Abstract

In this work, we explored the potential of measuring shear wave propagation using optical coherence elastography (OCE) based on a swept-source optical coherence tomography (OCT) system. Shear waves were generated using a 20 MHz piezoelectric transducer (circular element 8.5 mm diameter) transmitting sine-wave bursts of 400 μs, synchronized with the OCT swept source wavelength sweep. The acoustic radiation force (ARF) was applied to two gelatin phantoms (differing in gelatin concentration by weight, 8% vs. 14%). Differential OCT phase maps, measured with and without the ARF, demonstrate microscopic displacement generated by shear wave propagation in these phantoms of different stiffness. We present preliminary results of OCT derived shear wave propagation velocity and modulus, and compare these results to rheometer measurements. The results demonstrate the feasibility of shear wave OCE (SW-OCE) for high-resolution microscopic homogeneous tissue mechanical property characterization.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Ophir, S. K. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, and T. Varghese, “Elastography: ultrasonic estimation and imaging of the elastic properties of tissues,” Proc. Inst. Mech. Eng. H 213(3), 203–233 (1999).
    [CrossRef] [PubMed]
  2. C. Sun, B. Standish, and V. X. D. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt. 16(4), 043001 (2011).
    [CrossRef] [PubMed]
  3. J. M. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express 3(6), 199–211 (1998).
    [CrossRef] [PubMed]
  4. X. Liang, M. Orescanin, K. S. Toohey, M. F. Insana, and S. A. Boppart, “Acoustomotive optical coherence elastography for measuring material mechanical properties,” Opt. Lett. 34(19), 2894–2896 (2009).
    [CrossRef] [PubMed]
  5. J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng. 5(1), 57–78 (2003).
    [CrossRef] [PubMed]
  6. M. Fatemi and J. F. Greenleaf, “Application of radiation force in noncontact measurement of the elastic parameters,” Ultrason. Imaging 21(2), 147–154 (1999).
    [PubMed]
  7. M. Elkateb Hachemi, S. Callé, and J. P. Remenieras, “Transient displacement induced in shear wave elastography: comparison between analytical results and ultrasound measurements,” Ultrasonics 44(Suppl 1), e221–e225 (2006).
    [CrossRef] [PubMed]
  8. L. Ostrovsky, A. Sutin, Y. Il’inskii, O. Rudenko, and A. Sarvazyan, “Radiation force and shear motions in inhomogeneous media,” J. Acoust. Soc. Am. 121(3), 1324–1331 (2007).
    [CrossRef] [PubMed]
  9. M. L. Palmeri, S. A. McAleavey, K. L. Fong, G. E. Trahey, and K. R. Nightingale, “Dynamic mechanical response of elastic spherical inclusions to impulsive acoustic radiation force excitation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(11), 2065–2079 (2006).
    [CrossRef] [PubMed]
  10. W. F. Walker, F. J. Fernandez, and L. A. Negron, “A method of imaging viscoelastic parameters with acoustic radiation force,” Phys. Med. Biol. 45(6), 1437–1447 (2000).
    [CrossRef] [PubMed]
  11. K. Nightingale, M. S. Soo, R. Nightingale, and G. Trahey, “Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility,” Ultrasound Med. Biol. 28(2), 227–235 (2002).
    [CrossRef] [PubMed]
  12. S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12(13), 2977–2998 (2004).
    [CrossRef] [PubMed]
  13. K. R. Nightingale, R. W. Nightingale, D. L. Stutz, and G. E. Trahey, “Acoustic radiation force impulse imaging of in vivo vastus medialis muscle under varying isometric load,” Ultrason. Imaging 24(2), 100–108 (2002).
    [PubMed]
  14. M. Fatemi and J. F. Greenleaf, “Ultrasound-stimulated vibro-acoustic spectrography,” Science 280(5360), 82–85 (1998).
    [CrossRef] [PubMed]
  15. K. Nightingale, M. Palmeri, and G. Trahey, “Analysis of contrast in images generated with transient acoustic radiation force,” Ultrasound Med. Biol. 32(1), 61–72 (2006).
    [CrossRef] [PubMed]
  16. R. C. Chan, A. H. Chau, W. C. Karl, S. Nadkarni, A. S. Khalil, N. Iftimia, M. Shishkov, G. J. Tearney, M. R. Kaazempur-Mofrad, and B. E. Bouma, “OCT-based arterial elastography: robust estimation exploiting tissue biomechanics,” Opt. Express 12(19), 4558–4572 (2004).
    [CrossRef] [PubMed]
  17. S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express 14(24), 11585–11597 (2006).
    [CrossRef] [PubMed]
  18. S. G. Adie, X. Liang, B. F. Kennedy, R. John, D. D. Sampson, and S. A. Boppart, “Spectroscopic optical coherence elastography,” Opt. Express 18(25), 25519–25534 (2010).
    [CrossRef] [PubMed]
  19. X. Liang, S. G. Adie, R. John, and S. A. Boppart, “Dynamic spectral-domain optical coherence elastography for tissue characterization,” Opt. Express 18(13), 14183–14190 (2010).
    [CrossRef] [PubMed]
  20. B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography,” Opt. Express 19(7), 6623–6634 (2011).
    [CrossRef] [PubMed]
  21. X. Liang and S. A. Boppart, “Biomechanical properties of in vivo human skin from dynamic optical coherence elastography,” IEEE Trans. Biomed. Eng. 57(4), 953–959 (2010).
    [CrossRef] [PubMed]
  22. B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, and D. D. Sampson, “In vivo dynamic optical coherence elastography using a ring actuator,” Opt. Express 17(24), 21762–21772 (2009).
    [CrossRef] [PubMed]
  23. A. Mariampillai, B. A. Standish, N. R. Munce, C. Randall, G. Liu, J. Y. Jiang, A. E. Cable, I. A. Vitkin, and V. X. Yang, “Doppler optical cardiogram gated 2D color flow imaging at 1000 fps and 4D in vivo visualization of embryonic heart at 45 fps on a swept source OCT system,” Opt. Express 15(4), 1627–1638 (2007).
    [CrossRef] [PubMed]
  24. J. Bercoff, M. Tanter, and M. Fink, “Supersonic shear imaging: a new technique for soft tissue elasticity mapping,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(4), 396–409 (2004).
    [CrossRef] [PubMed]
  25. K. Nightingale, S. McAleavey, and G. Trahey, “Shear-wave generation using acoustic radiation force: in vivo and ex vivo results,” Ultrasound Med. Biol. 29(12), 1715–1723 (2003).
    [CrossRef] [PubMed]
  26. J. McLaughlin and D. Renzi, “Using level set based inversion of arrival times to recover shear wave speed in transient elastography and supersonic imaging,” Inverse Probl. 22(2), 707–725 (2006).
    [CrossRef]
  27. M. L. Palmeri, S. A. McAleavey, G. E. Trahey, and K. R. Nightingale, “Ultrasonic tracking of acoustic radiation force-induced displacements in homogeneous media,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(7), 1300–1313 (2006).
    [CrossRef] [PubMed]
  28. G. F. Pinton and G. E. Trahey, “Continuous delay estimation with polynomial splines,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(11), 2026–2035 (2006).
    [CrossRef] [PubMed]
  29. J. McLaughlin and D. Renzi, “Shear wave speed recovery in transient elastography and supersonic imaging using propagating fronts,” Inverse Probl. 22(2), 681–706 (2006).
    [CrossRef]
  30. M. L. Palmeri, M. H. Wang, J. J. Dahl, K. D. Frinkley, and K. R. Nightingale, “Quantifying hepatic shear modulus in vivo using acoustic radiation force,” Ultrasound Med. Biol. 34(4), 546–558 (2008).
    [CrossRef] [PubMed]
  31. A. B. Karpiouk, S. R. Aglyamov, Y. A. Ilinskii, E. A. Zabolotskaya, and S. Y. Emelianov, “Assessment of shear modulus of tissue using ultrasound radiation force acting on a spherical acoustic inhomogeneity,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(11), 2380–2387 (2009).
    [CrossRef] [PubMed]
  32. A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, “Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics,” Ultrasound Med. Biol. 24(9), 1419–1435 (1998).
    [CrossRef] [PubMed]
  33. M. Orescanin, “Complex shear modulus reconstruction using ultrasound,” thesis (University of Illinois at Urbana-Champaign, 2010).
  34. W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J. P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology 262(2), 435–449 (2012).
    [CrossRef] [PubMed]
  35. M. Fatemi and J. F. Greenleaf, “Vibro-acoustography: an imaging modality based on ultrasound-stimulated acoustic emission,” Proc. Natl. Acad. Sci. U.S.A. 96(12), 6603–6608 (1999).
    [CrossRef] [PubMed]
  36. S. Chen, M. Fatemi, and J. F. Greenleaf, “Quantifying elasticity and viscosity from measurement of shear wave speed dispersion,” J. Acoust. Soc. Am. 115(6), 2781–2785 (2004).
    [CrossRef] [PubMed]
  37. K. R. Nightingale, R. Bentley, and G. E. Trahey, “Observations of tissue response to acoustic radiation force: opportunities for imaging,” Ultrason. Imaging 24(3), 129–138 (2002).
    [PubMed]
  38. Y. Yamakoshi, J. Sato, and T. Sato, “Ultrasonic imaging of internal vibration of soft tissue under forced vibration,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37(2), 45–53 (1990).
    [CrossRef] [PubMed]
  39. S. Chen, M. Fatemi, and J. F. Greenleaf, “Remote measurement of material properties from radiation force induced vibration of an embedded sphere,” J. Acoust. Soc. Am. 112(3), 884–889 (2002).
    [CrossRef] [PubMed]
  40. E. E. Konofagou and J. Ophir, “A new elastographic method for estimation and imaging of lateral displacements, lateral strains, corrected axial strains and Poisson’s ratios in tissues,” Ultrasound Med. Biol. 24(8), 1183–1199 (1998).
    [CrossRef] [PubMed]
  41. C. Amador, M. W. Urban, S. Chen, Q. Chen, K.-N. An, and J. F. Greenleaf, “Shear elastic modulus estimation from indentation and SDUV on gelatin phantoms,” IEEE Trans. Biomed. Eng. 58(6), 1706–1714 (2011).
    [CrossRef] [PubMed]
  42. C. Li, G. Guan, X. Cheng, Z. Huang, and R. K. Wang, “Quantitative elastography provided by surface acoustic waves measured by phase-sensitive optical coherence tomography,” Opt. Lett. 37(4), 722–724 (2012).
    [CrossRef] [PubMed]

