Abstract

An optofluidic device is demonstrated with photonic components integrated onto the chip for use in fluorescence and scatter detection and counting applications. The device is fabricated by integrating the optical and fluidic components in a single functional layer. Optical excitation on-chip is accomplished via a waveguide integrated with a system of lenses that reforms the geometry of the beam in the microfluidic channel into a specific shape that is more suitable for reliable detection. Separate counting tests by detecting fluorescence and scattered signals from 2.5 and 6.0 μm beads were performed and found to show detection reliability comparable to that of conventional means of excitation and an improvement over other microchip-based designs.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. S. Boyle, K. R. Hawkins, M. S. Steele, M. Singhal, and X. Cheng, “Emerging technologies for point-of-care CD4 T-lymphocyte counting,” Trends Biotechnol.30(1), 45–54 (2012).
    [CrossRef] [PubMed]
  2. H. Jiang, X. Weng, and D. Q. Li, “Microfluidic whole-blood immunoassays,” Microfluid. Nanofluid.10(5), 941–964 (2011).
    [CrossRef]
  3. D. Heikali and D. Di Carlo, “A niche for microfluidics in portable hematology analyzers,” J. Assoc. Lab. Autom.15(4), 319–328 (2010).
    [CrossRef]
  4. R. N. Zare and S. Kim, “Microfluidic platforms for single-cell analysis,” Annu. Rev. Biomed. Eng.12(1), 187–201 (2010).
    [CrossRef] [PubMed]
  5. W. G. Lee, Y.-G. Kim, B. G. Chung, U. Demirci, and A. Khademhosseini, “Nano/Microfluidics for diagnosis of infectious diseases in developing countries,” Adv. Drug Deliv. Rev.62(4-5), 449–457 (2010).
    [CrossRef] [PubMed]
  6. H. Yun, H. Bang, J. Min, C. Chung, J. K. Chang, and D.-C. Han, “Simultaneous counting of two subsets of leukocytes using fluorescent silica nanoparticles in a sheathless microchip flow cytometer,” Lab Chip10(23), 3243–3254 (2010).
    [CrossRef] [PubMed]
  7. M. Ikeda, N. Yamaguchi, and M. Nasu, “Rapid on-chip flow cytometric detection of Listeria monocytogenes in milk,” J. Health Sci.55(5), 851–856 (2009).
    [CrossRef]
  8. S. K. Hsiung, S. R. Lin, and C. H. Lin, “Micro flow cytometry chip device integrated with tunable microlens for ciculating tumor cells detection and counting applications,” Jpn. J. Appl. Phys.49(6), 060218 (2010).
    [CrossRef]
  9. M. Frankowski, N. Bock, A. Kummrow, S. Schädel-Ebner, M. Schmidt, A. Tuchscheerer, and J. Neukammer, “A microflow cytometer exploited for the immunological differentiation of leukocytes,” Cytometry A79A(8), 613–624 (2011).
    [CrossRef] [PubMed]
  10. T. D. Chung and H. C. Kim, “Recent advances in miniaturized microfluidic flow cytometry for clinical use,” Electrophoresis28(24), 4511–4520 (2007).
    [CrossRef] [PubMed]
  11. D. Huh, W. Gu, Y. Kamotani, J. B. Grotberg, and S. Takayama, “Microfluidics for flow cytometric analysis of cells and particles,” Physiol. Meas.26(3), R73–R98 (2005).
    [CrossRef] [PubMed]
  12. B. R. Watts, T. Kowpak, Z. Zhang, C. Q. Xu, S. Zhu, X. Cao, and M. Lin, “Fabrication and performance of a photonic-microfluidic integrated device,” Micromachines3(1), 62–77 (2012).
    [CrossRef]
  13. B. R. Watts, T. Kowpak, Z. Zhang, C. Q. Xu, and S. Zhu, “Formation and characterization of an ideal excitation beam geometry in an optofluidic device,” Biomed. Opt. Express1(3), 848–860 (2010).
    [CrossRef] [PubMed]
  14. Z. Zhang, P. Zhao, G. Xiao, B. R. Watts, and C. Q. Xu, “Sealing SU-8 microfluidic channels using PDMS,” Biomicrofluidics5(4), 046503 (2011).
    [CrossRef] [PubMed]
  15. C. H. Chen, F. Tsai, V. Lien, N. Justis, and Y.-H. Lo, “Scattering-based cyotmetric detection using integrated arrayed waveguides with microfluidics,” IEEE Photon. Technol. Lett.19(6), 441–443 (2007).
    [CrossRef]
  16. V. Lien, K. Zhao, Y. Berdichevsky, and Y.-H. Lo, “High-sensitivity cytometric detection using fluidic-photonic integrated circuits with array waveguides,” IEEE J. Sel. Top. Quantum Electron.11(4), 827–834 (2005).
    [CrossRef]
  17. J. Godin and Y.-H. Lo, “Two-parameter angular light scatter collection for microfluidic flow cytometry by unique waveguide structures,” Biomed. Opt. Express1(5), 1472–1479 (2010).
    [CrossRef] [PubMed]
  18. M. J. Kennedy, S. J. Stelick, L. G. Sayam, A. Yen, D. Erickson, and C. A. Batt, “Hydrodynamic optical alignment for microflow cytometry,” Lab Chip11(6), 1138–1143 (2011).
    [CrossRef] [PubMed]
  19. M. Rosenauer, W. Buchegger, I. Finoulst, P. Verhaert, and M. Vellekoop, “Miniaturized flow cytometer with 3D hydrodynamic particle focusing and integrated optical elements applying silicon photodiodes,” Microfluid. Nanofluid.10(4), 761–771 (2011).
    [CrossRef]
  20. D. Barat, D. Spencer, G. Benazzi, M. C. Mowlem, and H. Morgan, “Simultaneous high speed optical and impedance analysis of single particles with a microfluidic cytometer,” Lab Chip12(1), 118–126 (2011).
    [CrossRef] [PubMed]
  21. S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip6(2), 213–217 (2006).
    [CrossRef] [PubMed]
  22. T. Kowpak, B. R. Watts, Z. Zhang, S. Zhu, and C. Q. Xu, “Fabrication of photonic/microfluidic integrated devices using an epoxy photoresist,” Macromol. Mater. Eng.295(6), 559–565 (2010).
    [CrossRef]
  23. J. P. Golden, J. S. Kim, J. S. Erickson, L. R. Hilliard, P. B. Howell, G. P. Anderson, M. Nasir, and F. S. Ligler, “Multi-wavelength microflow cytometer using groove-generated sheath flow,” Lab Chip9(13), 1942–1950 (2009).
    [CrossRef] [PubMed]
  24. N. Hashemi, J. S. Erickson, J. P. Golden, and F. S. Ligler, “Optofluidic characterization of marine algae using a microflow cytometer,” Biomicrofluidics5(3), 032009 (2011).
    [CrossRef] [PubMed]
  25. A. Kummrow, J. Theisen, M. Frankowski, A. Tuchscheerer, H. Yildirim, K. Brattke, M. Schmidt, and J. Neukammer, “Microfluidic structures for flow cytometric analysis of hydrodynamically focussed blood cells fabricated by ultraprecision micromachining,” Lab Chip9(7), 972–981 (2009).
    [CrossRef] [PubMed]
  26. P. B. Howell, J. P. Golden, L. R. Hilliard, J. S. Erickson, D. R. Mott, and F. S. Ligler, “Two simple and rugged designs for creating microfluidic sheath flow,” Lab Chip8(7), 1097–1103 (2008).
    [CrossRef] [PubMed]
  27. C. Mu, Z. Zhang, M. Lin, X. Cao, B. R. Watts, and C. Q. Xu, “A high performance interconnect for PDMS microfluidic devices,” Sens. Actuators (to be published).
  28. X. Mao, S. C. S. Lin, C. Dong, and T. J. Huang, “Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing,” Lab Chip9(11), 1583–1589 (2009).
    [CrossRef] [PubMed]
  29. H. C. Lee, H. H. Hou, R. J. Yang, C. H. Lin, and L. M. Fu, “Microflow cytometer incorporating sequential micro-weir structure for three-dimensional focusing,” Microfluid. Nanofluid.11(4), 469–478 (2011).
    [CrossRef]
  30. Z. Wang, J. El-Ali, M. Engelund, T. Gotsæd, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip4(4), 372–377 (2004).
    [CrossRef] [PubMed]
  31. M. A. McClain, C. T. Culbertson, S. C. Jacobson, and J. M. Ramsey, “Flow cytometry of Escherichia coli on microfluidic devices,” Anal. Chem.73(21), 5334–5338 (2001).
    [CrossRef] [PubMed]
  32. N. Hashemi, J. S. Erickson, J. P. Golden, and F. S. Ligler, “Optofluidic characterization of marine algai using a microflow cytometer,” Biomicrofluidics5(3), 032009 (2011).
    [CrossRef]
  33. A. Cytometry, “VenturiOne cell cycle analysis,” Application Note, http://www.appliedcytometry.com/pdfs/VenturiOne_DNA_Cell_Cycle_Application_Note_low_res.pdf .
  34. H. T. Chen and Y. N. Wang, “Optical microflow cytometer for particle counting, sizing and fluorescence detection,” Microfluid. Nanofluid.6(4), 529–537 (2009).
    [CrossRef]

