Abstract

The data acquisition from the shape of an object is a must to complete its quantitative displacement measurement analysis. Over the past years whole field of view optical non-invasive testing has been widely used in many areas, from industrial ones to, for instance, biomedical research topics. To measure the surface contour from the tympanic membrane (TM) of ex-vivo cats digital holographic interferometry (DHI) is used in combination with a two-illumination positions method: the shape is directly measured from the phase change between two source positions by means of a digital Fourier transform method. The TM shape data in conjunction with its displacement data renders a complete and accurate description of the TM deformation, a feature that no doubt will serve to better comprehend the hearing process. Acquiring knowledge from the tissue shape indicates a mechanical behavior and, indirectly, an alteration in the physiological structure due to middle ear diseases or damages in the tissue that can deteriorate sound transmission. The TM shape contour was successfully measured by using two source positions within DHI showing that the TM has a conical shape. Its maximum depth was found to be 2 mm, considering the umbo as the reference point with respect to the TM annulus plane, where the setup is arranged in such a manner that it is capable of measuring a height of up to 7 mm.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am.72(1), 156–160 (1982).
    [CrossRef]
  2. K. Creath, “Holographic contour and deformation measurement using a 1.4 million element detector array,” Appl. Opt.28(11), 2170–2175 (1989).
    [CrossRef] [PubMed]
  3. S. Seebacher, W. Osten, and W. Jüptner, “Measuring shape and deformation of small objects using digital holography,” Proc. SPIE3479, 104–115 (1998).
    [CrossRef]
  4. G. Pedrini, P. Fröning, H. J. Tiziani, and F. Mendoza Santoyo, “Shape measurement of microscopic structures using digital holograms,” Opt. Commun.164(4-6), 257–268 (1999).
    [CrossRef]
  5. F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng.39(1), 10–22 (2000).
    [CrossRef]
  6. I. Yamaguchi, S. Ohta, and J.-i. Kato, “Surface contouring by phase-shifting digital holography,” Opt. Lasers Eng.36(5), 417–428 (2001).
    [CrossRef]
  7. C. Quan, W. Chen, and C. J. Tay, “Shape measurement by multi-illumination method in digital holographic Interferometry,” Opt. Commun.281(15-16), 3957–3964 (2008).
    [CrossRef]
  8. C. M. Vest, Holographic Interferometry (Wiley, New York, 1979).
  9. T. Kreis, “Digital holographic interference-phase measurement using the Fourier-transform method,” J. Opt. Soc. Am. A3(6), 847–855 (1986).
    [CrossRef]
  10. P. K. Rastogi, Principles of Holographic Interferometry and Speckle Metrology (Springer-Verlag, Berlin, 2000).
  11. G. Pedrini, W. Osten, and M. E. Gusev, “High-speed digital holographic interferometry for vibration measurement,” Appl. Opt.45(15), 3456–3462 (2006).
    [CrossRef] [PubMed]
  12. C. Furlong, J. J. Rosowski, N. Hulli, and M. E. Ravicz, “Preliminary analyses of tympanic-membrane motion from holographic measurements,” Strain45(3), 301–309 (2009).
    [CrossRef] [PubMed]
  13. M. del Socorro Hernández-Montes, C. Furlong, J. J. Rosowski, N. Hulli, E. Harrington, J. T. Cheng, M. E. Ravicz, and F. M. Santoyo, “Optoelectronic holographic otoscope for measurement of nano-displacements in tympanic membranes,” J. Biomed. Opt.14(3), 034023 (2009).
    [CrossRef] [PubMed]
  14. J. J. Rosowski, J. T. Cheng, M. E. Ravicz, N. Hulli, M. Hernandez-Montes, E. Harrington, and C. Furlong, “Computer-assisted time-averaged holograms of the motion of the surface of the mammalian tympanic membrane with sound stimuli of 0.4-25 kHz,” Hear. Res.253(1-2), 83–96 (2009).
    [CrossRef] [PubMed]
  15. G. Volandri, F. Di Puccio, P. Forte, and C. Carmignani, “Biomechanics of the tympanic membrane,” J. Biomech.44(7), 1219–1236 (2011).
    [CrossRef] [PubMed]
  16. J. Aernouts, J. R. M. Aerts, and J. J. J. Dirckx, “Mechanical properties of human tympanic membrane in the quasi-static regime from in situ point indentation measurements,” Hear. Res.290(1-2), 45–54 (2012).
    [CrossRef] [PubMed]
  17. W. F. Decraemer and W. R. J. Funnelli, “Anatomical and Mechanical properties of the tympanic membrane,” in Chronic otitis Media. Pathogenesis-Oriented Therapeutic Management, E.D. Ars, ed. (Kugler, 2008).
  18. W. R. J. Funnell and W. F. Decraemer, “On the incorporation of moiré shape measurements in finite-element models of the cat eardrum,” J. Acoust. Soc. Am.100(2), 925–932 (1996).
    [CrossRef] [PubMed]
  19. J. J. J. Dirckx and W. F. Decraemer, “Interferometer for eardrum shape measurement, based on projection of straight line rulings,” Lasers Med. Sci.15(2), 131–139 (2000).
    [CrossRef]
  20. R. A. Martínez-Celorio, J. J. J. Dirckx, J. A. N. Buytaert, L. Martí-López, and W. Decraemer, “Modified temporal-phase-unwrapping method for measuring in real time the out-of-plane displacements of the tympanic membrane of mongolian gerbil,” Optik (Stuttg.)119(16), 783–787 (2008).
    [CrossRef]
  21. J. J. J. Dirckx, J. A. N. Buytaert, and S. A. M. Van derJeught, “Implementation of phase-shifting moiré profilometry on a low-cost commercial data projector,” Opt. Lasers Eng.48(2), 244–250 (2010).
    [CrossRef]
  22. I. Yamaguchi, J. I. Kato, and H. Matsuzaki, “Measurement of surface shape and deformation by phase-shifting image digital holography,” Opt. Eng.42(5), 1267–1271 (2003).
    [CrossRef]
  23. M. S. Hernández-Montes, F. Mendoza Santoyo, C. Pérez López, S. Muñoz Solís, and J. Esquivel, “Digital holographic -interferometry applied to the study of tympanic membrane displacements,” Opt. Lasers Eng.49(6), 698–702 (2011).
    [CrossRef]

