Abstract

The structural anisotropy of biological tissues can be quantified using polarized light imaging in terms of birefringence; however, birefringence varies axially in anisotropic layered tissues. This may present ambiguity in result interpretation for techniques whose birefringence results are averaged over the sampling volume. To explore this issue, we extended the polarization sensitive Monte Carlo code to model bi-layered turbid media with varying uniaxial birefringence in the two layers. Our findings demonstrate that the asymmetry degree (ASD) between the off-diagonal Mueller matrix elements of heterogeneously birefringent samples is higher than the homogenously birefringent (uniaxial) samples with the same effective retardance (magnitude and orientation). We experimentally verified the validity of ASD as a birefringence heterogeneity measure by performing polarized light measurements of bi-layered elastic and scattering polyacrylamide phantoms.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. F. G. Wood, N. Ghosh, M. A. Wallenburg, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues,” J. Biomed. Opt.15(4), 047009 (2010).
    [CrossRef] [PubMed]
  2. M. A. Wallenburg, M. Pop, M. F. G. Wood, N. Ghosh, G. A. Wright, and I. A. Vitkin, “Comparison of optical polarimetry and diffusion tensor MR imaging for assessing myocardial anisotropy,” J. Innovative Opt. Health Sci.03(02), 109–121 (2010).
    [CrossRef]
  3. S. Alali, K. Aitken, A. Shröder, D. Bagli, and I. A. Vitkin, “Optical assessment of tissue anisotropy in ex vivo distended rat bladders,” J. Biomed. Opt.17(8), 086010 (2012).
    [CrossRef]
  4. M. F. G. Wood, N. Ghosh, E. H. Moriyama, B. C. Wilson, and I. A. Vitkin, “Proof-of-principle demonstration of a Mueller matrix decomposition method for polarized light tissue characterization in vivo,” J. Biomed. Opt.14(1), 014029 (2009).
    [CrossRef] [PubMed]
  5. T. Courtney, M. S. Sacks, J. Stankus, J. Guan, and W. R. Wagner, “Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy,” Biomaterials27(19), 3631–3638 (2006).
    [PubMed]
  6. S. Manhas, M. K. Swami, P. Buddhiwant, N. Ghosh, P. K. Gupta, and J. Singh, “Mueller matrix approach for determination of optical rotation in chiral turbid media in backscattering geometry,” Opt. Express14(1), 190–202 (2006).
    [CrossRef] [PubMed]
  7. N. Ghosh, M. F. Wood, and I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt.13(4), 044036 (2008).
    [CrossRef] [PubMed]
  8. N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J Biophotonics2(3), 145–156 (2009).
    [CrossRef] [PubMed]
  9. X. Li and G. Yao, “Mueller matrix decomposition of diffuse reflectance imaging in skeletal muscle,” Appl. Opt.48(14), 2625–2631 (2009).
    [CrossRef] [PubMed]
  10. N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Influence of the order of the constituent basis matrices on the Mueller matrix decomposition-derived polarization parameters in complex turbid media such as biological tissues,” Opt. Commun.283(6), 1200–1208 (2010).
    [CrossRef]
  11. T. W. Gilbert, S. Wognum, E. M. Joyce, D. O. Freytes, M. S. Sacks, and S. F. Badylak, “Collagen fiber alignment and biaxial mechanical behavior of porcine urinary bladder derived extracellular matrix,” Biomaterials29(36), 4775–4782 (2008).
    [CrossRef] [PubMed]
  12. K. D. Costa, E. J. Lee, and J. W. Holmes, “Creating alignment and anisotropy in engineered heart tissue: role of boundary conditions in a model three-dimensional culture system,” Tissue Eng.9(4), 567–577 (2003).
    [CrossRef] [PubMed]
  13. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett.22(12), 934–936 (1997).
    [CrossRef] [PubMed]
  14. S. Jiao and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography,” Opt. Lett.27(2), 101–103 (2002).
    [CrossRef] [PubMed]
  15. E. Götzinger, M. Pircher, B. Baumann, C. Ahlers, W. Geitzenauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Three-dimensional polarization sensitive OCT imaging and interactive display of the human retina,” Opt. Express17(5), 4151–4165 (2009).
    [CrossRef] [PubMed]
  16. S. Brasselet, “Polarization-resolved nonlinear microscopy: application to structural molecular and biological imaging,” Adv. Opt. Photonics3(3), 205–271 (2011).
    [CrossRef]
  17. S. Alali, M. Ahmad, A. Kim, N. Vurgun, M. F. G. Wood, and I. A. Vitkin, “Quantitative correlation between light depolarization and transport albedo of various porcine tissues,” J. Biomed. Opt.17(4), 045004 (2012).
    [CrossRef] [PubMed]
  18. X. Guo, M. F. G. Wood, and I. A. Vitkin, “A Monte Carlo study of penetration depth and sampling volume in of polarized light in turbid media,” Opt. Commun.281(3), 380–387 (2008).
    [CrossRef]
  19. S. Lu and R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A13(5), 1106–1113 (1996).
    [CrossRef]
  20. D. Goldstein, Polarized Light, 2nd ed. (Marcel Dekker, New York, 2003).
  21. R. A. Chipman, Handbook of Optics, 2nd ed., M. Bass, ed. (McGraw-Hill, New York, 1994)
  22. H. C. V. de Hulst, Light Scattering by Small Particles (Dover, New York (1981)
  23. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998).
  24. M. J. Raković, G. W. Kattawar, M. B. Mehruűbeoğlu, B. D. Cameron, L. V. Wang, S. Rastegar, and G. L. Coté, “Light backscattering polarization patterns from turbid media: theory and experiment,” Appl. Opt.38(15), 3399–3408 (1999).
    [CrossRef] [PubMed]
  25. A. J. Brown and Y. Xie, “Symmetry relations revealed in Mueller matrix hemispherical maps,” J. Quant. Spectrosc. Radiat. Transf.113(8), 644–651 (2012).
    [CrossRef]
  26. C. Fallet, T. Novikova, M. Foldyna, S. Manhas, B. H. Ibrahim, and A. De Martino, “Overlay measurements by Mueller polarimetry in back focal plane,” J. Micro/Nanolithogr. MEMS MOEMS10(3), 033017 (2011).
  27. X. Cheng and X. Wang, “Numerical study of the characterization of forward scattering Mueller matrix patterns of turbid media with triple forward scattering assumption,” Optik (Stuttg.)121(10), 872–875 (2010).
    [CrossRef]
  28. M. F. G. Wood, X. Guo, and I. A. Vitkin, “Polarized light propagation in multiply scattering media exhibiting both linear birefringence and optical activity: Monte Carlo model and experimental methodology,” J. Biomed. Opt.12(1), 014029 (2007).
    [CrossRef] [PubMed]
  29. N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Polarimetry in turbid, birefringent, optically active media: a Monte Carlo study of Mueller matrix decomposition in the backscattering geometry,” J. Appl. Phys.105(10), 102023 (2009).
    [CrossRef]
  30. D. Côté and I. A. Vitkin, “Robust concentration determination of optically active molecules in turbid media with validated three-dimensional polarization sensitive Monte Carlo calculations,” Opt. Express13(1), 148–163 (2005).
    [CrossRef] [PubMed]
  31. X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt.7(3), 279–290 (2002).
    [CrossRef] [PubMed]
  32. J. C. Ramella-Roman, S. A. Prahl, and S. L. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part I,” Opt. Express13(12), 4420–4438 (2005).
    [CrossRef] [PubMed]
  33. D. Côté and I. A. Vitkin, “Balanced detection for low-noise precision polarimetric measurements of optically active, multiply scattering tissue phantoms,” J. Biomed. Opt.9(1), 213–220 (2004).
    [CrossRef] [PubMed]
  34. K. C. Hadley and I. A. Vitkin, “Optical rotation and linear and circular depolarization rates in diffusively scattered light from chiral, racemic, and achiral turbid media,” J. Biomed. Opt.7(3), 291–299 (2002).
    [CrossRef] [PubMed]
  35. A. Surowiec, P. N. Shrivastava, M. Astrahan, and Z. Petrovich, “Utilization of a multilayer polyacrylamide phantom for evaluation of hyperthermia applicators,” Int. J. Hyperthermia8(6), 795–807 (1992).
    [CrossRef] [PubMed]
  36. S. Prahl, “Mie Scattering Calculator,” http://omlc.ogi.edu/calc/mie_calc.html .

