Abstract

A procedure based on surface plasmon resonance (SPR) is proposed to monitor the lateral mobility of lipid molecules in solid-supported bilayer lipid membranes (ssBLMs), an essential prerequisite for the formation of important microdomains called lipid rafts (LRs). The procedure relies on the marked tendency of the ganglioside GM1 to be recruited by LRs and to act as a specific receptor of the beta-subunit of the cholera toxin (ChTB). In the presence of both GM1 and ChTB, spontaneous formation of lipid rafts domains in mobile ssBLMs is accompanied by an appreciable increase in the amount of adsorbed ChTB, as monitored by SPR.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Naumann, T. Baumgart, P. Gräber, A. Jonczyk, A. Offenhäusser, and W. Knoll, “Proton transport through a peptide-tethered bilayer lipid membrane by the H(+)-ATP synthase from chloroplasts measured by impedance spectroscopy,” Biosens. Bioelectron.17(1-2), 25–34 (2002).
    [CrossRef] [PubMed]
  2. Z. Derzko and K. Jacobson, “Comparative lateral diffusion of fluorescent lipid analogues in phospholipid multibilayers,” Biochemistry19(26), 6050–6057 (1980).
    [CrossRef] [PubMed]
  3. N. L. Thompson and D. Axelrod, “Reduced lateral mobility of a fluorescent lipid probe in cholesterol-depleted erythrocyte membrane,” Biochim. Biophys. Acta597(1), 155–165 (1980).
    [CrossRef] [PubMed]
  4. B. Chini and M. Parenti, “G-protein coupled receptors in lipid rafts and caveolae: how, when and why do they go there?” J. Mol. Endocrinol.32(2), 325–338 (2004).
    [CrossRef] [PubMed]
  5. R. S. Ostrom and P. A. Insel, “The evolving role of lipid rafts and caveolae in G protein-coupled receptor signaling: implications for molecular pharmacology,” Br. J. Pharmacol.143(2), 235–245 (2004).
    [CrossRef] [PubMed]
  6. C. Yuan, J. Furlong, P. Burgos, and L. J. Johnston, “The size of lipid rafts: an atomic force microscopy study of ganglioside GM1 domains in sphingomyelin/DOPC/cholesterol membranes,” Biophys. J.82(5), 2526–2535 (2002).
    [CrossRef] [PubMed]
  7. R. Richter, A. Mukhopadhyay, and A. Brisson, “Pathways of lipid vesicle deposition on solid surfaces: a combined QCM-D and AFM study,” Biophys. J.85(5), 3035–3047 (2003).
    [CrossRef] [PubMed]
  8. D. E. Saslowsky, J. Lawrence, X. Ren, D. A. Brown, R. M. Henderson, and J. M. Edwardson, “Placental alkaline phosphatase is efficiently targeted to rafts in supported lipid bilayers,” J. Biol. Chem.277(30), 26966–26970 (2002).
    [CrossRef] [PubMed]
  9. D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, and W. W. Webb, “Mobility measurement by analysis of fluorescence photobleaching recovery kinetics,” Biophys. J.16(9), 1055–1069 (1976).
    [CrossRef] [PubMed]
  10. J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem.337(2), 171–194 (2005).
    [CrossRef] [PubMed]
  11. I. D. Alves, Z. Salamon, V. J. Hruby, and G. Tollin, “Ligand modulation of lateral segregation of a G-protein-coupled receptor into lipid microdomains in sphingomyelin/phosphatidylcholine solid-supported bilayers,” Biochemistry44(25), 9168–9178 (2005).
    [CrossRef] [PubMed]
  12. T. Baumgart, M. Kreiter, H. Lauer, R. Naumann, G. Jung, A. Jonczyk, A. Offenhäusser, and W. Knoll, “Fusion of small unilamellar vesicles onto laterally mixed self-assembled monolayers of thiolipopeptides,” J. Colloid Interface Sci.258(2), 298–309 (2003).
    [CrossRef] [PubMed]
  13. L. Becucci, M. Innocenti, E. Salvietti, A. Rindi, I. Pasquini, M. Vassalli, M. L. Foresti, and R. Guidelli, “Potassium ion transport by gramicidin and valinomycin across a Ag(111)-supported tethered bilayer lipid membrane,” Electrochim. Acta53(22), 6372–6379 (2008).
    [CrossRef]
  14. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev.108(2), 462–493 (2008).
    [CrossRef] [PubMed]
  15. M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express17(19), 16505–16517 (2009).
    [CrossRef] [PubMed]
  16. I. Mocchetti, “Exogenous gangliosides, neuronal plasticity and repair, and the neurotrophins,” Cell. Mol. Life Sci.62(19-20), 2283–2294 (2005).
    [CrossRef] [PubMed]
  17. G. M. Kuziemko, M. Stroh, and R. C. Stevens, “Cholera toxin binding affinity and specificity for gangliosides determined by surface plasmon resonance,” Biochemistry35(20), 6375–6384 (1996).
    [CrossRef] [PubMed]
  18. C. Dietrich, L. A. Bagatolli, Z. N. Volovyk, N. L. Thompson, M. Levi, K. Jacobson, and E. Gratton, “Lipid rafts reconstituted in model membranes,” Biophys. J.80(3), 1417–1428 (2001).
    [CrossRef] [PubMed]
  19. A. V. Samsonov, I. Mihalyov, and F. S. Cohen, “Characterization of cholesterol-sphingomyelin domains and their dynamics in bilayer membranes,” Biophys. J.81(3), 1486–1500 (2001).
    [CrossRef] [PubMed]
  20. S. Terrettaz, T. Stora, C. Duschl, and H. Vogel, “Protein binding to supported lipid membranes: investigation of the cholera toxin-ganglioside interaction by simultaneous impedance spectroscopy and surface plasmon resonance,” Langmuir9(5), 1361–1369 (1993).
    [CrossRef]
  21. L. Becucci, A. L. Schwan, E. E. Sheepwash, and R. Guidelli, “A new method to evaluate the surface dipole potential of thiol and disulfide self-assembled monolayers and its application to a disulfidated tetraoxyethylene glycol,” Langmuir25(3), 1828–1835 (2009).
    [CrossRef] [PubMed]
  22. S. M. Schiller, R. Naumann, K. Lovejoy, H. Kunz, and W. Knoll, “Archaea analogue thiolipids for tethered bilayer lipid membranes on ultrasmooth gold surfaces,” Angew. Chem. Int. Ed. Engl.42(2), 208–211 (2003).
    [CrossRef] [PubMed]
  23. L. He, J. W. Robertson, J. Li, I. Kärcher, S. M. Schiller, W. Knoll, and R. Naumann, “Tethered bilayer lipid membranes based on monolayers of thiolipids mixed with a complementary dilution molecule. 1. Incorporation of channel peptides,” Langmuir21(25), 11666–11672 (2005).
    [CrossRef] [PubMed]
  24. Z. Salamon, H. A. Macleod, and G. Tollin, “Coupled plasmon-waveguide resonators: a new spectroscopic tool for probing proteolipid film structure and properties,” Biophys. J.73(5), 2791–2797 (1997).
    [CrossRef] [PubMed]
  25. J. Stepanek, H. Vaisocherova, and M. Piliarick, Surface Plasmon Resonance Based Sensors (Springer, 2006), Chap. 4.
  26. T. Parasassi, A. M. Giusti, M. Raimondi, and E. Gratton, “Abrupt modifications of phospholipid bilayer properties at critical cholesterol concentrations,” Biophys. J.68(5), 1895–1902 (1995).
    [CrossRef] [PubMed]
  27. C. R. MacKenzie, T. Hirama, K. K. Lee, E. Altman, and N. M. J. Young, “Quantitative analysis of bacterial toxin affinity and specificity for glycolipid receptors by surface plasmon resonance,” J. Biol. Chem.272(9), 5533–5538 (1997).
    [CrossRef] [PubMed]
  28. W. I. Lencer, S. H. Chu, and W. A. Walker, “Differential binding kinetics of cholera toxin to intestinal microvillus membrane during development,” Infect. Immun.55(12), 3126–3130 (1987)
    [PubMed]
  29. J. Shi, T. Yang, S. Kataoka, Y. Zhang, A. J. Diaz, and P. S. Cremer, “GM1 clustering inhibits cholera toxin binding in supported phospholipid membranes,” J. Am. Chem. Soc.129(18), 5954–5961 (2007).
    [CrossRef] [PubMed]

