Abstract

Abstract: In diffuse optical tomography (DOT), researchers often face challenges to accurately recover the depth and size of the reconstructed objects. Recent development of the Depth Compensation Algorithm (DCA) solves the depth localization problem, but the reconstructed images commonly exhibit over-smoothed boundaries, leading to fuzzy images with low spatial resolution. While conventional DOT solves a linear inverse model by minimizing least squares errors using L2 norm regularization, L1 regularization promotes sparse solutions. The latter may be used to reduce the over-smoothing effect on reconstructed images. In this study, we combined DCA with L1 regularization, and also with L2 regularization, to examine which combined approach provided us with an improved spatial resolution and depth localization for DOT. Laboratory tissue phantoms were utilized for the measurement with a fiber-based and a camera-based DOT imaging system. The results from both systems showed that L1 regularization clearly outperformed L2 regularization in both spatial resolution and depth localization of DOT. An example of functional brain imaging taken from human in vivo measurements was further obtained to support the conclusion of the study.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage23(Suppl 1), S275–S288 (2004).
    [CrossRef] [PubMed]
  2. S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl.25(12), 123010 (2009).
    [CrossRef]
  3. T. Durduran, R. Choe, W. Baker, and A. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73(7), 076701 (2010).
    [CrossRef]
  4. M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol.50(12), 2837–2858 (2005).
    [CrossRef] [PubMed]
  5. C. K. Lee, C. W. Sun, P. L. Lee, H. C. Lee, C. Yang, C. P. Jiang, Y. P. Tong, T. C. Yeh, and J. C. Hsieh, “Study of photon migration with various source-detector separations in near-infrared spectroscopic brain imaging based on three-dimensional Monte Carlo modeling,” Opt. Express13(21), 8339–8348 (2005).
    [CrossRef] [PubMed]
  6. H. Niu, F. Tian, Z. J. Lin, and H. Liu, “Development of a compensation algorithm for accurate depth localization in diffuse optical tomography,” Opt. Lett.35(3), 429–431 (2010).
    [CrossRef] [PubMed]
  7. B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Österberg, and K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt.38(13), 2950–2961 (1999).
    [CrossRef] [PubMed]
  8. J. P. Culver, A. M. Siegel, J. J. Stott, and D. A. Boas, “Volumetric diffuse optical tomography of brain activity,” Opt. Lett.28(21), 2061–2063 (2003).
    [CrossRef] [PubMed]
  9. H. Niu, Z. J. Lin, F. Tian, S. Dhamne, and H. Liu, “Comprehensive investigation of three-dimensional diffuse optical tomography with depth compensation algorithm,” J. Biomed. Opt.15(4), 046005 (2010).
    [CrossRef] [PubMed]
  10. M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The application of compressed sensing for rapid MR imaging,” Magn. Reson. Med.58(6), 1182–1195 (2007).
    [CrossRef] [PubMed]
  11. N. Cao, A. Nehorai, and M. Jacobs, “Image reconstruction for diffuse optical tomography using sparsity regularization and expectation-maximization algorithm,” Opt. Express15(21), 13695–13708 (2007).
    [CrossRef] [PubMed]
  12. M. Süzen, A. Giannoula, and T. Durduran, “Compressed sensing in diffuse optical tomography,” Opt. Express18(23), 23676–23690 (2010).
    [CrossRef] [PubMed]
  13. L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging (Wiley-Interscience, 2007).
  14. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt.28(12), 2331–2336 (1989).
    [CrossRef] [PubMed]
  15. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys.19(4), 879–888 (1992).
    [CrossRef] [PubMed]
  16. A. Kienle and M. S. Patterson, “Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium,” J. Opt. Soc. Am. A14(1), 246–254 (1997).
    [CrossRef] [PubMed]
  17. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl.15(2), R41–R93 (1999).
    [CrossRef]
  18. R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A11(10), 2727–2741 (1994).
    [CrossRef] [PubMed]
  19. J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab.23(8), 911–924 (2003).
    [CrossRef] [PubMed]
  20. C. R. Vogel, Computational Methods for Inverse Problems (Society for Industrial and Applied Mathematics, 2002).
  21. H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems (Kluwer Academic, 2000).
  22. S. J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, “An interior-point method for large-scale l1-regularized least squares,” IEEE J. Sel. Top. Signal Process1(4), 606–617 (2007).
    [CrossRef]
  23. M. Benzi, C. D. Meyer, and M. Tuma, “A sparse approximate inverse preconditioner for the conjugate gradient method,” SIAM J. Sci. Comput.17(5), 1135–1149 (1996).
    [CrossRef]
  24. “PMI Toolbox,” http://www.nmr.mgh.harvard.edu/PMI/resources/toolbox.htm .
  25. “L1-ls Toolbox,” http://www.stanford.edu/~boyd/l1_ls/ .
  26. F. Tian, H. Niu, S. Khadka, Z. J. Lin, and H. Liu, “Algorithmic depth compensation improves quantification and noise suppression in functional diffuse optical tomography,” Biomed. Opt. Express1(2), 441–452 (2010).
    [CrossRef] [PubMed]
  27. F. Tian, G. Alexandrakis, and H. Liu, “Optimization of probe geometry for diffuse optical brain imaging based on measurement density and distribution,” Appl. Opt.48(13), 2496–2504 (2009).
    [CrossRef] [PubMed]
  28. Z. J. Lin, H. Niu, L. Li, and H. Liu, “Volumetric diffuse optical tomography for small animals using a CCD-camera-based imaging system,” Int. J. Opt.2012, 276367 (2012).
    [CrossRef]
  29. Q. Zhao, L. Ji, and T. Jiang, “Improving performance of reflectance diffuse optical imaging using a multicentered mode,” J. Biomed. Opt.11(6), 064019 (2006).
    [CrossRef] [PubMed]
  30. X. Song, B. W. Pogue, S. Jiang, M. M. Doyley, H. Dehghani, T. D. Tosteson, and K. D. Paulsen, “Automated region detection based on the contrast-to-noise ratio in near-infrared tomography,” Appl. Opt.43(5), 1053–1062 (2004).
    [CrossRef] [PubMed]
  31. C. H. Schmitz, M. Löcker, J. M. Lasker, A. H. Hielscher, and R. L. Barbour, “Instrumentation for fast functional optical tomography,” Rev. Sci. Instrum.73(2), 429 (2002).
    [CrossRef]
  32. X. Cheng and D. Boas, “Diffuse optical reflection tomography using continuous wave illumination,” Opt. Express3(3), 118–123 (1998).
    [CrossRef] [PubMed]
  33. L. Zhou, B. Yazıcı, A. B. Ale, and V. Ntziachristos, “Performance evaluation of adaptive meshing algorithms for fluorescence diffuse optical tomography using experimental data,” Opt. Lett.35(22), 3727–3729 (2010).
    [CrossRef] [PubMed]
  34. D. R. Leff, F. Orihuela-Espina, C. E. Elwell, T. Athanasiou, D. T. Delpy, A. W. Darzi, and G. Z. Yang, “Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies,” Neuroimage54(4), 2922–2936 (2011).
    [CrossRef] [PubMed]
  35. F. Tian, M. R. Delgado, S. C. Dhamne, B. Khan, G. Alexandrakis, M. I. Romero, L. Smith, D. Reid, N. J. Clegg, and H. Liu, “Quantification of functional near infrared spectroscopy to assess cortical reorganization in children with cerebral palsy,” Opt. Express18(25), 25973–25986 (2010).
    [CrossRef] [PubMed]
  36. M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt.11(5), 054007 (2006).
    [CrossRef] [PubMed]
  37. B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A.104(29), 12169–12174 (2007).
    [CrossRef] [PubMed]
  38. Z. J. Lin, H. Niu, and H. Liu, “Feasibility study of volumetric diffuse optical tomography in small animal using CCD-camera-based imaging system,” OSA Technical Digest (CD) (Optical Society of America, 2010), paper BSuD108.
  39. T. J. Huppert, R. D. Hoge, A. M. Dale, M. A. Franceschini, and D. A. Boas, “Quantitative spatial comparison of diffuse optical imaging with blood oxygen level-dependent and arterial spin labeling-based functional magnetic resonance imaging,” J. Biomed. Opt.11(6), 064018 (2006).
    [CrossRef] [PubMed]
  40. R. Parlapalli, V. Sharma, K. S. Gopinath, R. W. Briggs, and H. Liu, “Comparison of hemodynamic response non-linearity using simultaneous near infrared spectroscopy and magnetic resonance imaging modalities,” Proc. SPIE7171, 71710P, 71710P-12 (2009).
    [CrossRef]
  41. B. Khan, P. Chand, and G. Alexandrakis, “Spatiotemporal relations of primary sensorimotor and secondary motor activation patterns mapped by NIR imaging,” Biomed. Opt. Express2(12), 3367–3386 (2011).
    [CrossRef] [PubMed]