2012

J. Aernouts, J. R. M. Aerts, and J. J. J. Dirckx, “Mechanical properties of human tympanic membrane in the quasi-static regime from in situ point indentation measurements,” Hear. Res.290(1-2), 45–54 (2012).
[CrossRef] [PubMed]

2011

G. Volandri, F. Di Puccio, P. Forte, and C. Carmignani, “Biomechanics of the tympanic membrane,” J. Biomech.44(7), 1219–1236 (2011).
[CrossRef] [PubMed]

M. S. Hernández-Montes, F. Mendoza Santoyo, C. Pérez López, S. Muñoz Solís, and J. Esquivel, “Digital holographic -interferometry applied to the study of tympanic membrane displacements,” Opt. Lasers Eng.49(6), 698–702 (2011).
[CrossRef]

2010

J. J. J. Dirckx, J. A. N. Buytaert, and S. A. M. Van derJeught, “Implementation of phase-shifting moiré profilometry on a low-cost commercial data projector,” Opt. Lasers Eng.48(2), 244–250 (2010).
[CrossRef]

2009

C. Furlong, J. J. Rosowski, N. Hulli, and M. E. Ravicz, “Preliminary analyses of tympanic-membrane motion from holographic measurements,” Strain45(3), 301–309 (2009).
[CrossRef] [PubMed]

M. del Socorro Hernández-Montes, C. Furlong, J. J. Rosowski, N. Hulli, E. Harrington, J. T. Cheng, M. E. Ravicz, and F. M. Santoyo, “Optoelectronic holographic otoscope for measurement of nano-displacements in tympanic membranes,” J. Biomed. Opt.14(3), 034023 (2009).
[CrossRef] [PubMed]

J. J. Rosowski, J. T. Cheng, M. E. Ravicz, N. Hulli, M. Hernandez-Montes, E. Harrington, and C. Furlong, “Computer-assisted time-averaged holograms of the motion of the surface of the mammalian tympanic membrane with sound stimuli of 0.4-25 kHz,” Hear. Res.253(1-2), 83–96 (2009).
[CrossRef] [PubMed]

2008

R. A. Martínez-Celorio, J. J. J. Dirckx, J. A. N. Buytaert, L. Martí-López, and W. Decraemer, “Modified temporal-phase-unwrapping method for measuring in real time the out-of-plane displacements of the tympanic membrane of mongolian gerbil,” Optik (Stuttg.)119(16), 783–787 (2008).
[CrossRef]

C. Quan, W. Chen, and C. J. Tay, “Shape measurement by multi-illumination method in digital holographic Interferometry,” Opt. Commun.281(15-16), 3957–3964 (2008).
[CrossRef]