2009 (2)

M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express17(19), 16505–16517 (2009).
[CrossRef] [PubMed]

L. Becucci, A. L. Schwan, E. E. Sheepwash, and R. Guidelli, “A new method to evaluate the surface dipole potential of thiol and disulfide self-assembled monolayers and its application to a disulfidated tetraoxyethylene glycol,” Langmuir25(3), 1828–1835 (2009).
[CrossRef] [PubMed]

2008 (2)

L. Becucci, M. Innocenti, E. Salvietti, A. Rindi, I. Pasquini, M. Vassalli, M. L. Foresti, and R. Guidelli, “Potassium ion transport by gramicidin and valinomycin across a Ag(111)-supported tethered bilayer lipid membrane,” Electrochim. Acta53(22), 6372–6379 (2008).
[CrossRef]

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev.108(2), 462–493 (2008).
[CrossRef] [PubMed]

2007 (1)

J. Shi, T. Yang, S. Kataoka, Y. Zhang, A. J. Diaz, and P. S. Cremer, “GM1 clustering inhibits cholera toxin binding in supported phospholipid membranes,” J. Am. Chem. Soc.129(18), 5954–5961 (2007).
[CrossRef] [PubMed]

2005 (4)

L. He, J. W. Robertson, J. Li, I. Kärcher, S. M. Schiller, W. Knoll, and R. Naumann, “Tethered bilayer lipid membranes based on monolayers of thiolipids mixed with a complementary dilution molecule. 1. Incorporation of channel peptides,” Langmuir21(25), 11666–11672 (2005).
[CrossRef] [PubMed]

I. Mocchetti, “Exogenous gangliosides, neuronal plasticity and repair, and the neurotrophins,” Cell. Mol. Life Sci.62(19-20), 2283–2294 (2005).
[CrossRef] [PubMed]

J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem.337(2), 171–194 (2005).
[CrossRef] [PubMed]

I. D. Alves, Z. Salamon, V. J. Hruby, and G. Tollin, “Ligand modulation of lateral segregation of a G-protein-coupled receptor into lipid microdomains in sphingomyelin/phosphatidylcholine solid-supported bilayers,” Biochemistry44(25), 9168–9178 (2005).
[CrossRef] [PubMed]

2004 (2)

B. Chini and M. Parenti, “G-protein coupled receptors in lipid rafts and caveolae: how, when and why do they go there?” J. Mol. Endocrinol.32(2), 325–338 (2004).
[CrossRef] [PubMed]

R. S. Ostrom and P. A. Insel, “The evolving role of lipid rafts and caveolae in G protein-coupled receptor signaling: implications for molecular pharmacology,” Br. J. Pharmacol.143(2), 235–245 (2004).
[CrossRef] [PubMed]

2003 (3)

T. Baumgart, M. Kreiter, H. Lauer, R. Naumann, G. Jung, A. Jonczyk, A. Offenhäusser, and W. Knoll, “Fusion of small unilamellar vesicles onto laterally mixed self-assembled monolayers of thiolipopeptides,” J. Colloid Interface Sci.258(2), 298–309 (2003).
[CrossRef] [PubMed]

R. Richter, A. Mukhopadhyay, and A. Brisson, “Pathways of lipid vesicle deposition on solid surfaces: a combined QCM-D and AFM study,” Biophys. J.85(5), 3035–3047 (2003).
[CrossRef] [PubMed]

S. M. Schiller, R. Naumann, K. Lovejoy, H. Kunz, and W. Knoll, “Archaea analogue thiolipids for tethered bilayer lipid membranes on ultrasmooth gold surfaces,” Angew. Chem. Int. Ed. Engl.42(2), 208–211 (2003).
[CrossRef] [PubMed]

2002 (3)

D. E. Saslowsky, J. Lawrence, X. Ren, D. A. Brown, R. M. Henderson, and J. M. Edwardson, “Placental alkaline phosphatase is efficiently targeted to rafts in supported lipid bilayers,” J. Biol. Chem.277(30), 26966–26970 (2002).
[CrossRef] [PubMed]

C. Yuan, J. Furlong, P. Burgos, and L. J. Johnston, “The size of lipid rafts: an atomic force microscopy study of ganglioside GM1 domains in sphingomyelin/DOPC/cholesterol membranes,” Biophys. J.82(5), 2526–2535 (2002).
[CrossRef] [PubMed]

R. Naumann, T. Baumgart, P. Gräber, A. Jonczyk, A. Offenhäusser, and W. Knoll, “Proton transport through a peptide-tethered bilayer lipid membrane by the H(+)-ATP synthase from chloroplasts measured by impedance spectroscopy,” Biosens. Bioelectron.17(1-2), 25–34 (2002).
[CrossRef] [PubMed]

2001 (2)

C. Dietrich, L. A. Bagatolli, Z. N. Volovyk, N. L. Thompson, M. Levi, K. Jacobson, and E. Gratton, “Lipid rafts reconstituted in model membranes,” Biophys. J.80(3), 1417–1428 (2001).
[CrossRef] [PubMed]

A. V. Samsonov, I. Mihalyov, and F. S. Cohen, “Characterization of cholesterol-sphingomyelin domains and their dynamics in bilayer membranes,” Biophys. J.81(3), 1486–1500 (2001).
[CrossRef] [PubMed]

1997 (2)

Z. Salamon, H. A. Macleod, and G. Tollin, “Coupled plasmon-waveguide resonators: a new spectroscopic tool for probing proteolipid film structure and properties,” Biophys. J.73(5), 2791–2797 (1997).
[CrossRef] [PubMed]

C. R. MacKenzie, T. Hirama, K. K. Lee, E. Altman, and N. M. J. Young, “Quantitative analysis of bacterial toxin affinity and specificity for glycolipid receptors by surface plasmon resonance,” J. Biol. Chem.272(9), 5533–5538 (1997).
[CrossRef] [PubMed]

1996 (1)

G. M. Kuziemko, M. Stroh, and R. C. Stevens, “Cholera toxin binding affinity and specificity for gangliosides determined by surface plasmon resonance,” Biochemistry35(20), 6375–6384 (1996).
[CrossRef] [PubMed]

1995 (1)

T. Parasassi, A. M. Giusti, M. Raimondi, and E. Gratton, “Abrupt modifications of phospholipid bilayer properties at critical cholesterol concentrations,” Biophys. J.68(5), 1895–1902 (1995).
[CrossRef] [PubMed]

1993 (1)

S. Terrettaz, T. Stora, C. Duschl, and H. Vogel, “Protein binding to supported lipid membranes: investigation of the cholera toxin-ganglioside interaction by simultaneous impedance spectroscopy and surface plasmon resonance,” Langmuir9(5), 1361–1369 (1993).
[CrossRef]

1987 (1)

W. I. Lencer, S. H. Chu, and W. A. Walker, “Differential binding kinetics of cholera toxin to intestinal microvillus membrane during development,” Infect. Immun.55(12), 3126–3130 (1987)
[PubMed]

1980 (2)

Z. Derzko and K. Jacobson, “Comparative lateral diffusion of fluorescent lipid analogues in phospholipid multibilayers,” Biochemistry19(26), 6050–6057 (1980).
[CrossRef] [PubMed]

N. L. Thompson and D. Axelrod, “Reduced lateral mobility of a fluorescent lipid probe in cholesterol-depleted erythrocyte membrane,” Biochim. Biophys. Acta597(1), 155–165 (1980).
[CrossRef] [PubMed]

1976 (1)

D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, and W. W. Webb, “Mobility measurement by analysis of fluorescence photobleaching recovery kinetics,” Biophys. J.16(9), 1055–1069 (1976).
[CrossRef] [PubMed]

Altman, E.

