, M. I.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008).
[CrossRef] [PubMed]

Fujimoto, J. G.

Garcia, L.

A. Grimwood, L. Garcia, J. Bamber, J. Holmes, P. Woolliams, P. Tomlins, and Q. A. Pankhurst, “Elastographic contrast generation in optical coherence tomography from a localized shear stress,” Phys. Med. Biol.55(18), 5515–5528 (2010).
[CrossRef] [PubMed]

Garra, B. S.

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imaging20(4), 260–274 (1998).
[PubMed]

Gibson, A. P.

J. C. Hebden, B. D. Price, A. P. Gibson, and G. Royle, “A soft deformable tissue-equivalent phantom for diffuse optical tomography,” Phys. Med. Biol.51(21), 5581–5590 (2006).
[CrossRef] [PubMed]

Gilani, N.

Goderie, T.

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15(1), 011105 (2010).
[CrossRef] [PubMed]

Gonzalo, N.

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15(1), 011105 (2010).
[CrossRef] [PubMed]

Goshima, H.

I. Mano, H. Goshima, M. I. Nambu, and M. Iio, “New polyvinyl alcohol gel material for MRI phantoms,” Magn. Reson. Med.3(6), 921–926 (1986).
[CrossRef] [PubMed]

Grimwood, A.

A. Grimwood, L. Garcia, J. Bamber, J. Holmes, P. Woolliams, P. Tomlins, and Q. A. Pankhurst, “Elastographic contrast generation in optical coherence tomography from a localized shear stress,” Phys. Med. Biol.55(18), 5515–5528 (2010).
[CrossRef] [PubMed]

P. D. Woolliams, R. A. Ferguson, C. Hart, A. Grimwood, and P. H. Tomlins, “Spatially deconvolved optical coherence tomography,” Appl. Opt.49(11), 2014–2021 (2010).
[CrossRef] [PubMed]

Hagi-Pavli, E.

P. H. Tomlins, O. Adegun, E. Hagi-Pavli, K. Piper, D. Bader, and F. Fortune, “Scattering attenuation microscopy of oral epithelial dysplasia,” J. Biomed. Opt.15(6), 066003 (2010).
[CrossRef] [PubMed]

Hall, T.

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imaging20(4), 260–274 (1998).
[PubMed]

Hart, C.

Hebden, J. C.

J. C. Hebden, B. D. Price, A. P. Gibson, and G. Royle, “A soft deformable tissue-equivalent phantom for diffuse optical tomography,” Phys. Med. Biol.51(21), 5581–5590 (2006).
[CrossRef] [PubMed]

Hillman, T. R.

Holmes, J.

A. Grimwood, L. Garcia, J. Bamber, J. Holmes, P. Woolliams, P. Tomlins, and Q. A. Pankhurst, “Elastographic contrast generation in optical coherence tomography from a localized shear stress,” Phys. Med. Biol.55(18), 5515–5528 (2010).
[CrossRef] [PubMed]

Hui, A. J.

W. K. Wan, G. Campbell, Z. F. Zhang, A. J. Hui, and D. R. Boughner, “Optimizing the tensile properties of polyvinyl alcohol hydrogel for the construction of a bioprosthetic heart valve stent,” J. Biomed. Mater. Res.63(6), 854–861 (2002).
[CrossRef] [PubMed]

Hyon, S.

S. Hyon, W. Cha, and Y. Ikada, “Preparation of transparent poly((vinyl alcohol) hydrogel,” Polym. Bull.22(2), 119–122 (1989).
[CrossRef]

Iftimia, N.

N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by “path length encoded” angular compounding,” J. Biomed. Opt.8(2), 260–263 (2003).
[CrossRef] [PubMed]

Iio, M.

I. Mano, H. Goshima, M. I. Nambu, and M. Iio, “New polyvinyl alcohol gel material for MRI phantoms,” Magn. Reson. Med.3(6), 921–926 (1986).
[CrossRef] [PubMed]

Ikada, Y.

S. Hyon, W. Cha, and Y. Ikada, “Preparation of transparent poly((vinyl alcohol) hydrogel,” Polym. Bull.22(2), 119–122 (1989).
[CrossRef]

Insana, M. F.

M. F. Insana, C. Pellot-Barakat, M. Sridhar, and K. K. Lindfors, “Viscoelastic imaging of breast tumor microenvironment with ultrasound,” J. Mammary Gland Biol. Neoplasia9(4), 393–404 (2004).
[CrossRef] [PubMed]

Izatt, J. A.

M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett.8(10), 3461–3467 (2008).
[CrossRef] [PubMed]

Jacques, S. L.

Jeon, M.

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Handheld optical coherence tomography scanner for primary care diagnostics,” IEEE Trans. Biomed. Eng.58(3), 741–744 (2011).
[CrossRef] [PubMed]

Jiang, S.

S. Jiang, B. W. Pogue, T. O. McBride, M. M. Doyley, S. P. Poplack, and K. D. Paulsen, “Near-infrared breast tomography calibration with optoelastic tissue simulating phantoms,” J. Electron. Imaging12(4), 613 (2003).
[CrossRef]

Jung, W.

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Handheld optical coherence tomography scanner for primary care diagnostics,” IEEE Trans. Biomed. Eng.58(3), 741–744 (2011).
[CrossRef] [PubMed]

Jutila, R. E.

E. L. Madsen, J. A. Zagzebski, R. A. Banjavie, and R. E. Jutila, “Tissue mimicking materials for ultrasound phantoms,” Med. Phys.5(5), 391–394 (1978).
[CrossRef] [PubMed]

Kaetsu, H.

H. Kaetsu, T. Uchida, and N. Shinya, “Increased effectiveness of fibrin sealant with a higher fibrin concentration,” Int. J. Adhes. Adhes.20(1), 27–31 (2000).
[CrossRef]

Kallel, F.

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imaging20(4), 260–274 (1998).
[PubMed]

Kennedy, B. F.

Kharine, A.

A. Kharine, S. Manohar, R. Seeton, R. G. M. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. M. de Mul, “Poly(vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography,” Phys. Med. Biol.48(3), 357–370 (2003).
[CrossRef] [PubMed]

Kim, J.

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Handheld optical coherence tomography scanner for primary care diagnostics,” IEEE Trans. Biomed. Eng.58(3), 741–744 (2011).
[CrossRef] [PubMed]

Kirkpatrick, S. J.

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett.89(14), 144103 (2006).
[CrossRef]

S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express14(24), 11585–11597 (2006).
[CrossRef] [PubMed]

Klyen, B. R.

Ko, T.

Kodach, V. M.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt.15(2), 025001 (2010).
[CrossRef] [PubMed]

Koljenovic, S.

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15(1), 011105 (2010).
[CrossRef] [PubMed]

Kolkman, R. G. M.

A. Kharine, S. Manohar, R. Seeton, R. G. M. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. M. de Mul, “Poly(vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography,” Phys. Med. Biol.48(3), 357–370 (2003).
[CrossRef] [PubMed]

Krouskop, T. A.

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imaging20(4), 260–274 (1998).
[PubMed]

Lamouche, G.

