Abstract

It is shown that using elliptically polarized light permits selecting well-defined subsurface volumes in a turbid medium. This suggests the possibility of probing biological tissues at specific depths. First, we present the method and preliminary results obtained on an Intralipid phantom. We next report on the method’s performance on a biological phantom (chicken breast) and, finally, on the exposed cortex of an anesthetized rat.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T. N. Wiesel, “Functional architecture of cortex revealed by optical imaging of intrinsic signals,” Nature324(6095), 361–364 (1986).
    [CrossRef] [PubMed]
  2. A. Grinvald, T. Bonhoeffer, I. Vanzetta, A. Pollack, E. Aloni, R. Ofri, and D. Nelson, “High-resolution functional optical imaging: from the neocortex to the eye,” Ophthalmol. Clin. North Am.17(1), 53–67 (2004).
    [CrossRef] [PubMed]
  3. B. S. Sorg, B. J. Moeller, O. Donovan, Y. T. Cao, and M. W. Dewhirst, “Hyperspectral imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia development,” J. Biomed. Opt.10(4), 044004 (2005).
    [CrossRef] [PubMed]
  4. W. Steller, J. Einenkel, L. C. Horn, U. D. Braumann, H. Binder, R. Salzer, and C. Krafft, “Delimitation of squamous cell cervical carcinoma using infrared microspectroscopic imaging,” Anal. Bioanal. Chem.384(1), 145–154 (2006).
    [CrossRef] [PubMed]
  5. V. V. Tuchin, Tissue Optics (SPIE Press, Bellingham, WA, USA, 2000).
  6. F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B Condens. Matter40(13), 9342–9345 (1989).
    [CrossRef] [PubMed]
  7. D. Bicout and C. Brosseau, “Multiply scattered waves through a spatially random medium: entropy production and depolarization,” J. Phys. I2(11), 2047–2063 (1992).
    [CrossRef]
  8. D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics49(2), 1767–1770 (1994).
    [CrossRef] [PubMed]
  9. K. M. Yoo and R. R. Alfano, “Time resolved depolarization of multiple backscattered light from random media,” Phys. Lett. A142(8-9), 531–536 (1989).
    [CrossRef]
  10. R. R. Anderson, “Polarized light examination and photography of the skin,” Arch. Dermatol.127(7), 1000–1005 (1991).
    [CrossRef] [PubMed]
  11. S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt.7(3), 329–340 (2002).
    [CrossRef] [PubMed]
  12. S. G. Demos and R. R. Alfano, “Optical polarization imaging,” Appl. Opt.36(1), 150–155 (1997).
    [CrossRef] [PubMed]
  13. A. P. Sviridov, V. Chernomordik, M. Hassan, A. C. Boccara, A. Russo, P. Smith, and A. Gandjbakhche, “Enhancement of hidden structures of early skin fibrosis using polarization degree patterns and Pearson correlation analysis,” J. Biomed. Opt.10(5), 051706 (2005).
    [CrossRef] [PubMed]
  14. J. Falconet, R. Sablong, E. Perrin, F. Jaillon, and H. Saint-Jalmes, “Analysis of simulated and experimental backscattered images of turbid media in linearly polarized light: estimation of the anisotropy factor,” Appl. Opt.47(31), 5811–5820 (2008).
    [CrossRef] [PubMed]
  15. V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron.5(4), 1019–1026 (1999).
    [CrossRef]
  16. M. Bartlett and H. Jiang, “Measurement of particle size distribution in multilayered skin phantoms using polarized light spectroscopy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.65(3), 031906 (2002).
    [CrossRef] [PubMed]
  17. A. Sviridov, V. Chernomordik, M. Hassan, A. Russo, A. Eidsath, P. Smith, and A. H. Gandjbakhche, “Intensity profiles of linearly polarized light backscattered from skin and tissue-like phantoms,” J. Biomed. Opt.10(1), 014012 (2005).
    [CrossRef] [PubMed]
  18. S. P. Morgan and I. M. Stockford, “Surface-reflection elimination in polarization imaging of superficial tissue,” Opt. Lett.28(2), 114–116 (2003).
    [CrossRef] [PubMed]
  19. S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med.26(2), 119–129 (2000).
    [CrossRef] [PubMed]
  20. J. M. Schmitt, A. H. Gandjbakhche, and R. F. Bonner, “Use of polarized light to discriminate short-path photons in a multiply scattering medium,” Appl. Opt.31(30), 6535–6546 (1992).
    [CrossRef] [PubMed]
  21. S. P. Morgan and M. E. Ridgway, “Polarization properties of light backscattered from a two layer scattering medium,” Opt. Express7(12), 395–402 (2000).
    [CrossRef] [PubMed]
  22. L. Gobin, L. Blanchot, and H. Saint-Jalmes, “Integrating the digitized backscattered image to measure absorption and reduced-scattering coefficients in vivo,” Appl. Opt.38(19), 4217–4227 (1999).
    [CrossRef] [PubMed]
  23. H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt.31(30), 4507–4514 (1991).
    [CrossRef]