2012 (2)

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J. P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology 262(2), 435–449 (2012).
[CrossRef] [PubMed]

C. Li, G. Guan, X. Cheng, Z. Huang, and R. K. Wang, “Quantitative elastography provided by surface acoustic waves measured by phase-sensitive optical coherence tomography,” Opt. Lett. 37(4), 722–724 (2012).
[CrossRef] [PubMed]

2011 (3)

C. Amador, M. W. Urban, S. Chen, Q. Chen, K.-N. An, and J. F. Greenleaf, “Shear elastic modulus estimation from indentation and SDUV on gelatin phantoms,” IEEE Trans. Biomed. Eng. 58(6), 1706–1714 (2011).
[CrossRef] [PubMed]

B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography,” Opt. Express 19(7), 6623–6634 (2011).
[CrossRef] [PubMed]

C. Sun, B. Standish, and V. X. D. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt. 16(4), 043001 (2011).
[CrossRef] [PubMed]

2010 (3)

2009 (3)

2008 (1)

M. L. Palmeri, M. H. Wang, J. J. Dahl, K. D. Frinkley, and K. R. Nightingale, “Quantifying hepatic shear modulus in vivo using acoustic radiation force,” Ultrasound Med. Biol. 34(4), 546–558 (2008).
[CrossRef] [PubMed]

2007 (2)

2006 (8)

J. McLaughlin and D. Renzi, “Using level set based inversion of arrival times to recover shear wave speed in transient elastography and supersonic imaging,” Inverse Probl. 22(2), 707–725 (2006).
[CrossRef]

M. L. Palmeri, S. A. McAleavey, G. E. Trahey, and K. R. Nightingale, “Ultrasonic tracking of acoustic radiation force-induced displacements in homogeneous media,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(7), 1300–1313 (2006).
[CrossRef] [PubMed]

G. F. Pinton and G. E. Trahey, “Continuous delay estimation with polynomial splines,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(11), 2026–2035 (2006).
[CrossRef] [PubMed]

J. McLaughlin and D. Renzi, “Shear wave speed recovery in transient elastography and supersonic imaging using propagating fronts,” Inverse Probl. 22(2), 681–706 (2006).
[CrossRef]

M. L. Palmeri, S. A. McAleavey, K. L. Fong, G. E. Trahey, and K. R. Nightingale, “Dynamic mechanical response of elastic spherical inclusions to impulsive acoustic radiation force excitation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(11), 2065–2079 (2006).
[CrossRef] [PubMed]

M. Elkateb Hachemi, S. Callé, and J. P. Remenieras, “Transient displacement induced in shear wave elastography: comparison between analytical results and ultrasound measurements,” Ultrasonics 44(Suppl 1), e221–e225 (2006).
[CrossRef] [PubMed]

S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express 14(24), 11585–11597 (2006).
[CrossRef] [PubMed]

K. Nightingale, M. Palmeri, and G. Trahey, “Analysis of contrast in images generated with transient acoustic radiation force,” Ultrasound Med. Biol. 32(1), 61–72 (2006).
[CrossRef] [PubMed]

2004 (4)

R. C. Chan, A. H. Chau, W. C. Karl, S. Nadkarni, A. S. Khalil, N. Iftimia, M. Shishkov, G. J. Tearney, M. R. Kaazempur-Mofrad, and B. E. Bouma, “OCT-based arterial elastography: robust estimation exploiting tissue biomechanics,” Opt. Express 12(19), 4558–4572 (2004).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12(13), 2977–2998 (2004).
[CrossRef] [PubMed]