2012

S. Alali, K. Aitken, A. Shröder, D. Bagli, and I. A. Vitkin, “Optical assessment of tissue anisotropy in ex vivo distended rat bladders,” J. Biomed. Opt.17(8), 086010 (2012).
[CrossRef]

A. J. Brown and Y. Xie, “Symmetry relations revealed in Mueller matrix hemispherical maps,” J. Quant. Spectrosc. Radiat. Transf.113(8), 644–651 (2012).
[CrossRef]

S. Alali, M. Ahmad, A. Kim, N. Vurgun, M. F. G. Wood, and I. A. Vitkin, “Quantitative correlation between light depolarization and transport albedo of various porcine tissues,” J. Biomed. Opt.17(4), 045004 (2012).
[CrossRef] [PubMed]

2011

C. Fallet, T. Novikova, M. Foldyna, S. Manhas, B. H. Ibrahim, and A. De Martino, “Overlay measurements by Mueller polarimetry in back focal plane,” J. Micro/Nanolithogr. MEMS MOEMS10(3), 033017 (2011).

S. Brasselet, “Polarization-resolved nonlinear microscopy: application to structural molecular and biological imaging,” Adv. Opt. Photonics3(3), 205–271 (2011).
[CrossRef]

2010

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Influence of the order of the constituent basis matrices on the Mueller matrix decomposition-derived polarization parameters in complex turbid media such as biological tissues,” Opt. Commun.283(6), 1200–1208 (2010).
[CrossRef]

M. F. G. Wood, N. Ghosh, M. A. Wallenburg, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues,” J. Biomed. Opt.15(4), 047009 (2010).
[CrossRef] [PubMed]

M. A. Wallenburg, M. Pop, M. F. G. Wood, N. Ghosh, G. A. Wright, and I. A. Vitkin, “Comparison of optical polarimetry and diffusion tensor MR imaging for assessing myocardial anisotropy,” J. Innovative Opt. Health Sci.03(02), 109–121 (2010).
[CrossRef]

X. Cheng and X. Wang, “Numerical study of the characterization of forward scattering Mueller matrix patterns of turbid media with triple forward scattering assumption,” Optik (Stuttg.)121(10), 872–875 (2010).
[CrossRef]

2009

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Polarimetry in turbid, birefringent, optically active media: a Monte Carlo study of Mueller matrix decomposition in the backscattering geometry,” J. Appl. Phys.105(10), 102023 (2009).
[CrossRef]

N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J Biophotonics2(3), 145–156 (2009).
[CrossRef] [PubMed]

X. Li and G. Yao, “Mueller matrix decomposition of diffuse reflectance imaging in skeletal muscle,” Appl. Opt.48(14), 2625–2631 (2009).
[CrossRef] [PubMed]

M. F. G. Wood, N. Ghosh, E. H. Moriyama, B. C. Wilson, and I. A. Vitkin, “Proof-of-principle demonstration of a Mueller matrix decomposition method for polarized light tissue characterization in vivo,” J. Biomed. Opt.14(1), 014029 (2009).
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, B. Baumann, C. Ahlers, W. Geitzenauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Three-dimensional polarization sensitive OCT imaging and interactive display of the human retina,” Opt. Express17(5), 4151–4165 (2009).
[CrossRef] [PubMed]

2008

N. Ghosh, M. F. Wood, and I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt.13(4), 044036 (2008).
[CrossRef] [PubMed]

T. W. Gilbert, S. Wognum, E. M. Joyce, D. O. Freytes, M. S. Sacks, and S. F. Badylak, “Collagen fiber alignment and biaxial mechanical behavior of porcine urinary bladder derived extracellular matrix,” Biomaterials29(36), 4775–4782 (2008).
[CrossRef] [PubMed]

X. Guo, M. F. G. Wood, and I. A. Vitkin, “A Monte Carlo study of penetration depth and sampling volume in of polarized light in turbid media,” Opt. Commun.281(3), 380–387 (2008).
[CrossRef]