2008 (1)

2006 (1)

W. Steller, J. Einenkel, L. C. Horn, U. D. Braumann, H. Binder, R. Salzer, and C. Krafft, “Delimitation of squamous cell cervical carcinoma using infrared microspectroscopic imaging,” Anal. Bioanal. Chem.384(1), 145–154 (2006).
[CrossRef] [PubMed]

2005 (3)

B. S. Sorg, B. J. Moeller, O. Donovan, Y. T. Cao, and M. W. Dewhirst, “Hyperspectral imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia development,” J. Biomed. Opt.10(4), 044004 (2005).
[CrossRef] [PubMed]

A. Sviridov, V. Chernomordik, M. Hassan, A. Russo, A. Eidsath, P. Smith, and A. H. Gandjbakhche, “Intensity profiles of linearly polarized light backscattered from skin and tissue-like phantoms,” J. Biomed. Opt.10(1), 014012 (2005).
[CrossRef] [PubMed]

A. P. Sviridov, V. Chernomordik, M. Hassan, A. C. Boccara, A. Russo, P. Smith, and A. Gandjbakhche, “Enhancement of hidden structures of early skin fibrosis using polarization degree patterns and Pearson correlation analysis,” J. Biomed. Opt.10(5), 051706 (2005).
[CrossRef] [PubMed]

2004 (1)

A. Grinvald, T. Bonhoeffer, I. Vanzetta, A. Pollack, E. Aloni, R. Ofri, and D. Nelson, “High-resolution functional optical imaging: from the neocortex to the eye,” Ophthalmol. Clin. North Am.17(1), 53–67 (2004).
[CrossRef] [PubMed]

2003 (1)

2002 (2)

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt.7(3), 329–340 (2002).
[CrossRef] [PubMed]

M. Bartlett and H. Jiang, “Measurement of particle size distribution in multilayered skin phantoms using polarized light spectroscopy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.65(3), 031906 (2002).
[CrossRef] [PubMed]

2000 (2)

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med.26(2), 119–129 (2000).
[CrossRef] [PubMed]

S. P. Morgan and M. E. Ridgway, “Polarization properties of light backscattered from a two layer scattering medium,” Opt. Express7(12), 395–402 (2000).
[CrossRef] [PubMed]

1999 (2)

L. Gobin, L. Blanchot, and H. Saint-Jalmes, “Integrating the digitized backscattered image to measure absorption and reduced-scattering coefficients in vivo,” Appl. Opt.38(19), 4217–4227 (1999).
[CrossRef] [PubMed]

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron.5(4), 1019–1026 (1999).
[CrossRef]

1997 (1)

1994 (1)

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics49(2), 1767–1770 (1994).
[CrossRef] [PubMed]

1992 (2)

D. Bicout and C. Brosseau, “Multiply scattered waves through a spatially random medium: entropy production and depolarization,” J. Phys. I2(11), 2047–2063 (1992).
[CrossRef]

J. M. Schmitt, A. H. Gandjbakhche, and R. F. Bonner, “Use of polarized light to discriminate short-path photons in a multiply scattering medium,” Appl. Opt.31(30), 6535–6546 (1992).
[CrossRef] [PubMed]

1991 (2)

R. R. Anderson, “Polarized light examination and photography of the skin,” Arch. Dermatol.127(7), 1000–1005 (1991).
[CrossRef] [PubMed]

H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt.31(30), 4507–4514 (1991).
[CrossRef]

1989 (2)

K. M. Yoo and R. R. Alfano, “Time resolved depolarization of multiple backscattered light from random media,” Phys. Lett. A142(8-9), 531–536 (1989).
[CrossRef]

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B Condens. Matter40(13), 9342–9345 (1989).
[CrossRef] [PubMed]

1986 (1)

A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T. N. Wiesel, “Functional architecture of cortex revealed by optical imaging of intrinsic signals,” Nature324(6095), 361–364 (1986).
[CrossRef] [PubMed]

Alfano, R. R.