J. Bercoff, M. Tanter, and M. Fink, “Supersonic shear imaging: a new technique for soft tissue elasticity mapping,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(4), 396–409 (2004).
[CrossRef] [PubMed]

S. Chen, M. Fatemi, and J. F. Greenleaf, “Quantifying elasticity and viscosity from measurement of shear wave speed dispersion,” J. Acoust. Soc. Am. 115(6), 2781–2785 (2004).
[CrossRef] [PubMed]

2003 (2)

K. Nightingale, S. McAleavey, and G. Trahey, “Shear-wave generation using acoustic radiation force: in vivo and ex vivo results,” Ultrasound Med. Biol. 29(12), 1715–1723 (2003).
[CrossRef] [PubMed]

J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng. 5(1), 57–78 (2003).
[CrossRef] [PubMed]

2002 (4)

K. R. Nightingale, R. W. Nightingale, D. L. Stutz, and G. E. Trahey, “Acoustic radiation force impulse imaging of in vivo vastus medialis muscle under varying isometric load,” Ultrason. Imaging 24(2), 100–108 (2002).
[PubMed]

K. Nightingale, M. S. Soo, R. Nightingale, and G. Trahey, “Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility,” Ultrasound Med. Biol. 28(2), 227–235 (2002).
[CrossRef] [PubMed]

K. R. Nightingale, R. Bentley, and G. E. Trahey, “Observations of tissue response to acoustic radiation force: opportunities for imaging,” Ultrason. Imaging 24(3), 129–138 (2002).
[PubMed]

S. Chen, M. Fatemi, and J. F. Greenleaf, “Remote measurement of material properties from radiation force induced vibration of an embedded sphere,” J. Acoust. Soc. Am. 112(3), 884–889 (2002).
[CrossRef] [PubMed]

2000 (1)

W. F. Walker, F. J. Fernandez, and L. A. Negron, “A method of imaging viscoelastic parameters with acoustic radiation force,” Phys. Med. Biol. 45(6), 1437–1447 (2000).
[CrossRef] [PubMed]

1999 (3)

J. Ophir, S. K. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, and T. Varghese, “Elastography: ultrasonic estimation and imaging of the elastic properties of tissues,” Proc. Inst. Mech. Eng. H 213(3), 203–233 (1999).
[CrossRef] [PubMed]

M. Fatemi and J. F. Greenleaf, “Application of radiation force in noncontact measurement of the elastic parameters,” Ultrason. Imaging 21(2), 147–154 (1999).
[PubMed]

M. Fatemi and J. F. Greenleaf, “Vibro-acoustography: an imaging modality based on ultrasound-stimulated acoustic emission,” Proc. Natl. Acad. Sci. U.S.A. 96(12), 6603–6608 (1999).
[CrossRef] [PubMed]

1998 (4)

A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, “Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics,” Ultrasound Med. Biol. 24(9), 1419–1435 (1998).
[CrossRef] [PubMed]

E. E. Konofagou and J. Ophir, “A new elastographic method for estimation and imaging of lateral displacements, lateral strains, corrected axial strains and Poisson’s ratios in tissues,” Ultrasound Med. Biol. 24(8), 1183–1199 (1998).
[CrossRef] [PubMed]

J. M. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express 3(6), 199–211 (1998).
[CrossRef] [PubMed]

M. Fatemi and J. F. Greenleaf, “Ultrasound-stimulated vibro-acoustic spectrography,” Science 280(5360), 82–85 (1998).
[CrossRef] [PubMed]

1990 (1)

Y. Yamakoshi, J. Sato, and T. Sato, “Ultrasonic imaging of internal vibration of soft tissue under forced vibration,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37(2), 45–53 (1990).
[CrossRef] [PubMed]

Adie, S. G.

Aglyamov, S. R.

A. B. Karpiouk, S. R. Aglyamov, Y. A. Ilinskii, E. A. Zabolotskaya, and S. Y. Emelianov, “Assessment of shear modulus of tissue using ultrasound radiation force acting on a spherical acoustic inhomogeneity,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(11), 2380–2387 (2009).
[CrossRef] [PubMed]

Alam, S. K.

J. Ophir, S. K. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, and T. Varghese, “Elastography: ultrasonic estimation and imaging of the elastic properties of tissues,” Proc. Inst. Mech. Eng. H 213(3), 203–233 (1999).
[CrossRef] [PubMed]

Amador, C.

C. Amador, M. W. Urban, S. Chen, Q. Chen, K.-N. An, and J. F. Greenleaf, “Shear elastic modulus estimation from indentation and SDUV on gelatin phantoms,” IEEE Trans. Biomed. Eng. 58(6), 1706–1714 (2011).
[CrossRef] [PubMed]

An, K.-N.

C. Amador, M. W. Urban, S. Chen, Q. Chen, K.-N. An, and J. F. Greenleaf, “Shear elastic modulus estimation from indentation and SDUV on gelatin phantoms,” IEEE Trans. Biomed. Eng. 58(6), 1706–1714 (2011).
[CrossRef] [PubMed]

Balu-Maestro, C.

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J. P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology 262(2), 435–449 (2012).
[CrossRef] [PubMed]

Bentley, R.

K. R. Nightingale, R. Bentley, and G. E. Trahey, “Observations of tissue response to acoustic radiation force: opportunities for imaging,” Ultrason. Imaging 24(3), 129–138 (2002).
[PubMed]

Bercoff, J.

J. Bercoff, M. Tanter, and M. Fink, “Supersonic shear imaging: a new technique for soft tissue elasticity mapping,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(4), 396–409 (2004).
[CrossRef] [PubMed]

Berg, W. A.

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J. P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology 262(2), 435–449 (2012).
[CrossRef] [PubMed]

Boppart, S. A.

Bouma, B. E.

Cable, A. E.

Callé, S.

M. Elkateb Hachemi, S. Callé, and J. P. Remenieras, “Transient displacement induced in shear wave elastography: comparison between analytical results and ultrasound measurements,” Ultrasonics 44(Suppl 1), e221–e225 (2006).
[CrossRef] [PubMed]

Cavanaugh, B. C.

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J. P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology 262(2), 435–449 (2012).
[CrossRef] [PubMed]

Chan, R. C.

Chau, A. H.

Chen, Q.

C. Amador, M. W. Urban, S. Chen, Q. Chen, K.-N. An, and J. F. Greenleaf, “Shear elastic modulus estimation from indentation and SDUV on gelatin phantoms,” IEEE Trans. Biomed. Eng. 58(6), 1706–1714 (2011).
[CrossRef] [PubMed]

Chen, S.

C. Amador, M. W. Urban, S. Chen, Q. Chen, K.-N. An, and J. F. Greenleaf, “Shear elastic modulus estimation from indentation and SDUV on gelatin phantoms,” IEEE Trans. Biomed. Eng. 58(6), 1706–1714 (2011).
[CrossRef] [PubMed]

S. Chen, M. Fatemi, and J. F. Greenleaf, “Quantifying elasticity and viscosity from measurement of shear wave speed dispersion,” J. Acoust. Soc. Am. 115(6), 2781–2785 (2004).
[CrossRef] [PubMed]

S. Chen, M. Fatemi, and J. F. Greenleaf, “Remote measurement of material properties from radiation force induced vibration of an embedded sphere,” J. Acoust. Soc. Am. 112(3), 884–889 (2002).
[CrossRef] [PubMed]

Cheng, X.