2012 (2)

D. S. Boyle, K. R. Hawkins, M. S. Steele, M. Singhal, and X. Cheng, “Emerging technologies for point-of-care CD4 T-lymphocyte counting,” Trends Biotechnol.30(1), 45–54 (2012).
[CrossRef] [PubMed]

B. R. Watts, T. Kowpak, Z. Zhang, C. Q. Xu, S. Zhu, X. Cao, and M. Lin, “Fabrication and performance of a photonic-microfluidic integrated device,” Micromachines3(1), 62–77 (2012).
[CrossRef]

2011 (9)

M. Frankowski, N. Bock, A. Kummrow, S. Schädel-Ebner, M. Schmidt, A. Tuchscheerer, and J. Neukammer, “A microflow cytometer exploited for the immunological differentiation of leukocytes,” Cytometry A79A(8), 613–624 (2011).
[CrossRef] [PubMed]

H. Jiang, X. Weng, and D. Q. Li, “Microfluidic whole-blood immunoassays,” Microfluid. Nanofluid.10(5), 941–964 (2011).
[CrossRef]

Z. Zhang, P. Zhao, G. Xiao, B. R. Watts, and C. Q. Xu, “Sealing SU-8 microfluidic channels using PDMS,” Biomicrofluidics5(4), 046503 (2011).
[CrossRef] [PubMed]

M. J. Kennedy, S. J. Stelick, L. G. Sayam, A. Yen, D. Erickson, and C. A. Batt, “Hydrodynamic optical alignment for microflow cytometry,” Lab Chip11(6), 1138–1143 (2011).
[CrossRef] [PubMed]

M. Rosenauer, W. Buchegger, I. Finoulst, P. Verhaert, and M. Vellekoop, “Miniaturized flow cytometer with 3D hydrodynamic particle focusing and integrated optical elements applying silicon photodiodes,” Microfluid. Nanofluid.10(4), 761–771 (2011).
[CrossRef]

D. Barat, D. Spencer, G. Benazzi, M. C. Mowlem, and H. Morgan, “Simultaneous high speed optical and impedance analysis of single particles with a microfluidic cytometer,” Lab Chip12(1), 118–126 (2011).
[CrossRef] [PubMed]

N. Hashemi, J. S. Erickson, J. P. Golden, and F. S. Ligler, “Optofluidic characterization of marine algae using a microflow cytometer,” Biomicrofluidics5(3), 032009 (2011).
[CrossRef] [PubMed]

H. C. Lee, H. H. Hou, R. J. Yang, C. H. Lin, and L. M. Fu, “Microflow cytometer incorporating sequential micro-weir structure for three-dimensional focusing,” Microfluid. Nanofluid.11(4), 469–478 (2011).
[CrossRef]

N. Hashemi, J. S. Erickson, J. P. Golden, and F. S. Ligler, “Optofluidic characterization of marine algai using a microflow cytometer,” Biomicrofluidics5(3), 032009 (2011).
[CrossRef]

2010 (8)

T. Kowpak, B. R. Watts, Z. Zhang, S. Zhu, and C. Q. Xu, “Fabrication of photonic/microfluidic integrated devices using an epoxy photoresist,” Macromol. Mater. Eng.295(6), 559–565 (2010).
[CrossRef]

S. K. Hsiung, S. R. Lin, and C. H. Lin, “Micro flow cytometry chip device integrated with tunable microlens for ciculating tumor cells detection and counting applications,” Jpn. J. Appl. Phys.49(6), 060218 (2010).
[CrossRef]

J. Godin and Y.-H. Lo, “Two-parameter angular light scatter collection for microfluidic flow cytometry by unique waveguide structures,” Biomed. Opt. Express1(5), 1472–1479 (2010).
[CrossRef] [PubMed]

D. Heikali and D. Di Carlo, “A niche for microfluidics in portable hematology analyzers,” J. Assoc. Lab. Autom.15(4), 319–328 (2010).
[CrossRef]

R. N. Zare and S. Kim, “Microfluidic platforms for single-cell analysis,” Annu. Rev. Biomed. Eng.12(1), 187–201 (2010).
[CrossRef] [PubMed]

W. G. Lee, Y.-G. Kim, B. G. Chung, U. Demirci, and A. Khademhosseini, “Nano/Microfluidics for diagnosis of infectious diseases in developing countries,” Adv. Drug Deliv. Rev.62(4-5), 449–457 (2010).
[CrossRef] [PubMed]

H. Yun, H. Bang, J. Min, C. Chung, J. K. Chang, and D.-C. Han, “Simultaneous counting of two subsets of leukocytes using fluorescent silica nanoparticles in a sheathless microchip flow cytometer,” Lab Chip10(23), 3243–3254 (2010).
[CrossRef] [PubMed]

B. R. Watts, T. Kowpak, Z. Zhang, C. Q. Xu, and S. Zhu, “Formation and characterization of an ideal excitation beam geometry in an optofluidic device,” Biomed. Opt. Express1(3), 848–860 (2010).
[CrossRef] [PubMed]

2009 (5)

M. Ikeda, N. Yamaguchi, and M. Nasu, “Rapid on-chip flow cytometric detection of Listeria monocytogenes in milk,” J. Health Sci.55(5), 851–856 (2009).
[CrossRef]

J. P. Golden, J. S. Kim, J. S. Erickson, L. R. Hilliard, P. B. Howell, G. P. Anderson, M. Nasir, and F. S. Ligler, “Multi-wavelength microflow cytometer using groove-generated sheath flow,” Lab Chip9(13), 1942–1950 (2009).
[CrossRef] [PubMed]

A. Kummrow, J. Theisen, M. Frankowski, A. Tuchscheerer, H. Yildirim, K. Brattke, M. Schmidt, and J. Neukammer, “Microfluidic structures for flow cytometric analysis of hydrodynamically focussed blood cells fabricated by ultraprecision micromachining,” Lab Chip9(7), 972–981 (2009).
[CrossRef] [PubMed]

H. T. Chen and Y. N. Wang, “Optical microflow cytometer for particle counting, sizing and fluorescence detection,” Microfluid. Nanofluid.6(4), 529–537 (2009).
[CrossRef]

X. Mao, S. C. S. Lin, C. Dong, and T. J. Huang, “Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing,” Lab Chip9(11), 1583–1589 (2009).
[CrossRef] [PubMed]

2008 (1)

P. B. Howell, J. P. Golden, L. R. Hilliard, J. S. Erickson, D. R. Mott, and F. S. Ligler, “Two simple and rugged designs for creating microfluidic sheath flow,” Lab Chip8(7), 1097–1103 (2008).
[CrossRef] [PubMed]

2007 (2)

T. D. Chung and H. C. Kim, “Recent advances in miniaturized microfluidic flow cytometry for clinical use,” Electrophoresis28(24), 4511–4520 (2007).
[CrossRef] [PubMed]

C. H. Chen, F. Tsai, V. Lien, N. Justis, and Y.-H. Lo, “Scattering-based cyotmetric detection using integrated arrayed waveguides with microfluidics,” IEEE Photon. Technol. Lett.19(6), 441–443 (2007).
[CrossRef]

2006 (1)

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip6(2), 213–217 (2006).
[CrossRef] [PubMed]

2005 (2)

V. Lien, K. Zhao, Y. Berdichevsky, and Y.-H. Lo, “High-sensitivity cytometric detection using fluidic-photonic integrated circuits with array waveguides,” IEEE J. Sel. Top. Quantum Electron.11(4), 827–834 (2005).
[CrossRef]

D. Huh, W. Gu, Y. Kamotani, J. B. Grotberg, and S. Takayama, “Microfluidics for flow cytometric analysis of cells and particles,” Physiol. Meas.26(3), R73–R98 (2005).
[CrossRef] [PubMed]

2004 (1)

Z. Wang, J. El-Ali, M. Engelund, T. Gotsæd, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip4(4), 372–377 (2004).
[CrossRef] [PubMed]

2001 (1)

M. A. McClain, C. T. Culbertson, S. C. Jacobson, and J. M. Ramsey, “Flow cytometry of Escherichia coli on microfluidic devices,” Anal. Chem.73(21), 5334–5338 (2001).
[CrossRef] [PubMed]

Anderson, G. P.