2012 (1)

Z. J. Lin, H. Niu, L. Li, and H. Liu, “Volumetric diffuse optical tomography for small animals using a CCD-camera-based imaging system,” Int. J. Opt.2012, 276367 (2012).
[CrossRef]

2011 (2)

D. R. Leff, F. Orihuela-Espina, C. E. Elwell, T. Athanasiou, D. T. Delpy, A. W. Darzi, and G. Z. Yang, “Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies,” Neuroimage54(4), 2922–2936 (2011).
[CrossRef] [PubMed]

B. Khan, P. Chand, and G. Alexandrakis, “Spatiotemporal relations of primary sensorimotor and secondary motor activation patterns mapped by NIR imaging,” Biomed. Opt. Express2(12), 3367–3386 (2011).
[CrossRef] [PubMed]

2010 (7)

L. Zhou, B. Yazıcı, A. B. Ale, and V. Ntziachristos, “Performance evaluation of adaptive meshing algorithms for fluorescence diffuse optical tomography using experimental data,” Opt. Lett.35(22), 3727–3729 (2010).
[CrossRef] [PubMed]

F. Tian, M. R. Delgado, S. C. Dhamne, B. Khan, G. Alexandrakis, M. I. Romero, L. Smith, D. Reid, N. J. Clegg, and H. Liu, “Quantification of functional near infrared spectroscopy to assess cortical reorganization in children with cerebral palsy,” Opt. Express18(25), 25973–25986 (2010).
[CrossRef] [PubMed]

