Abstract

Current detection and identification of micro-organisms is based on either rather unspecific rapid microscopy or on more accurate but complex and time-consuming procedures. In a medical context, the determination of the bacteria Gram type is of significant interest. The diagnostic of microbial infection often requires the identification of the microbiological agent responsible for the infection, or at least the identification of its family (Gram type), in a matter of minutes. In this work, we propose to use terahertz frequency range antennas for the enhanced selective detection of bacteria types. Several microorganisms are investigated by terahertz time-domain spectroscopy: a fast, contactless and damage-free investigation method to gain information on the presence and the nature of the microorganisms. We demonstrate that plasmonic antennas enhance the detection sensitivity for bacterial layers and allow the selective recognition of the Gram type of the bacteria.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Madigan, J. Martinko, D. Stahl, and D. Clark, Biology of Microorganisms, 13th ed. (Ed. Pearson, 2012).
  2. P. Demchick and A. L. Koch, “The permeability of the wall fabric of Escherichia coli and Bacillus subtilis,” J. Bacteriol.178(3), 768–773 (1996).
    [PubMed]
  3. S. Efrima and L. Zeiri, “Understanding SERS of bacteria,” J. Raman Spectrosc.40(3), 277–288 (2009).
    [CrossRef]
  4. O. Lazcka, F. J. Del Campo, and F. X. Muñoz, “Pathogen detection: a perspective of traditional methods and biosensors,” Biosens. Bioelectron.22(7), 1205–1217 (2007).
    [CrossRef] [PubMed]
  5. D. Ivnitski, I. Abdel-Hamid, P. Atanasov, and E. Wilkins, “Biosensors for detection of pathogenic bacteria,” Biosens. Bioelectron.14(7), 599–624 (1999).
    [CrossRef]
  6. L. Su, W. Jia, C. Hou, and Y. Lei, “Microbial biosensors: a review,” Biosens. Bioelectron.26(5), 1788–1799 (2011).
    [CrossRef] [PubMed]
  7. A. D. Taylor, Q. Yu, S. Chen, J. Homola, and S. Jiang, “Comparison of E. coli O157:H7 preparation methods used for detection with surface plasmon resonance sensor,” Sens. Actuators B Chem.107(1), 202–208 (2005).
    [CrossRef]
  8. A. Mazhorova, A. Markov, A. Ng, R. Chinnappan, O. Skorobogata, M. Zourob, and M. Skorobogatiy, “Label-free bacteria detection using evanescent mode of a suspended core terahertz fiber,” Opt. Express20(5), 5344–5355 (2012).
    [CrossRef] [PubMed]
  9. D. Debuisson, A. Treizebré, T. Houssin, E. Leclerc, D. Bartès-Biesel, D. Legrand, J. Mazurier, S. Arscott, B. Bocquet, and V. Senez, “Nanoscale devices for online dielectric spectroscopy of biological cells,” Physiol. Meas.29(6), S213–S225 (2008).
    [CrossRef] [PubMed]
  10. 10. K. Dahlke, C. Geyer, S. Dees, M. Helbig, J. Sachs, F. Scotto, M. Hein, W. A. Kaiser, and I. Hilger, “Effects of cell structure of Gram-positive and Gram-negative bacteria based on their dielectric properties,” in The 7th German Microwave Conference (GeMiC), 2012 (2012), pp. 1–4.
  11. V. Giannini, A. Berrier, S. A. Maier, J. A. Sánchez-Gil, and J. Gómez Rivas, “Scattering efficiency and near field enhancement of active semiconductor plasmonic antennas at terahertz frequencies,” Opt. Express18(3), 2797–2807 (2010).
    [CrossRef] [PubMed]
  12. J. Gómez Rivas, P. H. Bolívar, and H. Kurz, “Thermal switching of the enhanced transmission of terahertz radiation through subwavelength apertures,” Opt. Lett.29(14), 1680–1682 (2004).
    [CrossRef] [PubMed]
  13. A. Berrier, P. Albella, M. A. Poyli, R. Ulbricht, M. Bonn, J. Aizpurua, and J. Gómez Rivas, “Detection of deep-subwavelength dielectric layers at terahertz frequencies using semiconductor plasmonic resonators,” Opt. Express20(5), 5052–5060 (2012).
    [CrossRef] [PubMed]
  14. X. Hu, L. Tripodi, M. K. Matters-Kammerer, S. Cheng, and A. Rydberg, “65-nm CMOS Monolithically Integrated Subterahertz Transmitter,” IEEE Electron Device Lett.32(9), 1182–1184 (2011).
    [CrossRef]
  15. A. Berrier, R. Ulbricht, M. Bonn, and J. Gómez Rivas, “Ultrafast active control of localized surface plasmon resonances in silicon bowtie antennas,” Opt. Express18(22), 23226–23235 (2010).
    [CrossRef] [PubMed]
  16. M. Walther, P. Plochocka, B. Fischer, H. Helm, and P. Uhd Jepsen, “Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy,” Biopolymers67(4-5), 310–313 (2002).
    [CrossRef] [PubMed]
  17. A. G. Markelz, “Terahertz dielectric sensitivity to biomolecular structure and function,” IEEE J. Sel. Top. Quantum Electron.14(1), 180–190 (2008).
    [CrossRef]
  18. S. W. Smye, J. M. Chamberlain, A. J. Fitzgerald, and E. Berry, “The interaction between Terahertz radiation and biological tissue,” Phys. Med. Biol.46(9), R101–R112 (2001).
    [CrossRef] [PubMed]
  19. A. Abbas, M. J. Linman, and Q. Cheng, “Sensitivity comparison of surface plasmon resonance and plasmon-waveguide resonance biosensors,” Sens. Actuators B Chem.156(1), 169–175 (2011).
    [CrossRef] [PubMed]
  20. S. E. Anderson, R. Pusset, A. Berrier, F. Vinet, and G. Nonglaton, “Adaptable functionalization processes for localized bacterial capture” (unpublished).
  21. M. C. Schaafsma, H. Starmans, A. Berrier, and J. Gómez Rivas, “Enhanced THz extinction of single plasmonic antennas with conically tapered waveguides,” arXiv.org, arXiv:1208.4025 (2012).