J. P. Golden, J. S. Kim, J. S. Erickson, L. R. Hilliard, P. B. Howell, G. P. Anderson, M. Nasir, and F. S. Ligler, “Multi-wavelength microflow cytometer using groove-generated sheath flow,” Lab Chip9(13), 1942–1950 (2009).
[CrossRef] [PubMed]

Balslev, S.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip6(2), 213–217 (2006).
[CrossRef] [PubMed]

Bang, H.

H. Yun, H. Bang, J. Min, C. Chung, J. K. Chang, and D.-C. Han, “Simultaneous counting of two subsets of leukocytes using fluorescent silica nanoparticles in a sheathless microchip flow cytometer,” Lab Chip10(23), 3243–3254 (2010).
[CrossRef] [PubMed]

Barat, D.

D. Barat, D. Spencer, G. Benazzi, M. C. Mowlem, and H. Morgan, “Simultaneous high speed optical and impedance analysis of single particles with a microfluidic cytometer,” Lab Chip12(1), 118–126 (2011).
[CrossRef] [PubMed]

Batt, C. A.

M. J. Kennedy, S. J. Stelick, L. G. Sayam, A. Yen, D. Erickson, and C. A. Batt, “Hydrodynamic optical alignment for microflow cytometry,” Lab Chip11(6), 1138–1143 (2011).
[CrossRef] [PubMed]

Benazzi, G.

D. Barat, D. Spencer, G. Benazzi, M. C. Mowlem, and H. Morgan, “Simultaneous high speed optical and impedance analysis of single particles with a microfluidic cytometer,” Lab Chip12(1), 118–126 (2011).
[CrossRef] [PubMed]

Berdichevsky, Y.

V. Lien, K. Zhao, Y. Berdichevsky, and Y.-H. Lo, “High-sensitivity cytometric detection using fluidic-photonic integrated circuits with array waveguides,” IEEE J. Sel. Top. Quantum Electron.11(4), 827–834 (2005).
[CrossRef]

Bilenberg, B.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip6(2), 213–217 (2006).
[CrossRef] [PubMed]

Bock, N.

M. Frankowski, N. Bock, A. Kummrow, S. Schädel-Ebner, M. Schmidt, A. Tuchscheerer, and J. Neukammer, “A microflow cytometer exploited for the immunological differentiation of leukocytes,” Cytometry A79A(8), 613–624 (2011).
[CrossRef] [PubMed]

Boyle, D. S.

D. S. Boyle, K. R. Hawkins, M. S. Steele, M. Singhal, and X. Cheng, “Emerging technologies for point-of-care CD4 T-lymphocyte counting,” Trends Biotechnol.30(1), 45–54 (2012).
[CrossRef] [PubMed]

Brattke, K.

A. Kummrow, J. Theisen, M. Frankowski, A. Tuchscheerer, H. Yildirim, K. Brattke, M. Schmidt, and J. Neukammer, “Microfluidic structures for flow cytometric analysis of hydrodynamically focussed blood cells fabricated by ultraprecision micromachining,” Lab Chip9(7), 972–981 (2009).
[CrossRef] [PubMed]

Buchegger, W.

M. Rosenauer, W. Buchegger, I. Finoulst, P. Verhaert, and M. Vellekoop, “Miniaturized flow cytometer with 3D hydrodynamic particle focusing and integrated optical elements applying silicon photodiodes,” Microfluid. Nanofluid.10(4), 761–771 (2011).
[CrossRef]

Cao, X.

B. R. Watts, T. Kowpak, Z. Zhang, C. Q. Xu, S. Zhu, X. Cao, and M. Lin, “Fabrication and performance of a photonic-microfluidic integrated device,” Micromachines3(1), 62–77 (2012).
[CrossRef]

C. Mu, Z. Zhang, M. Lin, X. Cao, B. R. Watts, and C. Q. Xu, “A high performance interconnect for PDMS microfluidic devices,” Sens. Actuators (to be published).

Chang, J. K.

H. Yun, H. Bang, J. Min, C. Chung, J. K. Chang, and D.-C. Han, “Simultaneous counting of two subsets of leukocytes using fluorescent silica nanoparticles in a sheathless microchip flow cytometer,” Lab Chip10(23), 3243–3254 (2010).
[CrossRef] [PubMed]

Chen, C. H.

C. H. Chen, F. Tsai, V. Lien, N. Justis, and Y.-H. Lo, “Scattering-based cyotmetric detection using integrated arrayed waveguides with microfluidics,” IEEE Photon. Technol. Lett.19(6), 441–443 (2007).
[CrossRef]

Chen, H. T.

H. T. Chen and Y. N. Wang, “Optical microflow cytometer for particle counting, sizing and fluorescence detection,” Microfluid. Nanofluid.6(4), 529–537 (2009).
[CrossRef]

Cheng, X.

D. S. Boyle, K. R. Hawkins, M. S. Steele, M. Singhal, and X. Cheng, “Emerging technologies for point-of-care CD4 T-lymphocyte counting,” Trends Biotechnol.30(1), 45–54 (2012).
[CrossRef] [PubMed]

Chung, B. G.

W. G. Lee, Y.-G. Kim, B. G. Chung, U. Demirci, and A. Khademhosseini, “Nano/Microfluidics for diagnosis of infectious diseases in developing countries,” Adv. Drug Deliv. Rev.62(4-5), 449–457 (2010).
[CrossRef] [PubMed]

Chung, C.

H. Yun, H. Bang, J. Min, C. Chung, J. K. Chang, and D.-C. Han, “Simultaneous counting of two subsets of leukocytes using fluorescent silica nanoparticles in a sheathless microchip flow cytometer,” Lab Chip10(23), 3243–3254 (2010).
[CrossRef] [PubMed]

Chung, T. D.

T. D. Chung and H. C. Kim, “Recent advances in miniaturized microfluidic flow cytometry for clinical use,” Electrophoresis28(24), 4511–4520 (2007).
[CrossRef] [PubMed]

Culbertson, C. T.

M. A. McClain, C. T. Culbertson, S. C. Jacobson, and J. M. Ramsey, “Flow cytometry of Escherichia coli on microfluidic devices,” Anal. Chem.73(21), 5334–5338 (2001).
[CrossRef] [PubMed]

Demirci, U.

W. G. Lee, Y.-G. Kim, B. G. Chung, U. Demirci, and A. Khademhosseini, “Nano/Microfluidics for diagnosis of infectious diseases in developing countries,” Adv. Drug Deliv. Rev.62(4-5), 449–457 (2010).
[CrossRef] [PubMed]

Di Carlo, D.

D. Heikali and D. Di Carlo, “A niche for microfluidics in portable hematology analyzers,” J. Assoc. Lab. Autom.15(4), 319–328 (2010).
[CrossRef]

Dong, C.

X. Mao, S. C. S. Lin, C. Dong, and T. J. Huang, “Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing,” Lab Chip9(11), 1583–1589 (2009).
[CrossRef] [PubMed]

El-Ali, J.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsæd, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip4(4), 372–377 (2004).
[CrossRef] [PubMed]

Engelund, M.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsæd, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip4(4), 372–377 (2004).
[CrossRef] [PubMed]

Erickson, D.

M. J. Kennedy, S. J. Stelick, L. G. Sayam, A. Yen, D. Erickson, and C. A. Batt, “Hydrodynamic optical alignment for microflow cytometry,” Lab Chip11(6), 1138–1143 (2011).
[CrossRef] [PubMed]

Erickson, J. S.

N. Hashemi, J. S. Erickson, J. P. Golden, and F. S. Ligler, “Optofluidic characterization of marine algae using a microflow cytometer,” Biomicrofluidics5(3), 032009 (2011).
[CrossRef] [PubMed]

N. Hashemi, J. S. Erickson, J. P. Golden, and F. S. Ligler, “Optofluidic characterization of marine algai using a microflow cytometer,” Biomicrofluidics5(3), 032009 (2011).
[CrossRef]

J. P. Golden, J. S. Kim, J. S. Erickson, L. R. Hilliard, P. B. Howell, G. P. Anderson, M. Nasir, and F. S. Ligler, “Multi-wavelength microflow cytometer using groove-generated sheath flow,” Lab Chip9(13), 1942–1950 (2009).
[CrossRef] [PubMed]

P. B. Howell, J. P. Golden, L. R. Hilliard, J. S. Erickson, D. R. Mott, and F. S. Ligler, “Two simple and rugged designs for creating microfluidic sheath flow,” Lab Chip8(7), 1097–1103 (2008).
[CrossRef] [PubMed]

Finoulst, I.