C. R. MacKenzie, T. Hirama, K. K. Lee, E. Altman, and N. M. J. Young, “Quantitative analysis of bacterial toxin affinity and specificity for glycolipid receptors by surface plasmon resonance,” J. Biol. Chem.272(9), 5533–5538 (1997).
[CrossRef] [PubMed]

Alves, I. D.

I. D. Alves, Z. Salamon, V. J. Hruby, and G. Tollin, “Ligand modulation of lateral segregation of a G-protein-coupled receptor into lipid microdomains in sphingomyelin/phosphatidylcholine solid-supported bilayers,” Biochemistry44(25), 9168–9178 (2005).
[CrossRef] [PubMed]

Axelrod, D.

N. L. Thompson and D. Axelrod, “Reduced lateral mobility of a fluorescent lipid probe in cholesterol-depleted erythrocyte membrane,” Biochim. Biophys. Acta597(1), 155–165 (1980).
[CrossRef] [PubMed]

D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, and W. W. Webb, “Mobility measurement by analysis of fluorescence photobleaching recovery kinetics,” Biophys. J.16(9), 1055–1069 (1976).
[CrossRef] [PubMed]

Bagatolli, L. A.

C. Dietrich, L. A. Bagatolli, Z. N. Volovyk, N. L. Thompson, M. Levi, K. Jacobson, and E. Gratton, “Lipid rafts reconstituted in model membranes,” Biophys. J.80(3), 1417–1428 (2001).
[CrossRef] [PubMed]

Baumgart, T.

T. Baumgart, M. Kreiter, H. Lauer, R. Naumann, G. Jung, A. Jonczyk, A. Offenhäusser, and W. Knoll, “Fusion of small unilamellar vesicles onto laterally mixed self-assembled monolayers of thiolipopeptides,” J. Colloid Interface Sci.258(2), 298–309 (2003).
[CrossRef] [PubMed]

R. Naumann, T. Baumgart, P. Gräber, A. Jonczyk, A. Offenhäusser, and W. Knoll, “Proton transport through a peptide-tethered bilayer lipid membrane by the H(+)-ATP synthase from chloroplasts measured by impedance spectroscopy,” Biosens. Bioelectron.17(1-2), 25–34 (2002).
[CrossRef] [PubMed]

Becucci, L.

L. Becucci, A. L. Schwan, E. E. Sheepwash, and R. Guidelli, “A new method to evaluate the surface dipole potential of thiol and disulfide self-assembled monolayers and its application to a disulfidated tetraoxyethylene glycol,” Langmuir25(3), 1828–1835 (2009).
[CrossRef] [PubMed]

L. Becucci, M. Innocenti, E. Salvietti, A. Rindi, I. Pasquini, M. Vassalli, M. L. Foresti, and R. Guidelli, “Potassium ion transport by gramicidin and valinomycin across a Ag(111)-supported tethered bilayer lipid membrane,” Electrochim. Acta53(22), 6372–6379 (2008).
[CrossRef]

Brisson, A.

R. Richter, A. Mukhopadhyay, and A. Brisson, “Pathways of lipid vesicle deposition on solid surfaces: a combined QCM-D and AFM study,” Biophys. J.85(5), 3035–3047 (2003).
[CrossRef] [PubMed]

Brown, D. A.

D. E. Saslowsky, J. Lawrence, X. Ren, D. A. Brown, R. M. Henderson, and J. M. Edwardson, “Placental alkaline phosphatase is efficiently targeted to rafts in supported lipid bilayers,” J. Biol. Chem.277(30), 26966–26970 (2002).
[CrossRef] [PubMed]

Burgos, P.

C. Yuan, J. Furlong, P. Burgos, and L. J. Johnston, “The size of lipid rafts: an atomic force microscopy study of ganglioside GM1 domains in sphingomyelin/DOPC/cholesterol membranes,” Biophys. J.82(5), 2526–2535 (2002).
[CrossRef] [PubMed]

Chini, B.

B. Chini and M. Parenti, “G-protein coupled receptors in lipid rafts and caveolae: how, when and why do they go there?” J. Mol. Endocrinol.32(2), 325–338 (2004).
[CrossRef] [PubMed]

Chu, S. H.

W. I. Lencer, S. H. Chu, and W. A. Walker, “Differential binding kinetics of cholera toxin to intestinal microvillus membrane during development,” Infect. Immun.55(12), 3126–3130 (1987)
[PubMed]

Cohen, F. S.

A. V. Samsonov, I. Mihalyov, and F. S. Cohen, “Characterization of cholesterol-sphingomyelin domains and their dynamics in bilayer membranes,” Biophys. J.81(3), 1486–1500 (2001).
[CrossRef] [PubMed]

Cremer, P. S.

J. Shi, T. Yang, S. Kataoka, Y. Zhang, A. J. Diaz, and P. S. Cremer, “GM1 clustering inhibits cholera toxin binding in supported phospholipid membranes,” J. Am. Chem. Soc.129(18), 5954–5961 (2007).
[CrossRef] [PubMed]

Derzko, Z.

Z. Derzko and K. Jacobson, “Comparative lateral diffusion of fluorescent lipid analogues in phospholipid multibilayers,” Biochemistry19(26), 6050–6057 (1980).
[CrossRef] [PubMed]

Diaz, A. J.

J. Shi, T. Yang, S. Kataoka, Y. Zhang, A. J. Diaz, and P. S. Cremer, “GM1 clustering inhibits cholera toxin binding in supported phospholipid membranes,” J. Am. Chem. Soc.129(18), 5954–5961 (2007).
[CrossRef] [PubMed]

Dietrich, C.

C. Dietrich, L. A. Bagatolli, Z. N. Volovyk, N. L. Thompson, M. Levi, K. Jacobson, and E. Gratton, “Lipid rafts reconstituted in model membranes,” Biophys. J.80(3), 1417–1428 (2001).
[CrossRef] [PubMed]

Duschl, C.

S. Terrettaz, T. Stora, C. Duschl, and H. Vogel, “Protein binding to supported lipid membranes: investigation of the cholera toxin-ganglioside interaction by simultaneous impedance spectroscopy and surface plasmon resonance,” Langmuir9(5), 1361–1369 (1993).
[CrossRef]

Edwardson, J. M.

D. E. Saslowsky, J. Lawrence, X. Ren, D. A. Brown, R. M. Henderson, and J. M. Edwardson, “Placental alkaline phosphatase is efficiently targeted to rafts in supported lipid bilayers,” J. Biol. Chem.277(30), 26966–26970 (2002).
[CrossRef] [PubMed]

Elson, E.