S. G. Demos and R. R. Alfano, “Optical polarization imaging,” Appl. Opt.36(1), 150–155 (1997).
[CrossRef] [PubMed]

K. M. Yoo and R. R. Alfano, “Time resolved depolarization of multiple backscattered light from random media,” Phys. Lett. A142(8-9), 531–536 (1989).
[CrossRef]

Aloni, E.

A. Grinvald, T. Bonhoeffer, I. Vanzetta, A. Pollack, E. Aloni, R. Ofri, and D. Nelson, “High-resolution functional optical imaging: from the neocortex to the eye,” Ophthalmol. Clin. North Am.17(1), 53–67 (2004).
[CrossRef] [PubMed]

Anderson, R. R.

R. R. Anderson, “Polarized light examination and photography of the skin,” Arch. Dermatol.127(7), 1000–1005 (1991).
[CrossRef] [PubMed]

Backman, V.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron.5(4), 1019–1026 (1999).
[CrossRef]

Badizadegan, K.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron.5(4), 1019–1026 (1999).
[CrossRef]

Bartlett, M.

M. Bartlett and H. Jiang, “Measurement of particle size distribution in multilayered skin phantoms using polarized light spectroscopy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.65(3), 031906 (2002).
[CrossRef] [PubMed]

Bicout, D.

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics49(2), 1767–1770 (1994).
[CrossRef] [PubMed]

D. Bicout and C. Brosseau, “Multiply scattered waves through a spatially random medium: entropy production and depolarization,” J. Phys. I2(11), 2047–2063 (1992).
[CrossRef]

Binder, H.

W. Steller, J. Einenkel, L. C. Horn, U. D. Braumann, H. Binder, R. Salzer, and C. Krafft, “Delimitation of squamous cell cervical carcinoma using infrared microspectroscopic imaging,” Anal. Bioanal. Chem.384(1), 145–154 (2006).
[CrossRef] [PubMed]

Blanchot, L.

Boccara, A. C.

A. P. Sviridov, V. Chernomordik, M. Hassan, A. C. Boccara, A. Russo, P. Smith, and A. Gandjbakhche, “Enhancement of hidden structures of early skin fibrosis using polarization degree patterns and Pearson correlation analysis,” J. Biomed. Opt.10(5), 051706 (2005).
[CrossRef] [PubMed]

Bonhoeffer, T.

A. Grinvald, T. Bonhoeffer, I. Vanzetta, A. Pollack, E. Aloni, R. Ofri, and D. Nelson, “High-resolution functional optical imaging: from the neocortex to the eye,” Ophthalmol. Clin. North Am.17(1), 53–67 (2004).
[CrossRef] [PubMed]

Bonner, R. F.

Braumann, U. D.

W. Steller, J. Einenkel, L. C. Horn, U. D. Braumann, H. Binder, R. Salzer, and C. Krafft, “Delimitation of squamous cell cervical carcinoma using infrared microspectroscopic imaging,” Anal. Bioanal. Chem.384(1), 145–154 (2006).
[CrossRef] [PubMed]

Brosseau, C.

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics49(2), 1767–1770 (1994).
[CrossRef] [PubMed]

D. Bicout and C. Brosseau, “Multiply scattered waves through a spatially random medium: entropy production and depolarization,” J. Phys. I2(11), 2047–2063 (1992).
[CrossRef]

Cao, Y. T.

B. S. Sorg, B. J. Moeller, O. Donovan, Y. T. Cao, and M. W. Dewhirst, “Hyperspectral imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia development,” J. Biomed. Opt.10(4), 044004 (2005).
[CrossRef] [PubMed]

Chernomordik, V.

A. P. Sviridov, V. Chernomordik, M. Hassan, A. C. Boccara, A. Russo, P. Smith, and A. Gandjbakhche, “Enhancement of hidden structures of early skin fibrosis using polarization degree patterns and Pearson correlation analysis,” J. Biomed. Opt.10(5), 051706 (2005).
[CrossRef] [PubMed]

A. Sviridov, V. Chernomordik, M. Hassan, A. Russo, A. Eidsath, P. Smith, and A. H. Gandjbakhche, “Intensity profiles of linearly polarized light backscattered from skin and tissue-like phantoms,” J. Biomed. Opt.10(1), 014012 (2005).
[CrossRef] [PubMed]

Dasari, R. R.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron.5(4), 1019–1026 (1999).
[CrossRef]

Demos, S. G.