M. Rosenauer, W. Buchegger, I. Finoulst, P. Verhaert, and M. Vellekoop, “Miniaturized flow cytometer with 3D hydrodynamic particle focusing and integrated optical elements applying silicon photodiodes,” Microfluid. Nanofluid.10(4), 761–771 (2011).
[CrossRef]

Frankowski, M.

M. Frankowski, N. Bock, A. Kummrow, S. Schädel-Ebner, M. Schmidt, A. Tuchscheerer, and J. Neukammer, “A microflow cytometer exploited for the immunological differentiation of leukocytes,” Cytometry A79A(8), 613–624 (2011).
[CrossRef] [PubMed]

A. Kummrow, J. Theisen, M. Frankowski, A. Tuchscheerer, H. Yildirim, K. Brattke, M. Schmidt, and J. Neukammer, “Microfluidic structures for flow cytometric analysis of hydrodynamically focussed blood cells fabricated by ultraprecision micromachining,” Lab Chip9(7), 972–981 (2009).
[CrossRef] [PubMed]

Fu, L. M.

H. C. Lee, H. H. Hou, R. J. Yang, C. H. Lin, and L. M. Fu, “Microflow cytometer incorporating sequential micro-weir structure for three-dimensional focusing,” Microfluid. Nanofluid.11(4), 469–478 (2011).
[CrossRef]

Geschke, O.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip6(2), 213–217 (2006).
[CrossRef] [PubMed]

Godin, J.

Golden, J. P.

N. Hashemi, J. S. Erickson, J. P. Golden, and F. S. Ligler, “Optofluidic characterization of marine algae using a microflow cytometer,” Biomicrofluidics5(3), 032009 (2011).
[CrossRef] [PubMed]

N. Hashemi, J. S. Erickson, J. P. Golden, and F. S. Ligler, “Optofluidic characterization of marine algai using a microflow cytometer,” Biomicrofluidics5(3), 032009 (2011).
[CrossRef]

J. P. Golden, J. S. Kim, J. S. Erickson, L. R. Hilliard, P. B. Howell, G. P. Anderson, M. Nasir, and F. S. Ligler, “Multi-wavelength microflow cytometer using groove-generated sheath flow,” Lab Chip9(13), 1942–1950 (2009).
[CrossRef] [PubMed]

P. B. Howell, J. P. Golden, L. R. Hilliard, J. S. Erickson, D. R. Mott, and F. S. Ligler, “Two simple and rugged designs for creating microfluidic sheath flow,” Lab Chip8(7), 1097–1103 (2008).
[CrossRef] [PubMed]

Gotsæd, T.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsæd, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip4(4), 372–377 (2004).
[CrossRef] [PubMed]

Grotberg, J. B.

D. Huh, W. Gu, Y. Kamotani, J. B. Grotberg, and S. Takayama, “Microfluidics for flow cytometric analysis of cells and particles,” Physiol. Meas.26(3), R73–R98 (2005).
[CrossRef] [PubMed]

Gu, W.

D. Huh, W. Gu, Y. Kamotani, J. B. Grotberg, and S. Takayama, “Microfluidics for flow cytometric analysis of cells and particles,” Physiol. Meas.26(3), R73–R98 (2005).
[CrossRef] [PubMed]

Han, D.-C.

H. Yun, H. Bang, J. Min, C. Chung, J. K. Chang, and D.-C. Han, “Simultaneous counting of two subsets of leukocytes using fluorescent silica nanoparticles in a sheathless microchip flow cytometer,” Lab Chip10(23), 3243–3254 (2010).
[CrossRef] [PubMed]

Hashemi, N.

N. Hashemi, J. S. Erickson, J. P. Golden, and F. S. Ligler, “Optofluidic characterization of marine algai using a microflow cytometer,” Biomicrofluidics5(3), 032009 (2011).
[CrossRef]

N. Hashemi, J. S. Erickson, J. P. Golden, and F. S. Ligler, “Optofluidic characterization of marine algae using a microflow cytometer,” Biomicrofluidics5(3), 032009 (2011).
[CrossRef] [PubMed]

Hawkins, K. R.

D. S. Boyle, K. R. Hawkins, M. S. Steele, M. Singhal, and X. Cheng, “Emerging technologies for point-of-care CD4 T-lymphocyte counting,” Trends Biotechnol.30(1), 45–54 (2012).
[CrossRef] [PubMed]

Heikali, D.

D. Heikali and D. Di Carlo, “A niche for microfluidics in portable hematology analyzers,” J. Assoc. Lab. Autom.15(4), 319–328 (2010).
[CrossRef]

Hilliard, L. R.

J. P. Golden, J. S. Kim, J. S. Erickson, L. R. Hilliard, P. B. Howell, G. P. Anderson, M. Nasir, and F. S. Ligler, “Multi-wavelength microflow cytometer using groove-generated sheath flow,” Lab Chip9(13), 1942–1950 (2009).
[CrossRef] [PubMed]

P. B. Howell, J. P. Golden, L. R. Hilliard, J. S. Erickson, D. R. Mott, and F. S. Ligler, “Two simple and rugged designs for creating microfluidic sheath flow,” Lab Chip8(7), 1097–1103 (2008).
[CrossRef] [PubMed]

Hou, H. H.

H. C. Lee, H. H. Hou, R. J. Yang, C. H. Lin, and L. M. Fu, “Microflow cytometer incorporating sequential micro-weir structure for three-dimensional focusing,” Microfluid. Nanofluid.11(4), 469–478 (2011).
[CrossRef]

Howell, P. B.

J. P. Golden, J. S. Kim, J. S. Erickson, L. R. Hilliard, P. B. Howell, G. P. Anderson, M. Nasir, and F. S. Ligler, “Multi-wavelength microflow cytometer using groove-generated sheath flow,” Lab Chip9(13), 1942–1950 (2009).
[CrossRef] [PubMed]

P. B. Howell, J. P. Golden, L. R. Hilliard, J. S. Erickson, D. R. Mott, and F. S. Ligler, “Two simple and rugged designs for creating microfluidic sheath flow,” Lab Chip8(7), 1097–1103 (2008).
[CrossRef] [PubMed]

Hsiung, S. K.

S. K. Hsiung, S. R. Lin, and C. H. Lin, “Micro flow cytometry chip device integrated with tunable microlens for ciculating tumor cells detection and counting applications,” Jpn. J. Appl. Phys.49(6), 060218 (2010).
[CrossRef]

Huang, T. J.

X. Mao, S. C. S. Lin, C. Dong, and T. J. Huang, “Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing,” Lab Chip9(11), 1583–1589 (2009).
[CrossRef] [PubMed]

Huh, D.

D. Huh, W. Gu, Y. Kamotani, J. B. Grotberg, and S. Takayama, “Microfluidics for flow cytometric analysis of cells and particles,” Physiol. Meas.26(3), R73–R98 (2005).
[CrossRef] [PubMed]

Ikeda, M.

M. Ikeda, N. Yamaguchi, and M. Nasu, “Rapid on-chip flow cytometric detection of Listeria monocytogenes in milk,” J. Health Sci.55(5), 851–856 (2009).
[CrossRef]

Jacobson, S. C.

M. A. McClain, C. T. Culbertson, S. C. Jacobson, and J. M. Ramsey, “Flow cytometry of Escherichia coli on microfluidic devices,” Anal. Chem.73(21), 5334–5338 (2001).
[CrossRef] [PubMed]

Jiang, H.

H. Jiang, X. Weng, and D. Q. Li, “Microfluidic whole-blood immunoassays,” Microfluid. Nanofluid.10(5), 941–964 (2011).
[CrossRef]

Jorgensen, A. M.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip6(2), 213–217 (2006).
[CrossRef] [PubMed]

Justis, N.

C. H. Chen, F. Tsai, V. Lien, N. Justis, and Y.-H. Lo, “Scattering-based cyotmetric detection using integrated arrayed waveguides with microfluidics,” IEEE Photon. Technol. Lett.19(6), 441–443 (2007).
[CrossRef]

Kamotani, Y.

D. Huh, W. Gu, Y. Kamotani, J. B. Grotberg, and S. Takayama, “Microfluidics for flow cytometric analysis of cells and particles,” Physiol. Meas.26(3), R73–R98 (2005).
[CrossRef] [PubMed]

Kennedy, M. J.

M. J. Kennedy, S. J. Stelick, L. G. Sayam, A. Yen, D. Erickson, and C. A. Batt, “Hydrodynamic optical alignment for microflow cytometry,” Lab Chip11(6), 1138–1143 (2011).
[CrossRef] [PubMed]

Khademhosseini, A.

