Abstract

Zebrafish play an important role in biological and biomedical research. Traditional in vivo imaging methods for studying zebrafish larvae primarily require fluorescence labeling. In this work, relying on tissue intrinsic optical absorption contrast, we acquired high resolution label-free 3D images of zebrafish larvae by using photoacoustic microscopy (PAM) in vivo. The spatial resolution reaches several microns, allowing the study of microstructures in various living organs. We demonstrated that our method has the potential to be a powerful non-invasive imaging method for studying various small animal models, including zebrafish larvae, Caenorhabditis elegans, frogs and drosophila larvae.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. T. Shin and M. C. Fishman, “From zebrafish to human: modular medical models,” Annu. Rev. Genomics Hum. Genet.3(1), 311–340 (2002).
    [CrossRef] [PubMed]
  2. J. F. Amatruda and E. E. Patton, “Genetic models of cancer in zebrafish,” Int Rev Cell Mol Biol271, 1–34 (2008).
    [CrossRef] [PubMed]
  3. O. Bandmann and E. A. Burton, “Genetic zebrafish models of neurodegenerative diseases,” Neurobiol. Dis.40(1), 58–65 (2010).
    [CrossRef] [PubMed]
  4. O. Bandmann, L. Flinn, and H. Mortiboys, “POMD08 Zebrafish models for early onset Parkinson's disease,” J. Neurol. Neurosurg. Psychiatry81(11), e59 (2010).
    [CrossRef]
  5. C. Zanella, M. Campana, B. Rizzi, C. Melani, G. Sanguinetti, P. Bourgine, K. Mikula, N. Peyrieras, and A. Sarti, “Cells segmentation from 3-D confocal images of early zebrafish embryogenesis,” IEEE Trans. Image Process.19(3), 770–781 (2010).
    [CrossRef] [PubMed]
  6. M. Kamali, L. J. Day, D. H. Brooks, X. Zhou, and D. M. O’Malley, “Automated identification of neurons in 3D confocal datasets from zebrafish brainstem,” J. Microsc.233(1), 114–131 (2009).
    [CrossRef] [PubMed]
  7. A. M. Vogel and B. M. Weinstein, “Studying vascular development in the zebrafish,” Trends Cardiovasc. Med.10(8), 352–360 (2000).
    [CrossRef] [PubMed]
  8. A. Bassi, L. Fieramonti, C. D’Andrea, M. Mione, and G. Valentini, “In vivo label-free three-dimensional imaging of zebrafish vasculature with optical projection tomography,” J. Biomed. Opt.16(10), 100502 (2011).
    [CrossRef] [PubMed]
  9. N. V. Iftimia, D. X. Hammer, R. D. Ferguson, M. Mujat, D. Vu, and A. A. Ferrante, “Dual-beam Fourier domain optical Doppler tomography of zebrafish,” Opt. Express16(18), 13624–13636 (2008).
    [CrossRef] [PubMed]
  10. L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis.14, 2157–2170 (2008).
    [PubMed]
  11. K. Divakar Rao, P. Upadhyaya, M. Sharma, and P. K. Gupta, “Noninvasive imaging of ethanol-induced developmental defects in zebrafish embryos using optical coherence tomography,” Birth Defects Res. B Dev. Reprod. Toxicol.n/a (2011), doi:.
    [CrossRef] [PubMed]
  12. M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum.77(4), 041101 (2006).
    [CrossRef]
  13. A. Oraevsky and A. Karabutov, “Optoacoustic tomography,” in Biomedical Photonics Handbook, T. Vo-Dinh, ed. (CRC, Boca Raton, FL, 2003), 34–31.
  14. C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol.54(19), R59–R97 (2009).
    [CrossRef] [PubMed]
  15. P. Beard, “Biomedical photoacoustic imaging,” Interface Focus1(4), 602–631 (2011).
    [CrossRef]
  16. D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics3(7), 412–417 (2009).
    [CrossRef]
  17. S. Gratt, K. Passler, R. Nuster, and G. Paltauf, “Photoacoustic section imaging with an integrating cylindrical detector,” Biomed. Opt. Express2(11), 2973–2981 (2011).
    [CrossRef] [PubMed]
  18. K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett.33(9), 929–931 (2008).
    [CrossRef] [PubMed]
  19. C. Zhang, K. Maslov, and L. V. Wang, “Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo,” Opt. Lett.35(19), 3195–3197 (2010).
    [CrossRef] [PubMed]
  20. G. Ku, K. Maslov, L. Li, and L. V. Wang, “Photoacoustic microscopy with 2-microm transverse resolution,” J. Biomed. Opt.15(2), 021302 (2010).
    [CrossRef] [PubMed]
  21. S. Hu and L. V. Wang, “Photoacoustic imaging and characterization of the microvasculature,” J. Biomed. Opt.15(1), 011101 (2010).
    [CrossRef] [PubMed]
  22. S. Isogai, M. Horiguchi, and B. M. Weinstein, “The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development,” Dev. Biol.230(2), 278–301 (2001).
    [CrossRef] [PubMed]
  23. “Zebrafish Atlas,” http://zfatlas.psu.edu/ , NIH grant 5R24 RR01744, Jake Gittlen Cancer Research Foundation, and PA Tobacco Settlement Fund.
  24. L. D. Wang, K. Maslov, J. J. Yao, B. Rao, and L. V. Wang, “Fast voice-coil scanning optical-resolution photoacoustic microscopy,” Opt. Lett.36(2), 139–141 (2011).
    [CrossRef] [PubMed]
  25. S. Jiao, Z. Xie, H. F. Zhang, and C. A. Puliafito, “Simultaneous multimodal imaging with integrated photoacoustic microscopy and optical coherence tomography,” Opt. Lett.34(19), 2961–2963 (2009).
    [CrossRef] [PubMed]
  26. E. Z. Zhang, B. Povazay, J. Laufer, A. Alex, B. Hofer, B. Pedley, C. Glittenberg, B. Treeby, B. Cox, P. Beard, and W. Drexler, “Multimodal photoacoustic and optical coherence tomography scanner using an all optical detection scheme for 3D morphological skin imaging,” Biomed. Opt. Express2(8), 2202–2215 (2011).
    [CrossRef] [PubMed]