2007

M. F. G. Wood, X. Guo, and I. A. Vitkin, “Polarized light propagation in multiply scattering media exhibiting both linear birefringence and optical activity: Monte Carlo model and experimental methodology,” J. Biomed. Opt.12(1), 014029 (2007).
[CrossRef] [PubMed]

2006

T. Courtney, M. S. Sacks, J. Stankus, J. Guan, and W. R. Wagner, “Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy,” Biomaterials27(19), 3631–3638 (2006).
[PubMed]

S. Manhas, M. K. Swami, P. Buddhiwant, N. Ghosh, P. K. Gupta, and J. Singh, “Mueller matrix approach for determination of optical rotation in chiral turbid media in backscattering geometry,” Opt. Express14(1), 190–202 (2006).
[CrossRef] [PubMed]

2005

2004

D. Côté and I. A. Vitkin, “Balanced detection for low-noise precision polarimetric measurements of optically active, multiply scattering tissue phantoms,” J. Biomed. Opt.9(1), 213–220 (2004).
[CrossRef] [PubMed]

2003

K. D. Costa, E. J. Lee, and J. W. Holmes, “Creating alignment and anisotropy in engineered heart tissue: role of boundary conditions in a model three-dimensional culture system,” Tissue Eng.9(4), 567–577 (2003).
[CrossRef] [PubMed]

2002

S. Jiao and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography,” Opt. Lett.27(2), 101–103 (2002).
[CrossRef] [PubMed]

K. C. Hadley and I. A. Vitkin, “Optical rotation and linear and circular depolarization rates in diffusively scattered light from chiral, racemic, and achiral turbid media,” J. Biomed. Opt.7(3), 291–299 (2002).
[CrossRef] [PubMed]

X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt.7(3), 279–290 (2002).
[CrossRef] [PubMed]

1999

1997

1996

1992

A. Surowiec, P. N. Shrivastava, M. Astrahan, and Z. Petrovich, “Utilization of a multilayer polyacrylamide phantom for evaluation of hyperthermia applicators,” Int. J. Hyperthermia8(6), 795–807 (1992).
[CrossRef] [PubMed]

Ahlers, C.

Ahmad, M.

S. Alali, M. Ahmad, A. Kim, N. Vurgun, M. F. G. Wood, and I. A. Vitkin, “Quantitative correlation between light depolarization and transport albedo of various porcine tissues,” J. Biomed. Opt.17(4), 045004 (2012).
[CrossRef] [PubMed]

Aitken, K.

S. Alali, K. Aitken, A. Shröder, D. Bagli, and I. A. Vitkin, “Optical assessment of tissue anisotropy in ex vivo distended rat bladders,” J. Biomed. Opt.17(8), 086010 (2012).
[CrossRef]

Alali, S.

S. Alali, K. Aitken, A. Shröder, D. Bagli, and I. A. Vitkin, “Optical assessment of tissue anisotropy in ex vivo distended rat bladders,” J. Biomed. Opt.17(8), 086010 (2012).
[CrossRef]

S. Alali, M. Ahmad, A. Kim, N. Vurgun, M. F. G. Wood, and I. A. Vitkin, “Quantitative correlation between light depolarization and transport albedo of various porcine tissues,” J. Biomed. Opt.17(4), 045004 (2012).
[CrossRef] [PubMed]

Astrahan, M.

A. Surowiec, P. N. Shrivastava, M. Astrahan, and Z. Petrovich, “Utilization of a multilayer polyacrylamide phantom for evaluation of hyperthermia applicators,” Int. J. Hyperthermia8(6), 795–807 (1992).
[CrossRef] [PubMed]

Badylak, S. F.

T. W. Gilbert, S. Wognum, E. M. Joyce, D. O. Freytes, M. S. Sacks, and S. F. Badylak, “Collagen fiber alignment and biaxial mechanical behavior of porcine urinary bladder derived extracellular matrix,” Biomaterials29(36), 4775–4782 (2008).
[CrossRef] [PubMed]

Bagli, D.

S. Alali, K. Aitken, A. Shröder, D. Bagli, and I. A. Vitkin, “Optical assessment of tissue anisotropy in ex vivo distended rat bladders,” J. Biomed. Opt.17(8), 086010 (2012).
[CrossRef]

Baumann, B.

Brasselet, S.

S. Brasselet, “Polarization-resolved nonlinear microscopy: application to structural molecular and biological imaging,” Adv. Opt. Photonics3(3), 205–271 (2011).
[CrossRef]

Brown, A. J.

A. J. Brown and Y. Xie, “Symmetry relations revealed in Mueller matrix hemispherical maps,” J. Quant. Spectrosc. Radiat. Transf.113(8), 644–651 (2012).
[CrossRef]

Buddhiwant, P.

Cameron, B. D.

Cheng, X.

X. Cheng and X. Wang, “Numerical study of the characterization of forward scattering Mueller matrix patterns of turbid media with triple forward scattering assumption,” Optik (Stuttg.)121(10), 872–875 (2010).
[CrossRef]

Chipman, R. A.

Costa, K. D.

K. D. Costa, E. J. Lee, and J. W. Holmes, “Creating alignment and anisotropy in engineered heart tissue: role of boundary conditions in a model three-dimensional culture system,” Tissue Eng.9(4), 567–577 (2003).
[CrossRef] [PubMed]

Coté, G. L.

Côté, D.

D. Côté and I. A. Vitkin, “Robust concentration determination of optically active molecules in turbid media with validated three-dimensional polarization sensitive Monte Carlo calculations,” Opt. Express13(1), 148–163 (2005).
[CrossRef] [PubMed]

D. Côté and I. A. Vitkin, “Balanced detection for low-noise precision polarimetric measurements of optically active, multiply scattering tissue phantoms,” J. Biomed. Opt.9(1), 213–220 (2004).
[CrossRef] [PubMed]

Courtney, T.

T. Courtney, M. S. Sacks, J. Stankus, J. Guan, and W. R. Wagner, “Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy,” Biomaterials27(19), 3631–3638 (2006).
[PubMed]

de Boer, J. F.

De Martino, A.

C. Fallet, T. Novikova, M. Foldyna, S. Manhas, B. H. Ibrahim, and A. De Martino, “Overlay measurements by Mueller polarimetry in back focal plane,” J. Micro/Nanolithogr. MEMS MOEMS10(3), 033017 (2011).