W. G. Lee, Y.-G. Kim, B. G. Chung, U. Demirci, and A. Khademhosseini, “Nano/Microfluidics for diagnosis of infectious diseases in developing countries,” Adv. Drug Deliv. Rev.62(4-5), 449–457 (2010).
[CrossRef] [PubMed]

Kim, H. C.

T. D. Chung and H. C. Kim, “Recent advances in miniaturized microfluidic flow cytometry for clinical use,” Electrophoresis28(24), 4511–4520 (2007).
[CrossRef] [PubMed]

Kim, J. S.

J. P. Golden, J. S. Kim, J. S. Erickson, L. R. Hilliard, P. B. Howell, G. P. Anderson, M. Nasir, and F. S. Ligler, “Multi-wavelength microflow cytometer using groove-generated sheath flow,” Lab Chip9(13), 1942–1950 (2009).
[CrossRef] [PubMed]

Kim, S.

R. N. Zare and S. Kim, “Microfluidic platforms for single-cell analysis,” Annu. Rev. Biomed. Eng.12(1), 187–201 (2010).
[CrossRef] [PubMed]

Kim, Y.-G.

W. G. Lee, Y.-G. Kim, B. G. Chung, U. Demirci, and A. Khademhosseini, “Nano/Microfluidics for diagnosis of infectious diseases in developing countries,” Adv. Drug Deliv. Rev.62(4-5), 449–457 (2010).
[CrossRef] [PubMed]

Kowpak, T.

B. R. Watts, T. Kowpak, Z. Zhang, C. Q. Xu, S. Zhu, X. Cao, and M. Lin, “Fabrication and performance of a photonic-microfluidic integrated device,” Micromachines3(1), 62–77 (2012).
[CrossRef]

T. Kowpak, B. R. Watts, Z. Zhang, S. Zhu, and C. Q. Xu, “Fabrication of photonic/microfluidic integrated devices using an epoxy photoresist,” Macromol. Mater. Eng.295(6), 559–565 (2010).
[CrossRef]

B. R. Watts, T. Kowpak, Z. Zhang, C. Q. Xu, and S. Zhu, “Formation and characterization of an ideal excitation beam geometry in an optofluidic device,” Biomed. Opt. Express1(3), 848–860 (2010).
[CrossRef] [PubMed]

Kristensen, A.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip6(2), 213–217 (2006).
[CrossRef] [PubMed]

Kummrow, A.

M. Frankowski, N. Bock, A. Kummrow, S. Schädel-Ebner, M. Schmidt, A. Tuchscheerer, and J. Neukammer, “A microflow cytometer exploited for the immunological differentiation of leukocytes,” Cytometry A79A(8), 613–624 (2011).
[CrossRef] [PubMed]

A. Kummrow, J. Theisen, M. Frankowski, A. Tuchscheerer, H. Yildirim, K. Brattke, M. Schmidt, and J. Neukammer, “Microfluidic structures for flow cytometric analysis of hydrodynamically focussed blood cells fabricated by ultraprecision micromachining,” Lab Chip9(7), 972–981 (2009).
[CrossRef] [PubMed]

Kutter, J. P.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip6(2), 213–217 (2006).
[CrossRef] [PubMed]

Z. Wang, J. El-Ali, M. Engelund, T. Gotsæd, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip4(4), 372–377 (2004).
[CrossRef] [PubMed]

Lee, H. C.

H. C. Lee, H. H. Hou, R. J. Yang, C. H. Lin, and L. M. Fu, “Microflow cytometer incorporating sequential micro-weir structure for three-dimensional focusing,” Microfluid. Nanofluid.11(4), 469–478 (2011).
[CrossRef]

Lee, W. G.

W. G. Lee, Y.-G. Kim, B. G. Chung, U. Demirci, and A. Khademhosseini, “Nano/Microfluidics for diagnosis of infectious diseases in developing countries,” Adv. Drug Deliv. Rev.62(4-5), 449–457 (2010).
[CrossRef] [PubMed]

Li, D. Q.

H. Jiang, X. Weng, and D. Q. Li, “Microfluidic whole-blood immunoassays,” Microfluid. Nanofluid.10(5), 941–964 (2011).
[CrossRef]

Lien, V.

C. H. Chen, F. Tsai, V. Lien, N. Justis, and Y.-H. Lo, “Scattering-based cyotmetric detection using integrated arrayed waveguides with microfluidics,” IEEE Photon. Technol. Lett.19(6), 441–443 (2007).
[CrossRef]

V. Lien, K. Zhao, Y. Berdichevsky, and Y.-H. Lo, “High-sensitivity cytometric detection using fluidic-photonic integrated circuits with array waveguides,” IEEE J. Sel. Top. Quantum Electron.11(4), 827–834 (2005).
[CrossRef]

Ligler, F. S.

N. Hashemi, J. S. Erickson, J. P. Golden, and F. S. Ligler, “Optofluidic characterization of marine algai using a microflow cytometer,” Biomicrofluidics5(3), 032009 (2011).
[CrossRef]

N. Hashemi, J. S. Erickson, J. P. Golden, and F. S. Ligler, “Optofluidic characterization of marine algae using a microflow cytometer,” Biomicrofluidics5(3), 032009 (2011).
[CrossRef] [PubMed]

J. P. Golden, J. S. Kim, J. S. Erickson, L. R. Hilliard, P. B. Howell, G. P. Anderson, M. Nasir, and F. S. Ligler, “Multi-wavelength microflow cytometer using groove-generated sheath flow,” Lab Chip9(13), 1942–1950 (2009).
[CrossRef] [PubMed]

P. B. Howell, J. P. Golden, L. R. Hilliard, J. S. Erickson, D. R. Mott, and F. S. Ligler, “Two simple and rugged designs for creating microfluidic sheath flow,” Lab Chip8(7), 1097–1103 (2008).
[CrossRef] [PubMed]

Lin, C. H.

H. C. Lee, H. H. Hou, R. J. Yang, C. H. Lin, and L. M. Fu, “Microflow cytometer incorporating sequential micro-weir structure for three-dimensional focusing,” Microfluid. Nanofluid.11(4), 469–478 (2011).
[CrossRef]

S. K. Hsiung, S. R. Lin, and C. H. Lin, “Micro flow cytometry chip device integrated with tunable microlens for ciculating tumor cells detection and counting applications,” Jpn. J. Appl. Phys.49(6), 060218 (2010).
[CrossRef]

Lin, M.

B. R. Watts, T. Kowpak, Z. Zhang, C. Q. Xu, S. Zhu, X. Cao, and M. Lin, “Fabrication and performance of a photonic-microfluidic integrated device,” Micromachines3(1), 62–77 (2012).
[CrossRef]

C. Mu, Z. Zhang, M. Lin, X. Cao, B. R. Watts, and C. Q. Xu, “A high performance interconnect for PDMS microfluidic devices,” Sens. Actuators (to be published).

Lin, S. C. S.

X. Mao, S. C. S. Lin, C. Dong, and T. J. Huang, “Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing,” Lab Chip9(11), 1583–1589 (2009).
[CrossRef] [PubMed]

Lin, S. R.

S. K. Hsiung, S. R. Lin, and C. H. Lin, “Micro flow cytometry chip device integrated with tunable microlens for ciculating tumor cells detection and counting applications,” Jpn. J. Appl. Phys.49(6), 060218 (2010).
[CrossRef]

Lo, Y.-H.

J. Godin and Y.-H. Lo, “Two-parameter angular light scatter collection for microfluidic flow cytometry by unique waveguide structures,” Biomed. Opt. Express1(5), 1472–1479 (2010).
[CrossRef] [PubMed]

C. H. Chen, F. Tsai, V. Lien, N. Justis, and Y.-H. Lo, “Scattering-based cyotmetric detection using integrated arrayed waveguides with microfluidics,” IEEE Photon. Technol. Lett.19(6), 441–443 (2007).
[CrossRef]

V. Lien, K. Zhao, Y. Berdichevsky, and Y.-H. Lo, “High-sensitivity cytometric detection using fluidic-photonic integrated circuits with array waveguides,” IEEE J. Sel. Top. Quantum Electron.11(4), 827–834 (2005).
[CrossRef]

Mao, X.

X. Mao, S. C. S. Lin, C. Dong, and T. J. Huang, “Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing,” Lab Chip9(11), 1583–1589 (2009).
[CrossRef] [PubMed]

McClain, M. A.

M. A. McClain, C. T. Culbertson, S. C. Jacobson, and J. M. Ramsey, “Flow cytometry of Escherichia coli on microfluidic devices,” Anal. Chem.73(21), 5334–5338 (2001).
[CrossRef] [PubMed]

Min, J.