2011 (6)

A. Bassi, L. Fieramonti, C. D’Andrea, M. Mione, and G. Valentini, “In vivo label-free three-dimensional imaging of zebrafish vasculature with optical projection tomography,” J. Biomed. Opt.16(10), 100502 (2011).
[CrossRef] [PubMed]

K. Divakar Rao, P. Upadhyaya, M. Sharma, and P. K. Gupta, “Noninvasive imaging of ethanol-induced developmental defects in zebrafish embryos using optical coherence tomography,” Birth Defects Res. B Dev. Reprod. Toxicol.n/a (2011), doi:.
[CrossRef] [PubMed]

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus1(4), 602–631 (2011).
[CrossRef]

S. Gratt, K. Passler, R. Nuster, and G. Paltauf, “Photoacoustic section imaging with an integrating cylindrical detector,” Biomed. Opt. Express2(11), 2973–2981 (2011).
[CrossRef] [PubMed]

L. D. Wang, K. Maslov, J. J. Yao, B. Rao, and L. V. Wang, “Fast voice-coil scanning optical-resolution photoacoustic microscopy,” Opt. Lett.36(2), 139–141 (2011).
[CrossRef] [PubMed]

E. Z. Zhang, B. Povazay, J. Laufer, A. Alex, B. Hofer, B. Pedley, C. Glittenberg, B. Treeby, B. Cox, P. Beard, and W. Drexler, “Multimodal photoacoustic and optical coherence tomography scanner using an all optical detection scheme for 3D morphological skin imaging,” Biomed. Opt. Express2(8), 2202–2215 (2011).
[CrossRef] [PubMed]

2010 (6)

C. Zhang, K. Maslov, and L. V. Wang, “Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo,” Opt. Lett.35(19), 3195–3197 (2010).
[CrossRef] [PubMed]