D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, and W. W. Webb, “Mobility measurement by analysis of fluorescence photobleaching recovery kinetics,” Biophys. J.16(9), 1055–1069 (1976).
[CrossRef] [PubMed]

Foresti, M. L.

L. Becucci, M. Innocenti, E. Salvietti, A. Rindi, I. Pasquini, M. Vassalli, M. L. Foresti, and R. Guidelli, “Potassium ion transport by gramicidin and valinomycin across a Ag(111)-supported tethered bilayer lipid membrane,” Electrochim. Acta53(22), 6372–6379 (2008).
[CrossRef]

Furlong, J.

C. Yuan, J. Furlong, P. Burgos, and L. J. Johnston, “The size of lipid rafts: an atomic force microscopy study of ganglioside GM1 domains in sphingomyelin/DOPC/cholesterol membranes,” Biophys. J.82(5), 2526–2535 (2002).
[CrossRef] [PubMed]

Giusti, A. M.

T. Parasassi, A. M. Giusti, M. Raimondi, and E. Gratton, “Abrupt modifications of phospholipid bilayer properties at critical cholesterol concentrations,” Biophys. J.68(5), 1895–1902 (1995).
[CrossRef] [PubMed]

Gräber, P.

R. Naumann, T. Baumgart, P. Gräber, A. Jonczyk, A. Offenhäusser, and W. Knoll, “Proton transport through a peptide-tethered bilayer lipid membrane by the H(+)-ATP synthase from chloroplasts measured by impedance spectroscopy,” Biosens. Bioelectron.17(1-2), 25–34 (2002).
[CrossRef] [PubMed]

Gratton, E.

C. Dietrich, L. A. Bagatolli, Z. N. Volovyk, N. L. Thompson, M. Levi, K. Jacobson, and E. Gratton, “Lipid rafts reconstituted in model membranes,” Biophys. J.80(3), 1417–1428 (2001).
[CrossRef] [PubMed]

T. Parasassi, A. M. Giusti, M. Raimondi, and E. Gratton, “Abrupt modifications of phospholipid bilayer properties at critical cholesterol concentrations,” Biophys. J.68(5), 1895–1902 (1995).
[CrossRef] [PubMed]

Guidelli, R.

L. Becucci, A. L. Schwan, E. E. Sheepwash, and R. Guidelli, “A new method to evaluate the surface dipole potential of thiol and disulfide self-assembled monolayers and its application to a disulfidated tetraoxyethylene glycol,” Langmuir25(3), 1828–1835 (2009).
[CrossRef] [PubMed]

L. Becucci, M. Innocenti, E. Salvietti, A. Rindi, I. Pasquini, M. Vassalli, M. L. Foresti, and R. Guidelli, “Potassium ion transport by gramicidin and valinomycin across a Ag(111)-supported tethered bilayer lipid membrane,” Electrochim. Acta53(22), 6372–6379 (2008).
[CrossRef]

He, L.

L. He, J. W. Robertson, J. Li, I. Kärcher, S. M. Schiller, W. Knoll, and R. Naumann, “Tethered bilayer lipid membranes based on monolayers of thiolipids mixed with a complementary dilution molecule. 1. Incorporation of channel peptides,” Langmuir21(25), 11666–11672 (2005).
[CrossRef] [PubMed]

Henderson, R. M.

D. E. Saslowsky, J. Lawrence, X. Ren, D. A. Brown, R. M. Henderson, and J. M. Edwardson, “Placental alkaline phosphatase is efficiently targeted to rafts in supported lipid bilayers,” J. Biol. Chem.277(30), 26966–26970 (2002).
[CrossRef] [PubMed]

Hirama, T.

C. R. MacKenzie, T. Hirama, K. K. Lee, E. Altman, and N. M. J. Young, “Quantitative analysis of bacterial toxin affinity and specificity for glycolipid receptors by surface plasmon resonance,” J. Biol. Chem.272(9), 5533–5538 (1997).
[CrossRef] [PubMed]

Homola, J.

M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express17(19), 16505–16517 (2009).
[CrossRef] [PubMed]

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev.108(2), 462–493 (2008).
[CrossRef] [PubMed]

Hruby, V. J.

I. D. Alves, Z. Salamon, V. J. Hruby, and G. Tollin, “Ligand modulation of lateral segregation of a G-protein-coupled receptor into lipid microdomains in sphingomyelin/phosphatidylcholine solid-supported bilayers,” Biochemistry44(25), 9168–9178 (2005).
[CrossRef] [PubMed]

Innocenti, M.

L. Becucci, M. Innocenti, E. Salvietti, A. Rindi, I. Pasquini, M. Vassalli, M. L. Foresti, and R. Guidelli, “Potassium ion transport by gramicidin and valinomycin across a Ag(111)-supported tethered bilayer lipid membrane,” Electrochim. Acta53(22), 6372–6379 (2008).
[CrossRef]

Insel, P. A.

R. S. Ostrom and P. A. Insel, “The evolving role of lipid rafts and caveolae in G protein-coupled receptor signaling: implications for molecular pharmacology,” Br. J. Pharmacol.143(2), 235–245 (2004).
[CrossRef] [PubMed]

Jacobson, K.

C. Dietrich, L. A. Bagatolli, Z. N. Volovyk, N. L. Thompson, M. Levi, K. Jacobson, and E. Gratton, “Lipid rafts reconstituted in model membranes,” Biophys. J.80(3), 1417–1428 (2001).
[CrossRef] [PubMed]

Z. Derzko and K. Jacobson, “Comparative lateral diffusion of fluorescent lipid analogues in phospholipid multibilayers,” Biochemistry19(26), 6050–6057 (1980).
[CrossRef] [PubMed]

Johnston, L. J.

C. Yuan, J. Furlong, P. Burgos, and L. J. Johnston, “The size of lipid rafts: an atomic force microscopy study of ganglioside GM1 domains in sphingomyelin/DOPC/cholesterol membranes,” Biophys. J.82(5), 2526–2535 (2002).
[CrossRef] [PubMed]

Jonczyk, A.

T. Baumgart, M. Kreiter, H. Lauer, R. Naumann, G. Jung, A. Jonczyk, A. Offenhäusser, and W. Knoll, “Fusion of small unilamellar vesicles onto laterally mixed self-assembled monolayers of thiolipopeptides,” J. Colloid Interface Sci.258(2), 298–309 (2003).
[CrossRef] [PubMed]

R. Naumann, T. Baumgart, P. Gräber, A. Jonczyk, A. Offenhäusser, and W. Knoll, “Proton transport through a peptide-tethered bilayer lipid membrane by the H(+)-ATP synthase from chloroplasts measured by impedance spectroscopy,” Biosens. Bioelectron.17(1-2), 25–34 (2002).
[CrossRef] [PubMed]

Jung, G.

T. Baumgart, M. Kreiter, H. Lauer, R. Naumann, G. Jung, A. Jonczyk, A. Offenhäusser, and W. Knoll, “Fusion of small unilamellar vesicles onto laterally mixed self-assembled monolayers of thiolipopeptides,” J. Colloid Interface Sci.258(2), 298–309 (2003).
[CrossRef] [PubMed]

Kärcher, I.

L. He, J. W. Robertson, J. Li, I. Kärcher, S. M. Schiller, W. Knoll, and R. Naumann, “Tethered bilayer lipid membranes based on monolayers of thiolipids mixed with a complementary dilution molecule. 1. Incorporation of channel peptides,” Langmuir21(25), 11666–11672 (2005).
[CrossRef] [PubMed]

Kataoka, S.