Dewhirst, M. W.

B. S. Sorg, B. J. Moeller, O. Donovan, Y. T. Cao, and M. W. Dewhirst, “Hyperspectral imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia development,” J. Biomed. Opt.10(4), 044004 (2005).
[CrossRef] [PubMed]

Donovan, O.

B. S. Sorg, B. J. Moeller, O. Donovan, Y. T. Cao, and M. W. Dewhirst, “Hyperspectral imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia development,” J. Biomed. Opt.10(4), 044004 (2005).
[CrossRef] [PubMed]

Eidsath, A.

A. Sviridov, V. Chernomordik, M. Hassan, A. Russo, A. Eidsath, P. Smith, and A. H. Gandjbakhche, “Intensity profiles of linearly polarized light backscattered from skin and tissue-like phantoms,” J. Biomed. Opt.10(1), 014012 (2005).
[CrossRef] [PubMed]

Einenkel, J.

W. Steller, J. Einenkel, L. C. Horn, U. D. Braumann, H. Binder, R. Salzer, and C. Krafft, “Delimitation of squamous cell cervical carcinoma using infrared microspectroscopic imaging,” Anal. Bioanal. Chem.384(1), 145–154 (2006).
[CrossRef] [PubMed]

Falconet, J.

Feld, M. S.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron.5(4), 1019–1026 (1999).
[CrossRef]

Frostig, R. D.

A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T. N. Wiesel, “Functional architecture of cortex revealed by optical imaging of intrinsic signals,” Nature324(6095), 361–364 (1986).
[CrossRef] [PubMed]

Gandjbakhche, A.

A. P. Sviridov, V. Chernomordik, M. Hassan, A. C. Boccara, A. Russo, P. Smith, and A. Gandjbakhche, “Enhancement of hidden structures of early skin fibrosis using polarization degree patterns and Pearson correlation analysis,” J. Biomed. Opt.10(5), 051706 (2005).
[CrossRef] [PubMed]

Gandjbakhche, A. H.

A. Sviridov, V. Chernomordik, M. Hassan, A. Russo, A. Eidsath, P. Smith, and A. H. Gandjbakhche, “Intensity profiles of linearly polarized light backscattered from skin and tissue-like phantoms,” J. Biomed. Opt.10(1), 014012 (2005).
[CrossRef] [PubMed]

J. M. Schmitt, A. H. Gandjbakhche, and R. F. Bonner, “Use of polarized light to discriminate short-path photons in a multiply scattering medium,” Appl. Opt.31(30), 6535–6546 (1992).
[CrossRef] [PubMed]

Gilbert, C. D.

A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T. N. Wiesel, “Functional architecture of cortex revealed by optical imaging of intrinsic signals,” Nature324(6095), 361–364 (1986).
[CrossRef] [PubMed]

Gobin, L.

Grinvald, A.

A. Grinvald, T. Bonhoeffer, I. Vanzetta, A. Pollack, E. Aloni, R. Ofri, and D. Nelson, “High-resolution functional optical imaging: from the neocortex to the eye,” Ophthalmol. Clin. North Am.17(1), 53–67 (2004).
[CrossRef] [PubMed]

A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T. N. Wiesel, “Functional architecture of cortex revealed by optical imaging of intrinsic signals,” Nature324(6095), 361–364 (1986).
[CrossRef] [PubMed]

Gurjar, R.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron.5(4), 1019–1026 (1999).
[CrossRef]

Hassan, M.

A. Sviridov, V. Chernomordik, M. Hassan, A. Russo, A. Eidsath, P. Smith, and A. H. Gandjbakhche, “Intensity profiles of linearly polarized light backscattered from skin and tissue-like phantoms,” J. Biomed. Opt.10(1), 014012 (2005).
[CrossRef] [PubMed]

A. P. Sviridov, V. Chernomordik, M. Hassan, A. C. Boccara, A. Russo, P. Smith, and A. Gandjbakhche, “Enhancement of hidden structures of early skin fibrosis using polarization degree patterns and Pearson correlation analysis,” J. Biomed. Opt.10(5), 051706 (2005).
[CrossRef] [PubMed]

Horn, L. C.