H. Azarnoush, S. Vergnole, B. Boulet, M. Sowa, and G. Lamouche, “Real-time control of angioplasty balloon inflation based on feedback from intravascular optical coherence tomography: experimental validation on an excised heart and a beating heart model,” IEEE Trans. Biomed. Eng.59(5), 1488–1495 (2012).
[CrossRef] [PubMed]

H. Azarnoush, S. Vergnole, B. Boulet, R. DiRaddo, and G. Lamouche, “Real-time control of angioplasty balloon inflation based on feedback from intravascular optical coherence tomography: preliminary study on an artery phantom,” IEEE Trans. Biomed. Eng.59(3), 697–705 (2012).
[CrossRef] [PubMed]

C.-E. Bisaillon, G. Campbell, V. Pazos, and G. Lamouche, “Poly (vinyl alcohol) cryogel, multi-layer artery phantoms for optical coherence tomography,” Proc. SPIE7906, 79060J (2011).
[CrossRef]

C.-E. Bisaillon, M. L. Dufour, and G. Lamouche, “Artery phantoms for intravascular optical coherence tomography: healthy arteries,” Biomed. Opt. Express2(9), 2599–2613 (2011).
[CrossRef] [PubMed]

C.-E. Bisaillon, G. Campbell, C. De Grandpre, and G. Lamouche, “Multilayer tubular phantoms for optical coherence tomography,” Proc. SPIE7567, 75650I (2010).

C.-E. Bisaillon, M. L. Dufour, and G. Lamouche, “Durable phantoms of atherosclerotic arteries for optical coherence tomography,” Proc. SPIE7548, 75483G (2010).
[CrossRef]

C.-E. Bisaillon, M.-M. Lanthier, M. L. Dufour, and G. Lamouche, “Durable coronary artery phantoms for optical coherence tomography,” Proc. SPIE7161, 71612E (2009).

C.-E. Bisaillon, G. Lamouche, R. Maciejko, M. Dufour, and J. P. Monchalin, “Deformable and durable phantoms with controlled density of scatterers,” Phys. Med. Biol.53(13), N237–N247 (2008).
[CrossRef] [PubMed]

Lanthier, M.-M.

C.-E. Bisaillon, M.-M. Lanthier, M. L. Dufour, and G. Lamouche, “Durable coronary artery phantoms for optical coherence tomography,” Proc. SPIE7161, 71612E (2009).

Lee, C.-K.

M.-T. Tsai, H.-C. Lee, C.-W. Lu, Y.-M. Wang, C.-K. Lee, C. C. Yang, and C.-P. Chiang, “Delineation of an oral cancer lesion with swept-source optical coherence tomography,” J. Biomed. Opt.13(4), 044012 (2008).
[CrossRef] [PubMed]

Lee, H.-C.

M.-T. Tsai, H.-C. Lee, C.-W. Lu, Y.-M. Wang, C.-K. Lee, C. C. Yang, and C.-P. Chiang, “Delineation of an oral cancer lesion with swept-source optical coherence tomography,” J. Biomed. Opt.13(4), 044012 (2008).
[CrossRef] [PubMed]

Lee, S.

J. Schmitt, S. Lee, and K. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun.142(4-6), 203–207 (1997).
[CrossRef]

Li, X.

Liang, X.

Liew, Y. M.

Y. M. Liew, R. A. McLaughlin, F. M. Wood, and D. D. Sampson, “Reduction of image artifacts in three-dimensional optical coherence tomography of skin in vivo,” J. Biomed. Opt.16(11), 116018 (2011).
[CrossRef] [PubMed]

Lindfors, K. K.

M. F. Insana, C. Pellot-Barakat, M. Sridhar, and K. K. Lindfors, “Viscoelastic imaging of breast tumor microenvironment with ultrasound,” J. Mammary Gland Biol. Neoplasia9(4), 393–404 (2004).
[CrossRef] [PubMed]

Loitsch, S.

B. F. Kennedy, S. Loitsch, R. A. McLaughlin, L. Scolaro, P. Rigby, and D. D. Sampson, “Fibrin phantom for use in optical coherence tomography,” J. Biomed. Opt.15(3), 030507 (2010).
[CrossRef] [PubMed]

Lu, C.-W.

M.-T. Tsai, H.-C. Lee, C.-W. Lu, Y.-M. Wang, C.-K. Lee, C. C. Yang, and C.-P. Chiang, “Delineation of an oral cancer lesion with swept-source optical coherence tomography,” J. Biomed. Opt.13(4), 044012 (2008).
[CrossRef] [PubMed]

Lualdi, M.

M. Lualdi, A. Colombo, B. Farina, S. Tomatis, and R. Marchesini, “A phantom with tissue-like optical properties in the visible and near infrared for use in photomedicine,” Lasers Surg. Med.28(3), 237–243 (2001).
[CrossRef] [PubMed]

Luginbuhl, C.

A. Samani, J. Bishop, C. Luginbuhl, and D. B. Plewes, “Measuring the elastic modulus of ex vivo small tissue samples,” Phys. Med. Biol.48(14), 2183–2198 (2003).
[CrossRef] [PubMed]

Ma, Z.

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett.89(14), 144103 (2006).
[CrossRef]

Maciejko, R.

C.-E. Bisaillon, G. Lamouche, R. Maciejko, M. Dufour, and J. P. Monchalin, “Deformable and durable phantoms with controlled density of scatterers,” Phys. Med. Biol.53(13), N237–N247 (2008).
[CrossRef] [PubMed]

Madsen, E. L.

J. J. Rownd, E. L. Madsen, J. A. Zagzebski, G. R. Frank, and F. Dong, “Phantoms and automated system for testing the resolution of ultrasound scanners,” Ultrasound Med. Biol.23(2), 245–260 (1997).
[CrossRef] [PubMed]

E. L. Madsen, J. A. Zagzebski, R. A. Banjavie, and R. E. Jutila, “Tissue mimicking materials for ultrasound phantoms,” Med. Phys.5(5), 391–394 (1978).
[CrossRef] [PubMed]

Mano, I.

I. Mano, H. Goshima, M. I. Nambu, and M. Iio, “New polyvinyl alcohol gel material for MRI phantoms,” Magn. Reson. Med.3(6), 921–926 (1986).
[CrossRef] [PubMed]

Manohar, S.

A. Kharine, S. Manohar, R. Seeton, R. G. M. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. M. de Mul, “Poly(vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography,” Phys. Med. Biol.48(3), 357–370 (2003).
[CrossRef] [PubMed]

Marchesini, R.

M. Lualdi, A. Colombo, B. Farina, S. Tomatis, and R. Marchesini, “A phantom with tissue-like optical properties in the visible and near infrared for use in photomedicine,” Lasers Surg. Med.28(3), 237–243 (2001).
[CrossRef] [PubMed]

McBride, T. O.

S. Jiang, B. W. Pogue, T. O. McBride, M. M. Doyley, S. P. Poplack, and K. D. Paulsen, “Near-infrared breast tomography calibration with optoelastic tissue simulating phantoms,” J. Electron. Imaging12(4), 613 (2003).
[CrossRef]

McLaughlin, R. A.