2006

2003

I. Yamaguchi, J. I. Kato, and H. Matsuzaki, “Measurement of surface shape and deformation by phase-shifting image digital holography,” Opt. Eng.42(5), 1267–1271 (2003).
[CrossRef]

2001

I. Yamaguchi, S. Ohta, and J.-i. Kato, “Surface contouring by phase-shifting digital holography,” Opt. Lasers Eng.36(5), 417–428 (2001).
[CrossRef]

2000

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng.39(1), 10–22 (2000).
[CrossRef]

J. J. J. Dirckx and W. F. Decraemer, “Interferometer for eardrum shape measurement, based on projection of straight line rulings,” Lasers Med. Sci.15(2), 131–139 (2000).
[CrossRef]

1999

G. Pedrini, P. Fröning, H. J. Tiziani, and F. Mendoza Santoyo, “Shape measurement of microscopic structures using digital holograms,” Opt. Commun.164(4-6), 257–268 (1999).
[CrossRef]

1998

S. Seebacher, W. Osten, and W. Jüptner, “Measuring shape and deformation of small objects using digital holography,” Proc. SPIE3479, 104–115 (1998).
[CrossRef]

1996

W. R. J. Funnell and W. F. Decraemer, “On the incorporation of moiré shape measurements in finite-element models of the cat eardrum,” J. Acoust. Soc. Am.100(2), 925–932 (1996).
[CrossRef] [PubMed]

1989

1986

1982

Aernouts, J.

J. Aernouts, J. R. M. Aerts, and J. J. J. Dirckx, “Mechanical properties of human tympanic membrane in the quasi-static regime from in situ point indentation measurements,” Hear. Res.290(1-2), 45–54 (2012).
[CrossRef] [PubMed]

Aerts, J. R. M.

J. Aernouts, J. R. M. Aerts, and J. J. J. Dirckx, “Mechanical properties of human tympanic membrane in the quasi-static regime from in situ point indentation measurements,” Hear. Res.290(1-2), 45–54 (2012).
[CrossRef] [PubMed]

Brown, G. M.

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng.39(1), 10–22 (2000).
[CrossRef]

Buytaert, J. A. N.

J. J. J. Dirckx, J. A. N. Buytaert, and S. A. M. Van derJeught, “Implementation of phase-shifting moiré profilometry on a low-cost commercial data projector,” Opt. Lasers Eng.48(2), 244–250 (2010).
[CrossRef]

R. A. Martínez-Celorio, J. J. J. Dirckx, J. A. N. Buytaert, L. Martí-López, and W. Decraemer, “Modified temporal-phase-unwrapping method for measuring in real time the out-of-plane displacements of the tympanic membrane of mongolian gerbil,” Optik (Stuttg.)119(16), 783–787 (2008).
[CrossRef]

Carmignani, C.

G. Volandri, F. Di Puccio, P. Forte, and C. Carmignani, “Biomechanics of the tympanic membrane,” J. Biomech.44(7), 1219–1236 (2011).
[CrossRef] [PubMed]

Chen, F.

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng.39(1), 10–22 (2000).
[CrossRef]

Chen, W.

C. Quan, W. Chen, and C. J. Tay, “Shape measurement by multi-illumination method in digital holographic Interferometry,” Opt. Commun.281(15-16), 3957–3964 (2008).
[CrossRef]

Cheng, J. T.

M. del Socorro Hernández-Montes, C. Furlong, J. J. Rosowski, N. Hulli, E. Harrington, J. T. Cheng, M. E. Ravicz, and F. M. Santoyo, “Optoelectronic holographic otoscope for measurement of nano-displacements in tympanic membranes,” J. Biomed. Opt.14(3), 034023 (2009).
[CrossRef] [PubMed]

J. J. Rosowski, J. T. Cheng, M. E. Ravicz, N. Hulli, M. Hernandez-Montes, E. Harrington, and C. Furlong, “Computer-assisted time-averaged holograms of the motion of the surface of the mammalian tympanic membrane with sound stimuli of 0.4-25 kHz,” Hear. Res.253(1-2), 83–96 (2009).
[CrossRef] [PubMed]

Creath, K.

Decraemer, W.

R. A. Martínez-Celorio, J. J. J. Dirckx, J. A. N. Buytaert, L. Martí-López, and W. Decraemer, “Modified temporal-phase-unwrapping method for measuring in real time the out-of-plane displacements of the tympanic membrane of mongolian gerbil,” Optik (Stuttg.)119(16), 783–787 (2008).
[CrossRef]

Decraemer, W. F.