J. Shi, T. Yang, S. Kataoka, Y. Zhang, A. J. Diaz, and P. S. Cremer, “GM1 clustering inhibits cholera toxin binding in supported phospholipid membranes,” J. Am. Chem. Soc.129(18), 5954–5961 (2007).
[CrossRef] [PubMed]

Knoll, W.

L. He, J. W. Robertson, J. Li, I. Kärcher, S. M. Schiller, W. Knoll, and R. Naumann, “Tethered bilayer lipid membranes based on monolayers of thiolipids mixed with a complementary dilution molecule. 1. Incorporation of channel peptides,” Langmuir21(25), 11666–11672 (2005).
[CrossRef] [PubMed]

S. M. Schiller, R. Naumann, K. Lovejoy, H. Kunz, and W. Knoll, “Archaea analogue thiolipids for tethered bilayer lipid membranes on ultrasmooth gold surfaces,” Angew. Chem. Int. Ed. Engl.42(2), 208–211 (2003).
[CrossRef] [PubMed]

T. Baumgart, M. Kreiter, H. Lauer, R. Naumann, G. Jung, A. Jonczyk, A. Offenhäusser, and W. Knoll, “Fusion of small unilamellar vesicles onto laterally mixed self-assembled monolayers of thiolipopeptides,” J. Colloid Interface Sci.258(2), 298–309 (2003).
[CrossRef] [PubMed]

R. Naumann, T. Baumgart, P. Gräber, A. Jonczyk, A. Offenhäusser, and W. Knoll, “Proton transport through a peptide-tethered bilayer lipid membrane by the H(+)-ATP synthase from chloroplasts measured by impedance spectroscopy,” Biosens. Bioelectron.17(1-2), 25–34 (2002).
[CrossRef] [PubMed]

Koppel, D. E.

D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, and W. W. Webb, “Mobility measurement by analysis of fluorescence photobleaching recovery kinetics,” Biophys. J.16(9), 1055–1069 (1976).
[CrossRef] [PubMed]

Kreiter, M.

T. Baumgart, M. Kreiter, H. Lauer, R. Naumann, G. Jung, A. Jonczyk, A. Offenhäusser, and W. Knoll, “Fusion of small unilamellar vesicles onto laterally mixed self-assembled monolayers of thiolipopeptides,” J. Colloid Interface Sci.258(2), 298–309 (2003).
[CrossRef] [PubMed]

Kunz, H.

S. M. Schiller, R. Naumann, K. Lovejoy, H. Kunz, and W. Knoll, “Archaea analogue thiolipids for tethered bilayer lipid membranes on ultrasmooth gold surfaces,” Angew. Chem. Int. Ed. Engl.42(2), 208–211 (2003).
[CrossRef] [PubMed]

Kuziemko, G. M.

G. M. Kuziemko, M. Stroh, and R. C. Stevens, “Cholera toxin binding affinity and specificity for gangliosides determined by surface plasmon resonance,” Biochemistry35(20), 6375–6384 (1996).
[CrossRef] [PubMed]

Lakowicz, J. R.

J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem.337(2), 171–194 (2005).
[CrossRef] [PubMed]

Lauer, H.

T. Baumgart, M. Kreiter, H. Lauer, R. Naumann, G. Jung, A. Jonczyk, A. Offenhäusser, and W. Knoll, “Fusion of small unilamellar vesicles onto laterally mixed self-assembled monolayers of thiolipopeptides,” J. Colloid Interface Sci.258(2), 298–309 (2003).
[CrossRef] [PubMed]

Lawrence, J.

D. E. Saslowsky, J. Lawrence, X. Ren, D. A. Brown, R. M. Henderson, and J. M. Edwardson, “Placental alkaline phosphatase is efficiently targeted to rafts in supported lipid bilayers,” J. Biol. Chem.277(30), 26966–26970 (2002).
[CrossRef] [PubMed]

Lee, K. K.

C. R. MacKenzie, T. Hirama, K. K. Lee, E. Altman, and N. M. J. Young, “Quantitative analysis of bacterial toxin affinity and specificity for glycolipid receptors by surface plasmon resonance,” J. Biol. Chem.272(9), 5533–5538 (1997).
[CrossRef] [PubMed]

Lencer, W. I.

W. I. Lencer, S. H. Chu, and W. A. Walker, “Differential binding kinetics of cholera toxin to intestinal microvillus membrane during development,” Infect. Immun.55(12), 3126–3130 (1987)
[PubMed]

Levi, M.

C. Dietrich, L. A. Bagatolli, Z. N. Volovyk, N. L. Thompson, M. Levi, K. Jacobson, and E. Gratton, “Lipid rafts reconstituted in model membranes,” Biophys. J.80(3), 1417–1428 (2001).
[CrossRef] [PubMed]

Li, J.

L. He, J. W. Robertson, J. Li, I. Kärcher, S. M. Schiller, W. Knoll, and R. Naumann, “Tethered bilayer lipid membranes based on monolayers of thiolipids mixed with a complementary dilution molecule. 1. Incorporation of channel peptides,” Langmuir21(25), 11666–11672 (2005).
[CrossRef] [PubMed]

Lovejoy, K.

S. M. Schiller, R. Naumann, K. Lovejoy, H. Kunz, and W. Knoll, “Archaea analogue thiolipids for tethered bilayer lipid membranes on ultrasmooth gold surfaces,” Angew. Chem. Int. Ed. Engl.42(2), 208–211 (2003).
[CrossRef] [PubMed]

MacKenzie, C. R.

C. R. MacKenzie, T. Hirama, K. K. Lee, E. Altman, and N. M. J. Young, “Quantitative analysis of bacterial toxin affinity and specificity for glycolipid receptors by surface plasmon resonance,” J. Biol. Chem.272(9), 5533–5538 (1997).
[CrossRef] [PubMed]

Macleod, H. A.

Z. Salamon, H. A. Macleod, and G. Tollin, “Coupled plasmon-waveguide resonators: a new spectroscopic tool for probing proteolipid film structure and properties,” Biophys. J.73(5), 2791–2797 (1997).
[CrossRef] [PubMed]

Mihalyov, I.

A. V. Samsonov, I. Mihalyov, and F. S. Cohen, “Characterization of cholesterol-sphingomyelin domains and their dynamics in bilayer membranes,” Biophys. J.81(3), 1486–1500 (2001).
[CrossRef] [PubMed]

Mocchetti, I.

I. Mocchetti, “Exogenous gangliosides, neuronal plasticity and repair, and the neurotrophins,” Cell. Mol. Life Sci.62(19-20), 2283–2294 (2005).
[CrossRef] [PubMed]

Mukhopadhyay, A.

R. Richter, A. Mukhopadhyay, and A. Brisson, “Pathways of lipid vesicle deposition on solid surfaces: a combined QCM-D and AFM study,” Biophys. J.85(5), 3035–3047 (2003).
[CrossRef] [PubMed]

Naumann, R.

