M. Jaeger, S. Preisser, M. Kitz, D. Ferrara, S. Senegas, D. Schweizer, and M. Frenz, “Improved contrast deep optoacoustic imaging using displacement-compensated averaging: breast tumour phantom studies,” Phys. Med. Biol. 56(18), 5889–5901 (2011).
[Crossref]
[PubMed]
J. R. Cook, R. R. Bouchard, and S. Y. Emelianov, “Tissue-mimicking phantoms for photoacoustic and ultrasonic imaging,” Biomed. Opt. Express 2(11), 3193–3206 (2011).
[Crossref]
[PubMed]
H. G. Akarçay and J. Rička, “Simulating light propagation: towards realistic tissue models,” Proc. SPIE 8088, 80880K (2011).
[Crossref]
M. Jaeger, L. Siegenthaler, M. Kitz, and M. Frenz, “Reduction of background in optoacoustic image sequences obtained under tissue deformation,” J. Biomed. Opt. 14(5), 054011 (2009).
[Crossref]
[PubMed]
S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13(4), 041302 (2008).
[Crossref]
[PubMed]
F. Ayers, A. Grant, F. Kuo, D. J. Cuccia, and A. J. Durkin, “Fabrication and characterization of silicone-based tissue phantoms with tunable optical properties in the visible and near infrared domain,” Proc. SPIE 6870, 687007, 687007-9 (2008).
[Crossref]
T. D. Khokhlova, I. M. Pelivanov, V. V. Kozhushko, A. N. Zharinov, V. S. Solomatin, and A. A. Karabutov, “Optoacoustic imaging of absorbing objects in a turbid medium: ultimate sensitivity and application to breast cancer diagnostics,” Appl. Opt. 46(2), 262–272 (2007).
[Crossref]
[PubMed]
K. Zell, J. I. Sperl, M. W. Vogel, R. Niessner, and C. Haisch, “Acoustical properties of selected tissue phantom materials for ultrasound imaging,” Phys. Med. Biol. 52(20), N475–N484 (2007).
[Crossref]
[PubMed]
B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
[Crossref]
[PubMed]
M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[Crossref]
T. Moffitt, Y. C. Chen, and S. A. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt. 11(4), 041103 (2006).
[Crossref]
[PubMed]
G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Med. Biol. 50(14), N141–N153 (2005).
[Crossref]
[PubMed]
K. Tahir and C. Dainty, “Experimental measurements of light scattering from samples with specified optical properties,” J. Opt. A, Pure Appl. Opt. 7(5), 207–214 (2005).
[Crossref]
T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47(16), 2847–2861 (2002).
[Crossref]
[PubMed]
N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. U.S.A. 98(8), 4420–4425 (2001).
[Crossref]
[PubMed]
E. S. Thiele and R. H. French, “Light-scattering properties of representative, morphological rutile,” J. Am. Ceram. Soc. 81(3), 469–479 (1998).
[Crossref]
A. Kienle and M. S. Patterson, “Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium,” J. Opt. Soc. Am. A 14(1), 246–254 (1997).
[Crossref]
[PubMed]
B. W. Pogue, L. Lilge, M. S. Patterson, B. C. Wilson, and T. Hasan, “Absorbed photodynamic dose from pulsed versus continuous wave light examined with tissue-simulating dosimeters,” Appl. Opt. 36(28), 7257–7269 (1997).
[Crossref]
[PubMed]
A. H. Hielscher, S. L. Jacques, L. Wang, and F. K. Tittel, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol. 40(11), 1957–1975 (1995).
[Crossref]
[PubMed]
E. Moreels, W. De Ceuninck, and R. Finsy, “Measurements of the Rayleigh ratio of some pure liquids at several laser light wavelengths,” J. Chem. Phys. 86(2), 618–623 (1987).
[Crossref]
H. G. Akarçay and J. Rička, “Simulating light propagation: towards realistic tissue models,” Proc. SPIE 8088, 80880K (2011).
[Crossref]
F. Ayers, A. Grant, F. Kuo, D. J. Cuccia, and A. J. Durkin, “Fabrication and characterization of silicone-based tissue phantoms with tunable optical properties in the visible and near infrared domain,” Proc. SPIE 6870, 687007, 687007-9 (2008).