H. Yun, H. Bang, J. Min, C. Chung, J. K. Chang, and D.-C. Han, “Simultaneous counting of two subsets of leukocytes using fluorescent silica nanoparticles in a sheathless microchip flow cytometer,” Lab Chip10(23), 3243–3254 (2010).
[CrossRef] [PubMed]

Mogensen, K. B.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip6(2), 213–217 (2006).
[CrossRef] [PubMed]

Z. Wang, J. El-Ali, M. Engelund, T. Gotsæd, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip4(4), 372–377 (2004).
[CrossRef] [PubMed]

Morgan, H.

D. Barat, D. Spencer, G. Benazzi, M. C. Mowlem, and H. Morgan, “Simultaneous high speed optical and impedance analysis of single particles with a microfluidic cytometer,” Lab Chip12(1), 118–126 (2011).
[CrossRef] [PubMed]

Mott, D. R.

P. B. Howell, J. P. Golden, L. R. Hilliard, J. S. Erickson, D. R. Mott, and F. S. Ligler, “Two simple and rugged designs for creating microfluidic sheath flow,” Lab Chip8(7), 1097–1103 (2008).
[CrossRef] [PubMed]

Mowlem, M. C.

D. Barat, D. Spencer, G. Benazzi, M. C. Mowlem, and H. Morgan, “Simultaneous high speed optical and impedance analysis of single particles with a microfluidic cytometer,” Lab Chip12(1), 118–126 (2011).
[CrossRef] [PubMed]

Mu, C.

C. Mu, Z. Zhang, M. Lin, X. Cao, B. R. Watts, and C. Q. Xu, “A high performance interconnect for PDMS microfluidic devices,” Sens. Actuators (to be published).

Nasir, M.

J. P. Golden, J. S. Kim, J. S. Erickson, L. R. Hilliard, P. B. Howell, G. P. Anderson, M. Nasir, and F. S. Ligler, “Multi-wavelength microflow cytometer using groove-generated sheath flow,” Lab Chip9(13), 1942–1950 (2009).
[CrossRef] [PubMed]

Nasu, M.

M. Ikeda, N. Yamaguchi, and M. Nasu, “Rapid on-chip flow cytometric detection of Listeria monocytogenes in milk,” J. Health Sci.55(5), 851–856 (2009).
[CrossRef]

Neukammer, J.

M. Frankowski, N. Bock, A. Kummrow, S. Schädel-Ebner, M. Schmidt, A. Tuchscheerer, and J. Neukammer, “A microflow cytometer exploited for the immunological differentiation of leukocytes,” Cytometry A79A(8), 613–624 (2011).
[CrossRef] [PubMed]

A. Kummrow, J. Theisen, M. Frankowski, A. Tuchscheerer, H. Yildirim, K. Brattke, M. Schmidt, and J. Neukammer, “Microfluidic structures for flow cytometric analysis of hydrodynamically focussed blood cells fabricated by ultraprecision micromachining,” Lab Chip9(7), 972–981 (2009).
[CrossRef] [PubMed]

Perch-Nielsen, I. R.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsæd, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip4(4), 372–377 (2004).
[CrossRef] [PubMed]

Ramsey, J. M.

M. A. McClain, C. T. Culbertson, S. C. Jacobson, and J. M. Ramsey, “Flow cytometry of Escherichia coli on microfluidic devices,” Anal. Chem.73(21), 5334–5338 (2001).
[CrossRef] [PubMed]

Rosenauer, M.

M. Rosenauer, W. Buchegger, I. Finoulst, P. Verhaert, and M. Vellekoop, “Miniaturized flow cytometer with 3D hydrodynamic particle focusing and integrated optical elements applying silicon photodiodes,” Microfluid. Nanofluid.10(4), 761–771 (2011).
[CrossRef]

Sayam, L. G.

M. J. Kennedy, S. J. Stelick, L. G. Sayam, A. Yen, D. Erickson, and C. A. Batt, “Hydrodynamic optical alignment for microflow cytometry,” Lab Chip11(6), 1138–1143 (2011).
[CrossRef] [PubMed]

Schädel-Ebner, S.

M. Frankowski, N. Bock, A. Kummrow, S. Schädel-Ebner, M. Schmidt, A. Tuchscheerer, and J. Neukammer, “A microflow cytometer exploited for the immunological differentiation of leukocytes,” Cytometry A79A(8), 613–624 (2011).
[CrossRef] [PubMed]

Schmidt, M.

M. Frankowski, N. Bock, A. Kummrow, S. Schädel-Ebner, M. Schmidt, A. Tuchscheerer, and J. Neukammer, “A microflow cytometer exploited for the immunological differentiation of leukocytes,” Cytometry A79A(8), 613–624 (2011).
[CrossRef] [PubMed]

A. Kummrow, J. Theisen, M. Frankowski, A. Tuchscheerer, H. Yildirim, K. Brattke, M. Schmidt, and J. Neukammer, “Microfluidic structures for flow cytometric analysis of hydrodynamically focussed blood cells fabricated by ultraprecision micromachining,” Lab Chip9(7), 972–981 (2009).
[CrossRef] [PubMed]

Singhal, M.

D. S. Boyle, K. R. Hawkins, M. S. Steele, M. Singhal, and X. Cheng, “Emerging technologies for point-of-care CD4 T-lymphocyte counting,” Trends Biotechnol.30(1), 45–54 (2012).
[CrossRef] [PubMed]

Snakenborg, D.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip6(2), 213–217 (2006).
[CrossRef] [PubMed]

Z. Wang, J. El-Ali, M. Engelund, T. Gotsæd, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip4(4), 372–377 (2004).
[CrossRef] [PubMed]

Spencer, D.

D. Barat, D. Spencer, G. Benazzi, M. C. Mowlem, and H. Morgan, “Simultaneous high speed optical and impedance analysis of single particles with a microfluidic cytometer,” Lab Chip12(1), 118–126 (2011).
[CrossRef] [PubMed]

Steele, M. S.

D. S. Boyle, K. R. Hawkins, M. S. Steele, M. Singhal, and X. Cheng, “Emerging technologies for point-of-care CD4 T-lymphocyte counting,” Trends Biotechnol.30(1), 45–54 (2012).
[CrossRef] [PubMed]

Stelick, S. J.

M. J. Kennedy, S. J. Stelick, L. G. Sayam, A. Yen, D. Erickson, and C. A. Batt, “Hydrodynamic optical alignment for microflow cytometry,” Lab Chip11(6), 1138–1143 (2011).
[CrossRef] [PubMed]

Takayama, S.

D. Huh, W. Gu, Y. Kamotani, J. B. Grotberg, and S. Takayama, “Microfluidics for flow cytometric analysis of cells and particles,” Physiol. Meas.26(3), R73–R98 (2005).
[CrossRef] [PubMed]

Theisen, J.

A. Kummrow, J. Theisen, M. Frankowski, A. Tuchscheerer, H. Yildirim, K. Brattke, M. Schmidt, and J. Neukammer, “Microfluidic structures for flow cytometric analysis of hydrodynamically focussed blood cells fabricated by ultraprecision micromachining,” Lab Chip9(7), 972–981 (2009).
[CrossRef] [PubMed]

Tsai, F.

C. H. Chen, F. Tsai, V. Lien, N. Justis, and Y.-H. Lo, “Scattering-based cyotmetric detection using integrated arrayed waveguides with microfluidics,” IEEE Photon. Technol. Lett.19(6), 441–443 (2007).
[CrossRef]

Tuchscheerer, A.

M. Frankowski, N. Bock, A. Kummrow, S. Schädel-Ebner, M. Schmidt, A. Tuchscheerer, and J. Neukammer, “A microflow cytometer exploited for the immunological differentiation of leukocytes,” Cytometry A79A(8), 613–624 (2011).
[CrossRef] [PubMed]

A. Kummrow, J. Theisen, M. Frankowski, A. Tuchscheerer, H. Yildirim, K. Brattke, M. Schmidt, and J. Neukammer, “Microfluidic structures for flow cytometric analysis of hydrodynamically focussed blood cells fabricated by ultraprecision micromachining,” Lab Chip9(7), 972–981 (2009).
[CrossRef] [PubMed]

Vellekoop, M.

M. Rosenauer, W. Buchegger, I. Finoulst, P. Verhaert, and M. Vellekoop, “Miniaturized flow cytometer with 3D hydrodynamic particle focusing and integrated optical elements applying silicon photodiodes,” Microfluid. Nanofluid.10(4), 761–771 (2011).
[CrossRef]

Verhaert, P.

M. Rosenauer, W. Buchegger, I. Finoulst, P. Verhaert, and M. Vellekoop, “Miniaturized flow cytometer with 3D hydrodynamic particle focusing and integrated optical elements applying silicon photodiodes,” Microfluid. Nanofluid.10(4), 761–771 (2011).
[CrossRef]

Wang, Y. N.

