F. Luisier, T. Blu, and M. Unser, “Image denoising in mixed Poisson-Gaussian noise,” IEEE Trans. Image Process.20(3), 696–708 (2011).

[CrossRef]
[PubMed]

F. Luisier, C. Vonesch, T. Blu, and M. Unser, “Fast interscale wavelet denoising of Poisson-corrupted images,” Signal Process.90(2), 415–427 (2010).

[CrossRef]

A. Salih Husain and S. Aymen Dawood, “Image compression based on 2D dual tree complex wavelet transform,” Eng. Technol. J.28, 1290–1305 (2010).

H. M. Salinas and D. C. Fernández, “Comparison of PDE-based nonlinear diffusion approaches for image enhancement and denoising in optical coherence tomography,” IEEE Trans. Med. Imaging26(6), 761–771 (2007).

[CrossRef]
[PubMed]

C. Vonesch, F. Aguet, J. L. Vonesch, and M. Unser, “The colored revolution of bioimaging,” IEEE Signal Process. Mag.23(3), 20–31 (2006).

[CrossRef]

I. W. Selesnick, R. G. Baraniuk, and N. C. Kingsbury, “The dual-tree complex wavelet transform,” IEEE Signal Process. Mag.22(6), 123–151 (2005).

[CrossRef]

P. Fryzlewicz and G. P. Nason, “A Haar-Fisz algorithm for Poisson intensity estimation,” J. Comput. Graph. Statist.13(3), 621–638 (2004).

[CrossRef]

D. Donoho, “De-noising by soft-thresholding,” IEEE Trans. Inf. Theory41(3), 613–627 (1995).

[CrossRef]

F. J. Anscombe, “The transformation of Poisson, binomial and negative-binomial data,” Biometrika35, 246–254 (1948).

C. Vonesch, F. Aguet, J. L. Vonesch, and M. Unser, “The colored revolution of bioimaging,” IEEE Signal Process. Mag.23(3), 20–31 (2006).

[CrossRef]

F. J. Anscombe, “The transformation of Poisson, binomial and negative-binomial data,” Biometrika35, 246–254 (1948).

A. Salih Husain and S. Aymen Dawood, “Image compression based on 2D dual tree complex wavelet transform,” Eng. Technol. J.28, 1290–1305 (2010).

I. W. Selesnick, R. G. Baraniuk, and N. C. Kingsbury, “The dual-tree complex wavelet transform,” IEEE Signal Process. Mag.22(6), 123–151 (2005).

[CrossRef]

F. Luisier, T. Blu, and M. Unser, “Image denoising in mixed Poisson-Gaussian noise,” IEEE Trans. Image Process.20(3), 696–708 (2011).

[CrossRef]
[PubMed]

F. Luisier, C. Vonesch, T. Blu, and M. Unser, “Fast interscale wavelet denoising of Poisson-corrupted images,” Signal Process.90(2), 415–427 (2010).

[CrossRef]

D. Donoho, “De-noising by soft-thresholding,” IEEE Trans. Inf. Theory41(3), 613–627 (1995).

[CrossRef]

H. M. Salinas and D. C. Fernández, “Comparison of PDE-based nonlinear diffusion approaches for image enhancement and denoising in optical coherence tomography,” IEEE Trans. Med. Imaging26(6), 761–771 (2007).

[CrossRef]
[PubMed]

P. Fryzlewicz and G. P. Nason, “A Haar-Fisz algorithm for Poisson intensity estimation,” J. Comput. Graph. Statist.13(3), 621–638 (2004).

[CrossRef]

I. W. Selesnick, R. G. Baraniuk, and N. C. Kingsbury, “The dual-tree complex wavelet transform,” IEEE Signal Process. Mag.22(6), 123–151 (2005).

[CrossRef]

F. Luisier, T. Blu, and M. Unser, “Image denoising in mixed Poisson-Gaussian noise,” IEEE Trans. Image Process.20(3), 696–708 (2011).

[CrossRef]
[PubMed]

F. Luisier, C. Vonesch, T. Blu, and M. Unser, “Fast interscale wavelet denoising of Poisson-corrupted images,” Signal Process.90(2), 415–427 (2010).

[CrossRef]

P. Fryzlewicz and G. P. Nason, “A Haar-Fisz algorithm for Poisson intensity estimation,” J. Comput. Graph. Statist.13(3), 621–638 (2004).

[CrossRef]

A. Salih Husain and S. Aymen Dawood, “Image compression based on 2D dual tree complex wavelet transform,” Eng. Technol. J.28, 1290–1305 (2010).

H. M. Salinas and D. C. Fernández, “Comparison of PDE-based nonlinear diffusion approaches for image enhancement and denoising in optical coherence tomography,” IEEE Trans. Med. Imaging26(6), 761–771 (2007).