L. He, J. W. Robertson, J. Li, I. Kärcher, S. M. Schiller, W. Knoll, and R. Naumann, “Tethered bilayer lipid membranes based on monolayers of thiolipids mixed with a complementary dilution molecule. 1. Incorporation of channel peptides,” Langmuir21(25), 11666–11672 (2005).
[CrossRef] [PubMed]

S. M. Schiller, R. Naumann, K. Lovejoy, H. Kunz, and W. Knoll, “Archaea analogue thiolipids for tethered bilayer lipid membranes on ultrasmooth gold surfaces,” Angew. Chem. Int. Ed. Engl.42(2), 208–211 (2003).
[CrossRef] [PubMed]

T. Baumgart, M. Kreiter, H. Lauer, R. Naumann, G. Jung, A. Jonczyk, A. Offenhäusser, and W. Knoll, “Fusion of small unilamellar vesicles onto laterally mixed self-assembled monolayers of thiolipopeptides,” J. Colloid Interface Sci.258(2), 298–309 (2003).
[CrossRef] [PubMed]

R. Naumann, T. Baumgart, P. Gräber, A. Jonczyk, A. Offenhäusser, and W. Knoll, “Proton transport through a peptide-tethered bilayer lipid membrane by the H(+)-ATP synthase from chloroplasts measured by impedance spectroscopy,” Biosens. Bioelectron.17(1-2), 25–34 (2002).
[CrossRef] [PubMed]

Offenhäusser, A.

T. Baumgart, M. Kreiter, H. Lauer, R. Naumann, G. Jung, A. Jonczyk, A. Offenhäusser, and W. Knoll, “Fusion of small unilamellar vesicles onto laterally mixed self-assembled monolayers of thiolipopeptides,” J. Colloid Interface Sci.258(2), 298–309 (2003).
[CrossRef] [PubMed]

R. Naumann, T. Baumgart, P. Gräber, A. Jonczyk, A. Offenhäusser, and W. Knoll, “Proton transport through a peptide-tethered bilayer lipid membrane by the H(+)-ATP synthase from chloroplasts measured by impedance spectroscopy,” Biosens. Bioelectron.17(1-2), 25–34 (2002).
[CrossRef] [PubMed]

Ostrom, R. S.

R. S. Ostrom and P. A. Insel, “The evolving role of lipid rafts and caveolae in G protein-coupled receptor signaling: implications for molecular pharmacology,” Br. J. Pharmacol.143(2), 235–245 (2004).
[CrossRef] [PubMed]

Parasassi, T.

T. Parasassi, A. M. Giusti, M. Raimondi, and E. Gratton, “Abrupt modifications of phospholipid bilayer properties at critical cholesterol concentrations,” Biophys. J.68(5), 1895–1902 (1995).
[CrossRef] [PubMed]

Parenti, M.

B. Chini and M. Parenti, “G-protein coupled receptors in lipid rafts and caveolae: how, when and why do they go there?” J. Mol. Endocrinol.32(2), 325–338 (2004).
[CrossRef] [PubMed]

Pasquini, I.

L. Becucci, M. Innocenti, E. Salvietti, A. Rindi, I. Pasquini, M. Vassalli, M. L. Foresti, and R. Guidelli, “Potassium ion transport by gramicidin and valinomycin across a Ag(111)-supported tethered bilayer lipid membrane,” Electrochim. Acta53(22), 6372–6379 (2008).
[CrossRef]

Piliarik, M.

Raimondi, M.

T. Parasassi, A. M. Giusti, M. Raimondi, and E. Gratton, “Abrupt modifications of phospholipid bilayer properties at critical cholesterol concentrations,” Biophys. J.68(5), 1895–1902 (1995).
[CrossRef] [PubMed]

Ren, X.

D. E. Saslowsky, J. Lawrence, X. Ren, D. A. Brown, R. M. Henderson, and J. M. Edwardson, “Placental alkaline phosphatase is efficiently targeted to rafts in supported lipid bilayers,” J. Biol. Chem.277(30), 26966–26970 (2002).
[CrossRef] [PubMed]

Richter, R.

R. Richter, A. Mukhopadhyay, and A. Brisson, “Pathways of lipid vesicle deposition on solid surfaces: a combined QCM-D and AFM study,” Biophys. J.85(5), 3035–3047 (2003).
[CrossRef] [PubMed]

Rindi, A.

L. Becucci, M. Innocenti, E. Salvietti, A. Rindi, I. Pasquini, M. Vassalli, M. L. Foresti, and R. Guidelli, “Potassium ion transport by gramicidin and valinomycin across a Ag(111)-supported tethered bilayer lipid membrane,” Electrochim. Acta53(22), 6372–6379 (2008).
[CrossRef]

Robertson, J. W.

L. He, J. W. Robertson, J. Li, I. Kärcher, S. M. Schiller, W. Knoll, and R. Naumann, “Tethered bilayer lipid membranes based on monolayers of thiolipids mixed with a complementary dilution molecule. 1. Incorporation of channel peptides,” Langmuir21(25), 11666–11672 (2005).
[CrossRef] [PubMed]

Salamon, Z.

I. D. Alves, Z. Salamon, V. J. Hruby, and G. Tollin, “Ligand modulation of lateral segregation of a G-protein-coupled receptor into lipid microdomains in sphingomyelin/phosphatidylcholine solid-supported bilayers,” Biochemistry44(25), 9168–9178 (2005).
[CrossRef] [PubMed]

Z. Salamon, H. A. Macleod, and G. Tollin, “Coupled plasmon-waveguide resonators: a new spectroscopic tool for probing proteolipid film structure and properties,” Biophys. J.73(5), 2791–2797 (1997).
[CrossRef] [PubMed]

Salvietti, E.

L. Becucci, M. Innocenti, E. Salvietti, A. Rindi, I. Pasquini, M. Vassalli, M. L. Foresti, and R. Guidelli, “Potassium ion transport by gramicidin and valinomycin across a Ag(111)-supported tethered bilayer lipid membrane,” Electrochim. Acta53(22), 6372–6379 (2008).
[CrossRef]

Samsonov, A. V.

A. V. Samsonov, I. Mihalyov, and F. S. Cohen, “Characterization of cholesterol-sphingomyelin domains and their dynamics in bilayer membranes,” Biophys. J.81(3), 1486–1500 (2001).
[CrossRef] [PubMed]

Saslowsky, D. E.

D. E. Saslowsky, J. Lawrence, X. Ren, D. A. Brown, R. M. Henderson, and J. M. Edwardson, “Placental alkaline phosphatase is efficiently targeted to rafts in supported lipid bilayers,” J. Biol. Chem.277(30), 26966–26970 (2002).
[CrossRef] [PubMed]

Schiller, S. M.

L. He, J. W. Robertson, J. Li, I. Kärcher, S. M. Schiller, W. Knoll, and R. Naumann, “Tethered bilayer lipid membranes based on monolayers of thiolipids mixed with a complementary dilution molecule. 1. Incorporation of channel peptides,” Langmuir21(25), 11666–11672 (2005).
[CrossRef] [PubMed]

S. M. Schiller, R. Naumann, K. Lovejoy, H. Kunz, and W. Knoll, “Archaea analogue thiolipids for tethered bilayer lipid membranes on ultrasmooth gold surfaces,” Angew. Chem. Int. Ed. Engl.42(2), 208–211 (2003).
[CrossRef] [PubMed]

Schlessinger, J.

D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, and W. W. Webb, “Mobility measurement by analysis of fluorescence photobleaching recovery kinetics,” Biophys. J.16(9), 1055–1069 (1976).
[CrossRef] [PubMed]

Schwan, A. L.

L. Becucci, A. L. Schwan, E. E. Sheepwash, and R. Guidelli, “A new method to evaluate the surface dipole potential of thiol and disulfide self-assembled monolayers and its application to a disulfidated tetraoxyethylene glycol,” Langmuir25(3), 1828–1835 (2009).
[CrossRef] [PubMed]

Sheepwash, E. E.