G. Ku, K. Maslov, L. Li, and L. V. Wang, “Photoacoustic microscopy with 2-microm transverse resolution,” J. Biomed. Opt.15(2), 021302 (2010).
[CrossRef] [PubMed]

S. Hu and L. V. Wang, “Photoacoustic imaging and characterization of the microvasculature,” J. Biomed. Opt.15(1), 011101 (2010).
[CrossRef] [PubMed]

O. Bandmann and E. A. Burton, “Genetic zebrafish models of neurodegenerative diseases,” Neurobiol. Dis.40(1), 58–65 (2010).
[CrossRef] [PubMed]

O. Bandmann, L. Flinn, and H. Mortiboys, “POMD08 Zebrafish models for early onset Parkinson's disease,” J. Neurol. Neurosurg. Psychiatry81(11), e59 (2010).
[CrossRef]

C. Zanella, M. Campana, B. Rizzi, C. Melani, G. Sanguinetti, P. Bourgine, K. Mikula, N. Peyrieras, and A. Sarti, “Cells segmentation from 3-D confocal images of early zebrafish embryogenesis,” IEEE Trans. Image Process.19(3), 770–781 (2010).
[CrossRef] [PubMed]

2009 (4)

M. Kamali, L. J. Day, D. H. Brooks, X. Zhou, and D. M. O’Malley, “Automated identification of neurons in 3D confocal datasets from zebrafish brainstem,” J. Microsc.233(1), 114–131 (2009).
[CrossRef] [PubMed]

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics3(7), 412–417 (2009).
[CrossRef]

C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol.54(19), R59–R97 (2009).
[CrossRef] [PubMed]

S. Jiao, Z. Xie, H. F. Zhang, and C. A. Puliafito, “Simultaneous multimodal imaging with integrated photoacoustic microscopy and optical coherence tomography,” Opt. Lett.34(19), 2961–2963 (2009).
[CrossRef] [PubMed]

2008 (4)

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett.33(9), 929–931 (2008).
[CrossRef] [PubMed]

N. V. Iftimia, D. X. Hammer, R. D. Ferguson, M. Mujat, D. Vu, and A. A. Ferrante, “Dual-beam Fourier domain optical Doppler tomography of zebrafish,” Opt. Express16(18), 13624–13636 (2008).
[CrossRef] [PubMed]

L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis.14, 2157–2170 (2008).
[PubMed]

J. F. Amatruda and E. E. Patton, “Genetic models of cancer in zebrafish,” Int Rev Cell Mol Biol271, 1–34 (2008).
[CrossRef] [PubMed]

2006 (1)

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum.77(4), 041101 (2006).
[CrossRef]

2002 (1)

J. T. Shin and M. C. Fishman, “From zebrafish to human: modular medical models,” Annu. Rev. Genomics Hum. Genet.3(1), 311–340 (2002).
[CrossRef] [PubMed]

2001 (1)

S. Isogai, M. Horiguchi, and B. M. Weinstein, “The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development,” Dev. Biol.230(2), 278–301 (2001).
[CrossRef] [PubMed]

2000 (1)

A. M. Vogel and B. M. Weinstein, “Studying vascular development in the zebrafish,” Trends Cardiovasc. Med.10(8), 352–360 (2000).
[CrossRef] [PubMed]

Alex, A.

Amatruda, J. F.

J. F. Amatruda and E. E. Patton, “Genetic models of cancer in zebrafish,” Int Rev Cell Mol Biol271, 1–34 (2008).
[CrossRef] [PubMed]

Bahary, N.

L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis.14, 2157–2170 (2008).
[PubMed]

Bandmann, O.

O. Bandmann, L. Flinn, and H. Mortiboys, “POMD08 Zebrafish models for early onset Parkinson's disease,” J. Neurol. Neurosurg. Psychiatry81(11), e59 (2010).
[CrossRef]

O. Bandmann and E. A. Burton, “Genetic zebrafish models of neurodegenerative diseases,” Neurobiol. Dis.40(1), 58–65 (2010).
[CrossRef] [PubMed]

Bassi, A.