J. J. J. Dirckx and W. F. Decraemer, “Interferometer for eardrum shape measurement, based on projection of straight line rulings,” Lasers Med. Sci.15(2), 131–139 (2000).
[CrossRef]

W. R. J. Funnell and W. F. Decraemer, “On the incorporation of moiré shape measurements in finite-element models of the cat eardrum,” J. Acoust. Soc. Am.100(2), 925–932 (1996).
[CrossRef] [PubMed]

del Socorro Hernández-Montes, M.

M. del Socorro Hernández-Montes, C. Furlong, J. J. Rosowski, N. Hulli, E. Harrington, J. T. Cheng, M. E. Ravicz, and F. M. Santoyo, “Optoelectronic holographic otoscope for measurement of nano-displacements in tympanic membranes,” J. Biomed. Opt.14(3), 034023 (2009).
[CrossRef] [PubMed]

Di Puccio, F.

G. Volandri, F. Di Puccio, P. Forte, and C. Carmignani, “Biomechanics of the tympanic membrane,” J. Biomech.44(7), 1219–1236 (2011).
[CrossRef] [PubMed]

Dirckx, J. J. J.

J. Aernouts, J. R. M. Aerts, and J. J. J. Dirckx, “Mechanical properties of human tympanic membrane in the quasi-static regime from in situ point indentation measurements,” Hear. Res.290(1-2), 45–54 (2012).
[CrossRef] [PubMed]

J. J. J. Dirckx, J. A. N. Buytaert, and S. A. M. Van derJeught, “Implementation of phase-shifting moiré profilometry on a low-cost commercial data projector,” Opt. Lasers Eng.48(2), 244–250 (2010).
[CrossRef]

R. A. Martínez-Celorio, J. J. J. Dirckx, J. A. N. Buytaert, L. Martí-López, and W. Decraemer, “Modified temporal-phase-unwrapping method for measuring in real time the out-of-plane displacements of the tympanic membrane of mongolian gerbil,” Optik (Stuttg.)119(16), 783–787 (2008).
[CrossRef]

J. J. J. Dirckx and W. F. Decraemer, “Interferometer for eardrum shape measurement, based on projection of straight line rulings,” Lasers Med. Sci.15(2), 131–139 (2000).
[CrossRef]

Esquivel, J.

M. S. Hernández-Montes, F. Mendoza Santoyo, C. Pérez López, S. Muñoz Solís, and J. Esquivel, “Digital holographic -interferometry applied to the study of tympanic membrane displacements,” Opt. Lasers Eng.49(6), 698–702 (2011).
[CrossRef]

Forte, P.

G. Volandri, F. Di Puccio, P. Forte, and C. Carmignani, “Biomechanics of the tympanic membrane,” J. Biomech.44(7), 1219–1236 (2011).
[CrossRef] [PubMed]

Fröning, P.

G. Pedrini, P. Fröning, H. J. Tiziani, and F. Mendoza Santoyo, “Shape measurement of microscopic structures using digital holograms,” Opt. Commun.164(4-6), 257–268 (1999).
[CrossRef]

Funnell, W. R. J.

W. R. J. Funnell and W. F. Decraemer, “On the incorporation of moiré shape measurements in finite-element models of the cat eardrum,” J. Acoust. Soc. Am.100(2), 925–932 (1996).
[CrossRef] [PubMed]

Furlong, C.

M. del Socorro Hernández-Montes, C. Furlong, J. J. Rosowski, N. Hulli, E. Harrington, J. T. Cheng, M. E. Ravicz, and F. M. Santoyo, “Optoelectronic holographic otoscope for measurement of nano-displacements in tympanic membranes,” J. Biomed. Opt.14(3), 034023 (2009).
[CrossRef] [PubMed]

J. J. Rosowski, J. T. Cheng, M. E. Ravicz, N. Hulli, M. Hernandez-Montes, E. Harrington, and C. Furlong, “Computer-assisted time-averaged holograms of the motion of the surface of the mammalian tympanic membrane with sound stimuli of 0.4-25 kHz,” Hear. Res.253(1-2), 83–96 (2009).
[CrossRef] [PubMed]

C. Furlong, J. J. Rosowski, N. Hulli, and M. E. Ravicz, “Preliminary analyses of tympanic-membrane motion from holographic measurements,” Strain45(3), 301–309 (2009).
[CrossRef] [PubMed]

Gusev, M. E.

Harrington, E.