H. T. Chen and Y. N. Wang, “Optical microflow cytometer for particle counting, sizing and fluorescence detection,” Microfluid. Nanofluid.6(4), 529–537 (2009).
[CrossRef]

Wang, Z.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsæd, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip4(4), 372–377 (2004).
[CrossRef] [PubMed]

Watts, B. R.

B. R. Watts, T. Kowpak, Z. Zhang, C. Q. Xu, S. Zhu, X. Cao, and M. Lin, “Fabrication and performance of a photonic-microfluidic integrated device,” Micromachines3(1), 62–77 (2012).
[CrossRef]

Z. Zhang, P. Zhao, G. Xiao, B. R. Watts, and C. Q. Xu, “Sealing SU-8 microfluidic channels using PDMS,” Biomicrofluidics5(4), 046503 (2011).
[CrossRef] [PubMed]

B. R. Watts, T. Kowpak, Z. Zhang, C. Q. Xu, and S. Zhu, “Formation and characterization of an ideal excitation beam geometry in an optofluidic device,” Biomed. Opt. Express1(3), 848–860 (2010).
[CrossRef] [PubMed]

T. Kowpak, B. R. Watts, Z. Zhang, S. Zhu, and C. Q. Xu, “Fabrication of photonic/microfluidic integrated devices using an epoxy photoresist,” Macromol. Mater. Eng.295(6), 559–565 (2010).
[CrossRef]

C. Mu, Z. Zhang, M. Lin, X. Cao, B. R. Watts, and C. Q. Xu, “A high performance interconnect for PDMS microfluidic devices,” Sens. Actuators (to be published).

Weng, X.

H. Jiang, X. Weng, and D. Q. Li, “Microfluidic whole-blood immunoassays,” Microfluid. Nanofluid.10(5), 941–964 (2011).
[CrossRef]

Wolff, A.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsæd, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip4(4), 372–377 (2004).
[CrossRef] [PubMed]

Xiao, G.

Z. Zhang, P. Zhao, G. Xiao, B. R. Watts, and C. Q. Xu, “Sealing SU-8 microfluidic channels using PDMS,” Biomicrofluidics5(4), 046503 (2011).
[CrossRef] [PubMed]

Xu, C. Q.

B. R. Watts, T. Kowpak, Z. Zhang, C. Q. Xu, S. Zhu, X. Cao, and M. Lin, “Fabrication and performance of a photonic-microfluidic integrated device,” Micromachines3(1), 62–77 (2012).
[CrossRef]

Z. Zhang, P. Zhao, G. Xiao, B. R. Watts, and C. Q. Xu, “Sealing SU-8 microfluidic channels using PDMS,” Biomicrofluidics5(4), 046503 (2011).
[CrossRef] [PubMed]

B. R. Watts, T. Kowpak, Z. Zhang, C. Q. Xu, and S. Zhu, “Formation and characterization of an ideal excitation beam geometry in an optofluidic device,” Biomed. Opt. Express1(3), 848–860 (2010).
[CrossRef] [PubMed]

T. Kowpak, B. R. Watts, Z. Zhang, S. Zhu, and C. Q. Xu, “Fabrication of photonic/microfluidic integrated devices using an epoxy photoresist,” Macromol. Mater. Eng.295(6), 559–565 (2010).
[CrossRef]

C. Mu, Z. Zhang, M. Lin, X. Cao, B. R. Watts, and C. Q. Xu, “A high performance interconnect for PDMS microfluidic devices,” Sens. Actuators (to be published).

Yamaguchi, N.

M. Ikeda, N. Yamaguchi, and M. Nasu, “Rapid on-chip flow cytometric detection of Listeria monocytogenes in milk,” J. Health Sci.55(5), 851–856 (2009).
[CrossRef]

Yang, R. J.

H. C. Lee, H. H. Hou, R. J. Yang, C. H. Lin, and L. M. Fu, “Microflow cytometer incorporating sequential micro-weir structure for three-dimensional focusing,” Microfluid. Nanofluid.11(4), 469–478 (2011).
[CrossRef]

Yen, A.

M. J. Kennedy, S. J. Stelick, L. G. Sayam, A. Yen, D. Erickson, and C. A. Batt, “Hydrodynamic optical alignment for microflow cytometry,” Lab Chip11(6), 1138–1143 (2011).
[CrossRef] [PubMed]

Yildirim, H.

A. Kummrow, J. Theisen, M. Frankowski, A. Tuchscheerer, H. Yildirim, K. Brattke, M. Schmidt, and J. Neukammer, “Microfluidic structures for flow cytometric analysis of hydrodynamically focussed blood cells fabricated by ultraprecision micromachining,” Lab Chip9(7), 972–981 (2009).
[CrossRef] [PubMed]

Yun, H.

H. Yun, H. Bang, J. Min, C. Chung, J. K. Chang, and D.-C. Han, “Simultaneous counting of two subsets of leukocytes using fluorescent silica nanoparticles in a sheathless microchip flow cytometer,” Lab Chip10(23), 3243–3254 (2010).
[CrossRef] [PubMed]

Zare, R. N.

R. N. Zare and S. Kim, “Microfluidic platforms for single-cell analysis,” Annu. Rev. Biomed. Eng.12(1), 187–201 (2010).
[CrossRef] [PubMed]

Zhang, Z.

B. R. Watts, T. Kowpak, Z. Zhang, C. Q. Xu, S. Zhu, X. Cao, and M. Lin, “Fabrication and performance of a photonic-microfluidic integrated device,” Micromachines3(1), 62–77 (2012).
[CrossRef]

Z. Zhang, P. Zhao, G. Xiao, B. R. Watts, and C. Q. Xu, “Sealing SU-8 microfluidic channels using PDMS,” Biomicrofluidics5(4), 046503 (2011).
[CrossRef] [PubMed]

T. Kowpak, B. R. Watts, Z. Zhang, S. Zhu, and C. Q. Xu, “Fabrication of photonic/microfluidic integrated devices using an epoxy photoresist,” Macromol. Mater. Eng.295(6), 559–565 (2010).
[CrossRef]

B. R. Watts, T. Kowpak, Z. Zhang, C. Q. Xu, and S. Zhu, “Formation and characterization of an ideal excitation beam geometry in an optofluidic device,” Biomed. Opt. Express1(3), 848–860 (2010).
[CrossRef] [PubMed]

C. Mu, Z. Zhang, M. Lin, X. Cao, B. R. Watts, and C. Q. Xu, “A high performance interconnect for PDMS microfluidic devices,” Sens. Actuators (to be published).

Zhao, K.

V. Lien, K. Zhao, Y. Berdichevsky, and Y.-H. Lo, “High-sensitivity cytometric detection using fluidic-photonic integrated circuits with array waveguides,” IEEE J. Sel. Top. Quantum Electron.11(4), 827–834 (2005).
[CrossRef]

Zhao, P.

Z. Zhang, P. Zhao, G. Xiao, B. R. Watts, and C. Q. Xu, “Sealing SU-8 microfluidic channels using PDMS,” Biomicrofluidics5(4), 046503 (2011).
[CrossRef] [PubMed]

Zhu, S.

B. R. Watts, T. Kowpak, Z. Zhang, C. Q. Xu, S. Zhu, X. Cao, and M. Lin, “Fabrication and performance of a photonic-microfluidic integrated device,” Micromachines3(1), 62–77 (2012).
[CrossRef]

T. Kowpak, B. R. Watts, Z. Zhang, S. Zhu, and C. Q. Xu, “Fabrication of photonic/microfluidic integrated devices using an epoxy photoresist,” Macromol. Mater. Eng.295(6), 559–565 (2010).
[CrossRef]

B. R. Watts, T. Kowpak, Z. Zhang, C. Q. Xu, and S. Zhu, “Formation and characterization of an ideal excitation beam geometry in an optofluidic device,” Biomed. Opt. Express1(3), 848–860 (2010).
[CrossRef] [PubMed]

Adv. Drug Deliv. Rev. (1)

W. G. Lee, Y.-G. Kim, B. G. Chung, U. Demirci, and A. Khademhosseini, “Nano/Microfluidics for diagnosis of infectious diseases in developing countries,” Adv. Drug Deliv. Rev.62(4-5), 449–457 (2010).
[CrossRef] [PubMed]

Anal. Chem. (1)

M. A. McClain, C. T. Culbertson, S. C. Jacobson, and J. M. Ramsey, “Flow cytometry of Escherichia coli on microfluidic devices,” Anal. Chem.73(21), 5334–5338 (2001).
[CrossRef] [PubMed]

Annu. Rev. Biomed. Eng. (1)

R. N. Zare and S. Kim, “Microfluidic platforms for single-cell analysis,” Annu. Rev. Biomed. Eng.12(1), 187–201 (2010).
[CrossRef] [PubMed]