2012 (2)

2011 (3)

X. Hu, L. Tripodi, M. K. Matters-Kammerer, S. Cheng, and A. Rydberg, “65-nm CMOS Monolithically Integrated Subterahertz Transmitter,” IEEE Electron Device Lett.32(9), 1182–1184 (2011).
[CrossRef]

A. Abbas, M. J. Linman, and Q. Cheng, “Sensitivity comparison of surface plasmon resonance and plasmon-waveguide resonance biosensors,” Sens. Actuators B Chem.156(1), 169–175 (2011).
[CrossRef] [PubMed]

L. Su, W. Jia, C. Hou, and Y. Lei, “Microbial biosensors: a review,” Biosens. Bioelectron.26(5), 1788–1799 (2011).
[CrossRef] [PubMed]

2010 (2)

2009 (1)

S. Efrima and L. Zeiri, “Understanding SERS of bacteria,” J. Raman Spectrosc.40(3), 277–288 (2009).
[CrossRef]

2008 (2)

D. Debuisson, A. Treizebré, T. Houssin, E. Leclerc, D. Bartès-Biesel, D. Legrand, J. Mazurier, S. Arscott, B. Bocquet, and V. Senez, “Nanoscale devices for online dielectric spectroscopy of biological cells,” Physiol. Meas.29(6), S213–S225 (2008).
[CrossRef] [PubMed]

A. G. Markelz, “Terahertz dielectric sensitivity to biomolecular structure and function,” IEEE J. Sel. Top. Quantum Electron.14(1), 180–190 (2008).
[CrossRef]

2007 (1)

O. Lazcka, F. J. Del Campo, and F. X. Muñoz, “Pathogen detection: a perspective of traditional methods and biosensors,” Biosens. Bioelectron.22(7), 1205–1217 (2007).
[CrossRef] [PubMed]

2005 (1)

A. D. Taylor, Q. Yu, S. Chen, J. Homola, and S. Jiang, “Comparison of E. coli O157:H7 preparation methods used for detection with surface plasmon resonance sensor,” Sens. Actuators B Chem.107(1), 202–208 (2005).
[CrossRef]

2004 (1)

2002 (1)

M. Walther, P. Plochocka, B. Fischer, H. Helm, and P. Uhd Jepsen, “Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy,” Biopolymers67(4-5), 310–313 (2002).
[CrossRef] [PubMed]

2001 (1)