[Crossref]
N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. U.S.A. 98(8), 4420–4425 (2001).
[Crossref]
[PubMed]
N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. U.S.A. 98(8), 4420–4425 (2001).
[Crossref]
[PubMed]
T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47(16), 2847–2861 (2002).
[Crossref]
[PubMed]
M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28(12), 2331–2336 (1989).
[Crossref]
[PubMed]
T. Moffitt, Y. C. Chen, and S. A. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt. 11(4), 041103 (2006).
[Crossref]
[PubMed]
T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47(16), 2847–2861 (2002).
[Crossref]
[PubMed]
F. Ayers, A. Grant, F. Kuo, D. J. Cuccia, and A. J. Durkin, “Fabrication and characterization of silicone-based tissue phantoms with tunable optical properties in the visible and near infrared domain,” Proc. SPIE 6870, 687007, 687007-9 (2008).
[Crossref]
T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47(16), 2847–2861 (2002).
[Crossref]
[PubMed]
K. Tahir and C. Dainty, “Experimental measurements of light scattering from samples with specified optical properties,” J. Opt. A, Pure Appl. Opt. 7(5), 207–214 (2005).
[Crossref]
E. Moreels, W. De Ceuninck, and R. Finsy, “Measurements of the Rayleigh ratio of some pure liquids at several laser light wavelengths,” J. Chem. Phys. 86(2), 618–623 (1987).
[Crossref]
T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47(16), 2847–2861 (2002).
[Crossref]
[PubMed]
F. Ayers, A. Grant, F. Kuo, D. J. Cuccia, and A. J. Durkin, “Fabrication and characterization of silicone-based tissue phantoms with tunable optical properties in the visible and near infrared domain,” Proc. SPIE 6870, 687007, 687007-9 (2008).
[Crossref]
N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. U.S.A. 98(8), 4420–4425 (2001).
[Crossref]
[PubMed]
N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. U.S.A. 98(8), 4420–4425 (2001).
[Crossref]
[PubMed]
M. Jaeger, S. Preisser, M. Kitz, D. Ferrara, S. Senegas, D. Schweizer, and M. Frenz, “Improved contrast deep optoacoustic imaging using displacement-compensated averaging: breast tumour phantom studies,” Phys. Med. Biol. 56(18), 5889–5901 (2011).
[Crossref]
[PubMed]
E. Moreels, W. De Ceuninck, and R. Finsy, “Measurements of the Rayleigh ratio of some pure liquids at several laser light wavelengths,” J. Chem. Phys. 86(2), 618–623 (1987).
[Crossref]
N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. U.S.A. 98(8), 4420–4425 (2001).
[Crossref]
[PubMed]
E. S. Thiele and R. H. French, “Light-scattering properties of representative, morphological rutile,” J. Am. Ceram. Soc. 81(3), 469–479 (1998).
[Crossref]
M. Jaeger, S. Preisser, M. Kitz, D. Ferrara, S. Senegas, D. Schweizer, and M. Frenz, “Improved contrast deep optoacoustic imaging using displacement-compensated averaging: breast tumour phantom studies,” Phys. Med. Biol. 56(18), 5889–5901 (2011).
[Crossref]
[PubMed]
M. Jaeger, L. Siegenthaler, M. Kitz, and M. Frenz, “Reduction of background in optoacoustic image sequences obtained under tissue deformation,” J. Biomed. Opt. 14(5), 054011 (2009).
[Crossref]
[PubMed]
T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47(16), 2847–2861 (2002).
[Crossref]
[PubMed]
F. Ayers, A. Grant, F. Kuo, D. J. Cuccia, and A. J. Durkin, “Fabrication and characterization of silicone-based tissue phantoms with tunable optical properties in the visible and near infrared domain,” Proc. SPIE 6870, 687007, 687007-9 (2008).
[Crossref]
K. Zell, J. I. Sperl, M. W. Vogel, R. Niessner, and C. Haisch, “Acoustical properties of selected tissue phantom materials for ultrasound imaging,” Phys. Med. Biol. 52(20), N475–N484 (2007).