Biomed. Opt. Express (2)

Biomicrofluidics (3)

Z. Zhang, P. Zhao, G. Xiao, B. R. Watts, and C. Q. Xu, “Sealing SU-8 microfluidic channels using PDMS,” Biomicrofluidics5(4), 046503 (2011).
[CrossRef] [PubMed]

N. Hashemi, J. S. Erickson, J. P. Golden, and F. S. Ligler, “Optofluidic characterization of marine algai using a microflow cytometer,” Biomicrofluidics5(3), 032009 (2011).
[CrossRef]

N. Hashemi, J. S. Erickson, J. P. Golden, and F. S. Ligler, “Optofluidic characterization of marine algae using a microflow cytometer,” Biomicrofluidics5(3), 032009 (2011).
[CrossRef] [PubMed]

Cytometry A (1)

M. Frankowski, N. Bock, A. Kummrow, S. Schädel-Ebner, M. Schmidt, A. Tuchscheerer, and J. Neukammer, “A microflow cytometer exploited for the immunological differentiation of leukocytes,” Cytometry A79A(8), 613–624 (2011).
[CrossRef] [PubMed]

Electrophoresis (1)

T. D. Chung and H. C. Kim, “Recent advances in miniaturized microfluidic flow cytometry for clinical use,” Electrophoresis28(24), 4511–4520 (2007).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

V. Lien, K. Zhao, Y. Berdichevsky, and Y.-H. Lo, “High-sensitivity cytometric detection using fluidic-photonic integrated circuits with array waveguides,” IEEE J. Sel. Top. Quantum Electron.11(4), 827–834 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. H. Chen, F. Tsai, V. Lien, N. Justis, and Y.-H. Lo, “Scattering-based cyotmetric detection using integrated arrayed waveguides with microfluidics,” IEEE Photon. Technol. Lett.19(6), 441–443 (2007).
[CrossRef]

J. Assoc. Lab. Autom. (1)

D. Heikali and D. Di Carlo, “A niche for microfluidics in portable hematology analyzers,” J. Assoc. Lab. Autom.15(4), 319–328 (2010).
[CrossRef]

J. Health Sci. (1)

M. Ikeda, N. Yamaguchi, and M. Nasu, “Rapid on-chip flow cytometric detection of Listeria monocytogenes in milk,” J. Health Sci.55(5), 851–856 (2009).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S. K. Hsiung, S. R. Lin, and C. H. Lin, “Micro flow cytometry chip device integrated with tunable microlens for ciculating tumor cells detection and counting applications,” Jpn. J. Appl. Phys.49(6), 060218 (2010).
[CrossRef]

Lab Chip (9)

H. Yun, H. Bang, J. Min, C. Chung, J. K. Chang, and D.-C. Han, “Simultaneous counting of two subsets of leukocytes using fluorescent silica nanoparticles in a sheathless microchip flow cytometer,” Lab Chip10(23), 3243–3254 (2010).
[CrossRef] [PubMed]

M. J. Kennedy, S. J. Stelick, L. G. Sayam, A. Yen, D. Erickson, and C. A. Batt, “Hydrodynamic optical alignment for microflow cytometry,” Lab Chip11(6), 1138–1143 (2011).
[CrossRef] [PubMed]

A. Kummrow, J. Theisen, M. Frankowski, A. Tuchscheerer, H. Yildirim, K. Brattke, M. Schmidt, and J. Neukammer, “Microfluidic structures for flow cytometric analysis of hydrodynamically focussed blood cells fabricated by ultraprecision micromachining,” Lab Chip9(7), 972–981 (2009).
[CrossRef] [PubMed]

P. B. Howell, J. P. Golden, L. R. Hilliard, J. S. Erickson, D. R. Mott, and F. S. Ligler, “Two simple and rugged designs for creating microfluidic sheath flow,” Lab Chip8(7), 1097–1103 (2008).
[CrossRef] [PubMed]

D. Barat, D. Spencer, G. Benazzi, M. C. Mowlem, and H. Morgan, “Simultaneous high speed optical and impedance analysis of single particles with a microfluidic cytometer,” Lab Chip12(1), 118–126 (2011).
[CrossRef] [PubMed]

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip6(2), 213–217 (2006).
[CrossRef] [PubMed]

X. Mao, S. C. S. Lin, C. Dong, and T. J. Huang, “Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing,” Lab Chip9(11), 1583–1589 (2009).
[CrossRef] [PubMed]

J. P. Golden, J. S. Kim, J. S. Erickson, L. R. Hilliard, P. B. Howell, G. P. Anderson, M. Nasir, and F. S. Ligler, “Multi-wavelength microflow cytometer using groove-generated sheath flow,” Lab Chip9(13), 1942–1950 (2009).
[CrossRef] [PubMed]

Z. Wang, J. El-Ali, M. Engelund, T. Gotsæd, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip4(4), 372–377 (2004).
[CrossRef] [PubMed]

Macromol. Mater. Eng. (1)

T. Kowpak, B. R. Watts, Z. Zhang, S. Zhu, and C. Q. Xu, “Fabrication of photonic/microfluidic integrated devices using an epoxy photoresist,” Macromol. Mater. Eng.295(6), 559–565 (2010).
[CrossRef]

Microfluid. Nanofluid. (4)

H. C. Lee, H. H. Hou, R. J. Yang, C. H. Lin, and L. M. Fu, “Microflow cytometer incorporating sequential micro-weir structure for three-dimensional focusing,” Microfluid. Nanofluid.11(4), 469–478 (2011).
[CrossRef]

H. T. Chen and Y. N. Wang, “Optical microflow cytometer for particle counting, sizing and fluorescence detection,” Microfluid. Nanofluid.6(4), 529–537 (2009).
[CrossRef]

M. Rosenauer, W. Buchegger, I. Finoulst, P. Verhaert, and M. Vellekoop, “Miniaturized flow cytometer with 3D hydrodynamic particle focusing and integrated optical elements applying silicon photodiodes,” Microfluid. Nanofluid.10(4), 761–771 (2011).
[CrossRef]

H. Jiang, X. Weng, and D. Q. Li, “Microfluidic whole-blood immunoassays,” Microfluid. Nanofluid.10(5), 941–964 (2011).
[CrossRef]

Micromachines (1)

B. R. Watts, T. Kowpak, Z. Zhang, C. Q. Xu, S. Zhu, X. Cao, and M. Lin, “Fabrication and performance of a photonic-microfluidic integrated device,” Micromachines3(1), 62–77 (2012).
[CrossRef]

Physiol. Meas. (1)

D. Huh, W. Gu, Y. Kamotani, J. B. Grotberg, and S. Takayama, “Microfluidics for flow cytometric analysis of cells and particles,” Physiol. Meas.26(3), R73–R98 (2005).
[CrossRef] [PubMed]

Sens. Actuators (1)

C. Mu, Z. Zhang, M. Lin, X. Cao, B. R. Watts, and C. Q. Xu, “A high performance interconnect for PDMS microfluidic devices,” Sens. Actuators (to be published).

Trends Biotechnol. (1)

D. S. Boyle, K. R. Hawkins, M. S. Steele, M. Singhal, and X. Cheng, “Emerging technologies for point-of-care CD4 T-lymphocyte counting,” Trends Biotechnol.30(1), 45–54 (2012).
[CrossRef] [PubMed]

Other (1)

A. Cytometry, “VenturiOne cell cycle analysis,” Application Note, http://www.appliedcytometry.com/pdfs/VenturiOne_DNA_Cell_Cycle_Application_Note_low_res.pdf .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Design and realization of the device. (a) Concept drawing of the device showing the three layer construction. (b) SEM image of the device showing details of the lens systems and channel integration. (c) Picture of the packaged device. (d) Schematic for the experimental setup used for bead detection.

Fig. 2
Fig. 2

Beam shaping performance of the device. (a) Image of the device with an overlay of the simulated ray trace to show the beam formed within the channel. (b) Image of the beam formed in the channel. (c) Contour plot showing the intensity of the beam as a function of position within the channel.

Fig. 3
Fig. 3

Scattering detection of 2.0 μm beads using a device with a 6.0 μm beam waist. (a) A 1 second sample of raw data showing intensity bursts. (b) The corresponding histogram of the detected burst intensities from the entire 100s scatter test.

Fig. 4
Fig. 4

Fluorescence detection of 2.5 μm fluorescent beads using a device with a 6.0 μm beam waist. (a) A 2 second sample of raw data showing intensity bursts. (b) The corresponding histogram of the detected burst intensities from the entire 100s fluorescence test.

Tables (1)

Tables Icon

Table 1 Scatter and fluorescence detection performance of beads using devices with two sizes of beam waists

Metrics