L. Scolaro, R. A. McLaughlin, B. R. Klyen, B. A. Wood, P. D. Robbins, C. M. Saunders, S. L. Jacques, and D. D. Sampson, “Parametric imaging of the local attenuation coefficient in human axillary lymph nodes assessed using optical coherence tomography,” Biomed. Opt. Express3(2), 366–379 (2012).
[CrossRef] [PubMed]

Y. M. Liew, R. A. McLaughlin, F. M. Wood, and D. D. Sampson, “Reduction of image artifacts in three-dimensional optical coherence tomography of skin in vivo,” J. Biomed. Opt.16(11), 116018 (2011).
[CrossRef] [PubMed]

R. A. McLaughlin, L. Scolaro, P. Robbins, C. Saunders, S. L. Jacques, and D. D. Sampson, “Parametric imaging of cancer with optical coherence tomography,” J. Biomed. Opt.15(4), 046029 (2010).
[CrossRef] [PubMed]

B. F. Kennedy, S. Loitsch, R. A. McLaughlin, L. Scolaro, P. Rigby, and D. D. Sampson, “Fibrin phantom for use in optical coherence tomography,” J. Biomed. Opt.15(3), 030507 (2010).
[CrossRef] [PubMed]

B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, and D. D. Sampson, “In vivo dynamic optical coherence elastography using a ring actuator,” Opt. Express17(24), 21762–21772 (2009).
[CrossRef] [PubMed]

Metaxas, D. N.

F. S. Azar, D. N. Metaxas, and M. D. Schnall, “Methods for modeling and predicting mechanical deformations of the breast under external perturbations,” Med. Image Anal.6(1), 1–27 (2002).
[CrossRef] [PubMed]

Miller, K.

L. Morriss, A. Wittek, and K. Miller, “Compression testing of very soft biological tissues using semi-confined configuration--a word of caution,” J. Biomech.41(1), 235–238 (2008).
[CrossRef] [PubMed]

Moes, C. J. M.

Moffitt, T.

T. Moffitt, Y.-C. Chen, and S. A. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt.11(4), 041103 (2006).
[CrossRef] [PubMed]

Monchalin, J. P.

C.-E. Bisaillon, G. Lamouche, R. Maciejko, M. Dufour, and J. P. Monchalin, “Deformable and durable phantoms with controlled density of scatterers,” Phys. Med. Biol.53(13), N237–N247 (2008).
[CrossRef] [PubMed]

Mongrain, R.

V. Pazos, R. Mongrain, and J. C. Tardif, “Polyvinyl alcohol cryogel: optimizing the parameters of cryogenic treatment using hyperelastic models,” J. Mech. Behav. Biomed. Mater.2(5), 542–549 (2009).
[CrossRef] [PubMed]

Monnier, P.

R. Bays, G. Wagnières, D. Robert, J. F. Theumann, A. Vitkin, J. F. Savary, P. Monnier, and H. van den Bergh, “Three-dimensional optical phantom and its application in photodynamic therapy,” Lasers Surg. Med.21(3), 227–234 (1997).
[CrossRef] [PubMed]

Morriss, L.

L. Morriss, A. Wittek, and K. Miller, “Compression testing of very soft biological tissues using semi-confined configuration--a word of caution,” J. Biomech.41(1), 235–238 (2008).
[CrossRef] [PubMed]

Nambu, M.

M. Nambu, “Rubber-like poly(viny1 alcohol)) gel,” Kobunshi Ronbunshu47(9), 695–703 (1990) (In Japanese).
[CrossRef]

Nambu, M. I.

I. Mano, H. Goshima, M. I. Nambu, and M. Iio, “New polyvinyl alcohol gel material for MRI phantoms,” Magn. Reson. Med.3(6), 921–926 (1986).
[CrossRef] [PubMed]

Nordstrom, R. J.

R. J. Nordstrom, “Phantoms as standards in optical measurements,” Proc. SPIE7906, 79060H (2011).
[CrossRef]

Oh, W. Y.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008).
[CrossRef] [PubMed]

Okamura, T.

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15(1), 011105 (2010).
[CrossRef] [PubMed]

Oldenburg, A. L.

Oosterhuis, J. W.

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15(1), 011105 (2010).
[CrossRef] [PubMed]

Pan, Y.

Pankhurst, Q. A.

A. Grimwood, L. Garcia, J. Bamber, J. Holmes, P. Woolliams, P. Tomlins, and Q. A. Pankhurst, “Elastographic contrast generation in optical coherence tomography from a localized shear stress,” Phys. Med. Biol.55(18), 5515–5528 (2010).
[CrossRef] [PubMed]

Patterson, M. S.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11(4), 041102 (2006).
[CrossRef] [PubMed]

Paulsen, K. D.

S. Jiang, B. W. Pogue, T. O. McBride, M. M. Doyley, S. P. Poplack, and K. D. Paulsen, “Near-infrared breast tomography calibration with optoelastic tissue simulating phantoms,” J. Electron. Imaging12(4), 613 (2003).
[CrossRef]

Pazos, V.

C.-E. Bisaillon, G. Campbell, V. Pazos, and G. Lamouche, “Poly (vinyl alcohol) cryogel, multi-layer artery phantoms for optical coherence tomography,” Proc. SPIE7906, 79060J (2011).
[CrossRef]

V. Pazos, R. Mongrain, and J. C. Tardif, “Polyvinyl alcohol cryogel: optimizing the parameters of cryogenic treatment using hyperelastic models,” J. Mech. Behav. Biomed. Mater.2(5), 542–549 (2009).
[CrossRef] [PubMed]

Pellot-Barakat, C.

M. F. Insana, C. Pellot-Barakat, M. Sridhar, and K. K. Lindfors, “Viscoelastic imaging of breast tumor microenvironment with ultrasound,” J. Mammary Gland Biol. Neoplasia9(4), 393–404 (2004).
[CrossRef] [PubMed]

Peters, T. M.

K. J. Surry, H. J. Austin, A. Fenster, and T. M. Peters, “Poly(vinyl alcohol) cryogel phantoms for use in ultrasound and MR imaging,” Phys. Med. Biol.49(24), 5529–5546 (2004).
[CrossRef] [PubMed]

Pfefer, T. J.

Piper, K.

P. H. Tomlins, O. Adegun, E. Hagi-Pavli, K. Piper, D. Bader, and F. Fortune, “Scattering attenuation microscopy of oral epithelial dysplasia,” J. Biomed. Opt.15(6), 066003 (2010).
[CrossRef] [PubMed]

Pitris, C.

Plewes, D. B.

A. Samani, J. Bishop, C. Luginbuhl, and D. B. Plewes, “Measuring the elastic modulus of ex vivo small tissue samples,” Phys. Med. Biol.48(14), 2183–2198 (2003).
[CrossRef] [PubMed]

Pogue, B. W.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11(4), 041102 (2006).
[CrossRef] [PubMed]

S. Jiang, B. W. Pogue, T. O. McBride, M. M. Doyley, S. P. Poplack, and K. D. Paulsen, “Near-infrared breast tomography calibration with optoelastic tissue simulating phantoms,” J. Electron. Imaging12(4), 613 (2003).
[CrossRef]

Poplack, S. P.

S. Jiang, B. W. Pogue, T. O. McBride, M. M. Doyley, S. P. Poplack, and K. D. Paulsen, “Near-infrared breast tomography calibration with optoelastic tissue simulating phantoms,” J. Electron. Imaging12(4), 613 (2003).
[CrossRef]

Prahl, S. A.

Price, B. D.