[Crossref]
[PubMed]
J. R. Mourant, J. Boyer, A. H. Hielscher, and I. J. Bigio, “Influence of the scattering phase function on light transport measurements in turbid media performed with small source-detector separations,” Opt. Lett. 21(7), 546–548 (1996).
[Crossref]
[PubMed]
A. H. Hielscher, S. L. Jacques, L. Wang, and F. K. Tittel, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol. 40(11), 1957–1975 (1995).
[Crossref]
[PubMed]
T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47(16), 2847–2861 (2002).
[Crossref]
[PubMed]
N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. U.S.A. 98(8), 4420–4425 (2001).
[Crossref]
[PubMed]
S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13(4), 041302 (2008).
[Crossref]
[PubMed]
A. H. Hielscher, S. L. Jacques, L. Wang, and F. K. Tittel, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol. 40(11), 1957–1975 (1995).
[Crossref]
[PubMed]
M. Jaeger, S. Preisser, M. Kitz, D. Ferrara, S. Senegas, D. Schweizer, and M. Frenz, “Improved contrast deep optoacoustic imaging using displacement-compensated averaging: breast tumour phantom studies,” Phys. Med. Biol. 56(18), 5889–5901 (2011).
[Crossref]
[PubMed]
M. Jaeger, L. Siegenthaler, M. Kitz, and M. Frenz, “Reduction of background in optoacoustic image sequences obtained under tissue deformation,” J. Biomed. Opt. 14(5), 054011 (2009).
[Crossref]
[PubMed]
M. Jaeger, S. Preisser, M. Kitz, D. Ferrara, S. Senegas, D. Schweizer, and M. Frenz, “Improved contrast deep optoacoustic imaging using displacement-compensated averaging: breast tumour phantom studies,” Phys. Med. Biol. 56(18), 5889–5901 (2011).
[Crossref]
[PubMed]
M. Jaeger, L. Siegenthaler, M. Kitz, and M. Frenz, “Reduction of background in optoacoustic image sequences obtained under tissue deformation,” J. Biomed. Opt. 14(5), 054011 (2009).
[Crossref]
[PubMed]
F. Ayers, A. Grant, F. Kuo, D. J. Cuccia, and A. J. Durkin, “Fabrication and characterization of silicone-based tissue phantoms with tunable optical properties in the visible and near infrared domain,” Proc. SPIE 6870, 687007, 687007-9 (2008).
[Crossref]
T. Moffitt, Y. C. Chen, and S. A. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt. 11(4), 041103 (2006).
[Crossref]
[PubMed]
E. Moreels, W. De Ceuninck, and R. Finsy, “Measurements of the Rayleigh ratio of some pure liquids at several laser light wavelengths,” J. Chem. Phys. 86(2), 618–623 (1987).
[Crossref]
K. Zell, J. I. Sperl, M. W. Vogel, R. Niessner, and C. Haisch, “Acoustical properties of selected tissue phantom materials for ultrasound imaging,” Phys. Med. Biol. 52(20), N475–N484 (2007).
[Crossref]
[PubMed]
G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Med. Biol. 50(14), N141–N153 (2005).
[Crossref]
[PubMed]
B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
[Crossref]
[PubMed]
A. Kienle and M. S. Patterson, “Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium,” J. Opt. Soc. Am. A 14(1), 246–254 (1997).
[Crossref]
[PubMed]
B. W. Pogue, L. Lilge, M. S. Patterson, B. C. Wilson, and T. Hasan, “Absorbed photodynamic dose from pulsed versus continuous wave light examined with tissue-simulating dosimeters,” Appl. Opt. 36(28), 7257–7269 (1997).
[Crossref]
[PubMed]
M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28(12), 2331–2336 (1989).
[Crossref]
[PubMed]
S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13(4), 041302 (2008).
[Crossref]
[PubMed]
B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
[Crossref]
[PubMed]
B. W. Pogue, L. Lilge, M. S. Patterson, B. C. Wilson, and T. Hasan, “Absorbed photodynamic dose from pulsed versus continuous wave light examined with tissue-simulating dosimeters,” Appl. Opt. 36(28), 7257–7269 (1997).