Cohen-Bacrie, C.

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J. P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology 262(2), 435–449 (2012).
[CrossRef] [PubMed]

Cosgrove, D. O.

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J. P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology 262(2), 435–449 (2012).
[CrossRef] [PubMed]

Dahl, J. J.

M. L. Palmeri, M. H. Wang, J. J. Dahl, K. D. Frinkley, and K. R. Nightingale, “Quantifying hepatic shear modulus in vivo using acoustic radiation force,” Ultrasound Med. Biol. 34(4), 546–558 (2008).
[CrossRef] [PubMed]

de Boer, J. F.

Doré, C. J.

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J. P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology 262(2), 435–449 (2012).
[CrossRef] [PubMed]

Duncan, D. D.

Elkateb Hachemi, M.

M. Elkateb Hachemi, S. Callé, and J. P. Remenieras, “Transient displacement induced in shear wave elastography: comparison between analytical results and ultrasound measurements,” Ultrasonics 44(Suppl 1), e221–e225 (2006).
[CrossRef] [PubMed]

Emelianov, S. Y.

A. B. Karpiouk, S. R. Aglyamov, Y. A. Ilinskii, E. A. Zabolotskaya, and S. Y. Emelianov, “Assessment of shear modulus of tissue using ultrasound radiation force acting on a spherical acoustic inhomogeneity,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(11), 2380–2387 (2009).
[CrossRef] [PubMed]

A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, “Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics,” Ultrasound Med. Biol. 24(9), 1419–1435 (1998).
[CrossRef] [PubMed]

Fatemi, M.

S. Chen, M. Fatemi, and J. F. Greenleaf, “Quantifying elasticity and viscosity from measurement of shear wave speed dispersion,” J. Acoust. Soc. Am. 115(6), 2781–2785 (2004).
[CrossRef] [PubMed]

J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng. 5(1), 57–78 (2003).
[CrossRef] [PubMed]

S. Chen, M. Fatemi, and J. F. Greenleaf, “Remote measurement of material properties from radiation force induced vibration of an embedded sphere,” J. Acoust. Soc. Am. 112(3), 884–889 (2002).
[CrossRef] [PubMed]

M. Fatemi and J. F. Greenleaf, “Vibro-acoustography: an imaging modality based on ultrasound-stimulated acoustic emission,” Proc. Natl. Acad. Sci. U.S.A. 96(12), 6603–6608 (1999).
[CrossRef] [PubMed]

M. Fatemi and J. F. Greenleaf, “Application of radiation force in noncontact measurement of the elastic parameters,” Ultrason. Imaging 21(2), 147–154 (1999).
[PubMed]

M. Fatemi and J. F. Greenleaf, “Ultrasound-stimulated vibro-acoustic spectrography,” Science 280(5360), 82–85 (1998).
[CrossRef] [PubMed]

Fernandez, F. J.

W. F. Walker, F. J. Fernandez, and L. A. Negron, “A method of imaging viscoelastic parameters with acoustic radiation force,” Phys. Med. Biol. 45(6), 1437–1447 (2000).
[CrossRef] [PubMed]

Fink, M.

J. Bercoff, M. Tanter, and M. Fink, “Supersonic shear imaging: a new technique for soft tissue elasticity mapping,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(4), 396–409 (2004).
[CrossRef] [PubMed]

Fong, K. L.

M. L. Palmeri, S. A. McAleavey, K. L. Fong, G. E. Trahey, and K. R. Nightingale, “Dynamic mechanical response of elastic spherical inclusions to impulsive acoustic radiation force excitation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(11), 2065–2079 (2006).
[CrossRef] [PubMed]

Fowlkes, J. B.

A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, “Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics,” Ultrasound Med. Biol. 24(9), 1419–1435 (1998).
[CrossRef] [PubMed]

Frinkley, K. D.

M. L. Palmeri, M. H. Wang, J. J. Dahl, K. D. Frinkley, and K. R. Nightingale, “Quantifying hepatic shear modulus in vivo using acoustic radiation force,” Ultrasound Med. Biol. 34(4), 546–558 (2008).
[CrossRef] [PubMed]

Garra, B.

J. Ophir, S. K. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, and T. Varghese, “Elastography: ultrasonic estimation and imaging of the elastic properties of tissues,” Proc. Inst. Mech. Eng. H 213(3), 203–233 (1999).
[CrossRef] [PubMed]

Gay, J.

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J. P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology 262(2), 435–449 (2012).
[CrossRef] [PubMed]

Gerstmann, D. K.

Greenleaf, J. F.

C. Amador, M. W. Urban, S. Chen, Q. Chen, K.-N. An, and J. F. Greenleaf, “Shear elastic modulus estimation from indentation and SDUV on gelatin phantoms,” IEEE Trans. Biomed. Eng. 58(6), 1706–1714 (2011).
[CrossRef] [PubMed]

S. Chen, M. Fatemi, and J. F. Greenleaf, “Quantifying elasticity and viscosity from measurement of shear wave speed dispersion,” J. Acoust. Soc. Am. 115(6), 2781–2785 (2004).
[CrossRef] [PubMed]

J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng. 5(1), 57–78 (2003).
[CrossRef] [PubMed]

S. Chen, M. Fatemi, and J. F. Greenleaf, “Remote measurement of material properties from radiation force induced vibration of an embedded sphere,” J. Acoust. Soc. Am. 112(3), 884–889 (2002).
[CrossRef] [PubMed]

M. Fatemi and J. F. Greenleaf, “Vibro-acoustography: an imaging modality based on ultrasound-stimulated acoustic emission,” Proc. Natl. Acad. Sci. U.S.A. 96(12), 6603–6608 (1999).
[CrossRef] [PubMed]

M. Fatemi and J. F. Greenleaf, “Application of radiation force in noncontact measurement of the elastic parameters,” Ultrason. Imaging 21(2), 147–154 (1999).
[PubMed]

M. Fatemi and J. F. Greenleaf, “Ultrasound-stimulated vibro-acoustic spectrography,” Science 280(5360), 82–85 (1998).
[CrossRef] [PubMed]

Guan, G.

Henry, J. P.

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J. P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology 262(2), 435–449 (2012).
[CrossRef] [PubMed]

Hillman, T. R.

Hooley, R. J.

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J. P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology 262(2), 435–449 (2012).
[CrossRef] [PubMed]

Huang, Z.

Iftimia, N.

Il’inskii, Y.

L. Ostrovsky, A. Sutin, Y. Il’inskii, O. Rudenko, and A. Sarvazyan, “Radiation force and shear motions in inhomogeneous media,” J. Acoust. Soc. Am. 121(3), 1324–1331 (2007).
[CrossRef] [PubMed]

Ilinskii, Y. A.