S. W. Smye, J. M. Chamberlain, A. J. Fitzgerald, and E. Berry, “The interaction between Terahertz radiation and biological tissue,” Phys. Med. Biol.46(9), R101–R112 (2001).
[CrossRef] [PubMed]

1999 (1)

D. Ivnitski, I. Abdel-Hamid, P. Atanasov, and E. Wilkins, “Biosensors for detection of pathogenic bacteria,” Biosens. Bioelectron.14(7), 599–624 (1999).
[CrossRef]

1996 (1)

P. Demchick and A. L. Koch, “The permeability of the wall fabric of Escherichia coli and Bacillus subtilis,” J. Bacteriol.178(3), 768–773 (1996).
[PubMed]

Abbas, A.

A. Abbas, M. J. Linman, and Q. Cheng, “Sensitivity comparison of surface plasmon resonance and plasmon-waveguide resonance biosensors,” Sens. Actuators B Chem.156(1), 169–175 (2011).
[CrossRef] [PubMed]

Abdel-Hamid, I.

D. Ivnitski, I. Abdel-Hamid, P. Atanasov, and E. Wilkins, “Biosensors for detection of pathogenic bacteria,” Biosens. Bioelectron.14(7), 599–624 (1999).
[CrossRef]

Aizpurua, J.

Albella, P.

Arscott, S.

D. Debuisson, A. Treizebré, T. Houssin, E. Leclerc, D. Bartès-Biesel, D. Legrand, J. Mazurier, S. Arscott, B. Bocquet, and V. Senez, “Nanoscale devices for online dielectric spectroscopy of biological cells,” Physiol. Meas.29(6), S213–S225 (2008).
[CrossRef] [PubMed]

Atanasov, P.

D. Ivnitski, I. Abdel-Hamid, P. Atanasov, and E. Wilkins, “Biosensors for detection of pathogenic bacteria,” Biosens. Bioelectron.14(7), 599–624 (1999).
[CrossRef]

Bartès-Biesel, D.

D. Debuisson, A. Treizebré, T. Houssin, E. Leclerc, D. Bartès-Biesel, D. Legrand, J. Mazurier, S. Arscott, B. Bocquet, and V. Senez, “Nanoscale devices for online dielectric spectroscopy of biological cells,” Physiol. Meas.29(6), S213–S225 (2008).
[CrossRef] [PubMed]

Berrier, A.

Berry, E.

S. W. Smye, J. M. Chamberlain, A. J. Fitzgerald, and E. Berry, “The interaction between Terahertz radiation and biological tissue,” Phys. Med. Biol.46(9), R101–R112 (2001).
[CrossRef] [PubMed]

Bocquet, B.

D. Debuisson, A. Treizebré, T. Houssin, E. Leclerc, D. Bartès-Biesel, D. Legrand, J. Mazurier, S. Arscott, B. Bocquet, and V. Senez, “Nanoscale devices for online dielectric spectroscopy of biological cells,” Physiol. Meas.29(6), S213–S225 (2008).
[CrossRef] [PubMed]

Bolívar, P. H.

Bonn, M.

Chamberlain, J. M.

S. W. Smye, J. M. Chamberlain, A. J. Fitzgerald, and E. Berry, “The interaction between Terahertz radiation and biological tissue,” Phys. Med. Biol.46(9), R101–R112 (2001).
[CrossRef] [PubMed]

Chen, S.

A. D. Taylor, Q. Yu, S. Chen, J. Homola, and S. Jiang, “Comparison of E. coli O157:H7 preparation methods used for detection with surface plasmon resonance sensor,” Sens. Actuators B Chem.107(1), 202–208 (2005).
[CrossRef]

Cheng, Q.

A. Abbas, M. J. Linman, and Q. Cheng, “Sensitivity comparison of surface plasmon resonance and plasmon-waveguide resonance biosensors,” Sens. Actuators B Chem.156(1), 169–175 (2011).
[CrossRef] [PubMed]

Cheng, S.

X. Hu, L. Tripodi, M. K. Matters-Kammerer, S. Cheng, and A. Rydberg, “65-nm CMOS Monolithically Integrated Subterahertz Transmitter,” IEEE Electron Device Lett.32(9), 1182–1184 (2011).
[CrossRef]

Chinnappan, R.

Debuisson, D.