M. del Socorro Hernández-Montes, C. Furlong, J. J. Rosowski, N. Hulli, E. Harrington, J. T. Cheng, M. E. Ravicz, and F. M. Santoyo, “Optoelectronic holographic otoscope for measurement of nano-displacements in tympanic membranes,” J. Biomed. Opt.14(3), 034023 (2009).
[CrossRef] [PubMed]

J. J. Rosowski, J. T. Cheng, M. E. Ravicz, N. Hulli, M. Hernandez-Montes, E. Harrington, and C. Furlong, “Computer-assisted time-averaged holograms of the motion of the surface of the mammalian tympanic membrane with sound stimuli of 0.4-25 kHz,” Hear. Res.253(1-2), 83–96 (2009).
[CrossRef] [PubMed]

Hernandez-Montes, M.

J. J. Rosowski, J. T. Cheng, M. E. Ravicz, N. Hulli, M. Hernandez-Montes, E. Harrington, and C. Furlong, “Computer-assisted time-averaged holograms of the motion of the surface of the mammalian tympanic membrane with sound stimuli of 0.4-25 kHz,” Hear. Res.253(1-2), 83–96 (2009).
[CrossRef] [PubMed]

Hernández-Montes, M. S.

M. S. Hernández-Montes, F. Mendoza Santoyo, C. Pérez López, S. Muñoz Solís, and J. Esquivel, “Digital holographic -interferometry applied to the study of tympanic membrane displacements,” Opt. Lasers Eng.49(6), 698–702 (2011).
[CrossRef]

Hulli, N.

C. Furlong, J. J. Rosowski, N. Hulli, and M. E. Ravicz, “Preliminary analyses of tympanic-membrane motion from holographic measurements,” Strain45(3), 301–309 (2009).
[CrossRef] [PubMed]

J. J. Rosowski, J. T. Cheng, M. E. Ravicz, N. Hulli, M. Hernandez-Montes, E. Harrington, and C. Furlong, “Computer-assisted time-averaged holograms of the motion of the surface of the mammalian tympanic membrane with sound stimuli of 0.4-25 kHz,” Hear. Res.253(1-2), 83–96 (2009).
[CrossRef] [PubMed]

M. del Socorro Hernández-Montes, C. Furlong, J. J. Rosowski, N. Hulli, E. Harrington, J. T. Cheng, M. E. Ravicz, and F. M. Santoyo, “Optoelectronic holographic otoscope for measurement of nano-displacements in tympanic membranes,” J. Biomed. Opt.14(3), 034023 (2009).
[CrossRef] [PubMed]

Ina, H.

Jüptner, W.

S. Seebacher, W. Osten, and W. Jüptner, “Measuring shape and deformation of small objects using digital holography,” Proc. SPIE3479, 104–115 (1998).
[CrossRef]

Kato, J. I.

I. Yamaguchi, J. I. Kato, and H. Matsuzaki, “Measurement of surface shape and deformation by phase-shifting image digital holography,” Opt. Eng.42(5), 1267–1271 (2003).
[CrossRef]

Kato, J.-i.

I. Yamaguchi, S. Ohta, and J.-i. Kato, “Surface contouring by phase-shifting digital holography,” Opt. Lasers Eng.36(5), 417–428 (2001).
[CrossRef]

Kobayashi, S.

Kreis, T.

Martí-López, L.

R. A. Martínez-Celorio, J. J. J. Dirckx, J. A. N. Buytaert, L. Martí-López, and W. Decraemer, “Modified temporal-phase-unwrapping method for measuring in real time the out-of-plane displacements of the tympanic membrane of mongolian gerbil,” Optik (Stuttg.)119(16), 783–787 (2008).
[CrossRef]

Martínez-Celorio, R. A.

R. A. Martínez-Celorio, J. J. J. Dirckx, J. A. N. Buytaert, L. Martí-López, and W. Decraemer, “Modified temporal-phase-unwrapping method for measuring in real time the out-of-plane displacements of the tympanic membrane of mongolian gerbil,” Optik (Stuttg.)119(16), 783–787 (2008).
[CrossRef]

Matsuzaki, H.

I. Yamaguchi, J. I. Kato, and H. Matsuzaki, “Measurement of surface shape and deformation by phase-shifting image digital holography,” Opt. Eng.42(5), 1267–1271 (2003).
[CrossRef]

Mendoza Santoyo, F.