J. C. Hebden, B. D. Price, A. P. Gibson, and G. Royle, “A soft deformable tissue-equivalent phantom for diffuse optical tomography,” Phys. Med. Biol.51(21), 5581–5590 (2006).
[CrossRef] [PubMed]

Quirk, B. C.

Ralston, T. S.

Rasakanthan, J.

Regar, E.

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15(1), 011105 (2010).
[CrossRef] [PubMed]

Rigby, P.

B. F. Kennedy, S. Loitsch, R. A. McLaughlin, L. Scolaro, P. Rigby, and D. D. Sampson, “Fibrin phantom for use in optical coherence tomography,” J. Biomed. Opt.15(3), 030507 (2010).
[CrossRef] [PubMed]

Robbins, P.

R. A. McLaughlin, L. Scolaro, P. Robbins, C. Saunders, S. L. Jacques, and D. D. Sampson, “Parametric imaging of cancer with optical coherence tomography,” J. Biomed. Opt.15(4), 046029 (2010).
[CrossRef] [PubMed]

Robbins, P. D.

Robert, D.

R. Bays, G. Wagnières, D. Robert, J. F. Theumann, A. Vitkin, J. F. Savary, P. Monnier, and H. van den Bergh, “Three-dimensional optical phantom and its application in photodynamic therapy,” Lasers Surg. Med.21(3), 227–234 (1997).
[CrossRef] [PubMed]

Rosenberg, M.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008).
[CrossRef] [PubMed]

Rosperich, J.

Rownd, J. J.

J. J. Rownd, E. L. Madsen, J. A. Zagzebski, G. R. Frank, and F. Dong, “Phantoms and automated system for testing the resolution of ultrasound scanners,” Ultrasound Med. Biol.23(2), 245–260 (1997).
[CrossRef] [PubMed]

Royle, G.

J. C. Hebden, B. D. Price, A. P. Gibson, and G. Royle, “A soft deformable tissue-equivalent phantom for diffuse optical tomography,” Phys. Med. Biol.51(21), 5581–5590 (2006).
[CrossRef] [PubMed]

Rück, A.

G. Beck, N. Akgün, A. Rück, and R. Steiner, “Design and characterisation of a tissue phantom system for optical diagnostics,” Lasers Med. Sci.13(3), 160–171 (1998).
[CrossRef]

Rutt, B. K.

K. C. Chu and B. K. Rutt, “Polyvinyl alcohol cryogel: an ideal phantom material for MR studies of arterial flow and elasticity,” Magn. Reson. Med.37(2), 314–319 (1997).
[CrossRef] [PubMed]

Samani, A.

A. Samani, J. Bishop, C. Luginbuhl, and D. B. Plewes, “Measuring the elastic modulus of ex vivo small tissue samples,” Phys. Med. Biol.48(14), 2183–2198 (2003).
[CrossRef] [PubMed]

Sampson, D. D.

L. Scolaro, R. A. McLaughlin, B. R. Klyen, B. A. Wood, P. D. Robbins, C. M. Saunders, S. L. Jacques, and D. D. Sampson, “Parametric imaging of the local attenuation coefficient in human axillary lymph nodes assessed using optical coherence tomography,” Biomed. Opt. Express3(2), 366–379 (2012).
[CrossRef] [PubMed]

B. F. Kennedy, A. Curatolo, T. R. Hillman, C. M. Saunders, and D. D. Sampson, “Speckle reduction in optical coherence tomography images using tissue viscoelasticity,” J. Biomed. Opt.16(2), 020506 (2011).
[CrossRef] [PubMed]

A. Curatolo, B. F. Kennedy, and D. D. Sampson, “Structured three-dimensional optical phantom for optical coherence tomography,” Opt. Express19(20), 19480–19485 (2011).
[CrossRef] [PubMed]

Y. M. Liew, R. A. McLaughlin, F. M. Wood, and D. D. Sampson, “Reduction of image artifacts in three-dimensional optical coherence tomography of skin in vivo,” J. Biomed. Opt.16(11), 116018 (2011).
[CrossRef] [PubMed]

T. R. Hillman, A. Curatolo, B. F. Kennedy, and D. D. Sampson, “Detection of multiple scattering in optical coherence tomography by speckle correlation of angle-dependent B-scans,” Opt. Lett.35(12), 1998–2000 (2010).
[CrossRef] [PubMed]

R. A. McLaughlin, L. Scolaro, P. Robbins, C. Saunders, S. L. Jacques, and D. D. Sampson, “Parametric imaging of cancer with optical coherence tomography,” J. Biomed. Opt.15(4), 046029 (2010).
[CrossRef] [PubMed]

B. F. Kennedy, S. Loitsch, R. A. McLaughlin, L. Scolaro, P. Rigby, and D. D. Sampson, “Fibrin phantom for use in optical coherence tomography,” J. Biomed. Opt.15(3), 030507 (2010).
[CrossRef] [PubMed]

B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, and D. D. Sampson, “In vivo dynamic optical coherence elastography using a ring actuator,” Opt. Express17(24), 21762–21772 (2009).
[CrossRef] [PubMed]

T. R. Hillman, S. G. Adie, V. Seemann, J. J. Armstrong, S. L. Jacques, and D. D. Sampson, “Correlation of static speckle with sample properties in optical coherence tomography,” Opt. Lett.31(2), 190–192 (2006).
[CrossRef] [PubMed]

Saunders, C.

R. A. McLaughlin, L. Scolaro, P. Robbins, C. Saunders, S. L. Jacques, and D. D. Sampson, “Parametric imaging of cancer with optical coherence tomography,” J. Biomed. Opt.15(4), 046029 (2010).
[CrossRef] [PubMed]

Saunders, C. M.

Savary, J. F.

R. Bays, G. Wagnières, D. Robert, J. F. Theumann, A. Vitkin, J. F. Savary, P. Monnier, and H. van den Bergh, “Three-dimensional optical phantom and its application in photodynamic therapy,” Lasers Surg. Med.21(3), 227–234 (1997).
[CrossRef] [PubMed]

Schmitt, J.

J. Schmitt, S. Lee, and K. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun.142(4-6), 203–207 (1997).
[CrossRef]

Schmitt, J. M.

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt.13(3), 034003 (2008).
[CrossRef] [PubMed]

J. M. Schmitt, S. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt.4(1), 95 (1999).
[CrossRef]

J. M. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express3(6), 199–211 (1998).
[CrossRef] [PubMed]

M. J. Yadlowsky, J. M. Schmitt, and R. F. Bonner, “Multiple scattering in optical coherence microscopy,” Appl. Opt.34(25), 5699–5707 (1995).
[CrossRef] [PubMed]

Schnall, M. D.

F. S. Azar, D. N. Metaxas, and M. D. Schnall, “Methods for modeling and predicting mechanical deformations of the breast under external perturbations,” Med. Image Anal.6(1), 1–27 (2002).
[CrossRef] [PubMed]

Scolaro, L.