F. Tian, H. Niu, S. Khadka, Z. J. Lin, and H. Liu, “Algorithmic depth compensation improves quantification and noise suppression in functional diffuse optical tomography,” Biomed. Opt. Express1(2), 441–452 (2010).
[CrossRef] [PubMed]

T. Durduran, R. Choe, W. Baker, and A. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73(7), 076701 (2010).
[CrossRef]

H. Niu, F. Tian, Z. J. Lin, and H. Liu, “Development of a compensation algorithm for accurate depth localization in diffuse optical tomography,” Opt. Lett.35(3), 429–431 (2010).
[CrossRef] [PubMed]

H. Niu, Z. J. Lin, F. Tian, S. Dhamne, and H. Liu, “Comprehensive investigation of three-dimensional diffuse optical tomography with depth compensation algorithm,” J. Biomed. Opt.15(4), 046005 (2010).
[CrossRef] [PubMed]

M. Süzen, A. Giannoula, and T. Durduran, “Compressed sensing in diffuse optical tomography,” Opt. Express18(23), 23676–23690 (2010).
[CrossRef] [PubMed]

2009 (3)

S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl.25(12), 123010 (2009).
[CrossRef]

F. Tian, G. Alexandrakis, and H. Liu, “Optimization of probe geometry for diffuse optical brain imaging based on measurement density and distribution,” Appl. Opt.48(13), 2496–2504 (2009).
[CrossRef] [PubMed]

R. Parlapalli, V. Sharma, K. S. Gopinath, R. W. Briggs, and H. Liu, “Comparison of hemodynamic response non-linearity using simultaneous near infrared spectroscopy and magnetic resonance imaging modalities,” Proc. SPIE7171, 71710P, 71710P-12 (2009).
[CrossRef]

2007 (4)

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A.104(29), 12169–12174 (2007).
[CrossRef] [PubMed]

S. J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, “An interior-point method for large-scale l1-regularized least squares,” IEEE J. Sel. Top. Signal Process1(4), 606–617 (2007).
[CrossRef]

M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The application of compressed sensing for rapid MR imaging,” Magn. Reson. Med.58(6), 1182–1195 (2007).
[CrossRef] [PubMed]

N. Cao, A. Nehorai, and M. Jacobs, “Image reconstruction for diffuse optical tomography using sparsity regularization and expectation-maximization algorithm,” Opt. Express15(21), 13695–13708 (2007).
[CrossRef] [PubMed]

2006 (3)

Q. Zhao, L. Ji, and T. Jiang, “Improving performance of reflectance diffuse optical imaging using a multicentered mode,” J. Biomed. Opt.11(6), 064019 (2006).
[CrossRef] [PubMed]

T. J. Huppert, R. D. Hoge, A. M. Dale, M. A. Franceschini, and D. A. Boas, “Quantitative spatial comparison of diffuse optical imaging with blood oxygen level-dependent and arterial spin labeling-based functional magnetic resonance imaging,” J. Biomed. Opt.11(6), 064018 (2006).
[CrossRef] [PubMed]

M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt.11(5), 054007 (2006).
[CrossRef] [PubMed]

2005 (2)

2004 (2)

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage23(Suppl 1), S275–S288 (2004).
[CrossRef] [PubMed]

X. Song, B. W. Pogue, S. Jiang, M. M. Doyley, H. Dehghani, T. D. Tosteson, and K. D. Paulsen, “Automated region detection based on the contrast-to-noise ratio in near-infrared tomography,” Appl. Opt.43(5), 1053–1062 (2004).
[CrossRef] [PubMed]

2003 (2)

J. P. Culver, A. M. Siegel, J. J. Stott, and D. A. Boas, “Volumetric diffuse optical tomography of brain activity,” Opt. Lett.28(21), 2061–2063 (2003).
[CrossRef] [PubMed]

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab.23(8), 911–924 (2003).
[CrossRef] [PubMed]

2002 (1)

C. H. Schmitz, M. Löcker, J. M. Lasker, A. H. Hielscher, and R. L. Barbour, “Instrumentation for fast functional optical tomography,” Rev. Sci. Instrum.73(2), 429 (2002).
[CrossRef]

1999 (2)

1998 (1)

1997 (1)

1996 (1)

M. Benzi, C. D. Meyer, and M. Tuma, “A sparse approximate inverse preconditioner for the conjugate gradient method,” SIAM J. Sci. Comput.17(5), 1135–1149 (1996).
[CrossRef]

1994 (1)

1992 (1)

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys.19(4), 879–888 (1992).
[CrossRef] [PubMed]

1989 (1)

Ale, A. B.

Alexandrakis, G.

Arridge, S. R.

S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl.25(12), 123010 (2009).
[CrossRef]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl.15(2), R41–R93 (1999).
[CrossRef]

Athanasiou, T.

D. R. Leff, F. Orihuela-Espina, C. E. Elwell, T. Athanasiou, D. T. Delpy, A. W. Darzi, and G. Z. Yang, “Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies,” Neuroimage54(4), 2922–2936 (2011).
[CrossRef] [PubMed]

Baker, W.

T. Durduran, R. Choe, W. Baker, and A. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73(7), 076701 (2010).
[CrossRef]

Barbour, R. L.