Fallet, C.

C. Fallet, T. Novikova, M. Foldyna, S. Manhas, B. H. Ibrahim, and A. De Martino, “Overlay measurements by Mueller polarimetry in back focal plane,” J. Micro/Nanolithogr. MEMS MOEMS10(3), 033017 (2011).

Foldyna, M.

C. Fallet, T. Novikova, M. Foldyna, S. Manhas, B. H. Ibrahim, and A. De Martino, “Overlay measurements by Mueller polarimetry in back focal plane,” J. Micro/Nanolithogr. MEMS MOEMS10(3), 033017 (2011).

Freytes, D. O.

T. W. Gilbert, S. Wognum, E. M. Joyce, D. O. Freytes, M. S. Sacks, and S. F. Badylak, “Collagen fiber alignment and biaxial mechanical behavior of porcine urinary bladder derived extracellular matrix,” Biomaterials29(36), 4775–4782 (2008).
[CrossRef] [PubMed]

Geitzenauer, W.

Ghosh, N.

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Influence of the order of the constituent basis matrices on the Mueller matrix decomposition-derived polarization parameters in complex turbid media such as biological tissues,” Opt. Commun.283(6), 1200–1208 (2010).
[CrossRef]

M. A. Wallenburg, M. Pop, M. F. G. Wood, N. Ghosh, G. A. Wright, and I. A. Vitkin, “Comparison of optical polarimetry and diffusion tensor MR imaging for assessing myocardial anisotropy,” J. Innovative Opt. Health Sci.03(02), 109–121 (2010).
[CrossRef]

M. F. G. Wood, N. Ghosh, M. A. Wallenburg, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues,” J. Biomed. Opt.15(4), 047009 (2010).
[CrossRef] [PubMed]

M. F. G. Wood, N. Ghosh, E. H. Moriyama, B. C. Wilson, and I. A. Vitkin, “Proof-of-principle demonstration of a Mueller matrix decomposition method for polarized light tissue characterization in vivo,” J. Biomed. Opt.14(1), 014029 (2009).
[CrossRef] [PubMed]

N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J Biophotonics2(3), 145–156 (2009).
[CrossRef] [PubMed]

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Polarimetry in turbid, birefringent, optically active media: a Monte Carlo study of Mueller matrix decomposition in the backscattering geometry,” J. Appl. Phys.105(10), 102023 (2009).
[CrossRef]

N. Ghosh, M. F. Wood, and I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt.13(4), 044036 (2008).
[CrossRef] [PubMed]

S. Manhas, M. K. Swami, P. Buddhiwant, N. Ghosh, P. K. Gupta, and J. Singh, “Mueller matrix approach for determination of optical rotation in chiral turbid media in backscattering geometry,” Opt. Express14(1), 190–202 (2006).
[CrossRef] [PubMed]

Gilbert, T. W.

T. W. Gilbert, S. Wognum, E. M. Joyce, D. O. Freytes, M. S. Sacks, and S. F. Badylak, “Collagen fiber alignment and biaxial mechanical behavior of porcine urinary bladder derived extracellular matrix,” Biomaterials29(36), 4775–4782 (2008).
[CrossRef] [PubMed]

Götzinger, E.

Guan, J.

T. Courtney, M. S. Sacks, J. Stankus, J. Guan, and W. R. Wagner, “Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy,” Biomaterials27(19), 3631–3638 (2006).
[PubMed]

Guo, X.

X. Guo, M. F. G. Wood, and I. A. Vitkin, “A Monte Carlo study of penetration depth and sampling volume in of polarized light in turbid media,” Opt. Commun.281(3), 380–387 (2008).
[CrossRef]

M. F. G. Wood, X. Guo, and I. A. Vitkin, “Polarized light propagation in multiply scattering media exhibiting both linear birefringence and optical activity: Monte Carlo model and experimental methodology,” J. Biomed. Opt.12(1), 014029 (2007).
[CrossRef] [PubMed]

Gupta, P. K.

Hadley, K. C.

K. C. Hadley and I. A. Vitkin, “Optical rotation and linear and circular depolarization rates in diffusively scattered light from chiral, racemic, and achiral turbid media,” J. Biomed. Opt.7(3), 291–299 (2002).
[CrossRef] [PubMed]

Hitzenberger, C. K.

Holmes, J. W.

K. D. Costa, E. J. Lee, and J. W. Holmes, “Creating alignment and anisotropy in engineered heart tissue: role of boundary conditions in a model three-dimensional culture system,” Tissue Eng.9(4), 567–577 (2003).
[CrossRef] [PubMed]

Ibrahim, B. H.

C. Fallet, T. Novikova, M. Foldyna, S. Manhas, B. H. Ibrahim, and A. De Martino, “Overlay measurements by Mueller polarimetry in back focal plane,” J. Micro/Nanolithogr. MEMS MOEMS10(3), 033017 (2011).

Jacques, S. L.

Jiao, S.

Joyce, E. M.

T. W. Gilbert, S. Wognum, E. M. Joyce, D. O. Freytes, M. S. Sacks, and S. F. Badylak, “Collagen fiber alignment and biaxial mechanical behavior of porcine urinary bladder derived extracellular matrix,” Biomaterials29(36), 4775–4782 (2008).
[CrossRef] [PubMed]

Kattawar, G. W.

Kim, A.

S. Alali, M. Ahmad, A. Kim, N. Vurgun, M. F. G. Wood, and I. A. Vitkin, “Quantitative correlation between light depolarization and transport albedo of various porcine tissues,” J. Biomed. Opt.17(4), 045004 (2012).
[CrossRef] [PubMed]

Lee, E. J.

K. D. Costa, E. J. Lee, and J. W. Holmes, “Creating alignment and anisotropy in engineered heart tissue: role of boundary conditions in a model three-dimensional culture system,” Tissue Eng.9(4), 567–577 (2003).
[CrossRef] [PubMed]

Li, R. K.

M. F. G. Wood, N. Ghosh, M. A. Wallenburg, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues,” J. Biomed. Opt.15(4), 047009 (2010).
[CrossRef] [PubMed]

N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J Biophotonics2(3), 145–156 (2009).
[CrossRef] [PubMed]

Li, S. H.