D. Debuisson, A. Treizebré, T. Houssin, E. Leclerc, D. Bartès-Biesel, D. Legrand, J. Mazurier, S. Arscott, B. Bocquet, and V. Senez, “Nanoscale devices for online dielectric spectroscopy of biological cells,” Physiol. Meas.29(6), S213–S225 (2008).
[CrossRef] [PubMed]

Del Campo, F. J.

O. Lazcka, F. J. Del Campo, and F. X. Muñoz, “Pathogen detection: a perspective of traditional methods and biosensors,” Biosens. Bioelectron.22(7), 1205–1217 (2007).
[CrossRef] [PubMed]

Demchick, P.

P. Demchick and A. L. Koch, “The permeability of the wall fabric of Escherichia coli and Bacillus subtilis,” J. Bacteriol.178(3), 768–773 (1996).
[PubMed]

Efrima, S.

S. Efrima and L. Zeiri, “Understanding SERS of bacteria,” J. Raman Spectrosc.40(3), 277–288 (2009).
[CrossRef]

Fischer, B.

M. Walther, P. Plochocka, B. Fischer, H. Helm, and P. Uhd Jepsen, “Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy,” Biopolymers67(4-5), 310–313 (2002).
[CrossRef] [PubMed]

Fitzgerald, A. J.

S. W. Smye, J. M. Chamberlain, A. J. Fitzgerald, and E. Berry, “The interaction between Terahertz radiation and biological tissue,” Phys. Med. Biol.46(9), R101–R112 (2001).
[CrossRef] [PubMed]

Giannini, V.

Gómez Rivas, J.

Gómez Rivas, J.

Gómez Rivas, J.

Helm, H.

M. Walther, P. Plochocka, B. Fischer, H. Helm, and P. Uhd Jepsen, “Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy,” Biopolymers67(4-5), 310–313 (2002).
[CrossRef] [PubMed]

Homola, J.

A. D. Taylor, Q. Yu, S. Chen, J. Homola, and S. Jiang, “Comparison of E. coli O157:H7 preparation methods used for detection with surface plasmon resonance sensor,” Sens. Actuators B Chem.107(1), 202–208 (2005).
[CrossRef]

Hou, C.

L. Su, W. Jia, C. Hou, and Y. Lei, “Microbial biosensors: a review,” Biosens. Bioelectron.26(5), 1788–1799 (2011).
[CrossRef] [PubMed]

Houssin, T.

D. Debuisson, A. Treizebré, T. Houssin, E. Leclerc, D. Bartès-Biesel, D. Legrand, J. Mazurier, S. Arscott, B. Bocquet, and V. Senez, “Nanoscale devices for online dielectric spectroscopy of biological cells,” Physiol. Meas.29(6), S213–S225 (2008).
[CrossRef] [PubMed]

Hu, X.

X. Hu, L. Tripodi, M. K. Matters-Kammerer, S. Cheng, and A. Rydberg, “65-nm CMOS Monolithically Integrated Subterahertz Transmitter,” IEEE Electron Device Lett.32(9), 1182–1184 (2011).
[CrossRef]

Ivnitski, D.

D. Ivnitski, I. Abdel-Hamid, P. Atanasov, and E. Wilkins, “Biosensors for detection of pathogenic bacteria,” Biosens. Bioelectron.14(7), 599–624 (1999).
[CrossRef]

Jia, W.

L. Su, W. Jia, C. Hou, and Y. Lei, “Microbial biosensors: a review,” Biosens. Bioelectron.26(5), 1788–1799 (2011).
[CrossRef] [PubMed]

Jiang, S.

A. D. Taylor, Q. Yu, S. Chen, J. Homola, and S. Jiang, “Comparison of E. coli O157:H7 preparation methods used for detection with surface plasmon resonance sensor,” Sens. Actuators B Chem.107(1), 202–208 (2005).
[CrossRef]

Koch, A. L.

P. Demchick and A. L. Koch, “The permeability of the wall fabric of Escherichia coli and Bacillus subtilis,” J. Bacteriol.178(3), 768–773 (1996).
[PubMed]

Kurz, H.

Lazcka, O.

O. Lazcka, F. J. Del Campo, and F. X. Muñoz, “Pathogen detection: a perspective of traditional methods and biosensors,” Biosens. Bioelectron.22(7), 1205–1217 (2007).
[CrossRef] [PubMed]

Leclerc, E.