M. S. Hernández-Montes, F. Mendoza Santoyo, C. Pérez López, S. Muñoz Solís, and J. Esquivel, “Digital holographic -interferometry applied to the study of tympanic membrane displacements,” Opt. Lasers Eng.49(6), 698–702 (2011).
[CrossRef]

G. Pedrini, P. Fröning, H. J. Tiziani, and F. Mendoza Santoyo, “Shape measurement of microscopic structures using digital holograms,” Opt. Commun.164(4-6), 257–268 (1999).
[CrossRef]

Muñoz Solís, S.

M. S. Hernández-Montes, F. Mendoza Santoyo, C. Pérez López, S. Muñoz Solís, and J. Esquivel, “Digital holographic -interferometry applied to the study of tympanic membrane displacements,” Opt. Lasers Eng.49(6), 698–702 (2011).
[CrossRef]

Ohta, S.

I. Yamaguchi, S. Ohta, and J.-i. Kato, “Surface contouring by phase-shifting digital holography,” Opt. Lasers Eng.36(5), 417–428 (2001).
[CrossRef]

Osten, W.

G. Pedrini, W. Osten, and M. E. Gusev, “High-speed digital holographic interferometry for vibration measurement,” Appl. Opt.45(15), 3456–3462 (2006).
[CrossRef] [PubMed]

S. Seebacher, W. Osten, and W. Jüptner, “Measuring shape and deformation of small objects using digital holography,” Proc. SPIE3479, 104–115 (1998).
[CrossRef]

Pedrini, G.

G. Pedrini, W. Osten, and M. E. Gusev, “High-speed digital holographic interferometry for vibration measurement,” Appl. Opt.45(15), 3456–3462 (2006).
[CrossRef] [PubMed]

G. Pedrini, P. Fröning, H. J. Tiziani, and F. Mendoza Santoyo, “Shape measurement of microscopic structures using digital holograms,” Opt. Commun.164(4-6), 257–268 (1999).
[CrossRef]

Pérez López, C.

M. S. Hernández-Montes, F. Mendoza Santoyo, C. Pérez López, S. Muñoz Solís, and J. Esquivel, “Digital holographic -interferometry applied to the study of tympanic membrane displacements,” Opt. Lasers Eng.49(6), 698–702 (2011).
[CrossRef]

Quan, C.

C. Quan, W. Chen, and C. J. Tay, “Shape measurement by multi-illumination method in digital holographic Interferometry,” Opt. Commun.281(15-16), 3957–3964 (2008).
[CrossRef]

Ravicz, M. E.

M. del Socorro Hernández-Montes, C. Furlong, J. J. Rosowski, N. Hulli, E. Harrington, J. T. Cheng, M. E. Ravicz, and F. M. Santoyo, “Optoelectronic holographic otoscope for measurement of nano-displacements in tympanic membranes,” J. Biomed. Opt.14(3), 034023 (2009).
[CrossRef] [PubMed]

J. J. Rosowski, J. T. Cheng, M. E. Ravicz, N. Hulli, M. Hernandez-Montes, E. Harrington, and C. Furlong, “Computer-assisted time-averaged holograms of the motion of the surface of the mammalian tympanic membrane with sound stimuli of 0.4-25 kHz,” Hear. Res.253(1-2), 83–96 (2009).
[CrossRef] [PubMed]

C. Furlong, J. J. Rosowski, N. Hulli, and M. E. Ravicz, “Preliminary analyses of tympanic-membrane motion from holographic measurements,” Strain45(3), 301–309 (2009).
[CrossRef] [PubMed]

Rosowski, J. J.

C. Furlong, J. J. Rosowski, N. Hulli, and M. E. Ravicz, “Preliminary analyses of tympanic-membrane motion from holographic measurements,” Strain45(3), 301–309 (2009).
[CrossRef] [PubMed]

J. J. Rosowski, J. T. Cheng, M. E. Ravicz, N. Hulli, M. Hernandez-Montes, E. Harrington, and C. Furlong, “Computer-assisted time-averaged holograms of the motion of the surface of the mammalian tympanic membrane with sound stimuli of 0.4-25 kHz,” Hear. Res.253(1-2), 83–96 (2009).
[CrossRef] [PubMed]

M. del Socorro Hernández-Montes, C. Furlong, J. J. Rosowski, N. Hulli, E. Harrington, J. T. Cheng, M. E. Ravicz, and F. M. Santoyo, “Optoelectronic holographic otoscope for measurement of nano-displacements in tympanic membranes,” J. Biomed. Opt.14(3), 034023 (2009).
[CrossRef] [PubMed]

Santoyo, F. M.