A. Bassi, L. Fieramonti, C. D’Andrea, M. Mione, and G. Valentini, “In vivo label-free three-dimensional imaging of zebrafish vasculature with optical projection tomography,” J. Biomed. Opt.16(10), 100502 (2011).
[CrossRef] [PubMed]

Beard, P.

Bourgine, P.

C. Zanella, M. Campana, B. Rizzi, C. Melani, G. Sanguinetti, P. Bourgine, K. Mikula, N. Peyrieras, and A. Sarti, “Cells segmentation from 3-D confocal images of early zebrafish embryogenesis,” IEEE Trans. Image Process.19(3), 770–781 (2010).
[CrossRef] [PubMed]

Brooks, D. H.

M. Kamali, L. J. Day, D. H. Brooks, X. Zhou, and D. M. O’Malley, “Automated identification of neurons in 3D confocal datasets from zebrafish brainstem,” J. Microsc.233(1), 114–131 (2009).
[CrossRef] [PubMed]

Burton, E. A.

O. Bandmann and E. A. Burton, “Genetic zebrafish models of neurodegenerative diseases,” Neurobiol. Dis.40(1), 58–65 (2010).
[CrossRef] [PubMed]

Campana, M.

C. Zanella, M. Campana, B. Rizzi, C. Melani, G. Sanguinetti, P. Bourgine, K. Mikula, N. Peyrieras, and A. Sarti, “Cells segmentation from 3-D confocal images of early zebrafish embryogenesis,” IEEE Trans. Image Process.19(3), 770–781 (2010).
[CrossRef] [PubMed]

Charukamnoetkanok, P.

L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis.14, 2157–2170 (2008).
[PubMed]

Cox, B.

D’Andrea, C.

A. Bassi, L. Fieramonti, C. D’Andrea, M. Mione, and G. Valentini, “In vivo label-free three-dimensional imaging of zebrafish vasculature with optical projection tomography,” J. Biomed. Opt.16(10), 100502 (2011).
[CrossRef] [PubMed]

Day, L. J.

M. Kamali, L. J. Day, D. H. Brooks, X. Zhou, and D. M. O’Malley, “Automated identification of neurons in 3D confocal datasets from zebrafish brainstem,” J. Microsc.233(1), 114–131 (2009).
[CrossRef] [PubMed]

Distel, M.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics3(7), 412–417 (2009).
[CrossRef]

Divakar Rao, K.

K. Divakar Rao, P. Upadhyaya, M. Sharma, and P. K. Gupta, “Noninvasive imaging of ethanol-induced developmental defects in zebrafish embryos using optical coherence tomography,” Birth Defects Res. B Dev. Reprod. Toxicol.n/a (2011), doi:.
[CrossRef] [PubMed]

Drexler, W.

Ferguson, R. D.

Ferrante, A. A.

Fieramonti, L.

A. Bassi, L. Fieramonti, C. D’Andrea, M. Mione, and G. Valentini, “In vivo label-free three-dimensional imaging of zebrafish vasculature with optical projection tomography,” J. Biomed. Opt.16(10), 100502 (2011).
[CrossRef] [PubMed]

Fishman, M. C.

J. T. Shin and M. C. Fishman, “From zebrafish to human: modular medical models,” Annu. Rev. Genomics Hum. Genet.3(1), 311–340 (2002).
[CrossRef] [PubMed]

Flinn, L.

O. Bandmann, L. Flinn, and H. Mortiboys, “POMD08 Zebrafish models for early onset Parkinson's disease,” J. Neurol. Neurosurg. Psychiatry81(11), e59 (2010).
[CrossRef]

Fujimoto, J. G.

L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis.14, 2157–2170 (2008).
[PubMed]

Gabriele, M. L.

L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis.14, 2157–2170 (2008).
[PubMed]

Glittenberg, C.

Gratt, S.

Gupta, P. K.