L. Becucci, A. L. Schwan, E. E. Sheepwash, and R. Guidelli, “A new method to evaluate the surface dipole potential of thiol and disulfide self-assembled monolayers and its application to a disulfidated tetraoxyethylene glycol,” Langmuir25(3), 1828–1835 (2009).
[CrossRef] [PubMed]

Shi, J.

J. Shi, T. Yang, S. Kataoka, Y. Zhang, A. J. Diaz, and P. S. Cremer, “GM1 clustering inhibits cholera toxin binding in supported phospholipid membranes,” J. Am. Chem. Soc.129(18), 5954–5961 (2007).
[CrossRef] [PubMed]

Stevens, R. C.

G. M. Kuziemko, M. Stroh, and R. C. Stevens, “Cholera toxin binding affinity and specificity for gangliosides determined by surface plasmon resonance,” Biochemistry35(20), 6375–6384 (1996).
[CrossRef] [PubMed]

Stora, T.

S. Terrettaz, T. Stora, C. Duschl, and H. Vogel, “Protein binding to supported lipid membranes: investigation of the cholera toxin-ganglioside interaction by simultaneous impedance spectroscopy and surface plasmon resonance,” Langmuir9(5), 1361–1369 (1993).
[CrossRef]

Stroh, M.

G. M. Kuziemko, M. Stroh, and R. C. Stevens, “Cholera toxin binding affinity and specificity for gangliosides determined by surface plasmon resonance,” Biochemistry35(20), 6375–6384 (1996).
[CrossRef] [PubMed]

Terrettaz, S.

S. Terrettaz, T. Stora, C. Duschl, and H. Vogel, “Protein binding to supported lipid membranes: investigation of the cholera toxin-ganglioside interaction by simultaneous impedance spectroscopy and surface plasmon resonance,” Langmuir9(5), 1361–1369 (1993).
[CrossRef]

Thompson, N. L.

C. Dietrich, L. A. Bagatolli, Z. N. Volovyk, N. L. Thompson, M. Levi, K. Jacobson, and E. Gratton, “Lipid rafts reconstituted in model membranes,” Biophys. J.80(3), 1417–1428 (2001).
[CrossRef] [PubMed]

N. L. Thompson and D. Axelrod, “Reduced lateral mobility of a fluorescent lipid probe in cholesterol-depleted erythrocyte membrane,” Biochim. Biophys. Acta597(1), 155–165 (1980).
[CrossRef] [PubMed]

Tollin, G.

I. D. Alves, Z. Salamon, V. J. Hruby, and G. Tollin, “Ligand modulation of lateral segregation of a G-protein-coupled receptor into lipid microdomains in sphingomyelin/phosphatidylcholine solid-supported bilayers,” Biochemistry44(25), 9168–9178 (2005).
[CrossRef] [PubMed]

Z. Salamon, H. A. Macleod, and G. Tollin, “Coupled plasmon-waveguide resonators: a new spectroscopic tool for probing proteolipid film structure and properties,” Biophys. J.73(5), 2791–2797 (1997).
[CrossRef] [PubMed]

Vassalli, M.

L. Becucci, M. Innocenti, E. Salvietti, A. Rindi, I. Pasquini, M. Vassalli, M. L. Foresti, and R. Guidelli, “Potassium ion transport by gramicidin and valinomycin across a Ag(111)-supported tethered bilayer lipid membrane,” Electrochim. Acta53(22), 6372–6379 (2008).
[CrossRef]

Vogel, H.

S. Terrettaz, T. Stora, C. Duschl, and H. Vogel, “Protein binding to supported lipid membranes: investigation of the cholera toxin-ganglioside interaction by simultaneous impedance spectroscopy and surface plasmon resonance,” Langmuir9(5), 1361–1369 (1993).
[CrossRef]

Volovyk, Z. N.

C. Dietrich, L. A. Bagatolli, Z. N. Volovyk, N. L. Thompson, M. Levi, K. Jacobson, and E. Gratton, “Lipid rafts reconstituted in model membranes,” Biophys. J.80(3), 1417–1428 (2001).
[CrossRef] [PubMed]

Walker, W. A.

W. I. Lencer, S. H. Chu, and W. A. Walker, “Differential binding kinetics of cholera toxin to intestinal microvillus membrane during development,” Infect. Immun.55(12), 3126–3130 (1987)
[PubMed]

Webb, W. W.

D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, and W. W. Webb, “Mobility measurement by analysis of fluorescence photobleaching recovery kinetics,” Biophys. J.16(9), 1055–1069 (1976).
[CrossRef] [PubMed]

Yang, T.

J. Shi, T. Yang, S. Kataoka, Y. Zhang, A. J. Diaz, and P. S. Cremer, “GM1 clustering inhibits cholera toxin binding in supported phospholipid membranes,” J. Am. Chem. Soc.129(18), 5954–5961 (2007).
[CrossRef] [PubMed]

Young, N. M. J.

C. R. MacKenzie, T. Hirama, K. K. Lee, E. Altman, and N. M. J. Young, “Quantitative analysis of bacterial toxin affinity and specificity for glycolipid receptors by surface plasmon resonance,” J. Biol. Chem.272(9), 5533–5538 (1997).
[CrossRef] [PubMed]

Yuan, C.

C. Yuan, J. Furlong, P. Burgos, and L. J. Johnston, “The size of lipid rafts: an atomic force microscopy study of ganglioside GM1 domains in sphingomyelin/DOPC/cholesterol membranes,” Biophys. J.82(5), 2526–2535 (2002).
[CrossRef] [PubMed]

Zhang, Y.

J. Shi, T. Yang, S. Kataoka, Y. Zhang, A. J. Diaz, and P. S. Cremer, “GM1 clustering inhibits cholera toxin binding in supported phospholipid membranes,” J. Am. Chem. Soc.129(18), 5954–5961 (2007).
[CrossRef] [PubMed]

Anal. Biochem. (1)

J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem.337(2), 171–194 (2005).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

S. M. Schiller, R. Naumann, K. Lovejoy, H. Kunz, and W. Knoll, “Archaea analogue thiolipids for tethered bilayer lipid membranes on ultrasmooth gold surfaces,” Angew. Chem. Int. Ed. Engl.42(2), 208–211 (2003).
[CrossRef] [PubMed]

Biochemistry (3)

I. D. Alves, Z. Salamon, V. J. Hruby, and G. Tollin, “Ligand modulation of lateral segregation of a G-protein-coupled receptor into lipid microdomains in sphingomyelin/phosphatidylcholine solid-supported bilayers,” Biochemistry44(25), 9168–9178 (2005).
[CrossRef] [PubMed]

Z. Derzko and K. Jacobson, “Comparative lateral diffusion of fluorescent lipid analogues in phospholipid multibilayers,” Biochemistry19(26), 6050–6057 (1980).
[CrossRef] [PubMed]

G. M. Kuziemko, M. Stroh, and R. C. Stevens, “Cholera toxin binding affinity and specificity for gangliosides determined by surface plasmon resonance,” Biochemistry35(20), 6375–6384 (1996).
[CrossRef] [PubMed]

Biochim. Biophys. Acta (1)

N. L. Thompson and D. Axelrod, “Reduced lateral mobility of a fluorescent lipid probe in cholesterol-depleted erythrocyte membrane,” Biochim. Biophys. Acta597(1), 155–165 (1980).
[CrossRef] [PubMed]

Biophys. J. (7)

C. Yuan, J. Furlong, P. Burgos, and L. J. Johnston, “The size of lipid rafts: an atomic force microscopy study of ganglioside GM1 domains in sphingomyelin/DOPC/cholesterol membranes,” Biophys. J.82(5), 2526–2535 (2002).
[CrossRef] [PubMed]