C. H. Schmitz, M. Löcker, J. M. Lasker, A. H. Hielscher, and R. L. Barbour, “Instrumentation for fast functional optical tomography,” Rev. Sci. Instrum.73(2), 429 (2002).
[CrossRef]

Benzi, M.

M. Benzi, C. D. Meyer, and M. Tuma, “A sparse approximate inverse preconditioner for the conjugate gradient method,” SIAM J. Sci. Comput.17(5), 1135–1149 (1996).
[CrossRef]

Boas, D.

Boas, D. A.

M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt.11(5), 054007 (2006).
[CrossRef] [PubMed]

T. J. Huppert, R. D. Hoge, A. M. Dale, M. A. Franceschini, and D. A. Boas, “Quantitative spatial comparison of diffuse optical imaging with blood oxygen level-dependent and arterial spin labeling-based functional magnetic resonance imaging,” J. Biomed. Opt.11(6), 064018 (2006).
[CrossRef] [PubMed]

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage23(Suppl 1), S275–S288 (2004).
[CrossRef] [PubMed]

J. P. Culver, A. M. Siegel, J. J. Stott, and D. A. Boas, “Volumetric diffuse optical tomography of brain activity,” Opt. Lett.28(21), 2061–2063 (2003).
[CrossRef] [PubMed]

Boyd, S.

S. J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, “An interior-point method for large-scale l1-regularized least squares,” IEEE J. Sel. Top. Signal Process1(4), 606–617 (2007).
[CrossRef]

Briggs, R. W.

R. Parlapalli, V. Sharma, K. S. Gopinath, R. W. Briggs, and H. Liu, “Comparison of hemodynamic response non-linearity using simultaneous near infrared spectroscopy and magnetic resonance imaging modalities,” Proc. SPIE7171, 71710P, 71710P-12 (2009).
[CrossRef]

Cao, N.

Chance, B.

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol.50(12), 2837–2858 (2005).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt.28(12), 2331–2336 (1989).
[CrossRef] [PubMed]

Chand, P.

Cheng, X.

Cheung, C.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab.23(8), 911–924 (2003).
[CrossRef] [PubMed]

Choe, R.

T. Durduran, R. Choe, W. Baker, and A. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73(7), 076701 (2010).
[CrossRef]

Clegg, N. J.

Culver, J. P.

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A.104(29), 12169–12174 (2007).
[CrossRef] [PubMed]

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab.23(8), 911–924 (2003).
[CrossRef] [PubMed]

J. P. Culver, A. M. Siegel, J. J. Stott, and D. A. Boas, “Volumetric diffuse optical tomography of brain activity,” Opt. Lett.28(21), 2061–2063 (2003).
[CrossRef] [PubMed]

Dale, A. M.

T. J. Huppert, R. D. Hoge, A. M. Dale, M. A. Franceschini, and D. A. Boas, “Quantitative spatial comparison of diffuse optical imaging with blood oxygen level-dependent and arterial spin labeling-based functional magnetic resonance imaging,” J. Biomed. Opt.11(6), 064018 (2006).
[CrossRef] [PubMed]

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage23(Suppl 1), S275–S288 (2004).
[CrossRef] [PubMed]

Darzi, A. W.

D. R. Leff, F. Orihuela-Espina, C. E. Elwell, T. Athanasiou, D. T. Delpy, A. W. Darzi, and G. Z. Yang, “Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies,” Neuroimage54(4), 2922–2936 (2011).
[CrossRef] [PubMed]

Dehghani, H.

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A.104(29), 12169–12174 (2007).
[CrossRef] [PubMed]

X. Song, B. W. Pogue, S. Jiang, M. M. Doyley, H. Dehghani, T. D. Tosteson, and K. D. Paulsen, “Automated region detection based on the contrast-to-noise ratio in near-infrared tomography,” Appl. Opt.43(5), 1053–1062 (2004).
[CrossRef] [PubMed]

Delgado, M. R.

Delpy, D. T.

D. R. Leff, F. Orihuela-Espina, C. E. Elwell, T. Athanasiou, D. T. Delpy, A. W. Darzi, and G. Z. Yang, “Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies,” Neuroimage54(4), 2922–2936 (2011).
[CrossRef] [PubMed]

Dhamne, S.

H. Niu, Z. J. Lin, F. Tian, S. Dhamne, and H. Liu, “Comprehensive investigation of three-dimensional diffuse optical tomography with depth compensation algorithm,” J. Biomed. Opt.15(4), 046005 (2010).
[CrossRef] [PubMed]

Dhamne, S. C.

Diamond, S. G.

M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt.11(5), 054007 (2006).
[CrossRef] [PubMed]

Donoho, D.

M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The application of compressed sensing for rapid MR imaging,” Magn. Reson. Med.58(6), 1182–1195 (2007).
[CrossRef] [PubMed]

Doyley, M. M.

Durduran, T.

M. Süzen, A. Giannoula, and T. Durduran, “Compressed sensing in diffuse optical tomography,” Opt. Express18(23), 23676–23690 (2010).
[CrossRef] [PubMed]

T. Durduran, R. Choe, W. Baker, and A. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73(7), 076701 (2010).
[CrossRef]

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab.23(8), 911–924 (2003).
[CrossRef] [PubMed]

Elwell, C. E.