D. Debuisson, A. Treizebré, T. Houssin, E. Leclerc, D. Bartès-Biesel, D. Legrand, J. Mazurier, S. Arscott, B. Bocquet, and V. Senez, “Nanoscale devices for online dielectric spectroscopy of biological cells,” Physiol. Meas.29(6), S213–S225 (2008).
[CrossRef] [PubMed]

Legrand, D.

D. Debuisson, A. Treizebré, T. Houssin, E. Leclerc, D. Bartès-Biesel, D. Legrand, J. Mazurier, S. Arscott, B. Bocquet, and V. Senez, “Nanoscale devices for online dielectric spectroscopy of biological cells,” Physiol. Meas.29(6), S213–S225 (2008).
[CrossRef] [PubMed]

Lei, Y.

L. Su, W. Jia, C. Hou, and Y. Lei, “Microbial biosensors: a review,” Biosens. Bioelectron.26(5), 1788–1799 (2011).
[CrossRef] [PubMed]

Linman, M. J.

A. Abbas, M. J. Linman, and Q. Cheng, “Sensitivity comparison of surface plasmon resonance and plasmon-waveguide resonance biosensors,” Sens. Actuators B Chem.156(1), 169–175 (2011).
[CrossRef] [PubMed]

Maier, S. A.

Markelz, A. G.

A. G. Markelz, “Terahertz dielectric sensitivity to biomolecular structure and function,” IEEE J. Sel. Top. Quantum Electron.14(1), 180–190 (2008).
[CrossRef]

Markov, A.

Matters-Kammerer, M. K.

X. Hu, L. Tripodi, M. K. Matters-Kammerer, S. Cheng, and A. Rydberg, “65-nm CMOS Monolithically Integrated Subterahertz Transmitter,” IEEE Electron Device Lett.32(9), 1182–1184 (2011).
[CrossRef]

Mazhorova, A.

Mazurier, J.

D. Debuisson, A. Treizebré, T. Houssin, E. Leclerc, D. Bartès-Biesel, D. Legrand, J. Mazurier, S. Arscott, B. Bocquet, and V. Senez, “Nanoscale devices for online dielectric spectroscopy of biological cells,” Physiol. Meas.29(6), S213–S225 (2008).
[CrossRef] [PubMed]

Muñoz, F. X.

O. Lazcka, F. J. Del Campo, and F. X. Muñoz, “Pathogen detection: a perspective of traditional methods and biosensors,” Biosens. Bioelectron.22(7), 1205–1217 (2007).
[CrossRef] [PubMed]

Ng, A.

Plochocka, P.

M. Walther, P. Plochocka, B. Fischer, H. Helm, and P. Uhd Jepsen, “Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy,” Biopolymers67(4-5), 310–313 (2002).
[CrossRef] [PubMed]

Poyli, M. A.

Rydberg, A.

X. Hu, L. Tripodi, M. K. Matters-Kammerer, S. Cheng, and A. Rydberg, “65-nm CMOS Monolithically Integrated Subterahertz Transmitter,” IEEE Electron Device Lett.32(9), 1182–1184 (2011).
[CrossRef]

Sánchez-Gil, J. A.

Senez, V.

D. Debuisson, A. Treizebré, T. Houssin, E. Leclerc, D. Bartès-Biesel, D. Legrand, J. Mazurier, S. Arscott, B. Bocquet, and V. Senez, “Nanoscale devices for online dielectric spectroscopy of biological cells,” Physiol. Meas.29(6), S213–S225 (2008).
[CrossRef] [PubMed]

Skorobogata, O.

Skorobogatiy, M.

Smye, S. W.

S. W. Smye, J. M. Chamberlain, A. J. Fitzgerald, and E. Berry, “The interaction between Terahertz radiation and biological tissue,” Phys. Med. Biol.46(9), R101–R112 (2001).
[CrossRef] [PubMed]

Su, L.

L. Su, W. Jia, C. Hou, and Y. Lei, “Microbial biosensors: a review,” Biosens. Bioelectron.26(5), 1788–1799 (2011).
[CrossRef] [PubMed]

Taylor, A. D.

A. D. Taylor, Q. Yu, S. Chen, J. Homola, and S. Jiang, “Comparison of E. coli O157:H7 preparation methods used for detection with surface plasmon resonance sensor,” Sens. Actuators B Chem.107(1), 202–208 (2005).
[CrossRef]

Treizebré, A.