A. B. Karpiouk, S. R. Aglyamov, Y. A. Ilinskii, E. A. Zabolotskaya, and S. Y. Emelianov, “Assessment of shear modulus of tissue using ultrasound radiation force acting on a spherical acoustic inhomogeneity,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(11), 2380–2387 (2009).
[CrossRef] [PubMed]

Insana, M.

J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng. 5(1), 57–78 (2003).
[CrossRef] [PubMed]

Insana, M. F.

Jiang, J. Y.

John, R.

Juhan, V.

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J. P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology 262(2), 435–449 (2012).
[CrossRef] [PubMed]

Kaazempur-Mofrad, M. R.

Kallel, F.

J. Ophir, S. K. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, and T. Varghese, “Elastography: ultrasonic estimation and imaging of the elastic properties of tissues,” Proc. Inst. Mech. Eng. H 213(3), 203–233 (1999).
[CrossRef] [PubMed]

Karl, W. C.

Karpiouk, A. B.

A. B. Karpiouk, S. R. Aglyamov, Y. A. Ilinskii, E. A. Zabolotskaya, and S. Y. Emelianov, “Assessment of shear modulus of tissue using ultrasound radiation force acting on a spherical acoustic inhomogeneity,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(11), 2380–2387 (2009).
[CrossRef] [PubMed]

Kennedy, B. F.

Khalil, A. S.

Kirkpatrick, S. J.

Konofagou, E.

J. Ophir, S. K. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, and T. Varghese, “Elastography: ultrasonic estimation and imaging of the elastic properties of tissues,” Proc. Inst. Mech. Eng. H 213(3), 203–233 (1999).
[CrossRef] [PubMed]

Konofagou, E. E.

E. E. Konofagou and J. Ophir, “A new elastographic method for estimation and imaging of lateral displacements, lateral strains, corrected axial strains and Poisson’s ratios in tissues,” Ultrasound Med. Biol. 24(8), 1183–1199 (1998).
[CrossRef] [PubMed]

Krouskop, T.

J. Ophir, S. K. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, and T. Varghese, “Elastography: ultrasonic estimation and imaging of the elastic properties of tissues,” Proc. Inst. Mech. Eng. H 213(3), 203–233 (1999).
[CrossRef] [PubMed]

Li, C.

Liang, X.

Liu, G.

Locatelli, M.

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J. P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology 262(2), 435–449 (2012).
[CrossRef] [PubMed]

Mariampillai, A.

McAleavey, S.

K. Nightingale, S. McAleavey, and G. Trahey, “Shear-wave generation using acoustic radiation force: in vivo and ex vivo results,” Ultrasound Med. Biol. 29(12), 1715–1723 (2003).
[CrossRef] [PubMed]

McAleavey, S. A.

M. L. Palmeri, S. A. McAleavey, G. E. Trahey, and K. R. Nightingale, “Ultrasonic tracking of acoustic radiation force-induced displacements in homogeneous media,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(7), 1300–1313 (2006).
[CrossRef] [PubMed]

M. L. Palmeri, S. A. McAleavey, K. L. Fong, G. E. Trahey, and K. R. Nightingale, “Dynamic mechanical response of elastic spherical inclusions to impulsive acoustic radiation force excitation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(11), 2065–2079 (2006).
[CrossRef] [PubMed]

McLaughlin, J.

J. McLaughlin and D. Renzi, “Shear wave speed recovery in transient elastography and supersonic imaging using propagating fronts,” Inverse Probl. 22(2), 681–706 (2006).
[CrossRef]

J. McLaughlin and D. Renzi, “Using level set based inversion of arrival times to recover shear wave speed in transient elastography and supersonic imaging,” Inverse Probl. 22(2), 707–725 (2006).
[CrossRef]

McLaughlin, R. A.

Mendelson, E. B.

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J. P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology 262(2), 435–449 (2012).
[CrossRef] [PubMed]

Munce, N. R.

Nadkarni, S.

Negron, L. A.

W. F. Walker, F. J. Fernandez, and L. A. Negron, “A method of imaging viscoelastic parameters with acoustic radiation force,” Phys. Med. Biol. 45(6), 1437–1447 (2000).
[CrossRef] [PubMed]

Nightingale, K.

K. Nightingale, M. Palmeri, and G. Trahey, “Analysis of contrast in images generated with transient acoustic radiation force,” Ultrasound Med. Biol. 32(1), 61–72 (2006).
[CrossRef] [PubMed]

K. Nightingale, S. McAleavey, and G. Trahey, “Shear-wave generation using acoustic radiation force: in vivo and ex vivo results,” Ultrasound Med. Biol. 29(12), 1715–1723 (2003).
[CrossRef] [PubMed]

K. Nightingale, M. S. Soo, R. Nightingale, and G. Trahey, “Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility,” Ultrasound Med. Biol. 28(2), 227–235 (2002).
[CrossRef] [PubMed]

Nightingale, K. R.

M. L. Palmeri, M. H. Wang, J. J. Dahl, K. D. Frinkley, and K. R. Nightingale, “Quantifying hepatic shear modulus in vivo using acoustic radiation force,” Ultrasound Med. Biol. 34(4), 546–558 (2008).
[CrossRef] [PubMed]

M. L. Palmeri, S. A. McAleavey, G. E. Trahey, and K. R. Nightingale, “Ultrasonic tracking of acoustic radiation force-induced displacements in homogeneous media,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(7), 1300–1313 (2006).
[CrossRef] [PubMed]

M. L. Palmeri, S. A. McAleavey, K. L. Fong, G. E. Trahey, and K. R. Nightingale, “Dynamic mechanical response of elastic spherical inclusions to impulsive acoustic radiation force excitation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(11), 2065–2079 (2006).
[CrossRef] [PubMed]

K. R. Nightingale, R. W. Nightingale, D. L. Stutz, and G. E. Trahey, “Acoustic radiation force impulse imaging of in vivo vastus medialis muscle under varying isometric load,” Ultrason. Imaging 24(2), 100–108 (2002).
[PubMed]

K. R. Nightingale, R. Bentley, and G. E. Trahey, “Observations of tissue response to acoustic radiation force: opportunities for imaging,” Ultrason. Imaging 24(3), 129–138 (2002).
[PubMed]

Nightingale, R.

K. Nightingale, M. S. Soo, R. Nightingale, and G. Trahey, “Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility,” Ultrasound Med. Biol. 28(2), 227–235 (2002).
[CrossRef] [PubMed]

Nightingale, R. W.

K. R. Nightingale, R. W. Nightingale, D. L. Stutz, and G. E. Trahey, “Acoustic radiation force impulse imaging of in vivo vastus medialis muscle under varying isometric load,” Ultrason. Imaging 24(2), 100–108 (2002).
[PubMed]

Ohlinger, R.

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J. P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology 262(2), 435–449 (2012).
[CrossRef] [PubMed]

Ophir, J.