L. Scolaro, R. A. McLaughlin, B. R. Klyen, B. A. Wood, P. D. Robbins, C. M. Saunders, S. L. Jacques, and D. D. Sampson, “Parametric imaging of the local attenuation coefficient in human axillary lymph nodes assessed using optical coherence tomography,” Biomed. Opt. Express3(2), 366–379 (2012).
[CrossRef] [PubMed]

R. A. McLaughlin, L. Scolaro, P. Robbins, C. Saunders, S. L. Jacques, and D. D. Sampson, “Parametric imaging of cancer with optical coherence tomography,” J. Biomed. Opt.15(4), 046029 (2010).
[CrossRef] [PubMed]

B. F. Kennedy, S. Loitsch, R. A. McLaughlin, L. Scolaro, P. Rigby, and D. D. Sampson, “Fibrin phantom for use in optical coherence tomography,” J. Biomed. Opt.15(3), 030507 (2010).
[CrossRef] [PubMed]

Seemann, V.

Seeton, R.

A. Kharine, S. Manohar, R. Seeton, R. G. M. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. M. de Mul, “Poly(vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography,” Phys. Med. Biol.48(3), 357–370 (2003).
[CrossRef] [PubMed]

Serruys, P. W.

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15(1), 011105 (2010).
[CrossRef] [PubMed]

Shinya, N.

H. Kaetsu, T. Uchida, and N. Shinya, “Increased effectiveness of fibrin sealant with a higher fibrin concentration,” Int. J. Adhes. Adhes.20(1), 27–31 (2000).
[CrossRef]

Shishkov, M.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008).
[CrossRef] [PubMed]

Skala, M. C.

M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett.8(10), 3461–3467 (2008).
[CrossRef] [PubMed]

Smith, G. N.

Sood, A. K.

C. U. Devi, R. M. Vasu, and A. K. Sood, “Design, fabrication, and characterization of a tissue-equivalent phantom for optical elastography,” J. Biomed. Opt.10(4), 044020 (2005).
[CrossRef] [PubMed]

Sowa, M.

H. Azarnoush, S. Vergnole, B. Boulet, M. Sowa, and G. Lamouche, “Real-time control of angioplasty balloon inflation based on feedback from intravascular optical coherence tomography: experimental validation on an excised heart and a beating heart model,” IEEE Trans. Biomed. Eng.59(5), 1488–1495 (2012).
[CrossRef] [PubMed]

Sridhar, M.

M. F. Insana, C. Pellot-Barakat, M. Sridhar, and K. K. Lindfors, “Viscoelastic imaging of breast tumor microenvironment with ultrasound,” J. Mammary Gland Biol. Neoplasia9(4), 393–404 (2004).
[CrossRef] [PubMed]

Steenbergen, W.

A. Kharine, S. Manohar, R. Seeton, R. G. M. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. M. de Mul, “Poly(vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography,” Phys. Med. Biol.48(3), 357–370 (2003).
[CrossRef] [PubMed]

Steiner, R.

G. Beck, N. Akgün, A. Rück, and R. Steiner, “Design and characterisation of a tissue phantom system for optical diagnostics,” Lasers Med. Sci.13(3), 160–171 (1998).
[CrossRef]

Stewart, C. N.

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Handheld optical coherence tomography scanner for primary care diagnostics,” IEEE Trans. Biomed. Eng.58(3), 741–744 (2011).
[CrossRef] [PubMed]

Sugden, K.

Surry, K. J.

K. J. Surry, H. J. Austin, A. Fenster, and T. M. Peters, “Poly(vinyl alcohol) cryogel phantoms for use in ultrasound and MR imaging,” Phys. Med. Biol.49(24), 5529–5546 (2004).
[CrossRef] [PubMed]

Suslick, K. S.

Suter, M. J.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008).
[CrossRef] [PubMed]

Tardif, J. C.

V. Pazos, R. Mongrain, and J. C. Tardif, “Polyvinyl alcohol cryogel: optimizing the parameters of cryogenic treatment using hyperelastic models,” J. Mech. Behav. Biomed. Mater.2(5), 542–549 (2009).
[CrossRef] [PubMed]

Tearney, G. J.

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15(1), 011105 (2010).
[CrossRef] [PubMed]

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008).
[CrossRef] [PubMed]

N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by “path length encoded” angular compounding,” J. Biomed. Opt.8(2), 260–263 (2003).
[CrossRef] [PubMed]

Theumann, J. F.

R. Bays, G. Wagnières, D. Robert, J. F. Theumann, A. Vitkin, J. F. Savary, P. Monnier, and H. van den Bergh, “Three-dimensional optical phantom and its application in photodynamic therapy,” Lasers Surg. Med.21(3), 227–234 (1997).
[CrossRef] [PubMed]

Tomatis, S.

M. Lualdi, A. Colombo, B. Farina, S. Tomatis, and R. Marchesini, “A phantom with tissue-like optical properties in the visible and near infrared for use in photomedicine,” Lasers Surg. Med.28(3), 237–243 (2001).
[CrossRef] [PubMed]

Tomlins, P.

A. Grimwood, L. Garcia, J. Bamber, J. Holmes, P. Woolliams, P. Tomlins, and Q. A. Pankhurst, “Elastographic contrast generation in optical coherence tomography from a localized shear stress,” Phys. Med. Biol.55(18), 5515–5528 (2010).
[CrossRef] [PubMed]

Tomlins, P. H.

Toublan, F. J.-J.

Tsai, M.-T.

M.-T. Tsai, H.-C. Lee, C.-W. Lu, Y.-M. Wang, C.-K. Lee, C. C. Yang, and C.-P. Chiang, “Delineation of an oral cancer lesion with swept-source optical coherence tomography,” J. Biomed. Opt.13(4), 044012 (2008).
[CrossRef] [PubMed]

Uchida, T.

H. Kaetsu, T. Uchida, and N. Shinya, “Increased effectiveness of fibrin sealant with a higher fibrin concentration,” Int. J. Adhes. Adhes.20(1), 27–31 (2000).
[CrossRef]

Vakoc, B. J.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008).
[CrossRef] [PubMed]

van den Bergh, H.

R. Bays, G. Wagnières, D. Robert, J. F. Theumann, A. Vitkin, J. F. Savary, P. Monnier, and H. van den Bergh, “Three-dimensional optical phantom and its application in photodynamic therapy,” Lasers Surg. Med.21(3), 227–234 (1997).
[CrossRef] [PubMed]

van der Steen, A. F. W.

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15(1), 011105 (2010).
[CrossRef] [PubMed]

van Gemert, M. J. C.

van Leenders, G. L. J. H.

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15(1), 011105 (2010).
[CrossRef] [PubMed]

van Leeuwen, T. G.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt.15(2), 025001 (2010).
[CrossRef] [PubMed]

T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.9(2), 227–233 (2003).
[CrossRef]

van Marie, J.

van Marle, J.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt.15(2), 025001 (2010).
[CrossRef] [PubMed]

van Noorden, S.

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15(1), 011105 (2010).
[CrossRef] [PubMed]

van Soest, G.

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15(1), 011105 (2010).
[CrossRef] [PubMed]

van Staveren, H. J.

Vasu, R. M.

C. U. Devi, R. M. Vasu, and A. K. Sood, “Design, fabrication, and characterization of a tissue-equivalent phantom for optical elastography,” J. Biomed. Opt.10(4), 044020 (2005).
[CrossRef] [PubMed]

Vergnole, S.