D. R. Leff, F. Orihuela-Espina, C. E. Elwell, T. Athanasiou, D. T. Delpy, A. W. Darzi, and G. Z. Yang, “Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies,” Neuroimage54(4), 2922–2936 (2011).
[CrossRef] [PubMed]

Farrell, T. J.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys.19(4), 879–888 (1992).
[CrossRef] [PubMed]

Feng, T. C.

Franceschini, M. A.

M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt.11(5), 054007 (2006).
[CrossRef] [PubMed]

T. J. Huppert, R. D. Hoge, A. M. Dale, M. A. Franceschini, and D. A. Boas, “Quantitative spatial comparison of diffuse optical imaging with blood oxygen level-dependent and arterial spin labeling-based functional magnetic resonance imaging,” J. Biomed. Opt.11(6), 064018 (2006).
[CrossRef] [PubMed]

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage23(Suppl 1), S275–S288 (2004).
[CrossRef] [PubMed]

Furuya, D.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab.23(8), 911–924 (2003).
[CrossRef] [PubMed]

Giannoula, A.

Gopinath, K. S.

R. Parlapalli, V. Sharma, K. S. Gopinath, R. W. Briggs, and H. Liu, “Comparison of hemodynamic response non-linearity using simultaneous near infrared spectroscopy and magnetic resonance imaging modalities,” Proc. SPIE7171, 71710P, 71710P-12 (2009).
[CrossRef]

Gorinevsky, D.

S. J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, “An interior-point method for large-scale l1-regularized least squares,” IEEE J. Sel. Top. Signal Process1(4), 606–617 (2007).
[CrossRef]

Greenberg, J. H.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab.23(8), 911–924 (2003).
[CrossRef] [PubMed]

Guven, M.

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol.50(12), 2837–2858 (2005).
[CrossRef] [PubMed]

Haskell, R. C.

Hielscher, A. H.

C. H. Schmitz, M. Löcker, J. M. Lasker, A. H. Hielscher, and R. L. Barbour, “Instrumentation for fast functional optical tomography,” Rev. Sci. Instrum.73(2), 429 (2002).
[CrossRef]

Hoge, R. D.

T. J. Huppert, R. D. Hoge, A. M. Dale, M. A. Franceschini, and D. A. Boas, “Quantitative spatial comparison of diffuse optical imaging with blood oxygen level-dependent and arterial spin labeling-based functional magnetic resonance imaging,” J. Biomed. Opt.11(6), 064018 (2006).
[CrossRef] [PubMed]

Hsieh, J. C.

Huppert, T. J.

T. J. Huppert, R. D. Hoge, A. M. Dale, M. A. Franceschini, and D. A. Boas, “Quantitative spatial comparison of diffuse optical imaging with blood oxygen level-dependent and arterial spin labeling-based functional magnetic resonance imaging,” J. Biomed. Opt.11(6), 064018 (2006).
[CrossRef] [PubMed]

M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt.11(5), 054007 (2006).
[CrossRef] [PubMed]

Intes, X.

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol.50(12), 2837–2858 (2005).
[CrossRef] [PubMed]

Jacobs, M.

Ji, L.

Q. Zhao, L. Ji, and T. Jiang, “Improving performance of reflectance diffuse optical imaging using a multicentered mode,” J. Biomed. Opt.11(6), 064019 (2006).
[CrossRef] [PubMed]

Jiang, C. P.

Jiang, S.

Jiang, T.

Q. Zhao, L. Ji, and T. Jiang, “Improving performance of reflectance diffuse optical imaging using a multicentered mode,” J. Biomed. Opt.11(6), 064019 (2006).
[CrossRef] [PubMed]

Joseph, D. K.

M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt.11(5), 054007 (2006).
[CrossRef] [PubMed]

Khadka, S.

Khan, B.

Kienle, A.

Kim, S. J.

S. J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, “An interior-point method for large-scale l1-regularized least squares,” IEEE J. Sel. Top. Signal Process1(4), 606–617 (2007).
[CrossRef]

Koh, K.

S. J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, “An interior-point method for large-scale l1-regularized least squares,” IEEE J. Sel. Top. Signal Process1(4), 606–617 (2007).
[CrossRef]

Lasker, J. M.

C. H. Schmitz, M. Löcker, J. M. Lasker, A. H. Hielscher, and R. L. Barbour, “Instrumentation for fast functional optical tomography,” Rev. Sci. Instrum.73(2), 429 (2002).
[CrossRef]

Lee, C. K.

Lee, H. C.

Lee, P. L.

Leff, D. R.

D. R. Leff, F. Orihuela-Espina, C. E. Elwell, T. Athanasiou, D. T. Delpy, A. W. Darzi, and G. Z. Yang, “Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies,” Neuroimage54(4), 2922–2936 (2011).
[CrossRef] [PubMed]

Li, L.

Z. J. Lin, H. Niu, L. Li, and H. Liu, “Volumetric diffuse optical tomography for small animals using a CCD-camera-based imaging system,” Int. J. Opt.2012, 276367 (2012).
[CrossRef]

Lin, Z. J.