J. Ophir, S. K. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, and T. Varghese, “Elastography: ultrasonic estimation and imaging of the elastic properties of tissues,” Proc. Inst. Mech. Eng. H 213(3), 203–233 (1999).
[CrossRef] [PubMed]

E. E. Konofagou and J. Ophir, “A new elastographic method for estimation and imaging of lateral displacements, lateral strains, corrected axial strains and Poisson’s ratios in tissues,” Ultrasound Med. Biol. 24(8), 1183–1199 (1998).
[CrossRef] [PubMed]

Orescanin, M.

Ostrovsky, L.

L. Ostrovsky, A. Sutin, Y. Il’inskii, O. Rudenko, and A. Sarvazyan, “Radiation force and shear motions in inhomogeneous media,” J. Acoust. Soc. Am. 121(3), 1324–1331 (2007).
[CrossRef] [PubMed]

Palmeri, M.

K. Nightingale, M. Palmeri, and G. Trahey, “Analysis of contrast in images generated with transient acoustic radiation force,” Ultrasound Med. Biol. 32(1), 61–72 (2006).
[CrossRef] [PubMed]

Palmeri, M. L.

M. L. Palmeri, M. H. Wang, J. J. Dahl, K. D. Frinkley, and K. R. Nightingale, “Quantifying hepatic shear modulus in vivo using acoustic radiation force,” Ultrasound Med. Biol. 34(4), 546–558 (2008).
[CrossRef] [PubMed]

M. L. Palmeri, S. A. McAleavey, G. E. Trahey, and K. R. Nightingale, “Ultrasonic tracking of acoustic radiation force-induced displacements in homogeneous media,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(7), 1300–1313 (2006).
[CrossRef] [PubMed]

M. L. Palmeri, S. A. McAleavey, K. L. Fong, G. E. Trahey, and K. R. Nightingale, “Dynamic mechanical response of elastic spherical inclusions to impulsive acoustic radiation force excitation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(11), 2065–2079 (2006).
[CrossRef] [PubMed]

Pinton, G. F.

G. F. Pinton and G. E. Trahey, “Continuous delay estimation with polynomial splines,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(11), 2026–2035 (2006).
[CrossRef] [PubMed]

Quirk, B. C.

Randall, C.

Remenieras, J. P.

M. Elkateb Hachemi, S. Callé, and J. P. Remenieras, “Transient displacement induced in shear wave elastography: comparison between analytical results and ultrasound measurements,” Ultrasonics 44(Suppl 1), e221–e225 (2006).
[CrossRef] [PubMed]

Renzi, D.

J. McLaughlin and D. Renzi, “Shear wave speed recovery in transient elastography and supersonic imaging using propagating fronts,” Inverse Probl. 22(2), 681–706 (2006).
[CrossRef]

J. McLaughlin and D. Renzi, “Using level set based inversion of arrival times to recover shear wave speed in transient elastography and supersonic imaging,” Inverse Probl. 22(2), 707–725 (2006).
[CrossRef]

Rudenko, O.

L. Ostrovsky, A. Sutin, Y. Il’inskii, O. Rudenko, and A. Sarvazyan, “Radiation force and shear motions in inhomogeneous media,” J. Acoust. Soc. Am. 121(3), 1324–1331 (2007).
[CrossRef] [PubMed]

Rudenko, O. V.

A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, “Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics,” Ultrasound Med. Biol. 24(9), 1419–1435 (1998).
[CrossRef] [PubMed]

Sampson, D. D.

Sarvazyan, A.

L. Ostrovsky, A. Sutin, Y. Il’inskii, O. Rudenko, and A. Sarvazyan, “Radiation force and shear motions in inhomogeneous media,” J. Acoust. Soc. Am. 121(3), 1324–1331 (2007).
[CrossRef] [PubMed]

Sarvazyan, A. P.

A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, “Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics,” Ultrasound Med. Biol. 24(9), 1419–1435 (1998).
[CrossRef] [PubMed]

Sato, J.

Y. Yamakoshi, J. Sato, and T. Sato, “Ultrasonic imaging of internal vibration of soft tissue under forced vibration,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37(2), 45–53 (1990).
[CrossRef] [PubMed]

Sato, T.

Y. Yamakoshi, J. Sato, and T. Sato, “Ultrasonic imaging of internal vibration of soft tissue under forced vibration,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37(2), 45–53 (1990).
[CrossRef] [PubMed]

Schäfer, F. K. W.

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J. P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology 262(2), 435–449 (2012).
[CrossRef] [PubMed]

Schmitt, J. M.

Shishkov, M.

Soo, M. S.

K. Nightingale, M. S. Soo, R. Nightingale, and G. Trahey, “Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility,” Ultrasound Med. Biol. 28(2), 227–235 (2002).
[CrossRef] [PubMed]

Standish, B.

C. Sun, B. Standish, and V. X. D. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt. 16(4), 043001 (2011).
[CrossRef] [PubMed]

Standish, B. A.

Stavros, A. T.

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J. P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology 262(2), 435–449 (2012).
[CrossRef] [PubMed]

Stutz, D. L.

K. R. Nightingale, R. W. Nightingale, D. L. Stutz, and G. E. Trahey, “Acoustic radiation force impulse imaging of in vivo vastus medialis muscle under varying isometric load,” Ultrason. Imaging 24(2), 100–108 (2002).
[PubMed]

Sun, C.

C. Sun, B. Standish, and V. X. D. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt. 16(4), 043001 (2011).
[CrossRef] [PubMed]

Sutin, A.

L. Ostrovsky, A. Sutin, Y. Il’inskii, O. Rudenko, and A. Sarvazyan, “Radiation force and shear motions in inhomogeneous media,” J. Acoust. Soc. Am. 121(3), 1324–1331 (2007).
[CrossRef] [PubMed]

Svensson, W. E.

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J. P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology 262(2), 435–449 (2012).
[CrossRef] [PubMed]

Swanson, S. D.

A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, “Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics,” Ultrasound Med. Biol. 24(9), 1419–1435 (1998).
[CrossRef] [PubMed]

Tanter, M.

J. Bercoff, M. Tanter, and M. Fink, “Supersonic shear imaging: a new technique for soft tissue elasticity mapping,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(4), 396–409 (2004).
[CrossRef] [PubMed]

Tardivon, A.

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J. P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology 262(2), 435–449 (2012).
[CrossRef] [PubMed]

Tearney, G. J.

Toohey, K. S.

Tourasse, C.

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J. P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology 262(2), 435–449 (2012).
[CrossRef] [PubMed]

Trahey, G.

K. Nightingale, M. Palmeri, and G. Trahey, “Analysis of contrast in images generated with transient acoustic radiation force,” Ultrasound Med. Biol. 32(1), 61–72 (2006).
[CrossRef] [PubMed]

K. Nightingale, S. McAleavey, and G. Trahey, “Shear-wave generation using acoustic radiation force: in vivo and ex vivo results,” Ultrasound Med. Biol. 29(12), 1715–1723 (2003).
[CrossRef] [PubMed]

K. Nightingale, M. S. Soo, R. Nightingale, and G. Trahey, “Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility,” Ultrasound Med. Biol. 28(2), 227–235 (2002).
[CrossRef] [PubMed]

Trahey, G. E.