W. Steller, J. Einenkel, L. C. Horn, U. D. Braumann, H. Binder, R. Salzer, and C. Krafft, “Delimitation of squamous cell cervical carcinoma using infrared microspectroscopic imaging,” Anal. Bioanal. Chem.384(1), 145–154 (2006).
[CrossRef] [PubMed]

Itzkan, I.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron.5(4), 1019–1026 (1999).
[CrossRef]

Jacques, S. L.

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt.7(3), 329–340 (2002).
[CrossRef] [PubMed]

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med.26(2), 119–129 (2000).
[CrossRef] [PubMed]

Jaillon, F.

Jiang, H.

M. Bartlett and H. Jiang, “Measurement of particle size distribution in multilayered skin phantoms using polarized light spectroscopy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.65(3), 031906 (2002).
[CrossRef] [PubMed]

Krafft, C.

W. Steller, J. Einenkel, L. C. Horn, U. D. Braumann, H. Binder, R. Salzer, and C. Krafft, “Delimitation of squamous cell cervical carcinoma using infrared microspectroscopic imaging,” Anal. Bioanal. Chem.384(1), 145–154 (2006).
[CrossRef] [PubMed]

Lee, K.

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt.7(3), 329–340 (2002).
[CrossRef] [PubMed]

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med.26(2), 119–129 (2000).
[CrossRef] [PubMed]

Lieke, E.

A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T. N. Wiesel, “Functional architecture of cortex revealed by optical imaging of intrinsic signals,” Nature324(6095), 361–364 (1986).
[CrossRef] [PubMed]

MacKintosh, F. C.

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B Condens. Matter40(13), 9342–9345 (1989).
[CrossRef] [PubMed]

Martinez, A. S.

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics49(2), 1767–1770 (1994).
[CrossRef] [PubMed]

Moeller, B. J.

B. S. Sorg, B. J. Moeller, O. Donovan, Y. T. Cao, and M. W. Dewhirst, “Hyperspectral imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia development,” J. Biomed. Opt.10(4), 044004 (2005).
[CrossRef] [PubMed]

Moes, C. J. M.

H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt.31(30), 4507–4514 (1991).
[CrossRef]

Morgan, S. P.

Nelson, D.

A. Grinvald, T. Bonhoeffer, I. Vanzetta, A. Pollack, E. Aloni, R. Ofri, and D. Nelson, “High-resolution functional optical imaging: from the neocortex to the eye,” Ophthalmol. Clin. North Am.17(1), 53–67 (2004).
[CrossRef] [PubMed]

Ofri, R.

A. Grinvald, T. Bonhoeffer, I. Vanzetta, A. Pollack, E. Aloni, R. Ofri, and D. Nelson, “High-resolution functional optical imaging: from the neocortex to the eye,” Ophthalmol. Clin. North Am.17(1), 53–67 (2004).
[CrossRef] [PubMed]

Perelman, L. T.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron.5(4), 1019–1026 (1999).
[CrossRef]

Perrin, E.

Pine, D. J.

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B Condens. Matter40(13), 9342–9345 (1989).
[CrossRef] [PubMed]

Pollack, A.

A. Grinvald, T. Bonhoeffer, I. Vanzetta, A. Pollack, E. Aloni, R. Ofri, and D. Nelson, “High-resolution functional optical imaging: from the neocortex to the eye,” Ophthalmol. Clin. North Am.17(1), 53–67 (2004).
[CrossRef] [PubMed]

Prahl, S. A.

H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt.31(30), 4507–4514 (1991).
[CrossRef]

Ramella-Roman, J. C.

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt.7(3), 329–340 (2002).
[CrossRef] [PubMed]

Ridgway, M. E.

Roman, J. R.

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med.26(2), 119–129 (2000).
[CrossRef] [PubMed]

Russo, A.

A. P. Sviridov, V. Chernomordik, M. Hassan, A. C. Boccara, A. Russo, P. Smith, and A. Gandjbakhche, “Enhancement of hidden structures of early skin fibrosis using polarization degree patterns and Pearson correlation analysis,” J. Biomed. Opt.10(5), 051706 (2005).
[CrossRef] [PubMed]

A. Sviridov, V. Chernomordik, M. Hassan, A. Russo, A. Eidsath, P. Smith, and A. H. Gandjbakhche, “Intensity profiles of linearly polarized light backscattered from skin and tissue-like phantoms,” J. Biomed. Opt.10(1), 014012 (2005).
[CrossRef] [PubMed]

Sablong, R.