M. F. G. Wood, N. Ghosh, M. A. Wallenburg, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues,” J. Biomed. Opt.15(4), 047009 (2010).
[CrossRef] [PubMed]

N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J Biophotonics2(3), 145–156 (2009).
[CrossRef] [PubMed]

Li, X.

Lu, S.

Manhas, S.

C. Fallet, T. Novikova, M. Foldyna, S. Manhas, B. H. Ibrahim, and A. De Martino, “Overlay measurements by Mueller polarimetry in back focal plane,” J. Micro/Nanolithogr. MEMS MOEMS10(3), 033017 (2011).

S. Manhas, M. K. Swami, P. Buddhiwant, N. Ghosh, P. K. Gupta, and J. Singh, “Mueller matrix approach for determination of optical rotation in chiral turbid media in backscattering geometry,” Opt. Express14(1), 190–202 (2006).
[CrossRef] [PubMed]

Mehruubeoglu, M. B.

Milner, T. E.

Moriyama, E. H.

M. F. G. Wood, N. Ghosh, E. H. Moriyama, B. C. Wilson, and I. A. Vitkin, “Proof-of-principle demonstration of a Mueller matrix decomposition method for polarized light tissue characterization in vivo,” J. Biomed. Opt.14(1), 014029 (2009).
[CrossRef] [PubMed]

Nelson, J. S.

Novikova, T.

C. Fallet, T. Novikova, M. Foldyna, S. Manhas, B. H. Ibrahim, and A. De Martino, “Overlay measurements by Mueller polarimetry in back focal plane,” J. Micro/Nanolithogr. MEMS MOEMS10(3), 033017 (2011).

Petrovich, Z.

A. Surowiec, P. N. Shrivastava, M. Astrahan, and Z. Petrovich, “Utilization of a multilayer polyacrylamide phantom for evaluation of hyperthermia applicators,” Int. J. Hyperthermia8(6), 795–807 (1992).
[CrossRef] [PubMed]

Pircher, M.

Pop, M.

M. A. Wallenburg, M. Pop, M. F. G. Wood, N. Ghosh, G. A. Wright, and I. A. Vitkin, “Comparison of optical polarimetry and diffusion tensor MR imaging for assessing myocardial anisotropy,” J. Innovative Opt. Health Sci.03(02), 109–121 (2010).
[CrossRef]

Prahl, S. A.

Rakovic, M. J.

Ramella-Roman, J. C.

Rastegar, S.

Sacks, M. S.

T. W. Gilbert, S. Wognum, E. M. Joyce, D. O. Freytes, M. S. Sacks, and S. F. Badylak, “Collagen fiber alignment and biaxial mechanical behavior of porcine urinary bladder derived extracellular matrix,” Biomaterials29(36), 4775–4782 (2008).
[CrossRef] [PubMed]

T. Courtney, M. S. Sacks, J. Stankus, J. Guan, and W. R. Wagner, “Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy,” Biomaterials27(19), 3631–3638 (2006).
[PubMed]

Schmidt-Erfurth, U.

Shrivastava, P. N.

A. Surowiec, P. N. Shrivastava, M. Astrahan, and Z. Petrovich, “Utilization of a multilayer polyacrylamide phantom for evaluation of hyperthermia applicators,” Int. J. Hyperthermia8(6), 795–807 (1992).
[CrossRef] [PubMed]

Shröder, A.

S. Alali, K. Aitken, A. Shröder, D. Bagli, and I. A. Vitkin, “Optical assessment of tissue anisotropy in ex vivo distended rat bladders,” J. Biomed. Opt.17(8), 086010 (2012).
[CrossRef]

Singh, J.

Stankus, J.

T. Courtney, M. S. Sacks, J. Stankus, J. Guan, and W. R. Wagner, “Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy,” Biomaterials27(19), 3631–3638 (2006).
[PubMed]

Surowiec, A.

A. Surowiec, P. N. Shrivastava, M. Astrahan, and Z. Petrovich, “Utilization of a multilayer polyacrylamide phantom for evaluation of hyperthermia applicators,” Int. J. Hyperthermia8(6), 795–807 (1992).
[CrossRef] [PubMed]

Swami, M. K.

van Gemert, M. J. C.

Vitkin, I. A.

S. Alali, K. Aitken, A. Shröder, D. Bagli, and I. A. Vitkin, “Optical assessment of tissue anisotropy in ex vivo distended rat bladders,” J. Biomed. Opt.17(8), 086010 (2012).
[CrossRef]

S. Alali, M. Ahmad, A. Kim, N. Vurgun, M. F. G. Wood, and I. A. Vitkin, “Quantitative correlation between light depolarization and transport albedo of various porcine tissues,” J. Biomed. Opt.17(4), 045004 (2012).
[CrossRef] [PubMed]

M. A. Wallenburg, M. Pop, M. F. G. Wood, N. Ghosh, G. A. Wright, and I. A. Vitkin, “Comparison of optical polarimetry and diffusion tensor MR imaging for assessing myocardial anisotropy,” J. Innovative Opt. Health Sci.03(02), 109–121 (2010).
[CrossRef]

M. F. G. Wood, N. Ghosh, M. A. Wallenburg, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues,” J. Biomed. Opt.15(4), 047009 (2010).
[CrossRef] [PubMed]

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Influence of the order of the constituent basis matrices on the Mueller matrix decomposition-derived polarization parameters in complex turbid media such as biological tissues,” Opt. Commun.283(6), 1200–1208 (2010).
[CrossRef]

N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J Biophotonics2(3), 145–156 (2009).
[CrossRef] [PubMed]

M. F. G. Wood, N. Ghosh, E. H. Moriyama, B. C. Wilson, and I. A. Vitkin, “Proof-of-principle demonstration of a Mueller matrix decomposition method for polarized light tissue characterization in vivo,” J. Biomed. Opt.14(1), 014029 (2009).
[CrossRef] [PubMed]

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Polarimetry in turbid, birefringent, optically active media: a Monte Carlo study of Mueller matrix decomposition in the backscattering geometry,” J. Appl. Phys.105(10), 102023 (2009).
[CrossRef]