D. Debuisson, A. Treizebré, T. Houssin, E. Leclerc, D. Bartès-Biesel, D. Legrand, J. Mazurier, S. Arscott, B. Bocquet, and V. Senez, “Nanoscale devices for online dielectric spectroscopy of biological cells,” Physiol. Meas.29(6), S213–S225 (2008).
[CrossRef] [PubMed]

Tripodi, L.

X. Hu, L. Tripodi, M. K. Matters-Kammerer, S. Cheng, and A. Rydberg, “65-nm CMOS Monolithically Integrated Subterahertz Transmitter,” IEEE Electron Device Lett.32(9), 1182–1184 (2011).
[CrossRef]

Uhd Jepsen, P.

M. Walther, P. Plochocka, B. Fischer, H. Helm, and P. Uhd Jepsen, “Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy,” Biopolymers67(4-5), 310–313 (2002).
[CrossRef] [PubMed]

Ulbricht, R.

Walther, M.

M. Walther, P. Plochocka, B. Fischer, H. Helm, and P. Uhd Jepsen, “Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy,” Biopolymers67(4-5), 310–313 (2002).
[CrossRef] [PubMed]

Wilkins, E.

D. Ivnitski, I. Abdel-Hamid, P. Atanasov, and E. Wilkins, “Biosensors for detection of pathogenic bacteria,” Biosens. Bioelectron.14(7), 599–624 (1999).
[CrossRef]

Yu, Q.

A. D. Taylor, Q. Yu, S. Chen, J. Homola, and S. Jiang, “Comparison of E. coli O157:H7 preparation methods used for detection with surface plasmon resonance sensor,” Sens. Actuators B Chem.107(1), 202–208 (2005).
[CrossRef]

Zeiri, L.

S. Efrima and L. Zeiri, “Understanding SERS of bacteria,” J. Raman Spectrosc.40(3), 277–288 (2009).
[CrossRef]

Zourob, M.

Biopolymers (1)

M. Walther, P. Plochocka, B. Fischer, H. Helm, and P. Uhd Jepsen, “Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy,” Biopolymers67(4-5), 310–313 (2002).
[CrossRef] [PubMed]

Biosens. Bioelectron. (3)

O. Lazcka, F. J. Del Campo, and F. X. Muñoz, “Pathogen detection: a perspective of traditional methods and biosensors,” Biosens. Bioelectron.22(7), 1205–1217 (2007).
[CrossRef] [PubMed]

D. Ivnitski, I. Abdel-Hamid, P. Atanasov, and E. Wilkins, “Biosensors for detection of pathogenic bacteria,” Biosens. Bioelectron.14(7), 599–624 (1999).
[CrossRef]

L. Su, W. Jia, C. Hou, and Y. Lei, “Microbial biosensors: a review,” Biosens. Bioelectron.26(5), 1788–1799 (2011).
[CrossRef] [PubMed]

IEEE Electron Device Lett. (1)

X. Hu, L. Tripodi, M. K. Matters-Kammerer, S. Cheng, and A. Rydberg, “65-nm CMOS Monolithically Integrated Subterahertz Transmitter,” IEEE Electron Device Lett.32(9), 1182–1184 (2011).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. G. Markelz, “Terahertz dielectric sensitivity to biomolecular structure and function,” IEEE J. Sel. Top. Quantum Electron.14(1), 180–190 (2008).
[CrossRef]

J. Bacteriol. (1)

P. Demchick and A. L. Koch, “The permeability of the wall fabric of Escherichia coli and Bacillus subtilis,” J. Bacteriol.178(3), 768–773 (1996).
[PubMed]

J. Raman Spectrosc. (1)

S. Efrima and L. Zeiri, “Understanding SERS of bacteria,” J. Raman Spectrosc.40(3), 277–288 (2009).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Phys. Med. Biol. (1)

S. W. Smye, J. M. Chamberlain, A. J. Fitzgerald, and E. Berry, “The interaction between Terahertz radiation and biological tissue,” Phys. Med. Biol.46(9), R101–R112 (2001).
[CrossRef] [PubMed]

Physiol. Meas. (1)

D. Debuisson, A. Treizebré, T. Houssin, E. Leclerc, D. Bartès-Biesel, D. Legrand, J. Mazurier, S. Arscott, B. Bocquet, and V. Senez, “Nanoscale devices for online dielectric spectroscopy of biological cells,” Physiol. Meas.29(6), S213–S225 (2008).
[CrossRef] [PubMed]