K. Divakar Rao, P. Upadhyaya, M. Sharma, and P. K. Gupta, “Noninvasive imaging of ethanol-induced developmental defects in zebrafish embryos using optical coherence tomography,” Birth Defects Res. B Dev. Reprod. Toxicol.n/a (2011), doi:.
[CrossRef] [PubMed]

Hammer, D. X.

Hofer, B.

Horiguchi, M.

S. Isogai, M. Horiguchi, and B. M. Weinstein, “The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development,” Dev. Biol.230(2), 278–301 (2001).
[CrossRef] [PubMed]

Hu, S.

Iftimia, N. V.

Ishikawa, H.

L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis.14, 2157–2170 (2008).
[PubMed]

Isogai, S.

S. Isogai, M. Horiguchi, and B. M. Weinstein, “The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development,” Dev. Biol.230(2), 278–301 (2001).
[CrossRef] [PubMed]

Jiao, S.

Kagemann, L.

L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis.14, 2157–2170 (2008).
[PubMed]

Kamali, M.

M. Kamali, L. J. Day, D. H. Brooks, X. Zhou, and D. M. O’Malley, “Automated identification of neurons in 3D confocal datasets from zebrafish brainstem,” J. Microsc.233(1), 114–131 (2009).
[CrossRef] [PubMed]

Koster, R. W.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics3(7), 412–417 (2009).
[CrossRef]

Ku, G.

G. Ku, K. Maslov, L. Li, and L. V. Wang, “Photoacoustic microscopy with 2-microm transverse resolution,” J. Biomed. Opt.15(2), 021302 (2010).
[CrossRef] [PubMed]

Laufer, J.

Li, C.

C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol.54(19), R59–R97 (2009).
[CrossRef] [PubMed]

Li, L.

G. Ku, K. Maslov, L. Li, and L. V. Wang, “Photoacoustic microscopy with 2-microm transverse resolution,” J. Biomed. Opt.15(2), 021302 (2010).
[CrossRef] [PubMed]

Ma, R.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics3(7), 412–417 (2009).
[CrossRef]

Maslov, K.

Melani, C.

C. Zanella, M. Campana, B. Rizzi, C. Melani, G. Sanguinetti, P. Bourgine, K. Mikula, N. Peyrieras, and A. Sarti, “Cells segmentation from 3-D confocal images of early zebrafish embryogenesis,” IEEE Trans. Image Process.19(3), 770–781 (2010).
[CrossRef] [PubMed]

Mikula, K.

C. Zanella, M. Campana, B. Rizzi, C. Melani, G. Sanguinetti, P. Bourgine, K. Mikula, N. Peyrieras, and A. Sarti, “Cells segmentation from 3-D confocal images of early zebrafish embryogenesis,” IEEE Trans. Image Process.19(3), 770–781 (2010).
[CrossRef] [PubMed]

Mione, M.

A. Bassi, L. Fieramonti, C. D’Andrea, M. Mione, and G. Valentini, “In vivo label-free three-dimensional imaging of zebrafish vasculature with optical projection tomography,” J. Biomed. Opt.16(10), 100502 (2011).
[CrossRef] [PubMed]

Mortiboys, H.

O. Bandmann, L. Flinn, and H. Mortiboys, “POMD08 Zebrafish models for early onset Parkinson's disease,” J. Neurol. Neurosurg. Psychiatry81(11), e59 (2010).
[CrossRef]

Mujat, M.

Ntziachristos, V.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics3(7), 412–417 (2009).
[CrossRef]

Nuster, R.

O’Malley, D. M.

M. Kamali, L. J. Day, D. H. Brooks, X. Zhou, and D. M. O’Malley, “Automated identification of neurons in 3D confocal datasets from zebrafish brainstem,” J. Microsc.233(1), 114–131 (2009).
[CrossRef] [PubMed]

Paltauf, G.

Passler, K.

Patton, E. E.

J. F. Amatruda and E. E. Patton, “Genetic models of cancer in zebrafish,” Int Rev Cell Mol Biol271, 1–34 (2008).
[CrossRef] [PubMed]

Pedley, B.