H. Azarnoush, S. Vergnole, B. Boulet, M. Sowa, and G. Lamouche, “Real-time control of angioplasty balloon inflation based on feedback from intravascular optical coherence tomography: experimental validation on an excised heart and a beating heart model,” IEEE Trans. Biomed. Eng.59(5), 1488–1495 (2012).
[CrossRef] [PubMed]

H. Azarnoush, S. Vergnole, B. Boulet, R. DiRaddo, and G. Lamouche, “Real-time control of angioplasty balloon inflation based on feedback from intravascular optical coherence tomography: preliminary study on an artery phantom,” IEEE Trans. Biomed. Eng.59(3), 697–705 (2012).
[CrossRef] [PubMed]

Virmani, R.

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt.13(3), 034003 (2008).
[CrossRef] [PubMed]

Vitkin, A.

R. Bays, G. Wagnières, D. Robert, J. F. Theumann, A. Vitkin, J. F. Savary, P. Monnier, and H. van den Bergh, “Three-dimensional optical phantom and its application in photodynamic therapy,” Lasers Surg. Med.21(3), 227–234 (1997).
[CrossRef] [PubMed]

Wagnières, G.

R. Bays, G. Wagnières, D. Robert, J. F. Theumann, A. Vitkin, J. F. Savary, P. Monnier, and H. van den Bergh, “Three-dimensional optical phantom and its application in photodynamic therapy,” Lasers Surg. Med.21(3), 227–234 (1997).
[CrossRef] [PubMed]

Wan, W. K.

W. K. Wan, G. Campbell, Z. F. Zhang, A. J. Hui, and D. R. Boughner, “Optimizing the tensile properties of polyvinyl alcohol hydrogel for the construction of a bioprosthetic heart valve stent,” J. Biomed. Mater. Res.63(6), 854–861 (2002).
[CrossRef] [PubMed]

Wang, R. K.

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett.89(14), 144103 (2006).
[CrossRef]

S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express14(24), 11585–11597 (2006).
[CrossRef] [PubMed]

R. K. Wang, “Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues,” Phys. Med. Biol.47(13), 2281–2299 (2002).
[CrossRef] [PubMed]

Wang, Y.-M.

M.-T. Tsai, H.-C. Lee, C.-W. Lu, Y.-M. Wang, C.-K. Lee, C. C. Yang, and C.-P. Chiang, “Delineation of an oral cancer lesion with swept-source optical coherence tomography,” J. Biomed. Opt.13(4), 044012 (2008).
[CrossRef] [PubMed]

Wax, A.

M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett.8(10), 3461–3467 (2008).
[CrossRef] [PubMed]

Waxman, S.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008).
[CrossRef] [PubMed]

Wei, A.

Wheeler, T. M.

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imaging20(4), 260–274 (1998).
[PubMed]

Wittek, A.

L. Morriss, A. Wittek, and K. Miller, “Compression testing of very soft biological tissues using semi-confined configuration--a word of caution,” J. Biomech.41(1), 235–238 (2008).
[CrossRef] [PubMed]

Wood, B. A.

Wood, F. M.

Y. M. Liew, R. A. McLaughlin, F. M. Wood, and D. D. Sampson, “Reduction of image artifacts in three-dimensional optical coherence tomography of skin in vivo,” J. Biomed. Opt.16(11), 116018 (2011).
[CrossRef] [PubMed]

Woolliams, P.

A. Grimwood, L. Garcia, J. Bamber, J. Holmes, P. Woolliams, P. Tomlins, and Q. A. Pankhurst, “Elastographic contrast generation in optical coherence tomography from a localized shear stress,” Phys. Med. Biol.55(18), 5515–5528 (2010).
[CrossRef] [PubMed]

Woolliams, P. D.

Xiang, S.

J. M. Schmitt, S. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt.4(1), 95 (1999).
[CrossRef]

Xu, C.

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt.13(3), 034003 (2008).
[CrossRef] [PubMed]

Yadlowsky, M. J.

Yang, C. C.

M.-T. Tsai, H.-C. Lee, C.-W. Lu, Y.-M. Wang, C.-K. Lee, C. C. Yang, and C.-P. Chiang, “Delineation of an oral cancer lesion with swept-source optical coherence tomography,” J. Biomed. Opt.13(4), 044012 (2008).
[CrossRef] [PubMed]

Yung, K.

J. Schmitt, S. Lee, and K. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun.142(4-6), 203–207 (1997).
[CrossRef]

Yung, K. M.

J. M. Schmitt, S. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt.4(1), 95 (1999).
[CrossRef]

Zagzebski, J. A.

J. J. Rownd, E. L. Madsen, J. A. Zagzebski, G. R. Frank, and F. Dong, “Phantoms and automated system for testing the resolution of ultrasound scanners,” Ultrasound Med. Biol.23(2), 245–260 (1997).
[CrossRef] [PubMed]

E. L. Madsen, J. A. Zagzebski, R. A. Banjavie, and R. E. Jutila, “Tissue mimicking materials for ultrasound phantoms,” Med. Phys.5(5), 391–394 (1978).
[CrossRef] [PubMed]

Zhang, Z. F.

W. K. Wan, G. Campbell, Z. F. Zhang, A. J. Hui, and D. R. Boughner, “Optimizing the tensile properties of polyvinyl alcohol hydrogel for the construction of a bioprosthetic heart valve stent,” J. Biomed. Mater. Res.63(6), 854–861 (2002).
[CrossRef] [PubMed]

Appl. Opt. (5)

Appl. Phys. Lett. (1)

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett.89(14), 144103 (2006).
[CrossRef]

Biomed. Opt. Express (3)

IEEE J. Sel. Top. Quantum Electron. (1)

T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.9(2), 227–233 (2003).
[CrossRef]

IEEE Trans. Biomed. Eng. (3)

H. Azarnoush, S. Vergnole, B. Boulet, R. DiRaddo, and G. Lamouche, “Real-time control of angioplasty balloon inflation based on feedback from intravascular optical coherence tomography: preliminary study on an artery phantom,” IEEE Trans. Biomed. Eng.59(3), 697–705 (2012).
[CrossRef] [PubMed]

H. Azarnoush, S. Vergnole, B. Boulet, M. Sowa, and G. Lamouche, “Real-time control of angioplasty balloon inflation based on feedback from intravascular optical coherence tomography: experimental validation on an excised heart and a beating heart model,” IEEE Trans. Biomed. Eng.59(5), 1488–1495 (2012).
[CrossRef] [PubMed]

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Handheld optical coherence tomography scanner for primary care diagnostics,” IEEE Trans. Biomed. Eng.58(3), 741–744 (2011).
[CrossRef] [PubMed]

Int. J. Adhes. Adhes. (1)

H. Kaetsu, T. Uchida, and N. Shinya, “Increased effectiveness of fibrin sealant with a higher fibrin concentration,” Int. J. Adhes. Adhes.20(1), 27–31 (2000).
[CrossRef]

J. Biomech. (1)

L. Morriss, A. Wittek, and K. Miller, “Compression testing of very soft biological tissues using semi-confined configuration--a word of caution,” J. Biomech.41(1), 235–238 (2008).
[CrossRef] [PubMed]

J. Biomed. Mater. Res. (1)

W. K. Wan, G. Campbell, Z. F. Zhang, A. J. Hui, and D. R. Boughner, “Optimizing the tensile properties of polyvinyl alcohol hydrogel for the construction of a bioprosthetic heart valve stent,” J. Biomed. Mater. Res.63(6), 854–861 (2002).
[CrossRef] [PubMed]