[CrossRef]
[PubMed]

I. W. Selesnick, R. G. Baraniuk, and N. C. Kingsbury, “The dual-tree complex wavelet transform,” IEEE Signal Process. Mag.22(6), 123–151 (2005).

[CrossRef]

F. Luisier, T. Blu, and M. Unser, “Image denoising in mixed Poisson-Gaussian noise,” IEEE Trans. Image Process.20(3), 696–708 (2011).

[CrossRef]
[PubMed]

F. Luisier, C. Vonesch, T. Blu, and M. Unser, “Fast interscale wavelet denoising of Poisson-corrupted images,” Signal Process.90(2), 415–427 (2010).

[CrossRef]

C. Vonesch, F. Aguet, J. L. Vonesch, and M. Unser, “The colored revolution of bioimaging,” IEEE Signal Process. Mag.23(3), 20–31 (2006).

[CrossRef]

F. Luisier, C. Vonesch, T. Blu, and M. Unser, “Fast interscale wavelet denoising of Poisson-corrupted images,” Signal Process.90(2), 415–427 (2010).

[CrossRef]

C. Vonesch, F. Aguet, J. L. Vonesch, and M. Unser, “The colored revolution of bioimaging,” IEEE Signal Process. Mag.23(3), 20–31 (2006).

[CrossRef]

C. Vonesch, F. Aguet, J. L. Vonesch, and M. Unser, “The colored revolution of bioimaging,” IEEE Signal Process. Mag.23(3), 20–31 (2006).

[CrossRef]

F. J. Anscombe, “The transformation of Poisson, binomial and negative-binomial data,” Biometrika35, 246–254 (1948).

A. Salih Husain and S. Aymen Dawood, “Image compression based on 2D dual tree complex wavelet transform,” Eng. Technol. J.28, 1290–1305 (2010).

I. W. Selesnick, R. G. Baraniuk, and N. C. Kingsbury, “The dual-tree complex wavelet transform,” IEEE Signal Process. Mag.22(6), 123–151 (2005).

[CrossRef]

C. Vonesch, F. Aguet, J. L. Vonesch, and M. Unser, “The colored revolution of bioimaging,” IEEE Signal Process. Mag.23(3), 20–31 (2006).

[CrossRef]

F. Luisier, T. Blu, and M. Unser, “Image denoising in mixed Poisson-Gaussian noise,” IEEE Trans. Image Process.20(3), 696–708 (2011).

[CrossRef]
[PubMed]

D. Donoho, “De-noising by soft-thresholding,” IEEE Trans. Inf. Theory41(3), 613–627 (1995).

[CrossRef]

H. M. Salinas and D. C. Fernández, “Comparison of PDE-based nonlinear diffusion approaches for image enhancement and denoising in optical coherence tomography,” IEEE Trans. Med. Imaging26(6), 761–771 (2007).

[CrossRef]
[PubMed]

P. Fryzlewicz and G. P. Nason, “A Haar-Fisz algorithm for Poisson intensity estimation,” J. Comput. Graph. Statist.13(3), 621–638 (2004).

[CrossRef]

F. Luisier, C. Vonesch, T. Blu, and M. Unser, “Fast interscale wavelet denoising of Poisson-corrupted images,” Signal Process.90(2), 415–427 (2010).

[CrossRef]

D. L. Donoho, “Nonlinear wavelet methods for recovery of signals, densities, and spectra from indirect and noisy data,” in Proceedings of Symposia in Applied Mathematics. Vol 47. Different Perspectives on Wavelets, I. Daubechies, ed. (American Mathematical Society, 1993).

S. Delpretti, F. Luisier, S. Ramani, T. Blu, and M. Unser, “Multiframe sure-let denoising of timelapse fluorescence microscopy images,” in 5th IEEE International Symposium on Biomedical Imaging: from Nano to Macro, 2008. ISBI 2008 (IEEE, 2008), pp. 149–152.

Q. Wu, F. A. Merchant, and K. R. Castleman, Microscope Image Processing (Academic, Amsterdam, 2008).

N. Kingsbury, “The dual-tree complex wavelet transform: a new efficient tool for image restoration and enhancement,” in Proceedings of the 9th European Signal Processing Conference (EUSIPCO 98), (Typorama, 1998), pp. 319–322.

F. Daniels, “Quantification of collagen orientation in 3D engineered tissue,” in Biomedical Engineering (Eindhoven University of Technology, Eindhoven, 2006).

N. Kingsbury, “The dual-tree complex wavelet transform: a new technique for shift invariance and directional filters,” in Proceedings of the 8th IEEE DSP Workshop, Utah (IEEE, 1998), Vol. 8, p. 86

V. Musoko, “Biomedical signal and image processing,” in Computing and Control Engineering (Institute of Chemical Technology, Prague, 2005).