Z. J. Lin, H. Niu, L. Li, and H. Liu, “Volumetric diffuse optical tomography for small animals using a CCD-camera-based imaging system,” Int. J. Opt.2012, 276367 (2012).
[CrossRef]

H. Niu, Z. J. Lin, F. Tian, S. Dhamne, and H. Liu, “Comprehensive investigation of three-dimensional diffuse optical tomography with depth compensation algorithm,” J. Biomed. Opt.15(4), 046005 (2010).
[CrossRef] [PubMed]

H. Niu, F. Tian, Z. J. Lin, and H. Liu, “Development of a compensation algorithm for accurate depth localization in diffuse optical tomography,” Opt. Lett.35(3), 429–431 (2010).
[CrossRef] [PubMed]

F. Tian, H. Niu, S. Khadka, Z. J. Lin, and H. Liu, “Algorithmic depth compensation improves quantification and noise suppression in functional diffuse optical tomography,” Biomed. Opt. Express1(2), 441–452 (2010).
[CrossRef] [PubMed]

Liu, H.

Z. J. Lin, H. Niu, L. Li, and H. Liu, “Volumetric diffuse optical tomography for small animals using a CCD-camera-based imaging system,” Int. J. Opt.2012, 276367 (2012).
[CrossRef]

H. Niu, Z. J. Lin, F. Tian, S. Dhamne, and H. Liu, “Comprehensive investigation of three-dimensional diffuse optical tomography with depth compensation algorithm,” J. Biomed. Opt.15(4), 046005 (2010).
[CrossRef] [PubMed]

F. Tian, H. Niu, S. Khadka, Z. J. Lin, and H. Liu, “Algorithmic depth compensation improves quantification and noise suppression in functional diffuse optical tomography,” Biomed. Opt. Express1(2), 441–452 (2010).
[CrossRef] [PubMed]

H. Niu, F. Tian, Z. J. Lin, and H. Liu, “Development of a compensation algorithm for accurate depth localization in diffuse optical tomography,” Opt. Lett.35(3), 429–431 (2010).
[CrossRef] [PubMed]

F. Tian, M. R. Delgado, S. C. Dhamne, B. Khan, G. Alexandrakis, M. I. Romero, L. Smith, D. Reid, N. J. Clegg, and H. Liu, “Quantification of functional near infrared spectroscopy to assess cortical reorganization in children with cerebral palsy,” Opt. Express18(25), 25973–25986 (2010).
[CrossRef] [PubMed]

F. Tian, G. Alexandrakis, and H. Liu, “Optimization of probe geometry for diffuse optical brain imaging based on measurement density and distribution,” Appl. Opt.48(13), 2496–2504 (2009).
[CrossRef] [PubMed]

R. Parlapalli, V. Sharma, K. S. Gopinath, R. W. Briggs, and H. Liu, “Comparison of hemodynamic response non-linearity using simultaneous near infrared spectroscopy and magnetic resonance imaging modalities,” Proc. SPIE7171, 71710P, 71710P-12 (2009).
[CrossRef]

Löcker, M.

C. H. Schmitz, M. Löcker, J. M. Lasker, A. H. Hielscher, and R. L. Barbour, “Instrumentation for fast functional optical tomography,” Rev. Sci. Instrum.73(2), 429 (2002).
[CrossRef]

Lustig, M.

M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The application of compressed sensing for rapid MR imaging,” Magn. Reson. Med.58(6), 1182–1195 (2007).
[CrossRef] [PubMed]

S. J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, “An interior-point method for large-scale l1-regularized least squares,” IEEE J. Sel. Top. Signal Process1(4), 606–617 (2007).
[CrossRef]

McAdams, M. S.

McBride, T. O.

Meyer, C. D.

M. Benzi, C. D. Meyer, and M. Tuma, “A sparse approximate inverse preconditioner for the conjugate gradient method,” SIAM J. Sci. Comput.17(5), 1135–1149 (1996).
[CrossRef]

Nehorai, A.

Niu, H.

Z. J. Lin, H. Niu, L. Li, and H. Liu, “Volumetric diffuse optical tomography for small animals using a CCD-camera-based imaging system,” Int. J. Opt.2012, 276367 (2012).
[CrossRef]

H. Niu, Z. J. Lin, F. Tian, S. Dhamne, and H. Liu, “Comprehensive investigation of three-dimensional diffuse optical tomography with depth compensation algorithm,” J. Biomed. Opt.15(4), 046005 (2010).
[CrossRef] [PubMed]

H. Niu, F. Tian, Z. J. Lin, and H. Liu, “Development of a compensation algorithm for accurate depth localization in diffuse optical tomography,” Opt. Lett.35(3), 429–431 (2010).
[CrossRef] [PubMed]

F. Tian, H. Niu, S. Khadka, Z. J. Lin, and H. Liu, “Algorithmic depth compensation improves quantification and noise suppression in functional diffuse optical tomography,” Biomed. Opt. Express1(2), 441–452 (2010).
[CrossRef] [PubMed]

Ntziachristos, V.

Orihuela-Espina, F.

D. R. Leff, F. Orihuela-Espina, C. E. Elwell, T. Athanasiou, D. T. Delpy, A. W. Darzi, and G. Z. Yang, “Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies,” Neuroimage54(4), 2922–2936 (2011).
[CrossRef] [PubMed]

Österberg, U. L.

Parlapalli, R.