J. Biomed. Opt. (14)

C. U. Devi, R. M. Vasu, and A. K. Sood, “Design, fabrication, and characterization of a tissue-equivalent phantom for optical elastography,” J. Biomed. Opt.10(4), 044020 (2005).
[CrossRef] [PubMed]

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt.15(2), 025001 (2010).
[CrossRef] [PubMed]

B. F. Kennedy, S. Loitsch, R. A. McLaughlin, L. Scolaro, P. Rigby, and D. D. Sampson, “Fibrin phantom for use in optical coherence tomography,” J. Biomed. Opt.15(3), 030507 (2010).
[CrossRef] [PubMed]

T. Moffitt, Y.-C. Chen, and S. A. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt.11(4), 041103 (2006).
[CrossRef] [PubMed]

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11(4), 041102 (2006).
[CrossRef] [PubMed]

M.-T. Tsai, H.-C. Lee, C.-W. Lu, Y.-M. Wang, C.-K. Lee, C. C. Yang, and C.-P. Chiang, “Delineation of an oral cancer lesion with swept-source optical coherence tomography,” J. Biomed. Opt.13(4), 044012 (2008).
[CrossRef] [PubMed]

R. A. McLaughlin, L. Scolaro, P. Robbins, C. Saunders, S. L. Jacques, and D. D. Sampson, “Parametric imaging of cancer with optical coherence tomography,” J. Biomed. Opt.15(4), 046029 (2010).
[CrossRef] [PubMed]

P. H. Tomlins, O. Adegun, E. Hagi-Pavli, K. Piper, D. Bader, and F. Fortune, “Scattering attenuation microscopy of oral epithelial dysplasia,” J. Biomed. Opt.15(6), 066003 (2010).
[CrossRef] [PubMed]

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt.13(3), 034003 (2008).
[CrossRef] [PubMed]

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15(1), 011105 (2010).
[CrossRef] [PubMed]

B. F. Kennedy, A. Curatolo, T. R. Hillman, C. M. Saunders, and D. D. Sampson, “Speckle reduction in optical coherence tomography images using tissue viscoelasticity,” J. Biomed. Opt.16(2), 020506 (2011).
[CrossRef] [PubMed]

J. M. Schmitt, S. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt.4(1), 95 (1999).
[CrossRef]

Y. M. Liew, R. A. McLaughlin, F. M. Wood, and D. D. Sampson, “Reduction of image artifacts in three-dimensional optical coherence tomography of skin in vivo,” J. Biomed. Opt.16(11), 116018 (2011).
[CrossRef] [PubMed]

N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by “path length encoded” angular compounding,” J. Biomed. Opt.8(2), 260–263 (2003).
[CrossRef] [PubMed]

J. Electron. Imaging (1)

S. Jiang, B. W. Pogue, T. O. McBride, M. M. Doyley, S. P. Poplack, and K. D. Paulsen, “Near-infrared breast tomography calibration with optoelastic tissue simulating phantoms,” J. Electron. Imaging12(4), 613 (2003).
[CrossRef]

J. Mammary Gland Biol. Neoplasia (1)

M. F. Insana, C. Pellot-Barakat, M. Sridhar, and K. K. Lindfors, “Viscoelastic imaging of breast tumor microenvironment with ultrasound,” J. Mammary Gland Biol. Neoplasia9(4), 393–404 (2004).
[CrossRef] [PubMed]

J. Mech. Behav. Biomed. Mater. (1)

V. Pazos, R. Mongrain, and J. C. Tardif, “Polyvinyl alcohol cryogel: optimizing the parameters of cryogenic treatment using hyperelastic models,” J. Mech. Behav. Biomed. Mater.2(5), 542–549 (2009).
[CrossRef] [PubMed]

JACC Cardiovasc. Imaging (1)

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008).
[CrossRef] [PubMed]

Kobunshi Ronbunshu (1)

M. Nambu, “Rubber-like poly(viny1 alcohol)) gel,” Kobunshi Ronbunshu47(9), 695–703 (1990) (In Japanese).
[CrossRef]

Lasers Med. Sci. (1)

G. Beck, N. Akgün, A. Rück, and R. Steiner, “Design and characterisation of a tissue phantom system for optical diagnostics,” Lasers Med. Sci.13(3), 160–171 (1998).
[CrossRef]

Lasers Surg. Med. (2)

M. Lualdi, A. Colombo, B. Farina, S. Tomatis, and R. Marchesini, “A phantom with tissue-like optical properties in the visible and near infrared for use in photomedicine,” Lasers Surg. Med.28(3), 237–243 (2001).
[CrossRef] [PubMed]

R. Bays, G. Wagnières, D. Robert, J. F. Theumann, A. Vitkin, J. F. Savary, P. Monnier, and H. van den Bergh, “Three-dimensional optical phantom and its application in photodynamic therapy,” Lasers Surg. Med.21(3), 227–234 (1997).
[CrossRef] [PubMed]

Magn. Reson. Med. (2)

I. Mano, H. Goshima, M. I. Nambu, and M. Iio, “New polyvinyl alcohol gel material for MRI phantoms,” Magn. Reson. Med.3(6), 921–926 (1986).
[CrossRef] [PubMed]

K. C. Chu and B. K. Rutt, “Polyvinyl alcohol cryogel: an ideal phantom material for MR studies of arterial flow and elasticity,” Magn. Reson. Med.37(2), 314–319 (1997).
[CrossRef] [PubMed]

Med. Image Anal. (1)

F. S. Azar, D. N. Metaxas, and M. D. Schnall, “Methods for modeling and predicting mechanical deformations of the breast under external perturbations,” Med. Image Anal.6(1), 1–27 (2002).
[CrossRef] [PubMed]

Med. Phys. (1)

E. L. Madsen, J. A. Zagzebski, R. A. Banjavie, and R. E. Jutila, “Tissue mimicking materials for ultrasound phantoms,” Med. Phys.5(5), 391–394 (1978).
[CrossRef] [PubMed]

Nano Lett. (1)

M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett.8(10), 3461–3467 (2008).
[CrossRef] [PubMed]

Opt. Commun. (1)

J. Schmitt, S. Lee, and K. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun.142(4-6), 203–207 (1997).
[CrossRef]

Opt. Express (7)

Opt. Lett. (4)

Phys. Med. Biol. (7)

A. Kharine, S. Manohar, R. Seeton, R. G. M. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. M. de Mul, “Poly(vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography,” Phys. Med. Biol.48(3), 357–370 (2003).
[CrossRef] [PubMed]

J. C. Hebden, B. D. Price, A. P. Gibson, and G. Royle, “A soft deformable tissue-equivalent phantom for diffuse optical tomography,” Phys. Med. Biol.51(21), 5581–5590 (2006).
[CrossRef] [PubMed]

K. J. Surry, H. J. Austin, A. Fenster, and T. M. Peters, “Poly(vinyl alcohol) cryogel phantoms for use in ultrasound and MR imaging,” Phys. Med. Biol.49(24), 5529–5546 (2004).
[CrossRef] [PubMed]

R. K. Wang, “Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues,” Phys. Med. Biol.47(13), 2281–2299 (2002).
[CrossRef] [PubMed]