M. del Socorro Hernández-Montes, C. Furlong, J. J. Rosowski, N. Hulli, E. Harrington, J. T. Cheng, M. E. Ravicz, and F. M. Santoyo, “Optoelectronic holographic otoscope for measurement of nano-displacements in tympanic membranes,” J. Biomed. Opt.14(3), 034023 (2009).
[CrossRef] [PubMed]

Seebacher, S.

S. Seebacher, W. Osten, and W. Jüptner, “Measuring shape and deformation of small objects using digital holography,” Proc. SPIE3479, 104–115 (1998).
[CrossRef]

Song, M.

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng.39(1), 10–22 (2000).
[CrossRef]

Takeda, M.

Tay, C. J.

C. Quan, W. Chen, and C. J. Tay, “Shape measurement by multi-illumination method in digital holographic Interferometry,” Opt. Commun.281(15-16), 3957–3964 (2008).
[CrossRef]

Tiziani, H. J.

G. Pedrini, P. Fröning, H. J. Tiziani, and F. Mendoza Santoyo, “Shape measurement of microscopic structures using digital holograms,” Opt. Commun.164(4-6), 257–268 (1999).
[CrossRef]

Van derJeught, S. A. M.

J. J. J. Dirckx, J. A. N. Buytaert, and S. A. M. Van derJeught, “Implementation of phase-shifting moiré profilometry on a low-cost commercial data projector,” Opt. Lasers Eng.48(2), 244–250 (2010).
[CrossRef]

Volandri, G.

G. Volandri, F. Di Puccio, P. Forte, and C. Carmignani, “Biomechanics of the tympanic membrane,” J. Biomech.44(7), 1219–1236 (2011).
[CrossRef] [PubMed]

Yamaguchi, I.

I. Yamaguchi, J. I. Kato, and H. Matsuzaki, “Measurement of surface shape and deformation by phase-shifting image digital holography,” Opt. Eng.42(5), 1267–1271 (2003).
[CrossRef]

I. Yamaguchi, S. Ohta, and J.-i. Kato, “Surface contouring by phase-shifting digital holography,” Opt. Lasers Eng.36(5), 417–428 (2001).
[CrossRef]

Appl. Opt.

Hear. Res.

J. J. Rosowski, J. T. Cheng, M. E. Ravicz, N. Hulli, M. Hernandez-Montes, E. Harrington, and C. Furlong, “Computer-assisted time-averaged holograms of the motion of the surface of the mammalian tympanic membrane with sound stimuli of 0.4-25 kHz,” Hear. Res.253(1-2), 83–96 (2009).
[CrossRef] [PubMed]

J. Aernouts, J. R. M. Aerts, and J. J. J. Dirckx, “Mechanical properties of human tympanic membrane in the quasi-static regime from in situ point indentation measurements,” Hear. Res.290(1-2), 45–54 (2012).
[CrossRef] [PubMed]

J. Acoust. Soc. Am.

W. R. J. Funnell and W. F. Decraemer, “On the incorporation of moiré shape measurements in finite-element models of the cat eardrum,” J. Acoust. Soc. Am.100(2), 925–932 (1996).
[CrossRef] [PubMed]

J. Biomech.

G. Volandri, F. Di Puccio, P. Forte, and C. Carmignani, “Biomechanics of the tympanic membrane,” J. Biomech.44(7), 1219–1236 (2011).
[CrossRef] [PubMed]

J. Biomed. Opt.

M. del Socorro Hernández-Montes, C. Furlong, J. J. Rosowski, N. Hulli, E. Harrington, J. T. Cheng, M. E. Ravicz, and F. M. Santoyo, “Optoelectronic holographic otoscope for measurement of nano-displacements in tympanic membranes,” J. Biomed. Opt.14(3), 034023 (2009).
[CrossRef] [PubMed]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Lasers Med. Sci.

J. J. J. Dirckx and W. F. Decraemer, “Interferometer for eardrum shape measurement, based on projection of straight line rulings,” Lasers Med. Sci.15(2), 131–139 (2000).
[CrossRef]

Opt. Commun.

G. Pedrini, P. Fröning, H. J. Tiziani, and F. Mendoza Santoyo, “Shape measurement of microscopic structures using digital holograms,” Opt. Commun.164(4-6), 257–268 (1999).
[CrossRef]

C. Quan, W. Chen, and C. J. Tay, “Shape measurement by multi-illumination method in digital holographic Interferometry,” Opt. Commun.281(15-16), 3957–3964 (2008).
[CrossRef]

Opt. Eng.