R. Parlapalli, V. Sharma, K. S. Gopinath, R. W. Briggs, and H. Liu, “Comparison of hemodynamic response non-linearity using simultaneous near infrared spectroscopy and magnetic resonance imaging modalities,” Proc. SPIE7171, 71710P, 71710P-12 (2009).
[CrossRef]

Patterson, M. S.

Paulsen, K. D.

Pauly, J. M.

M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The application of compressed sensing for rapid MR imaging,” Magn. Reson. Med.58(6), 1182–1195 (2007).
[CrossRef] [PubMed]

Pogue, B. W.

Prewitt, J.

Reid, D.

Romero, M. I.

Schlaggar, B. L.

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A.104(29), 12169–12174 (2007).
[CrossRef] [PubMed]

Schmitz, C. H.

C. H. Schmitz, M. Löcker, J. M. Lasker, A. H. Hielscher, and R. L. Barbour, “Instrumentation for fast functional optical tomography,” Rev. Sci. Instrum.73(2), 429 (2002).
[CrossRef]

Schotland, J. C.

S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl.25(12), 123010 (2009).
[CrossRef]

Sharma, V.

R. Parlapalli, V. Sharma, K. S. Gopinath, R. W. Briggs, and H. Liu, “Comparison of hemodynamic response non-linearity using simultaneous near infrared spectroscopy and magnetic resonance imaging modalities,” Proc. SPIE7171, 71710P, 71710P-12 (2009).
[CrossRef]

Siegel, A. M.

Smith, L.

Song, X.

Stott, J. J.

Sun, C. W.

Süzen, M.

Svaasand, L. O.

Tian, F.

Tong, Y. P.

Tosteson, T. D.

Tromberg, B. J.

Tsay, T. T.

Tuma, M.

M. Benzi, C. D. Meyer, and M. Tuma, “A sparse approximate inverse preconditioner for the conjugate gradient method,” SIAM J. Sci. Comput.17(5), 1135–1149 (1996).
[CrossRef]

White, B. R.

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A.104(29), 12169–12174 (2007).
[CrossRef] [PubMed]

Wilson, B.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys.19(4), 879–888 (1992).
[CrossRef] [PubMed]

Wilson, B. C.

Yang, C.

Yang, G. Z.

D. R. Leff, F. Orihuela-Espina, C. E. Elwell, T. Athanasiou, D. T. Delpy, A. W. Darzi, and G. Z. Yang, “Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies,” Neuroimage54(4), 2922–2936 (2011).
[CrossRef] [PubMed]

Yazici, B.

Yeh, T. C.

Yodh, A.

T. Durduran, R. Choe, W. Baker, and A. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73(7), 076701 (2010).
[CrossRef]

Yodh, A. G.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab.23(8), 911–924 (2003).
[CrossRef] [PubMed]

Zeff, B. W.

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A.104(29), 12169–12174 (2007).
[CrossRef] [PubMed]

Zhao, Q.

Q. Zhao, L. Ji, and T. Jiang, “Improving performance of reflectance diffuse optical imaging using a multicentered mode,” J. Biomed. Opt.11(6), 064019 (2006).
[CrossRef] [PubMed]

Zhou, L.

Appl. Opt. (4)

Biomed. Opt. Express (2)

IEEE J. Sel. Top. Signal Process (1)

S. J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, “An interior-point method for large-scale l1-regularized least squares,” IEEE J. Sel. Top. Signal Process1(4), 606–617 (2007).
[CrossRef]

Int. J. Opt. (1)

Z. J. Lin, H. Niu, L. Li, and H. Liu, “Volumetric diffuse optical tomography for small animals using a CCD-camera-based imaging system,” Int. J. Opt.2012, 276367 (2012).
[CrossRef]

Inverse Probl. (2)

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl.15(2), R41–R93 (1999).
[CrossRef]

S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl.25(12), 123010 (2009).
[CrossRef]

J. Biomed. Opt. (4)

H. Niu, Z. J. Lin, F. Tian, S. Dhamne, and H. Liu, “Comprehensive investigation of three-dimensional diffuse optical tomography with depth compensation algorithm,” J. Biomed. Opt.15(4), 046005 (2010).
[CrossRef] [PubMed]

Q. Zhao, L. Ji, and T. Jiang, “Improving performance of reflectance diffuse optical imaging using a multicentered mode,” J. Biomed. Opt.11(6), 064019 (2006).
[CrossRef] [PubMed]

M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt.11(5), 054007 (2006).
[CrossRef] [PubMed]

T. J. Huppert, R. D. Hoge, A. M. Dale, M. A. Franceschini, and D. A. Boas, “Quantitative spatial comparison of diffuse optical imaging with blood oxygen level-dependent and arterial spin labeling-based functional magnetic resonance imaging,” J. Biomed. Opt.11(6), 064018 (2006).
[CrossRef] [PubMed]

J. Cereb. Blood Flow Metab. (1)

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab.23(8), 911–924 (2003).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (2)

Magn. Reson. Med. (1)

M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The application of compressed sensing for rapid MR imaging,” Magn. Reson. Med.58(6), 1182–1195 (2007).
[CrossRef] [PubMed]

Med. Phys. (1)

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys.19(4), 879–888 (1992).
[CrossRef] [PubMed]

Neuroimage (2)