Saint-Jalmes, H.

Salzer, R.

W. Steller, J. Einenkel, L. C. Horn, U. D. Braumann, H. Binder, R. Salzer, and C. Krafft, “Delimitation of squamous cell cervical carcinoma using infrared microspectroscopic imaging,” Anal. Bioanal. Chem.384(1), 145–154 (2006).
[CrossRef] [PubMed]

Schmitt, J. M.

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics49(2), 1767–1770 (1994).
[CrossRef] [PubMed]

J. M. Schmitt, A. H. Gandjbakhche, and R. F. Bonner, “Use of polarized light to discriminate short-path photons in a multiply scattering medium,” Appl. Opt.31(30), 6535–6546 (1992).
[CrossRef] [PubMed]

Smith, P.

A. Sviridov, V. Chernomordik, M. Hassan, A. Russo, A. Eidsath, P. Smith, and A. H. Gandjbakhche, “Intensity profiles of linearly polarized light backscattered from skin and tissue-like phantoms,” J. Biomed. Opt.10(1), 014012 (2005).
[CrossRef] [PubMed]

A. P. Sviridov, V. Chernomordik, M. Hassan, A. C. Boccara, A. Russo, P. Smith, and A. Gandjbakhche, “Enhancement of hidden structures of early skin fibrosis using polarization degree patterns and Pearson correlation analysis,” J. Biomed. Opt.10(5), 051706 (2005).
[CrossRef] [PubMed]

Sorg, B. S.

B. S. Sorg, B. J. Moeller, O. Donovan, Y. T. Cao, and M. W. Dewhirst, “Hyperspectral imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia development,” J. Biomed. Opt.10(4), 044004 (2005).
[CrossRef] [PubMed]

Steller, W.

W. Steller, J. Einenkel, L. C. Horn, U. D. Braumann, H. Binder, R. Salzer, and C. Krafft, “Delimitation of squamous cell cervical carcinoma using infrared microspectroscopic imaging,” Anal. Bioanal. Chem.384(1), 145–154 (2006).
[CrossRef] [PubMed]

Stockford, I. M.

Sviridov, A.

A. Sviridov, V. Chernomordik, M. Hassan, A. Russo, A. Eidsath, P. Smith, and A. H. Gandjbakhche, “Intensity profiles of linearly polarized light backscattered from skin and tissue-like phantoms,” J. Biomed. Opt.10(1), 014012 (2005).
[CrossRef] [PubMed]

Sviridov, A. P.

A. P. Sviridov, V. Chernomordik, M. Hassan, A. C. Boccara, A. Russo, P. Smith, and A. Gandjbakhche, “Enhancement of hidden structures of early skin fibrosis using polarization degree patterns and Pearson correlation analysis,” J. Biomed. Opt.10(5), 051706 (2005).
[CrossRef] [PubMed]

van Gemert, M. J. C.

H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt.31(30), 4507–4514 (1991).
[CrossRef]

van Marie, J.

H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt.31(30), 4507–4514 (1991).
[CrossRef]

van Staveren, H. J.

H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt.31(30), 4507–4514 (1991).
[CrossRef]

Vanzetta, I.

A. Grinvald, T. Bonhoeffer, I. Vanzetta, A. Pollack, E. Aloni, R. Ofri, and D. Nelson, “High-resolution functional optical imaging: from the neocortex to the eye,” Ophthalmol. Clin. North Am.17(1), 53–67 (2004).
[CrossRef] [PubMed]

Weitz, D. A.

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B Condens. Matter40(13), 9342–9345 (1989).
[CrossRef] [PubMed]

Wiesel, T. N.

A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T. N. Wiesel, “Functional architecture of cortex revealed by optical imaging of intrinsic signals,” Nature324(6095), 361–364 (1986).
[CrossRef] [PubMed]

Yoo, K. M.

K. M. Yoo and R. R. Alfano, “Time resolved depolarization of multiple backscattered light from random media,” Phys. Lett. A142(8-9), 531–536 (1989).
[CrossRef]

Zhu, J. X.