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng.39(1), 10–22 (2000).
[CrossRef]

I. Yamaguchi, J. I. Kato, and H. Matsuzaki, “Measurement of surface shape and deformation by phase-shifting image digital holography,” Opt. Eng.42(5), 1267–1271 (2003).
[CrossRef]

Opt. Lasers Eng.

M. S. Hernández-Montes, F. Mendoza Santoyo, C. Pérez López, S. Muñoz Solís, and J. Esquivel, “Digital holographic -interferometry applied to the study of tympanic membrane displacements,” Opt. Lasers Eng.49(6), 698–702 (2011).
[CrossRef]

J. J. J. Dirckx, J. A. N. Buytaert, and S. A. M. Van derJeught, “Implementation of phase-shifting moiré profilometry on a low-cost commercial data projector,” Opt. Lasers Eng.48(2), 244–250 (2010).
[CrossRef]

I. Yamaguchi, S. Ohta, and J.-i. Kato, “Surface contouring by phase-shifting digital holography,” Opt. Lasers Eng.36(5), 417–428 (2001).
[CrossRef]

Optik (Stuttg.)

R. A. Martínez-Celorio, J. J. J. Dirckx, J. A. N. Buytaert, L. Martí-López, and W. Decraemer, “Modified temporal-phase-unwrapping method for measuring in real time the out-of-plane displacements of the tympanic membrane of mongolian gerbil,” Optik (Stuttg.)119(16), 783–787 (2008).
[CrossRef]

Proc. SPIE

S. Seebacher, W. Osten, and W. Jüptner, “Measuring shape and deformation of small objects using digital holography,” Proc. SPIE3479, 104–115 (1998).
[CrossRef]

Strain

C. Furlong, J. J. Rosowski, N. Hulli, and M. E. Ravicz, “Preliminary analyses of tympanic-membrane motion from holographic measurements,” Strain45(3), 301–309 (2009).
[CrossRef] [PubMed]

Other

C. M. Vest, Holographic Interferometry (Wiley, New York, 1979).

P. K. Rastogi, Principles of Holographic Interferometry and Speckle Metrology (Springer-Verlag, Berlin, 2000).

W. F. Decraemer and W. R. J. Funnelli, “Anatomical and Mechanical properties of the tympanic membrane,” in Chronic otitis Media. Pathogenesis-Oriented Therapeutic Management, E.D. Ars, ed. (Kugler, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental optical arrangement: Bs1, beam splitter; Bs2, beam combiner; L, lens; A, aperture; OF, single mode optical fiber; p1, p2, object illumination positions.

Fig. 2
Fig. 2

Experimental surface contour of a metal sphere using a two-illumination positions method: (a) wrapped phase, and (b) unwrapped phase maps with tilt.

Fig. 3
Fig. 3

(a) 3D unwrapped phase map resulting after tilt removing and (b) represent the size view.

Fig. 4
Fig. 4

Experimental results of the tympanic membrane contour. (a) 3D reconstruction and surface profile. (b) Mesh data shape.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

I( x H , y H )= | R( x H , y H )+U( x H , y H ) | 2 = | R( x H , y H ) | 2 + | U( x H , y H ) | 2 +R( x H , y H ) U * ( x H , y H )+ R * ( x H , y H )U( x H , y H ),
U( x H , y H )=u( x H , y H )exp[ i ϕ u ( x H , y H ) ]
R( x H , y H )=r( x H , y H )exp[ i ϕ r ( x H , y H )2πi( f x x H , f y y H ) ],
I( x H , y H )=a( x H , y H )+c( x H , y H )exp[ 2πi( f x x H + f y y H ) ] +c*( x H , y H )[ 2πi( f x x H + f y y H ) ],
a( x H , y H )= u 2 ( x H , y H )+ r 2 ( x H , y H )
c( x H , y H )=u( x H , y H )r( x H , y H )exp[ iφ( x H , y H ) ],
TF[ I ]=A( f x , f y )+C( f x , f y )+C*( f x , f y ).
φ(x,y)= tan 1 [ Imc(x,y) Rec(x,y) ],
Δφ(x,y)= φ 2 (x,y) φ 1 (x,y) = tan 1 Re( c 1 (x,y))Im( c 2 (x,y))Im( c 1 (x,y))Re c 2 (x,y)) Im( c 1 (x,y))Im( c 2 (x,y))+Re( c 1 (x,y))Re c 2 (x,y)) .
Δφ(x,y)=2ksin Δθ 2 xcos( θ+ Δθ 2 )2ksin Δθ 2 h(x,y)sin( θ+ Δθ 2 ),
Δh λ Δθsinθ ,

Metrics