Perrimon, N.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics3(7), 412–417 (2009).
[CrossRef]

Peyrieras, N.

C. Zanella, M. Campana, B. Rizzi, C. Melani, G. Sanguinetti, P. Bourgine, K. Mikula, N. Peyrieras, and A. Sarti, “Cells segmentation from 3-D confocal images of early zebrafish embryogenesis,” IEEE Trans. Image Process.19(3), 770–781 (2010).
[CrossRef] [PubMed]

Povazay, B.

Puliafito, C. A.

Rao, B.

Razansky, D.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics3(7), 412–417 (2009).
[CrossRef]

Rizzi, B.

C. Zanella, M. Campana, B. Rizzi, C. Melani, G. Sanguinetti, P. Bourgine, K. Mikula, N. Peyrieras, and A. Sarti, “Cells segmentation from 3-D confocal images of early zebrafish embryogenesis,” IEEE Trans. Image Process.19(3), 770–781 (2010).
[CrossRef] [PubMed]

Sanguinetti, G.

C. Zanella, M. Campana, B. Rizzi, C. Melani, G. Sanguinetti, P. Bourgine, K. Mikula, N. Peyrieras, and A. Sarti, “Cells segmentation from 3-D confocal images of early zebrafish embryogenesis,” IEEE Trans. Image Process.19(3), 770–781 (2010).
[CrossRef] [PubMed]

Sarti, A.

C. Zanella, M. Campana, B. Rizzi, C. Melani, G. Sanguinetti, P. Bourgine, K. Mikula, N. Peyrieras, and A. Sarti, “Cells segmentation from 3-D confocal images of early zebrafish embryogenesis,” IEEE Trans. Image Process.19(3), 770–781 (2010).
[CrossRef] [PubMed]

Schuman, J. S.

L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis.14, 2157–2170 (2008).
[PubMed]

Sharma, M.

K. Divakar Rao, P. Upadhyaya, M. Sharma, and P. K. Gupta, “Noninvasive imaging of ethanol-induced developmental defects in zebrafish embryos using optical coherence tomography,” Birth Defects Res. B Dev. Reprod. Toxicol.n/a (2011), doi:.
[CrossRef] [PubMed]

Shin, J. T.

J. T. Shin and M. C. Fishman, “From zebrafish to human: modular medical models,” Annu. Rev. Genomics Hum. Genet.3(1), 311–340 (2002).
[CrossRef] [PubMed]

Townsend, K. A.

L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis.14, 2157–2170 (2008).
[PubMed]

Treeby, B.

Upadhyaya, P.

K. Divakar Rao, P. Upadhyaya, M. Sharma, and P. K. Gupta, “Noninvasive imaging of ethanol-induced developmental defects in zebrafish embryos using optical coherence tomography,” Birth Defects Res. B Dev. Reprod. Toxicol.n/a (2011), doi:.
[CrossRef] [PubMed]

Valentini, G.

A. Bassi, L. Fieramonti, C. D’Andrea, M. Mione, and G. Valentini, “In vivo label-free three-dimensional imaging of zebrafish vasculature with optical projection tomography,” J. Biomed. Opt.16(10), 100502 (2011).
[CrossRef] [PubMed]

Vinegoni, C.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics3(7), 412–417 (2009).
[CrossRef]

Vogel, A. M.

A. M. Vogel and B. M. Weinstein, “Studying vascular development in the zebrafish,” Trends Cardiovasc. Med.10(8), 352–360 (2000).
[CrossRef] [PubMed]

Vu, D.

Wang, L. D.

Wang, L. V.