[Crossref]
[PubMed]
T. Moffitt, Y. C. Chen, and S. A. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt. 11(4), 041103 (2006).
[Crossref]
[PubMed]
M. Jaeger, S. Preisser, M. Kitz, D. Ferrara, S. Senegas, D. Schweizer, and M. Frenz, “Improved contrast deep optoacoustic imaging using displacement-compensated averaging: breast tumour phantom studies,” Phys. Med. Biol. 56(18), 5889–5901 (2011).
[Crossref]
[PubMed]
H. G. Akarçay and J. Rička, “Simulating light propagation: towards realistic tissue models,” Proc. SPIE 8088, 80880K (2011).
[Crossref]
M. Jaeger, S. Preisser, M. Kitz, D. Ferrara, S. Senegas, D. Schweizer, and M. Frenz, “Improved contrast deep optoacoustic imaging using displacement-compensated averaging: breast tumour phantom studies,” Phys. Med. Biol. 56(18), 5889–5901 (2011).
[Crossref]
[PubMed]
M. Jaeger, S. Preisser, M. Kitz, D. Ferrara, S. Senegas, D. Schweizer, and M. Frenz, “Improved contrast deep optoacoustic imaging using displacement-compensated averaging: breast tumour phantom studies,” Phys. Med. Biol. 56(18), 5889–5901 (2011).
[Crossref]
[PubMed]
N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. U.S.A. 98(8), 4420–4425 (2001).
[Crossref]
[PubMed]
M. Jaeger, L. Siegenthaler, M. Kitz, and M. Frenz, “Reduction of background in optoacoustic image sequences obtained under tissue deformation,” J. Biomed. Opt. 14(5), 054011 (2009).
[Crossref]
[PubMed]
K. Zell, J. I. Sperl, M. W. Vogel, R. Niessner, and C. Haisch, “Acoustical properties of selected tissue phantom materials for ultrasound imaging,” Phys. Med. Biol. 52(20), N475–N484 (2007).
[Crossref]
[PubMed]
G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Med. Biol. 50(14), N141–N153 (2005).
[Crossref]
[PubMed]
K. Tahir and C. Dainty, “Experimental measurements of light scattering from samples with specified optical properties,” J. Opt. A, Pure Appl. Opt. 7(5), 207–214 (2005).
[Crossref]
E. S. Thiele and R. H. French, “Light-scattering properties of representative, morphological rutile,” J. Am. Ceram. Soc. 81(3), 469–479 (1998).
[Crossref]
A. H. Hielscher, S. L. Jacques, L. Wang, and F. K. Tittel, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol. 40(11), 1957–1975 (1995).
[Crossref]
[PubMed]
N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. U.S.A. 98(8), 4420–4425 (2001).
[Crossref]
[PubMed]
G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Med. Biol. 50(14), N141–N153 (2005).
[Crossref]
[PubMed]
K. Zell, J. I. Sperl, M. W. Vogel, R. Niessner, and C. Haisch, “Acoustical properties of selected tissue phantom materials for ultrasound imaging,” Phys. Med. Biol. 52(20), N475–N484 (2007).
[Crossref]
[PubMed]
A. H. Hielscher, S. L. Jacques, L. Wang, and F. K. Tittel, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol. 40(11), 1957–1975 (1995).
[Crossref]
[PubMed]
M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[Crossref]
G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Med. Biol. 50(14), N141–N153 (2005).
[Crossref]
[PubMed]
B. W. Pogue, L. Lilge, M. S. Patterson, B. C. Wilson, and T. Hasan, “Absorbed photodynamic dose from pulsed versus continuous wave light examined with tissue-simulating dosimeters,” Appl. Opt. 36(28), 7257–7269 (1997).
[Crossref]
[PubMed]
M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28(12), 2331–2336 (1989).
[Crossref]
[PubMed]
M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[Crossref]
T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47(16), 2847–2861 (2002).
[Crossref]
[PubMed]
K. Zell, J. I. Sperl, M. W. Vogel, R. Niessner, and C. Haisch, “Acoustical properties of selected tissue phantom materials for ultrasound imaging,” Phys. Med. Biol. 52(20), N475–N484 (2007).
[Crossref]
[PubMed]
T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47(16), 2847–2861 (2002).