Sens. Actuators B Chem. (2)

A. D. Taylor, Q. Yu, S. Chen, J. Homola, and S. Jiang, “Comparison of E. coli O157:H7 preparation methods used for detection with surface plasmon resonance sensor,” Sens. Actuators B Chem.107(1), 202–208 (2005).
[CrossRef]

A. Abbas, M. J. Linman, and Q. Cheng, “Sensitivity comparison of surface plasmon resonance and plasmon-waveguide resonance biosensors,” Sens. Actuators B Chem.156(1), 169–175 (2011).
[CrossRef] [PubMed]

Other (4)

S. E. Anderson, R. Pusset, A. Berrier, F. Vinet, and G. Nonglaton, “Adaptable functionalization processes for localized bacterial capture” (unpublished).

M. C. Schaafsma, H. Starmans, A. Berrier, and J. Gómez Rivas, “Enhanced THz extinction of single plasmonic antennas with conically tapered waveguides,” arXiv.org, arXiv:1208.4025 (2012).

M. Madigan, J. Martinko, D. Stahl, and D. Clark, Biology of Microorganisms, 13th ed. (Ed. Pearson, 2012).

10. K. Dahlke, C. Geyer, S. Dees, M. Helbig, J. Sachs, F. Scotto, M. Hein, W. A. Kaiser, and I. Hilger, “Effects of cell structure of Gram-positive and Gram-negative bacteria based on their dielectric properties,” in The 7th German Microwave Conference (GeMiC), 2012 (2012), pp. 1–4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Photograph of the two plasmonic chips used in this work, (a) high frequency design; (b) low frequency design. The scale bars on top of the pictures represent 5 mm.

Fig. 2
Fig. 2

Optical microscope images of layers of bacteria deposited on a quartz substrate for the five species studied in this work: E. coli, B. subtilis, S. epidermidis, M. catarrhalis and S. marcescens. In all the pictures the scale bar represents 10 μm.

Fig. 3
Fig. 3

Optical microscope images of the dried bacterial layers (a) using the phosphate saline buffer PBS, the scale bar indicates 100 μm; (b) using a ammonium acetate buffer, the scale bar indicates 200 μm.

Fig. 4
Fig. 4

(a) Photograph of the quartz samples with a deposited bacterial layer; (b) Profilometer trace of the deposited bacterial layers. The arrows indicate the path of the profilometer on the samples.

Fig. 5
Fig. 5

(a) Optical microscope image of THz antennas covered by a monolayer of bacteria; (b) optical microscope image zoomed at the gap of the antenna.

Fig. 6
Fig. 6

(a) Schematic drawing of the measurement scheme. (b) Time-resolved amplitude transient of transmission through a bare quartz substrate without and with a monolayer of Gram negative bacteria; (d) is a magnified view of (b). (c) THz transient transmission through a sample with THz antennas with and without a monolayer of Gram negative bacteria. (e) is a magnified view of (c).

Fig. 7
Fig. 7

Example of Fourier transformed signal for a bare antenna sample and a sample with a bacterial layer. This figure also illustrates the determination procedure for the change in extinction ΔE and the frequency shift Δν by comparing the extinction values of the bare samples with samples with bacterial layer in the case of a 800 GHz resonating antenna.

Fig. 8
Fig. 8

(a) Comparison of the temporal THz transmission transients through a plasmonic chip with bare antennas and with a double bacterial layer on top; (b) Comparison of the temporal trace of a single bacterial layer compared to a double bacteria layer.

Fig. 9
Fig. 9

Extinction spectra of a plasmonics chip without bacterial layer and with a layer of E. coli, B. subtilis or S. epidermidis.

Fig. 10
Fig. 10

Difference between the behavior of the Gram negative compared to the Gram positive deposited plasmonic surfaces (high frequency antennas). The red line indicates the zero position. (a) Frequency difference at E = 0.3; (b) Extinction difference for ν = 600 GHz.

Fig. 11
Fig. 11

Difference between the behavior of the Gram negative compared to the Gram positive deposited plasmonic surfaces (low frequency antennas). The red line indicates the zero position.

Fig. 12
Fig. 12

(a) Extinction spectra of a low frequency operating THz antenna sample with freshly deposited bacterial layer; (b) Extinction spectra of the same sample one day later.

Metrics