X. Guo, M. F. G. Wood, and I. A. Vitkin, “A Monte Carlo study of penetration depth and sampling volume in of polarized light in turbid media,” Opt. Commun.281(3), 380–387 (2008).
[CrossRef]

N. Ghosh, M. F. Wood, and I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt.13(4), 044036 (2008).
[CrossRef] [PubMed]

M. F. G. Wood, X. Guo, and I. A. Vitkin, “Polarized light propagation in multiply scattering media exhibiting both linear birefringence and optical activity: Monte Carlo model and experimental methodology,” J. Biomed. Opt.12(1), 014029 (2007).
[CrossRef] [PubMed]

D. Côté and I. A. Vitkin, “Robust concentration determination of optically active molecules in turbid media with validated three-dimensional polarization sensitive Monte Carlo calculations,” Opt. Express13(1), 148–163 (2005).
[CrossRef] [PubMed]

D. Côté and I. A. Vitkin, “Balanced detection for low-noise precision polarimetric measurements of optically active, multiply scattering tissue phantoms,” J. Biomed. Opt.9(1), 213–220 (2004).
[CrossRef] [PubMed]

K. C. Hadley and I. A. Vitkin, “Optical rotation and linear and circular depolarization rates in diffusively scattered light from chiral, racemic, and achiral turbid media,” J. Biomed. Opt.7(3), 291–299 (2002).
[CrossRef] [PubMed]

Vurgun, N.

S. Alali, M. Ahmad, A. Kim, N. Vurgun, M. F. G. Wood, and I. A. Vitkin, “Quantitative correlation between light depolarization and transport albedo of various porcine tissues,” J. Biomed. Opt.17(4), 045004 (2012).
[CrossRef] [PubMed]

Wagner, W. R.

T. Courtney, M. S. Sacks, J. Stankus, J. Guan, and W. R. Wagner, “Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy,” Biomaterials27(19), 3631–3638 (2006).
[PubMed]

Wallenburg, M. A.

M. A. Wallenburg, M. Pop, M. F. G. Wood, N. Ghosh, G. A. Wright, and I. A. Vitkin, “Comparison of optical polarimetry and diffusion tensor MR imaging for assessing myocardial anisotropy,” J. Innovative Opt. Health Sci.03(02), 109–121 (2010).
[CrossRef]

M. F. G. Wood, N. Ghosh, M. A. Wallenburg, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues,” J. Biomed. Opt.15(4), 047009 (2010).
[CrossRef] [PubMed]

Wang, L. V.

Wang, X.

X. Cheng and X. Wang, “Numerical study of the characterization of forward scattering Mueller matrix patterns of turbid media with triple forward scattering assumption,” Optik (Stuttg.)121(10), 872–875 (2010).
[CrossRef]

X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt.7(3), 279–290 (2002).
[CrossRef] [PubMed]

Weisel, R. D.

M. F. G. Wood, N. Ghosh, M. A. Wallenburg, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues,” J. Biomed. Opt.15(4), 047009 (2010).
[CrossRef] [PubMed]

N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J Biophotonics2(3), 145–156 (2009).
[CrossRef] [PubMed]

Wilson, B. C.

M. F. G. Wood, N. Ghosh, M. A. Wallenburg, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues,” J. Biomed. Opt.15(4), 047009 (2010).
[CrossRef] [PubMed]

M. F. G. Wood, N. Ghosh, E. H. Moriyama, B. C. Wilson, and I. A. Vitkin, “Proof-of-principle demonstration of a Mueller matrix decomposition method for polarized light tissue characterization in vivo,” J. Biomed. Opt.14(1), 014029 (2009).
[CrossRef] [PubMed]

N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J Biophotonics2(3), 145–156 (2009).
[CrossRef] [PubMed]

Wognum, S.

T. W. Gilbert, S. Wognum, E. M. Joyce, D. O. Freytes, M. S. Sacks, and S. F. Badylak, “Collagen fiber alignment and biaxial mechanical behavior of porcine urinary bladder derived extracellular matrix,” Biomaterials29(36), 4775–4782 (2008).
[CrossRef] [PubMed]

Wood, M. F.

N. Ghosh, M. F. Wood, and I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt.13(4), 044036 (2008).
[CrossRef] [PubMed]

Wood, M. F. G.

S. Alali, M. Ahmad, A. Kim, N. Vurgun, M. F. G. Wood, and I. A. Vitkin, “Quantitative correlation between light depolarization and transport albedo of various porcine tissues,” J. Biomed. Opt.17(4), 045004 (2012).
[CrossRef] [PubMed]

M. A. Wallenburg, M. Pop, M. F. G. Wood, N. Ghosh, G. A. Wright, and I. A. Vitkin, “Comparison of optical polarimetry and diffusion tensor MR imaging for assessing myocardial anisotropy,” J. Innovative Opt. Health Sci.03(02), 109–121 (2010).
[CrossRef]

M. F. G. Wood, N. Ghosh, M. A. Wallenburg, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues,” J. Biomed. Opt.15(4), 047009 (2010).
[CrossRef] [PubMed]

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Influence of the order of the constituent basis matrices on the Mueller matrix decomposition-derived polarization parameters in complex turbid media such as biological tissues,” Opt. Commun.283(6), 1200–1208 (2010).
[CrossRef]

N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J Biophotonics2(3), 145–156 (2009).
[CrossRef] [PubMed]

M. F. G. Wood, N. Ghosh, E. H. Moriyama, B. C. Wilson, and I. A. Vitkin, “Proof-of-principle demonstration of a Mueller matrix decomposition method for polarized light tissue characterization in vivo,” J. Biomed. Opt.14(1), 014029 (2009).
[CrossRef] [PubMed]

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Polarimetry in turbid, birefringent, optically active media: a Monte Carlo study of Mueller matrix decomposition in the backscattering geometry,” J. Appl. Phys.105(10), 102023 (2009).
[CrossRef]

X. Guo, M. F. G. Wood, and I. A. Vitkin, “A Monte Carlo study of penetration depth and sampling volume in of polarized light in turbid media,” Opt. Commun.281(3), 380–387 (2008).
[CrossRef]

M. F. G. Wood, X. Guo, and I. A. Vitkin, “Polarized light propagation in multiply scattering media exhibiting both linear birefringence and optical activity: Monte Carlo model and experimental methodology,” J. Biomed. Opt.12(1), 014029 (2007).
[CrossRef] [PubMed]

Wright, G. A.