M. L. Palmeri, S. A. McAleavey, K. L. Fong, G. E. Trahey, and K. R. Nightingale, “Dynamic mechanical response of elastic spherical inclusions to impulsive acoustic radiation force excitation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(11), 2065–2079 (2006).
[CrossRef] [PubMed]

G. F. Pinton and G. E. Trahey, “Continuous delay estimation with polynomial splines,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(11), 2026–2035 (2006).
[CrossRef] [PubMed]

M. L. Palmeri, S. A. McAleavey, G. E. Trahey, and K. R. Nightingale, “Ultrasonic tracking of acoustic radiation force-induced displacements in homogeneous media,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(7), 1300–1313 (2006).
[CrossRef] [PubMed]

K. R. Nightingale, R. W. Nightingale, D. L. Stutz, and G. E. Trahey, “Acoustic radiation force impulse imaging of in vivo vastus medialis muscle under varying isometric load,” Ultrason. Imaging 24(2), 100–108 (2002).
[PubMed]

K. R. Nightingale, R. Bentley, and G. E. Trahey, “Observations of tissue response to acoustic radiation force: opportunities for imaging,” Ultrason. Imaging 24(3), 129–138 (2002).
[PubMed]

Urban, M. W.

C. Amador, M. W. Urban, S. Chen, Q. Chen, K.-N. An, and J. F. Greenleaf, “Shear elastic modulus estimation from indentation and SDUV on gelatin phantoms,” IEEE Trans. Biomed. Eng. 58(6), 1706–1714 (2011).
[CrossRef] [PubMed]

Varghese, T.

J. Ophir, S. K. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, and T. Varghese, “Elastography: ultrasonic estimation and imaging of the elastic properties of tissues,” Proc. Inst. Mech. Eng. H 213(3), 203–233 (1999).
[CrossRef] [PubMed]

Vitkin, I. A.

Walker, W. F.

W. F. Walker, F. J. Fernandez, and L. A. Negron, “A method of imaging viscoelastic parameters with acoustic radiation force,” Phys. Med. Biol. 45(6), 1437–1447 (2000).
[CrossRef] [PubMed]

Wang, M. H.

M. L. Palmeri, M. H. Wang, J. J. Dahl, K. D. Frinkley, and K. R. Nightingale, “Quantifying hepatic shear modulus in vivo using acoustic radiation force,” Ultrasound Med. Biol. 34(4), 546–558 (2008).
[CrossRef] [PubMed]

Wang, R. K.

Yamakoshi, Y.

Y. Yamakoshi, J. Sato, and T. Sato, “Ultrasonic imaging of internal vibration of soft tissue under forced vibration,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37(2), 45–53 (1990).
[CrossRef] [PubMed]

Yang, V. X.

Yang, V. X. D.

C. Sun, B. Standish, and V. X. D. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt. 16(4), 043001 (2011).
[CrossRef] [PubMed]

Yun, S. H.

Zabolotskaya, E. A.

A. B. Karpiouk, S. R. Aglyamov, Y. A. Ilinskii, E. A. Zabolotskaya, and S. Y. Emelianov, “Assessment of shear modulus of tissue using ultrasound radiation force acting on a spherical acoustic inhomogeneity,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(11), 2380–2387 (2009).
[CrossRef] [PubMed]

Annu. Rev. Biomed. Eng. (1)

J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng. 5(1), 57–78 (2003).
[CrossRef] [PubMed]

IEEE Trans. Biomed. Eng. (2)

X. Liang and S. A. Boppart, “Biomechanical properties of in vivo human skin from dynamic optical coherence elastography,” IEEE Trans. Biomed. Eng. 57(4), 953–959 (2010).
[CrossRef] [PubMed]

C. Amador, M. W. Urban, S. Chen, Q. Chen, K.-N. An, and J. F. Greenleaf, “Shear elastic modulus estimation from indentation and SDUV on gelatin phantoms,” IEEE Trans. Biomed. Eng. 58(6), 1706–1714 (2011).
[CrossRef] [PubMed]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (6)

J. Bercoff, M. Tanter, and M. Fink, “Supersonic shear imaging: a new technique for soft tissue elasticity mapping,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(4), 396–409 (2004).
[CrossRef] [PubMed]

M. L. Palmeri, S. A. McAleavey, G. E. Trahey, and K. R. Nightingale, “Ultrasonic tracking of acoustic radiation force-induced displacements in homogeneous media,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(7), 1300–1313 (2006).
[CrossRef] [PubMed]

G. F. Pinton and G. E. Trahey, “Continuous delay estimation with polynomial splines,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(11), 2026–2035 (2006).
[CrossRef] [PubMed]

A. B. Karpiouk, S. R. Aglyamov, Y. A. Ilinskii, E. A. Zabolotskaya, and S. Y. Emelianov, “Assessment of shear modulus of tissue using ultrasound radiation force acting on a spherical acoustic inhomogeneity,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(11), 2380–2387 (2009).
[CrossRef] [PubMed]

Y. Yamakoshi, J. Sato, and T. Sato, “Ultrasonic imaging of internal vibration of soft tissue under forced vibration,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37(2), 45–53 (1990).
[CrossRef] [PubMed]

M. L. Palmeri, S. A. McAleavey, K. L. Fong, G. E. Trahey, and K. R. Nightingale, “Dynamic mechanical response of elastic spherical inclusions to impulsive acoustic radiation force excitation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(11), 2065–2079 (2006).
[CrossRef] [PubMed]

Inverse Probl. (2)

J. McLaughlin and D. Renzi, “Using level set based inversion of arrival times to recover shear wave speed in transient elastography and supersonic imaging,” Inverse Probl. 22(2), 707–725 (2006).
[CrossRef]

J. McLaughlin and D. Renzi, “Shear wave speed recovery in transient elastography and supersonic imaging using propagating fronts,” Inverse Probl. 22(2), 681–706 (2006).
[CrossRef]

J. Acoust. Soc. Am. (3)

S. Chen, M. Fatemi, and J. F. Greenleaf, “Remote measurement of material properties from radiation force induced vibration of an embedded sphere,” J. Acoust. Soc. Am. 112(3), 884–889 (2002).
[CrossRef] [PubMed]

S. Chen, M. Fatemi, and J. F. Greenleaf, “Quantifying elasticity and viscosity from measurement of shear wave speed dispersion,” J. Acoust. Soc. Am. 115(6), 2781–2785 (2004).
[CrossRef] [PubMed]

L. Ostrovsky, A. Sutin, Y. Il’inskii, O. Rudenko, and A. Sarvazyan, “Radiation force and shear motions in inhomogeneous media,” J. Acoust. Soc. Am. 121(3), 1324–1331 (2007).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

C. Sun, B. Standish, and V. X. D. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt. 16(4), 043001 (2011).
[CrossRef] [PubMed]

Opt. Express (9)

J. M. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express 3(6), 199–211 (1998).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12(13), 2977–2998 (2004).
[CrossRef] [PubMed]

R. C. Chan, A. H. Chau, W. C. Karl, S. Nadkarni, A. S. Khalil, N. Iftimia, M. Shishkov, G. J. Tearney, M. R. Kaazempur-Mofrad, and B. E. Bouma, “OCT-based arterial elastography: robust estimation exploiting tissue biomechanics,” Opt. Express 12(19), 4558–4572 (2004).
[CrossRef] [PubMed]