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B Condens. Matter40(13), 9342–9345 (1989).
[CrossRef] [PubMed]

Anal. Bioanal. Chem. (1)

W. Steller, J. Einenkel, L. C. Horn, U. D. Braumann, H. Binder, R. Salzer, and C. Krafft, “Delimitation of squamous cell cervical carcinoma using infrared microspectroscopic imaging,” Anal. Bioanal. Chem.384(1), 145–154 (2006).
[CrossRef] [PubMed]

Appl. Opt. (5)

Arch. Dermatol. (1)

R. R. Anderson, “Polarized light examination and photography of the skin,” Arch. Dermatol.127(7), 1000–1005 (1991).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron.5(4), 1019–1026 (1999).
[CrossRef]

J. Biomed. Opt. (4)

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt.7(3), 329–340 (2002).
[CrossRef] [PubMed]

B. S. Sorg, B. J. Moeller, O. Donovan, Y. T. Cao, and M. W. Dewhirst, “Hyperspectral imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia development,” J. Biomed. Opt.10(4), 044004 (2005).
[CrossRef] [PubMed]

A. Sviridov, V. Chernomordik, M. Hassan, A. Russo, A. Eidsath, P. Smith, and A. H. Gandjbakhche, “Intensity profiles of linearly polarized light backscattered from skin and tissue-like phantoms,” J. Biomed. Opt.10(1), 014012 (2005).
[CrossRef] [PubMed]

A. P. Sviridov, V. Chernomordik, M. Hassan, A. C. Boccara, A. Russo, P. Smith, and A. Gandjbakhche, “Enhancement of hidden structures of early skin fibrosis using polarization degree patterns and Pearson correlation analysis,” J. Biomed. Opt.10(5), 051706 (2005).
[CrossRef] [PubMed]

J. Phys. I (1)

D. Bicout and C. Brosseau, “Multiply scattered waves through a spatially random medium: entropy production and depolarization,” J. Phys. I2(11), 2047–2063 (1992).
[CrossRef]

Lasers Surg. Med. (1)

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med.26(2), 119–129 (2000).
[CrossRef] [PubMed]

Nature (1)

A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T. N. Wiesel, “Functional architecture of cortex revealed by optical imaging of intrinsic signals,” Nature324(6095), 361–364 (1986).
[CrossRef] [PubMed]

Ophthalmol. Clin. North Am. (1)

A. Grinvald, T. Bonhoeffer, I. Vanzetta, A. Pollack, E. Aloni, R. Ofri, and D. Nelson, “High-resolution functional optical imaging: from the neocortex to the eye,” Ophthalmol. Clin. North Am.17(1), 53–67 (2004).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Lett. A (1)

K. M. Yoo and R. R. Alfano, “Time resolved depolarization of multiple backscattered light from random media,” Phys. Lett. A142(8-9), 531–536 (1989).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B Condens. Matter40(13), 9342–9345 (1989).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

M. Bartlett and H. Jiang, “Measurement of particle size distribution in multilayered skin phantoms using polarized light spectroscopy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.65(3), 031906 (2002).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics49(2), 1767–1770 (1994).
[CrossRef] [PubMed]

Other (1)

V. V. Tuchin, Tissue Optics (SPIE Press, Bellingham, WA, USA, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Sketch (left) and photograph (right) of the experimental setup.

Fig. 2
Fig. 2

Top: four first rows, “middle” channels images, obtained at different degrees of ellipticity, for Intralipid 0.1% experiment. The angle value measures the angle θ between the polarizer and the illumination quarter-wave plate. The same grey level scale was used for all images. Fifth row image, deep channel image obtained under crosslinear detection, with the same field of view but different grey level scale (see colorbar). X axis indicates the actual depth of the ruler in the Intralipid, increasing from left to right, while Y axis indicates the actual dimension read at the surface of the probed medium. Middle: selected images with color level scale adjusted to each image, such as to go from its minimum to its maximum. For all images, intensity is expressed in arbitrary units. Bottom: ■ maximum depth (expressed in MFP′ = (μ′s)−1, 1MFP′ = 1.05 cm) visible in a given polarization maintained channel as a function of the corresponding angle θ between the polarizer and the illumination quarter-wave plate, the fitting line y = 0.035x (linear regression coefficient R2 = 0.89) is represented (black line).

Fig. 3
Fig. 3

Same as in Fig. 2 for chicken breast experiment. The depth of a graphite stick (arrow) in the tissue increases from left to right. Horizontal and vertical axes of images represent the field of view. Pixel size: 39 μm.

Fig. 4
Fig. 4

Top, white light image of the imaging window with a large field of view (left), white rectangle marks the reduced field of view in which the image processing is performed (right). Middle and bottom, same as in Fig. 2, for rat cortex examination. Pixel size: 42 μm.

Metrics