L. D. Wang, K. Maslov, J. J. Yao, B. Rao, and L. V. Wang, “Fast voice-coil scanning optical-resolution photoacoustic microscopy,” Opt. Lett.36(2), 139–141 (2011).
[CrossRef] [PubMed]

G. Ku, K. Maslov, L. Li, and L. V. Wang, “Photoacoustic microscopy with 2-microm transverse resolution,” J. Biomed. Opt.15(2), 021302 (2010).
[CrossRef] [PubMed]

S. Hu and L. V. Wang, “Photoacoustic imaging and characterization of the microvasculature,” J. Biomed. Opt.15(1), 011101 (2010).
[CrossRef] [PubMed]

C. Zhang, K. Maslov, and L. V. Wang, “Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo,” Opt. Lett.35(19), 3195–3197 (2010).
[CrossRef] [PubMed]

C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol.54(19), R59–R97 (2009).
[CrossRef] [PubMed]

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett.33(9), 929–931 (2008).
[CrossRef] [PubMed]

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum.77(4), 041101 (2006).
[CrossRef]

Wei, X.

L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis.14, 2157–2170 (2008).
[PubMed]

Weinstein, B. M.

S. Isogai, M. Horiguchi, and B. M. Weinstein, “The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development,” Dev. Biol.230(2), 278–301 (2001).
[CrossRef] [PubMed]

A. M. Vogel and B. M. Weinstein, “Studying vascular development in the zebrafish,” Trends Cardiovasc. Med.10(8), 352–360 (2000).
[CrossRef] [PubMed]

Wollstein, G.

L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis.14, 2157–2170 (2008).
[PubMed]

Xie, Z.

Xu, M.

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum.77(4), 041101 (2006).
[CrossRef]

Yao, J. J.

Zanella, C.

C. Zanella, M. Campana, B. Rizzi, C. Melani, G. Sanguinetti, P. Bourgine, K. Mikula, N. Peyrieras, and A. Sarti, “Cells segmentation from 3-D confocal images of early zebrafish embryogenesis,” IEEE Trans. Image Process.19(3), 770–781 (2010).
[CrossRef] [PubMed]

Zhang, C.

Zhang, E. Z.

Zhang, H. F.

Zhou, X.

M. Kamali, L. J. Day, D. H. Brooks, X. Zhou, and D. M. O’Malley, “Automated identification of neurons in 3D confocal datasets from zebrafish brainstem,” J. Microsc.233(1), 114–131 (2009).
[CrossRef] [PubMed]

Zou, J.

L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis.14, 2157–2170 (2008).
[PubMed]

Annu. Rev. Genomics Hum. Genet. (1)

J. T. Shin and M. C. Fishman, “From zebrafish to human: modular medical models,” Annu. Rev. Genomics Hum. Genet.3(1), 311–340 (2002).
[CrossRef] [PubMed]

Biomed. Opt. Express (2)

Birth Defects Res. B Dev. Reprod. Toxicol. (1)

K. Divakar Rao, P. Upadhyaya, M. Sharma, and P. K. Gupta, “Noninvasive imaging of ethanol-induced developmental defects in zebrafish embryos using optical coherence tomography,” Birth Defects Res. B Dev. Reprod. Toxicol.n/a (2011), doi:.
[CrossRef] [PubMed]

Dev. Biol. (1)

S. Isogai, M. Horiguchi, and B. M. Weinstein, “The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development,” Dev. Biol.230(2), 278–301 (2001).
[CrossRef] [PubMed]

IEEE Trans. Image Process. (1)

C. Zanella, M. Campana, B. Rizzi, C. Melani, G. Sanguinetti, P. Bourgine, K. Mikula, N. Peyrieras, and A. Sarti, “Cells segmentation from 3-D confocal images of early zebrafish embryogenesis,” IEEE Trans. Image Process.19(3), 770–781 (2010).
[CrossRef] [PubMed]

Int Rev Cell Mol Biol (1)

J. F. Amatruda and E. E. Patton, “Genetic models of cancer in zebrafish,” Int Rev Cell Mol Biol271, 1–34 (2008).
[CrossRef] [PubMed]

Interface Focus (1)

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus1(4), 602–631 (2011).
[CrossRef]

J. Biomed. Opt. (3)

G. Ku, K. Maslov, L. Li, and L. V. Wang, “Photoacoustic microscopy with 2-microm transverse resolution,” J. Biomed. Opt.15(2), 021302 (2010).
[CrossRef] [PubMed]