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage23(Suppl 1), S275–S288 (2004).
[CrossRef] [PubMed]

D. R. Leff, F. Orihuela-Espina, C. E. Elwell, T. Athanasiou, D. T. Delpy, A. W. Darzi, and G. Z. Yang, “Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies,” Neuroimage54(4), 2922–2936 (2011).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (3)

Phys. Med. Biol. (1)

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol.50(12), 2837–2858 (2005).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A.104(29), 12169–12174 (2007).
[CrossRef] [PubMed]

Proc. SPIE (1)

R. Parlapalli, V. Sharma, K. S. Gopinath, R. W. Briggs, and H. Liu, “Comparison of hemodynamic response non-linearity using simultaneous near infrared spectroscopy and magnetic resonance imaging modalities,” Proc. SPIE7171, 71710P, 71710P-12 (2009).
[CrossRef]

Rep. Prog. Phys. (1)

T. Durduran, R. Choe, W. Baker, and A. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73(7), 076701 (2010).
[CrossRef]

Rev. Sci. Instrum. (1)

C. H. Schmitz, M. Löcker, J. M. Lasker, A. H. Hielscher, and R. L. Barbour, “Instrumentation for fast functional optical tomography,” Rev. Sci. Instrum.73(2), 429 (2002).
[CrossRef]

SIAM J. Sci. Comput. (1)

M. Benzi, C. D. Meyer, and M. Tuma, “A sparse approximate inverse preconditioner for the conjugate gradient method,” SIAM J. Sci. Comput.17(5), 1135–1149 (1996).
[CrossRef]

Other (6)

“PMI Toolbox,” http://www.nmr.mgh.harvard.edu/PMI/resources/toolbox.htm .

“L1-ls Toolbox,” http://www.stanford.edu/~boyd/l1_ls/ .

C. R. Vogel, Computational Methods for Inverse Problems (Society for Industrial and Applied Mathematics, 2002).

H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems (Kluwer Academic, 2000).

L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging (Wiley-Interscience, 2007).

Z. J. Lin, H. Niu, and H. Liu, “Feasibility study of volumetric diffuse optical tomography in small animal using CCD-camera-based imaging system,” OSA Technical Digest (CD) (Optical Society of America, 2010), paper BSuD108.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Experimental setup; (b) the bifurcated source-detector configuration used.

Fig. 2
Fig. 2

(a) Experimental setup; (b) light sources and CCD-camera configuration used.

Fig. 3
Fig. 3

(a) Placement of optodes on the subject’s head; (b) S-D (Source-detector) configuration showing optode separations.

Fig. 4
Fig. 4

Reconstructed images of two objects placed symmetrically around the center of X-Y plane and at Z = −3 cm (See Fig. 1 for geometry details). (a) and (b) were obtained with DCA-L1 and plotted in X-Z and X-Y plane, respectively; (c) and (d) were obtained with DCA-L2 and also plotted in X-Z and X-Y plane, respectively; (e) and (f) were obtained with L1 only and also plotted in X-Z and X-Y plane, respectively. The dashed circles in each panel indicate the true size and location of the absorbers to be reconstructed. The reconstructed images are normalized between 0 and 1.

Fig. 5
Fig. 5

Reconstructed images of two objects placed symmetrically around the center of X-Y plane and at Z = −2 cm (see Fig. 2 for the measurement geometry setup). (a) and (b) were obtained with DCA-L1 regularization, in X-Z and X-Y plane, respectively; (c) and (d) were obtained with DCA-L2 regularization and also plotted in X-Z and X-Y plane, respectively. The dashed circles in each panel indicate the true size and location of the absorbers to be reconstructed. The reconstructed images are normalized between 0 and 1.

Fig. 6
Fig. 6

2D slices (2.5 cm below the scalp surface) of reconstructed human brain images induced by finger tapping tasks. It shows a localized area with (a) an increase in oxy-hemoglobin concentration and (b) a decrease in deoxy-hemoglobin concentration when DCA-L1 is applied. In contrast, a larger or more diffused region is observed with (c) an increase in oxy-hemoglobin and (d) a decrease in deoxy-hemoglobin concentration when DCA-L2 is utilized for image reconstruction.

Tables (1)

Tables Icon

Table 1 Comparison of DCA-L1 versus DCA-L2 algorithm

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

1 c φ( r,t ) t [D( r )φ( r,t )]+ μ a ( r )φ( r,t )=S( r,t ),
y=Ax,
A i,j = φ 0 ( r s,i ,​​​​​​ r j ) φ 0 ( r j ,​​​​​​ r d,i )
M= [ M( A L ) M( A L1 ) M( A 2 ) M( A 1 ) ] γ ,
y= A # x.
min A # xy 2 2 +λ x 2 2 ,
x= A #T ( A # A # T +λI ) 1 y A #T ( A # A # T +α S max I ) 1 y,
min A # xy 2 2 +λ x 1 ,
min A # xy 2 2 + i=1 n λ u i ; subject   to - u i x i u i ,  i=1,2,n
t A # xy 2 2 +t i=1 n λ u i i=1 n log( u i + x i ) i=1 n log( u i x i ) .
CNR= μ VOI μ VOB [ w VOI σ VOI 2 + w VOB σ VOB 2 ] 1 2 ,

Metrics