[Crossref]
[PubMed]
T. D. Khokhlova, I. M. Pelivanov, V. V. Kozhushko, A. N. Zharinov, V. S. Solomatin, and A. A. Karabutov, “Optoacoustic imaging of absorbing objects in a turbid medium: ultimate sensitivity and application to breast cancer diagnostics,” Appl. Opt. 46(2), 262–272 (2007).
[Crossref]
[PubMed]
M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28(12), 2331–2336 (1989).
[Crossref]
[PubMed]
B. W. Pogue, L. Lilge, M. S. Patterson, B. C. Wilson, and T. Hasan, “Absorbed photodynamic dose from pulsed versus continuous wave light examined with tissue-simulating dosimeters,” Appl. Opt. 36(28), 7257–7269 (1997).
[Crossref]
[PubMed]
E. S. Thiele and R. H. French, “Light-scattering properties of representative, morphological rutile,” J. Am. Ceram. Soc. 81(3), 469–479 (1998).
[Crossref]
T. Moffitt, Y. C. Chen, and S. A. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt. 11(4), 041103 (2006).
[Crossref]
[PubMed]
M. Jaeger, L. Siegenthaler, M. Kitz, and M. Frenz, “Reduction of background in optoacoustic image sequences obtained under tissue deformation,” J. Biomed. Opt. 14(5), 054011 (2009).
[Crossref]
[PubMed]
B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
[Crossref]
[PubMed]
S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13(4), 041302 (2008).
[Crossref]
[PubMed]
E. Moreels, W. De Ceuninck, and R. Finsy, “Measurements of the Rayleigh ratio of some pure liquids at several laser light wavelengths,” J. Chem. Phys. 86(2), 618–623 (1987).
[Crossref]
K. Tahir and C. Dainty, “Experimental measurements of light scattering from samples with specified optical properties,” J. Opt. A, Pure Appl. Opt. 7(5), 207–214 (2005).
[Crossref]
A. H. Hielscher, S. L. Jacques, L. Wang, and F. K. Tittel, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol. 40(11), 1957–1975 (1995).
[Crossref]
[PubMed]
T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47(16), 2847–2861 (2002).
[Crossref]
[PubMed]
K. Zell, J. I. Sperl, M. W. Vogel, R. Niessner, and C. Haisch, “Acoustical properties of selected tissue phantom materials for ultrasound imaging,” Phys. Med. Biol. 52(20), N475–N484 (2007).
[Crossref]
[PubMed]
G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Med. Biol. 50(14), N141–N153 (2005).
[Crossref]
[PubMed]
M. Jaeger, S. Preisser, M. Kitz, D. Ferrara, S. Senegas, D. Schweizer, and M. Frenz, “Improved contrast deep optoacoustic imaging using displacement-compensated averaging: breast tumour phantom studies,” Phys. Med. Biol. 56(18), 5889–5901 (2011).
[Crossref]
[PubMed]
N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. U.S.A. 98(8), 4420–4425 (2001).
[Crossref]
[PubMed]
F. Ayers, A. Grant, F. Kuo, D. J. Cuccia, and A. J. Durkin, “Fabrication and characterization of silicone-based tissue phantoms with tunable optical properties in the visible and near infrared domain,” Proc. SPIE 6870, 687007, 687007-9 (2008).
[Crossref]
H. G. Akarçay and J. Rička, “Simulating light propagation: towards realistic tissue models,” Proc. SPIE 8088, 80880K (2011).
[Crossref]
M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[Crossref]
A. Kim and B. C. Wilson, “Measurement of ex vivo and in vivo tissue optical properties: methods and theories,” in Optical-Thermal Response of Laser-Irradiated Tissue, 2nd ed. (Wiley, Springer Netherlands, 2011), Chap. 8.
RefractiveIndex.INFO, http://refractiveindex.info/?group=CRYSTALS&material=TiO2 (retrieved Nov. 2011).
The International Association for the Properties of Water and Steam, “Release on the refractive index of ordinary water substance as a function of wavelength, temperature and pressure,” Erlangen, Germany (Sept. 1997).
J. Rička and M. Frenz, “From electrodynamics to Monte Carlo simulations,” in Optical-Thermal Response of Laser-Irradiated Tissue, 2nd ed. (Wiley, Springer Netherlands, 2011), Chap. 7.