S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express 14(24), 11585–11597 (2006).
[CrossRef] [PubMed]

S. G. Adie, X. Liang, B. F. Kennedy, R. John, D. D. Sampson, and S. A. Boppart, “Spectroscopic optical coherence elastography,” Opt. Express 18(25), 25519–25534 (2010).
[CrossRef] [PubMed]

X. Liang, S. G. Adie, R. John, and S. A. Boppart, “Dynamic spectral-domain optical coherence elastography for tissue characterization,” Opt. Express 18(13), 14183–14190 (2010).
[CrossRef] [PubMed]

B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography,” Opt. Express 19(7), 6623–6634 (2011).
[CrossRef] [PubMed]

B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, and D. D. Sampson, “In vivo dynamic optical coherence elastography using a ring actuator,” Opt. Express 17(24), 21762–21772 (2009).
[CrossRef] [PubMed]

A. Mariampillai, B. A. Standish, N. R. Munce, C. Randall, G. Liu, J. Y. Jiang, A. E. Cable, I. A. Vitkin, and V. X. Yang, “Doppler optical cardiogram gated 2D color flow imaging at 1000 fps and 4D in vivo visualization of embryonic heart at 45 fps on a swept source OCT system,” Opt. Express 15(4), 1627–1638 (2007).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Med. Biol. (1)

W. F. Walker, F. J. Fernandez, and L. A. Negron, “A method of imaging viscoelastic parameters with acoustic radiation force,” Phys. Med. Biol. 45(6), 1437–1447 (2000).
[CrossRef] [PubMed]

Proc. Inst. Mech. Eng. H (1)

J. Ophir, S. K. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, and T. Varghese, “Elastography: ultrasonic estimation and imaging of the elastic properties of tissues,” Proc. Inst. Mech. Eng. H 213(3), 203–233 (1999).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

M. Fatemi and J. F. Greenleaf, “Vibro-acoustography: an imaging modality based on ultrasound-stimulated acoustic emission,” Proc. Natl. Acad. Sci. U.S.A. 96(12), 6603–6608 (1999).
[CrossRef] [PubMed]

Radiology (1)

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J. P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology 262(2), 435–449 (2012).
[CrossRef] [PubMed]

Science (1)

M. Fatemi and J. F. Greenleaf, “Ultrasound-stimulated vibro-acoustic spectrography,” Science 280(5360), 82–85 (1998).
[CrossRef] [PubMed]

Ultrason. Imaging (3)

K. R. Nightingale, R. W. Nightingale, D. L. Stutz, and G. E. Trahey, “Acoustic radiation force impulse imaging of in vivo vastus medialis muscle under varying isometric load,” Ultrason. Imaging 24(2), 100–108 (2002).
[PubMed]

M. Fatemi and J. F. Greenleaf, “Application of radiation force in noncontact measurement of the elastic parameters,” Ultrason. Imaging 21(2), 147–154 (1999).
[PubMed]

K. R. Nightingale, R. Bentley, and G. E. Trahey, “Observations of tissue response to acoustic radiation force: opportunities for imaging,” Ultrason. Imaging 24(3), 129–138 (2002).
[PubMed]

Ultrasonics (1)

M. Elkateb Hachemi, S. Callé, and J. P. Remenieras, “Transient displacement induced in shear wave elastography: comparison between analytical results and ultrasound measurements,” Ultrasonics 44(Suppl 1), e221–e225 (2006).
[CrossRef] [PubMed]

Ultrasound Med. Biol. (6)

K. Nightingale, M. S. Soo, R. Nightingale, and G. Trahey, “Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility,” Ultrasound Med. Biol. 28(2), 227–235 (2002).
[CrossRef] [PubMed]

K. Nightingale, M. Palmeri, and G. Trahey, “Analysis of contrast in images generated with transient acoustic radiation force,” Ultrasound Med. Biol. 32(1), 61–72 (2006).
[CrossRef] [PubMed]

E. E. Konofagou and J. Ophir, “A new elastographic method for estimation and imaging of lateral displacements, lateral strains, corrected axial strains and Poisson’s ratios in tissues,” Ultrasound Med. Biol. 24(8), 1183–1199 (1998).
[CrossRef] [PubMed]

A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, “Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics,” Ultrasound Med. Biol. 24(9), 1419–1435 (1998).
[CrossRef] [PubMed]

K. Nightingale, S. McAleavey, and G. Trahey, “Shear-wave generation using acoustic radiation force: in vivo and ex vivo results,” Ultrasound Med. Biol. 29(12), 1715–1723 (2003).
[CrossRef] [PubMed]

M. L. Palmeri, M. H. Wang, J. J. Dahl, K. D. Frinkley, and K. R. Nightingale, “Quantifying hepatic shear modulus in vivo using acoustic radiation force,” Ultrasound Med. Biol. 34(4), 546–558 (2008).
[CrossRef] [PubMed]

Other (1)

M. Orescanin, “Complex shear modulus reconstruction using ultrasound,” thesis (University of Illinois at Urbana-Champaign, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Using a focused ARF impulse generated by a transducer, shear waves can be produced at the focal point. We detect the shear wave that travels within the titanium dioxide-gelatin phantom in the direction indicated by the white arrow labeled Cs. The transducer focal depth for this study was 20 mm. B-mode OCT images were taken at the focal point for phase map analysis.

Fig. 2
Fig. 2

The ARF-OCE experimental setup consisted of the existing SS-OCT system, a titanium dioxide-gelatin phantom, a focused transducer (20 MHz, f-number 2.35), an amplifier and a function generator (Agilent 33250A 80 MHz, Function / Arbitrary Waveform Generator) synchronized with the SS-OCT system.

Fig. 3
Fig. 3

B-mode OCT structural images (a and b) and the corresponding B-mode phase map (c) of the titanium dioxide-gelatin phantom (14%) were taken with the SS-OCT system. The dashed box(a) represents the location of the superimposed fitted sine wave observed in the phase map. The white arrow (b) indicates the position where the M-mode OCT images (d and e), with the ARF on and off, respectively, were acquired and synchronized with the OCT swept-source wavelength sweep. The B-mode phase map of the phantom was used to measure Δr and Δφ for the calculation of the shear wave speed. The color scale represented the change of the phase value (radians). The M-mode phase map (f) from this phantom was used to calculate the shear wave frequency. To better illustrate the calculation of Δr, MATLAB was used to to plot an isophase curve which now shows the experimental data (blue). The red curve is a best fit with a polynomial (g).

Tables (1)

Tables Icon

Table 1 The mechanical properties of the phantoms

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

F= 2αI C .
C S (ω)= 2( μ 1 2 + ω 2 μ 2 2 )/ρ( μ 1 + μ 1 2 + ω 2 μ 2 2 ) .
C S (ω)= ωΔr Δφ .
C s = μ ρ
E=2(1+ν)μ3μ=3   C S 2 ρ,

Metrics