M. A. Wallenburg, M. Pop, M. F. G. Wood, N. Ghosh, G. A. Wright, and I. A. Vitkin, “Comparison of optical polarimetry and diffusion tensor MR imaging for assessing myocardial anisotropy,” J. Innovative Opt. Health Sci.03(02), 109–121 (2010).
[CrossRef]

Xie, Y.

A. J. Brown and Y. Xie, “Symmetry relations revealed in Mueller matrix hemispherical maps,” J. Quant. Spectrosc. Radiat. Transf.113(8), 644–651 (2012).
[CrossRef]

Yao, G.

Adv. Opt. Photonics

S. Brasselet, “Polarization-resolved nonlinear microscopy: application to structural molecular and biological imaging,” Adv. Opt. Photonics3(3), 205–271 (2011).
[CrossRef]

Appl. Opt.

Biomaterials

T. W. Gilbert, S. Wognum, E. M. Joyce, D. O. Freytes, M. S. Sacks, and S. F. Badylak, “Collagen fiber alignment and biaxial mechanical behavior of porcine urinary bladder derived extracellular matrix,” Biomaterials29(36), 4775–4782 (2008).
[CrossRef] [PubMed]

T. Courtney, M. S. Sacks, J. Stankus, J. Guan, and W. R. Wagner, “Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy,” Biomaterials27(19), 3631–3638 (2006).
[PubMed]

Int. J. Hyperthermia

A. Surowiec, P. N. Shrivastava, M. Astrahan, and Z. Petrovich, “Utilization of a multilayer polyacrylamide phantom for evaluation of hyperthermia applicators,” Int. J. Hyperthermia8(6), 795–807 (1992).
[CrossRef] [PubMed]

J Biophotonics

N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J Biophotonics2(3), 145–156 (2009).
[CrossRef] [PubMed]

J. Appl. Phys.

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Polarimetry in turbid, birefringent, optically active media: a Monte Carlo study of Mueller matrix decomposition in the backscattering geometry,” J. Appl. Phys.105(10), 102023 (2009).
[CrossRef]

J. Biomed. Opt.

M. F. G. Wood, X. Guo, and I. A. Vitkin, “Polarized light propagation in multiply scattering media exhibiting both linear birefringence and optical activity: Monte Carlo model and experimental methodology,” J. Biomed. Opt.12(1), 014029 (2007).
[CrossRef] [PubMed]

X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt.7(3), 279–290 (2002).
[CrossRef] [PubMed]

D. Côté and I. A. Vitkin, “Balanced detection for low-noise precision polarimetric measurements of optically active, multiply scattering tissue phantoms,” J. Biomed. Opt.9(1), 213–220 (2004).
[CrossRef] [PubMed]

K. C. Hadley and I. A. Vitkin, “Optical rotation and linear and circular depolarization rates in diffusively scattered light from chiral, racemic, and achiral turbid media,” J. Biomed. Opt.7(3), 291–299 (2002).
[CrossRef] [PubMed]

N. Ghosh, M. F. Wood, and I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt.13(4), 044036 (2008).
[CrossRef] [PubMed]

M. F. G. Wood, N. Ghosh, M. A. Wallenburg, S. H. Li, R. D. Weisel, B. C. Wilson, R. K. Li, and I. A. Vitkin, “Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues,” J. Biomed. Opt.15(4), 047009 (2010).
[CrossRef] [PubMed]

S. Alali, K. Aitken, A. Shröder, D. Bagli, and I. A. Vitkin, “Optical assessment of tissue anisotropy in ex vivo distended rat bladders,” J. Biomed. Opt.17(8), 086010 (2012).
[CrossRef]

M. F. G. Wood, N. Ghosh, E. H. Moriyama, B. C. Wilson, and I. A. Vitkin, “Proof-of-principle demonstration of a Mueller matrix decomposition method for polarized light tissue characterization in vivo,” J. Biomed. Opt.14(1), 014029 (2009).
[CrossRef] [PubMed]

S. Alali, M. Ahmad, A. Kim, N. Vurgun, M. F. G. Wood, and I. A. Vitkin, “Quantitative correlation between light depolarization and transport albedo of various porcine tissues,” J. Biomed. Opt.17(4), 045004 (2012).
[CrossRef] [PubMed]

J. Innovative Opt. Health Sci.

M. A. Wallenburg, M. Pop, M. F. G. Wood, N. Ghosh, G. A. Wright, and I. A. Vitkin, “Comparison of optical polarimetry and diffusion tensor MR imaging for assessing myocardial anisotropy,” J. Innovative Opt. Health Sci.03(02), 109–121 (2010).
[CrossRef]

J. Micro/Nanolithogr. MEMS MOEMS

C. Fallet, T. Novikova, M. Foldyna, S. Manhas, B. H. Ibrahim, and A. De Martino, “Overlay measurements by Mueller polarimetry in back focal plane,” J. Micro/Nanolithogr. MEMS MOEMS10(3), 033017 (2011).

J. Opt. Soc. Am. A

J. Quant. Spectrosc. Radiat. Transf.

A. J. Brown and Y. Xie, “Symmetry relations revealed in Mueller matrix hemispherical maps,” J. Quant. Spectrosc. Radiat. Transf.113(8), 644–651 (2012).
[CrossRef]

Opt. Commun.

X. Guo, M. F. G. Wood, and I. A. Vitkin, “A Monte Carlo study of penetration depth and sampling volume in of polarized light in turbid media,” Opt. Commun.281(3), 380–387 (2008).
[CrossRef]

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Influence of the order of the constituent basis matrices on the Mueller matrix decomposition-derived polarization parameters in complex turbid media such as biological tissues,” Opt. Commun.283(6), 1200–1208 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Optik (Stuttg.)

X. Cheng and X. Wang, “Numerical study of the characterization of forward scattering Mueller matrix patterns of turbid media with triple forward scattering assumption,” Optik (Stuttg.)121(10), 872–875 (2010).
[CrossRef]

Tissue Eng.