R. Richter, A. Mukhopadhyay, and A. Brisson, “Pathways of lipid vesicle deposition on solid surfaces: a combined QCM-D and AFM study,” Biophys. J.85(5), 3035–3047 (2003).
[CrossRef] [PubMed]

C. Dietrich, L. A. Bagatolli, Z. N. Volovyk, N. L. Thompson, M. Levi, K. Jacobson, and E. Gratton, “Lipid rafts reconstituted in model membranes,” Biophys. J.80(3), 1417–1428 (2001).
[CrossRef] [PubMed]

A. V. Samsonov, I. Mihalyov, and F. S. Cohen, “Characterization of cholesterol-sphingomyelin domains and their dynamics in bilayer membranes,” Biophys. J.81(3), 1486–1500 (2001).
[CrossRef] [PubMed]

D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, and W. W. Webb, “Mobility measurement by analysis of fluorescence photobleaching recovery kinetics,” Biophys. J.16(9), 1055–1069 (1976).
[CrossRef] [PubMed]

Z. Salamon, H. A. Macleod, and G. Tollin, “Coupled plasmon-waveguide resonators: a new spectroscopic tool for probing proteolipid film structure and properties,” Biophys. J.73(5), 2791–2797 (1997).
[CrossRef] [PubMed]

T. Parasassi, A. M. Giusti, M. Raimondi, and E. Gratton, “Abrupt modifications of phospholipid bilayer properties at critical cholesterol concentrations,” Biophys. J.68(5), 1895–1902 (1995).
[CrossRef] [PubMed]

Biosens. Bioelectron. (1)

R. Naumann, T. Baumgart, P. Gräber, A. Jonczyk, A. Offenhäusser, and W. Knoll, “Proton transport through a peptide-tethered bilayer lipid membrane by the H(+)-ATP synthase from chloroplasts measured by impedance spectroscopy,” Biosens. Bioelectron.17(1-2), 25–34 (2002).
[CrossRef] [PubMed]

Br. J. Pharmacol. (1)

R. S. Ostrom and P. A. Insel, “The evolving role of lipid rafts and caveolae in G protein-coupled receptor signaling: implications for molecular pharmacology,” Br. J. Pharmacol.143(2), 235–245 (2004).
[CrossRef] [PubMed]

Cell. Mol. Life Sci. (1)

I. Mocchetti, “Exogenous gangliosides, neuronal plasticity and repair, and the neurotrophins,” Cell. Mol. Life Sci.62(19-20), 2283–2294 (2005).
[CrossRef] [PubMed]

Chem. Rev. (1)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev.108(2), 462–493 (2008).
[CrossRef] [PubMed]

Electrochim. Acta (1)

L. Becucci, M. Innocenti, E. Salvietti, A. Rindi, I. Pasquini, M. Vassalli, M. L. Foresti, and R. Guidelli, “Potassium ion transport by gramicidin and valinomycin across a Ag(111)-supported tethered bilayer lipid membrane,” Electrochim. Acta53(22), 6372–6379 (2008).
[CrossRef]

Infect. Immun. (1)

W. I. Lencer, S. H. Chu, and W. A. Walker, “Differential binding kinetics of cholera toxin to intestinal microvillus membrane during development,” Infect. Immun.55(12), 3126–3130 (1987)
[PubMed]

J. Am. Chem. Soc. (1)

J. Shi, T. Yang, S. Kataoka, Y. Zhang, A. J. Diaz, and P. S. Cremer, “GM1 clustering inhibits cholera toxin binding in supported phospholipid membranes,” J. Am. Chem. Soc.129(18), 5954–5961 (2007).
[CrossRef] [PubMed]

J. Biol. Chem. (2)

C. R. MacKenzie, T. Hirama, K. K. Lee, E. Altman, and N. M. J. Young, “Quantitative analysis of bacterial toxin affinity and specificity for glycolipid receptors by surface plasmon resonance,” J. Biol. Chem.272(9), 5533–5538 (1997).
[CrossRef] [PubMed]

D. E. Saslowsky, J. Lawrence, X. Ren, D. A. Brown, R. M. Henderson, and J. M. Edwardson, “Placental alkaline phosphatase is efficiently targeted to rafts in supported lipid bilayers,” J. Biol. Chem.277(30), 26966–26970 (2002).
[CrossRef] [PubMed]

J. Colloid Interface Sci. (1)

T. Baumgart, M. Kreiter, H. Lauer, R. Naumann, G. Jung, A. Jonczyk, A. Offenhäusser, and W. Knoll, “Fusion of small unilamellar vesicles onto laterally mixed self-assembled monolayers of thiolipopeptides,” J. Colloid Interface Sci.258(2), 298–309 (2003).
[CrossRef] [PubMed]

J. Mol. Endocrinol. (1)

B. Chini and M. Parenti, “G-protein coupled receptors in lipid rafts and caveolae: how, when and why do they go there?” J. Mol. Endocrinol.32(2), 325–338 (2004).
[CrossRef] [PubMed]

Langmuir (3)

S. Terrettaz, T. Stora, C. Duschl, and H. Vogel, “Protein binding to supported lipid membranes: investigation of the cholera toxin-ganglioside interaction by simultaneous impedance spectroscopy and surface plasmon resonance,” Langmuir9(5), 1361–1369 (1993).
[CrossRef]

L. Becucci, A. L. Schwan, E. E. Sheepwash, and R. Guidelli, “A new method to evaluate the surface dipole potential of thiol and disulfide self-assembled monolayers and its application to a disulfidated tetraoxyethylene glycol,” Langmuir25(3), 1828–1835 (2009).
[CrossRef] [PubMed]

L. He, J. W. Robertson, J. Li, I. Kärcher, S. M. Schiller, W. Knoll, and R. Naumann, “Tethered bilayer lipid membranes based on monolayers of thiolipids mixed with a complementary dilution molecule. 1. Incorporation of channel peptides,” Langmuir21(25), 11666–11672 (2005).
[CrossRef] [PubMed]

Opt. Express (1)

Other (1)

J. Stepanek, H. Vaisocherova, and M. Piliarick, Surface Plasmon Resonance Based Sensors (Springer, 2006), Chap. 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) The DPC:GM1 mixture essiccated onto a solid support, is exposed to water. (b) The formed ssBLM demixes into lipid rafts (lo) and a liquid disordered matrix (ld) if the lipids have high lateral mobility, recruiting a large amount of GM1 in the lipid rafts; (c) a much lower or no demixing, and a correspondingly lower amount of GM1, is observed if lateral mobility is low or absent. The presence of GM1 is recognized by its specific binding to ChTB, easily detected via SPR measurements. Thus, the higher amount of ChTB corresponds to a higher mobility of the ssBLM.

Fig. 2
Fig. 2

(a) Experimental SPR spectra (dotted curves) and their best fits (solid curves) at a 50 nm thick Au layer without (black ●) and with (green▲) TEGL, with Dopc:GM1 on TEGL before reorganization (pink ★), after 2 rinses with water and 15 h incubation (blue ♦), and after 20 h of incubation with ChTB in water (red ■). (b) the same steps with Dopc:GM1.

Fig. 3
Fig. 3

Shifts of the resonance angle against time during the incubation of a 0.86x10−7M water solution of ChTB, for DPC:GM1 on Au|TEGL (blue ■) and on Au|DPTL (red □), for Dopc:GM1 on Au|TEGL (green ●) and on Au|DPTL (black ○).

Metrics