C.-E. Bisaillon, G. Lamouche, R. Maciejko, M. Dufour, and J. P. Monchalin, “Deformable and durable phantoms with controlled density of scatterers,” Phys. Med. Biol.53(13), N237–N247 (2008).
[CrossRef] [PubMed]

A. Grimwood, L. Garcia, J. Bamber, J. Holmes, P. Woolliams, P. Tomlins, and Q. A. Pankhurst, “Elastographic contrast generation in optical coherence tomography from a localized shear stress,” Phys. Med. Biol.55(18), 5515–5528 (2010).
[CrossRef] [PubMed]

A. Samani, J. Bishop, C. Luginbuhl, and D. B. Plewes, “Measuring the elastic modulus of ex vivo small tissue samples,” Phys. Med. Biol.48(14), 2183–2198 (2003).
[CrossRef] [PubMed]

Polym. Bull. (1)

S. Hyon, W. Cha, and Y. Ikada, “Preparation of transparent poly((vinyl alcohol) hydrogel,” Polym. Bull.22(2), 119–122 (1989).
[CrossRef]

Proc. SPIE (5)

C.-E. Bisaillon, M.-M. Lanthier, M. L. Dufour, and G. Lamouche, “Durable coronary artery phantoms for optical coherence tomography,” Proc. SPIE7161, 71612E (2009).

C.-E. Bisaillon, G. Campbell, C. De Grandpre, and G. Lamouche, “Multilayer tubular phantoms for optical coherence tomography,” Proc. SPIE7567, 75650I (2010).

C.-E. Bisaillon, G. Campbell, V. Pazos, and G. Lamouche, “Poly (vinyl alcohol) cryogel, multi-layer artery phantoms for optical coherence tomography,” Proc. SPIE7906, 79060J (2011).
[CrossRef]

R. J. Nordstrom, “Phantoms as standards in optical measurements,” Proc. SPIE7906, 79060H (2011).
[CrossRef]

C.-E. Bisaillon, M. L. Dufour, and G. Lamouche, “Durable phantoms of atherosclerotic arteries for optical coherence tomography,” Proc. SPIE7548, 75483G (2010).
[CrossRef]

Ultrason. Imaging (1)

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imaging20(4), 260–274 (1998).
[PubMed]

Ultrasound Med. Biol. (1)

J. J. Rownd, E. L. Madsen, J. A. Zagzebski, G. R. Frank, and F. Dong, “Phantoms and automated system for testing the resolution of ultrasound scanners,” Ultrasound Med. Biol.23(2), 245–260 (1997).
[CrossRef] [PubMed]

Other (8)

Computerized Imaging Reference Systems, “Ultrasound phantoms for 2D & 3D evaluation” (CIRS 2011). http://www.cirsinc.com/products/modality/92/ultrasound-phantoms-for-2d-and-3d-evaluation/ .

P. Wellman, R. D. Howe, E. Dalton, and K. A. Kern, “Breast tissue stiffness in compression is correlated to histological diagnosis,” Harvard BioRobotics Laboratory Technical Report (1999).

N. W. Tschoegl, The Phenomenological Theory of Linear Viscoelastic Behavior: an Introduction (Springer-Verlag Berlin, 1989).

Y. Fung, Biomechanics: Mechanical Properties of Living Tissues (Springer, 1993).

Wacker Silicones, “Processing RTV-2 silicone rubbers,” http://www.wacker.com/cms/media/publications/downloads/6020A_EN.pdf .

D. L. Wise, Encyclopedic Handbook of Biomaterials and Bioengineering: Materials, Volume 1 (Marcel Dekker, 1995).

V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE, 2000).

G. van Soest, F. Mastik, and A. F. van der Steen, “Polyvinyl alcohol cryogel-tissue mimicking material for vascular optical elastography,” in Biomedical Optics, Technical Digest (CD) (Optical Society of America, 2006), paper Tul33.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Typical average OCT signal, on a logarithmic scale, as a function of depth. The straight line illustrates a fit performed between the two vertical lines to extract the parameters A and μt.

Fig. 2
Fig. 2

(a) Backscattered amplitude and (b) total attenuation coefficient of silicone phantoms with different concentrations of alumina. Red line in (a) illustrates a fitted square-law dependency of the backscattered amplitude upon the concentration of alumina.

Fig. 3
Fig. 3

(a) SEM image of fibrin gel, and; (b) Attenuation coefficient, μt, measured for phantoms with different % w/v concentrations of Intralipid.

Fig. 4
Fig. 4

(a) Backscattered amplitude and (b) total attenuation coefficient for PVA-C with one and two FTCs for various concentrations of alumina.

Fig. 5
Fig. 5

Measurements of elasticity and viscoelasticity of materials and apparatus. (a) Stress-strain curve, highlighting the region of linear elasticity from which elastic modulus is calculated. (b) Creep curve for characterization of viscoelastic materials. (c) Photograph of Instron compression tester.

Fig. 6
Fig. 6

Creep strain curves for: (a) silicone fluid phantoms; and (b) fibrin phantoms. (c) Comparison of range of elastic moduli of phantom materials and soft tissue

Fig. 7
Fig. 7

Tensile test results for a PVA-C artery phantom, a silicone artery phantom and human media and intima. Reproduced from [48] with permission.

Fig. 8
Fig. 8

OCT imaging of 2D-structured silicone phantoms: (a) Skin simulating phantom; (b) Its 3-D reconstruction; (c) 200-μm channel filled with 20% Intralipid; and (d) its 3-D reconstruction. Reproduced from [39] with permission.

Fig. 9
Fig. 9

Cross-sectional OCT images of a 3D-structured phantom: (a) B-scan view (x-z plane); (b) y-z plane view; (c) en face view (x-y plane); (Scale bars: 100 μm) and (d) Orientation of planes with respect to the features. Solid renderings of: (e) Phantom with no scatterers in surrounding layer; and (f) Phantom with scatterers in surrounding layer. Reproduced from [77] with permission.

Fig. 10
Fig. 10

(a) Experimental setup to fabricate multilayer tubular silicone phantoms and (b) OCT image of an artery phantom. (RS rotating shaft, LM layer mixture, DS deposition syringe, B blade, RTS rotation and translation stage, HE heating element, t thickness). Reproduced from [31] with permission.

Fig. 11
Fig. 11

Bilayer fibrin phantom, with different Intralipid concentration in both layers.

Fig. 12
Fig. 12

OCT images of: (a) a multilayer PVA-C artery phantom; (b) a 4 mm-thick PVA-C sample with 2 FTCs; and (c) a 0.380 mm-thick PVA-C sample with 2FTCs. Reproduced from [48] with permission.

Tables (3)

Tables Icon

Table 1 Elastic modulus of various mixing ratios (Cross-linker: Catalyst) for Wacker Elastosil 601 silicone phantoms

Tables Icon

Table 2 Elastic Modulus of various mixing ratios (Cross-linker: Catalyst: PDMS oil) for Wacker Elastosil 601 silicone and Wacker AK50 PDMS oil phantoms

Tables Icon

Table 3 Elastic modulus of soft silicone phantoms

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

log(< S OCT >)=log(A) μ t (z z 0 ) n ,
E= σ ε 0 = F A Δl l 0 ,

Metrics