K. D. Costa, E. J. Lee, and J. W. Holmes, “Creating alignment and anisotropy in engineered heart tissue: role of boundary conditions in a model three-dimensional culture system,” Tissue Eng.9(4), 567–577 (2003).
[CrossRef] [PubMed]

Other

D. Goldstein, Polarized Light, 2nd ed. (Marcel Dekker, New York, 2003).

R. A. Chipman, Handbook of Optics, 2nd ed., M. Bass, ed. (McGraw-Hill, New York, 1994)

H. C. V. de Hulst, Light Scattering by Small Particles (Dover, New York (1981)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998).

S. Prahl, “Mie Scattering Calculator,” http://omlc.ogi.edu/calc/mie_calc.html .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Simulation geometry in PolMC and its implementation for a 2-layer turbid (in)homogeneously birefringent media. (a) The problem geometry for simulating a box of homogenous birefringent (uniaxial) turbid media in PolMC. Anisotropy axis is shown by an arrow at an angle θ from x axis. (b) Monte Carlo calculation steps of Mueller matrix M(x,y). Mj is the Mueller matrix between two scattering events. Mk is the Mueller matrix of each trajectory k. (c) The problem’s geometry and reference frame in Eq. (14), because the transmission Mueller matrix is the same in both (a) and (c), Eq. (14) can be rewritten as Eq. (15). (d) Bi-layered anisotropic media simulated in PolMC; both layers have the same thickness and same birefringence magnitude but different orientations relative to each other.

Fig. 2
Fig. 2

Simulation results of extended PolMC. Images of the Mueller matrices’ off-diagonal elements (normalized to M11) of samples I, II, and III and their equivalent homogenous samples which result in the same value of effective retardance magnitude and orientation. The color bar shows the relative values of the element in x and y direction. The scale bar is 2 cm. Thickness of all the layers is 1 cm and the media’s scattering coefficient is 6 cm−1. Anisotropy properties of the samples can be found in Tables 1 and 2.

Fig. 3
Fig. 3

Experimental set up for heterogeneous anisotropy test. (a) Custom made gel puller with the phantom inside it; the anisotropy axis is in the pulling direction. (b) Heterogeneously birefringent bi-layered phantoms made from two phantoms, each in a gel puller, with different orientation labeled by yellow arrows.

Fig. 4
Fig. 4

Mueller matrix elements obtained from polarized light imaging experiment. Experimental images of the Mueller matrix’s off-diagonal elements (normalized to M11) of sample II and its EH. The color shows the relative values of the element in x and y direction. The images were filtered using intensity threshold filter to highlight the higher SNR regions and therefore the images are comparable to the central part of the PolMC predictions in the middle row in Fig. 2. The scale is 2 cm. Thickness of all the layers is 1 cm and the media’s scattering coefficient is 6 cm−1. Anisotropy properties of the samples can be found in Table 4.

Tables (4)

Tables Icon

Table 1 Birefringence magnitude and orientation in each layer of the heterogeneous samples and the bi-layered sample’s effective retardance magnitude and orientation calculated from polar decomposition

Tables Icon

Table 2 Birefringence magnitude and orientation in each layer of the equivalent homogenous samples and the bi-layered sample’s effective retardance magnitude and orientation calculated from polar decomposition

Tables Icon

Table 3 Asymmetry degrees of the axially heterogeneous samples and their EH counterparts

Tables Icon

Table 4 Anisotropy properties of the layers in of the samples heterogeneous and its EH polyacrylamide phantoms, their effective values of retardance and slow axes and their ASD

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

M= M Δ M R M D
δ= cos 1 {[ ( M R (2,2)+ M R (3,3)) 2 + ( M R (3,2) M R (2,3) 2 ] 1/2 1}
θ=0.5 tan 1 ( M LR (3,4) M LR (4,3) M LR (4,2) M LR (2,4) )
M(x,y)= k M k (x,y)
M k (x,y){ j=1 N j M j ( r j , ξ j , ϕ j )} | (x,y)
M j =R( β j ) M δ ( g j )R( β j )R( ζ j ) M s ( ψ j )R( ζ j )
M δ ( g j )=[ 1 0 0 0 0 1 0 0 0 0 cos g j sin g j 0 0 sin g j cos g j ]
Δn( φ j )=n(φ) n o = n o n e ( n e 2 cos 2 φ+ n o 2 sin 2 φ) 1/2
R(α)=[ 1 0 0 0 0 cos2α sin2α 0 0 sin2α cos2α 0 0 0 0 1 ]
M s ( ψ j )=[ a( ψ j ) b( ψ j ) 0 0 b( ψ j ) a( ψ j ) 0 0 0 0 c( ψ j ) d( ψ j ) 0 0 d( ψ j ) c( ψ j ) ]
P=diag(1,1,1,1)
[R( ζ j ) M s ( ψ j )R( ζ j )] t =P[R( ζ j ) M s ( ψ j )R( ζ j )]P
[R( β j ) M δ ( g j )R( β j )] t =P[R( β j ) M δ ( g j )R( β j )]P
M j t =P[R( ζ j ) M s ( ψ j )R( ζ j )][R( β j ) M δ ( g j )R( β j )]P
M j t =P M j P
M k t = j= N j 1 M j t =P( j= N j 1 M j )P
M k t =P( j=1 N j M j )P=P M k P
M K =[ M k11 M k12 M k13 M k14 M k21 M k22 M k23 M k24 M k31 M k32 M k33 M k34 M k41 M k42 M k43 M k44 ]=[ M k 11 M k12 M k13 M k14 M k12 M k22 M k23 M k24 M k13 M k 23 M k33 M k34 M k14 M k24 M k34 M k44 ]
ASD= l | AS D l | , l=1,2,3
AS D 1 = i,j m 23 ( x i , y j ) max(| m 23 ( x i , y j ) |) m 32 ( x i , y j ) max(| m 32 ( x i , y j ) |) , i,j=1,..,N
AS D 2 = i,j m 24 ( x i , y j ) max(| m 24 ( x i , y j ) |) + m 42 ( x i , y j ) max(| m 42 ( x i , y j ) |) , i,j=1,..,N
AS D 3 = i,j m 43 ( x i , y j ) max(| m 43 ( x i , y j ) |) + m 34 ( x i , y j ) max(| m 34 ( x i , y j ) |) , i,j=1,..,N

Metrics