S. Hu and L. V. Wang, “Photoacoustic imaging and characterization of the microvasculature,” J. Biomed. Opt.15(1), 011101 (2010).
[CrossRef] [PubMed]

A. Bassi, L. Fieramonti, C. D’Andrea, M. Mione, and G. Valentini, “In vivo label-free three-dimensional imaging of zebrafish vasculature with optical projection tomography,” J. Biomed. Opt.16(10), 100502 (2011).
[CrossRef] [PubMed]

J. Microsc. (1)

M. Kamali, L. J. Day, D. H. Brooks, X. Zhou, and D. M. O’Malley, “Automated identification of neurons in 3D confocal datasets from zebrafish brainstem,” J. Microsc.233(1), 114–131 (2009).
[CrossRef] [PubMed]

J. Neurol. Neurosurg. Psychiatry (1)

O. Bandmann, L. Flinn, and H. Mortiboys, “POMD08 Zebrafish models for early onset Parkinson's disease,” J. Neurol. Neurosurg. Psychiatry81(11), e59 (2010).
[CrossRef]

Mol. Vis. (1)

L. Kagemann, H. Ishikawa, J. Zou, P. Charukamnoetkanok, G. Wollstein, K. A. Townsend, M. L. Gabriele, N. Bahary, X. Wei, J. G. Fujimoto, and J. S. Schuman, “Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos,” Mol. Vis.14, 2157–2170 (2008).
[PubMed]

Nat. Photonics (1)

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics3(7), 412–417 (2009).
[CrossRef]

Neurobiol. Dis. (1)

O. Bandmann and E. A. Burton, “Genetic zebrafish models of neurodegenerative diseases,” Neurobiol. Dis.40(1), 58–65 (2010).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (4)

Phys. Med. Biol. (1)

C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol.54(19), R59–R97 (2009).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum.77(4), 041101 (2006).
[CrossRef]

Trends Cardiovasc. Med. (1)

A. M. Vogel and B. M. Weinstein, “Studying vascular development in the zebrafish,” Trends Cardiovasc. Med.10(8), 352–360 (2000).
[CrossRef] [PubMed]

Other (2)

A. Oraevsky and A. Karabutov, “Optoacoustic tomography,” in Biomedical Photonics Handbook, T. Vo-Dinh, ed. (CRC, Boca Raton, FL, 2003), 34–31.

“Zebrafish Atlas,” http://zfatlas.psu.edu/ , NIH grant 5R24 RR01744, Jake Gittlen Cancer Research Foundation, and PA Tobacco Settlement Fund.

Supplementary Material (3)

» Media 1: MPG (2406 KB)     
» Media 2: MPG (1622 KB)     
» Media 3: MPG (1104 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup. (a) System diagram; (b) photograph of the system.

Fig. 2
Fig. 2

Resolution of the imaging system by imaging of nanoparticles (diameter < 100 nm). (a) Lateral cross-section profile of a nanoparticle; (b) axial cross-section profile of a nanoparticle.

Fig. 3
Fig. 3

Imaging of zebrafish larvae in vivo. (a) Whole body MAP image of a zebrafish larva by PAM. (b) The photograph of the larva in (a) using an optical microscope. (c) A slice of a 3D image of one 3 dpf zebrafish larva by OCT (with a reproduction permission from [10]). Scale bar = 250 μm.

Fig. 4
Fig. 4

3D PAM image. (a) Imaging slices at different depths. (b) 3D image of the zebrafish larva (Media 2).

Fig. 5
Fig. 5

Imaging an eye of a 3 dpf zebrafish larva. (a) Imaging result using an optical microscope. (b) 3D image of the zebrafish larva by PAM (Media 3). (c) Demonstrated histology image of the eye of a 3 dpf zebrafish larva [23], (from http://zfatlas.psu.edu/view.php?s=494&z=2&c=1460,552&atlas=21, which is supported by NIH grant 5R24 RR01744, Jake Gittlen Cancer Research Foundation, and PA Tobacco Settlement Fund). (d) A lateral cross-section slice of the PAM 3D image in (b). The scale bar is 100 μm.

Metrics