Abstract

This paper describes a digital method that is capable of automatically focusing optical coherence tomography (OCT) en face images without prior knowledge of the point spread function of the imaging system. The method utilizes a scalar diffraction model to simulate wave propagation from out-of-focus scatter to the focal plane, from which the propagation distance between the out-of-focus plane and the focal plane is determined automatically via an image-definition-evaluation criterion based on information entropy theory. By use of the proposed approach, we demonstrate that the lateral resolution close to that at the focal plane can be recovered from the imaging planes outside the depth of field region with minimal loss of resolution. Fresh onion tissues and mouse fat tissues are used in the experiments to show the performance of the proposed method.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
    [CrossRef]
  2. P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys.38(15), 2519–2535 (2005).
    [CrossRef]
  3. R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express15(7), 4083–4097 (2007).
    [CrossRef] [PubMed]
  4. R. K. Wang and Z. Ma, “Real-time flow imaging by removing texture pattern artifacts in spectral-domain optical Doppler tomography,” Opt. Lett.31(20), 3001–3003 (2006).
    [CrossRef] [PubMed]
  5. Z. H. Ding, H. W. Ren, Y. H. Zhao, J. S. Nelson, and Z. P. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett.27(4), 243–245 (2002).
    [CrossRef] [PubMed]
  6. T. Xie, S. Guo, Z. Chen, D. Mukai, and M. Brenner, “GRIN lens rod based probe for endoscopic spectral domain optical coherence tomography with fast dynamic focus tracking,” Opt. Express14(8), 3238–3246 (2006).
    [CrossRef] [PubMed]
  7. A. Divetia, T. H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G. P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett.86(10), 103902 (2005).
    [CrossRef]
  8. D. Merino, Ch. Dainty, A. Bradu, and A. G. Podoleanu, “Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy,” Opt. Express14(8), 3345–3353 (2006).
    [CrossRef] [PubMed]
  9. M. J. Cobb, X. Liu, and X. Li, “Continuous focus tracking for real-time optical coherence tomography,” Opt. Lett.30(13), 1680–1682 (2005).
    [CrossRef] [PubMed]
  10. B. Qi, A. P. Himmer, L. M. Gordon, X. D. V. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a micro-electromechanical mirror,” Opt. Commun.232(1-6), 123–128 (2004).
    [CrossRef]
  11. J. Holmes and S. Hattersley, “Image blending and speckle noise reduction in multi-beam OCT,” Proc. SPIE7168, 71681N, 71681N-8 (2009).
    [CrossRef]
  12. Y. Yasuno, J. I. Sugisaka, Y. Sando, Y. Nakamura, S. Makita, M. Itoh, and T. Yatagai, “Non-iterative numerical method for laterally superresolving Fourier domain optical coherence tomography,” Opt. Express14(3), 1006–1020 (2006).
    [CrossRef] [PubMed]
  13. M. D. Kulkarni, C. W. Thomas, and J. A. Izatt, “Image enhancement in optical coherence tomography using deconvolution,” Electron. Lett.33(16), 1365–1367 (1997).
    [CrossRef]
  14. T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transverse blurring in optical coherence tomography,” IEEE Trans. Image Process.14(9), 1254–1264 (2005).
    [CrossRef] [PubMed]
  15. R. K. Wang, “Resolution improved optical coherence-gating tomography for imaging biological tissue,” J. Mod. Opt.46, 1905–1913 (1999).
  16. Y. Liu, Y. Liang, G. Mu, and X. Zhu, “Deconvolution methods for image deblurring in optical coherence tomography,” J. Opt. Soc. Am. A26(1), 72–77 (2009).
    [CrossRef] [PubMed]
  17. J. P. Rolland, P. Meemon, S. Murali, K. P. Thompson, and K. S. Lee, “Gabor-based fusion technique for optical coherence microscopy,” Opt. Express18(4), 3632–3642 (2010).
    [CrossRef] [PubMed]
  18. B. J. Davis, S. C. Schlachter, D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Nonparaxial vector-field modeling of optical coherence tomography and interferometric synthetic aperture microscopy,” J. Opt. Soc. Am. A24(9), 2527–2542 (2007).
    [CrossRef] [PubMed]
  19. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys.3(2), 129–134 (2007).
    [CrossRef]
  20. L. Yu, B. Rao, J. Zhang, J. Su, Q. Wang, S. Guo, and Z. Chen, “Improved lateral resolution in optical coherence tomography by digital focusing using two-dimensional numerical diffraction method,” Opt. Express15(12), 7634–7641 (2007).
    [CrossRef] [PubMed]
  21. G. Liu, S. Yousefi, Z. Zhi, and R. K. Wang, “Automatic estimation of point-spread-function for deconvoluting out-of-focus optical coherence tomographic images using information entropy-based approach,” Opt. Express19(19), 18135–18148 (2011).
    [CrossRef] [PubMed]
  22. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw Hill, Boston, 1996).
  23. L. Yu and M. K. Kim, “Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method,” Opt. Lett.30(16), 2092–2094 (2005).
    [CrossRef] [PubMed]
  24. L. Yu and M. K. Kim, “Pixel resolution control in numerical reconstruction of digital holography,” Opt. Lett.31(7), 897–899 (2006).
    [CrossRef] [PubMed]

2011

2010

2009

Y. Liu, Y. Liang, G. Mu, and X. Zhu, “Deconvolution methods for image deblurring in optical coherence tomography,” J. Opt. Soc. Am. A26(1), 72–77 (2009).
[CrossRef] [PubMed]

J. Holmes and S. Hattersley, “Image blending and speckle noise reduction in multi-beam OCT,” Proc. SPIE7168, 71681N, 71681N-8 (2009).
[CrossRef]

2007

2006

2005

A. Divetia, T. H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G. P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett.86(10), 103902 (2005).
[CrossRef]

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys.38(15), 2519–2535 (2005).
[CrossRef]

T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transverse blurring in optical coherence tomography,” IEEE Trans. Image Process.14(9), 1254–1264 (2005).
[CrossRef] [PubMed]

M. J. Cobb, X. Liu, and X. Li, “Continuous focus tracking for real-time optical coherence tomography,” Opt. Lett.30(13), 1680–1682 (2005).
[CrossRef] [PubMed]

L. Yu and M. K. Kim, “Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method,” Opt. Lett.30(16), 2092–2094 (2005).
[CrossRef] [PubMed]

2004

B. Qi, A. P. Himmer, L. M. Gordon, X. D. V. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a micro-electromechanical mirror,” Opt. Commun.232(1-6), 123–128 (2004).
[CrossRef]

2003

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
[CrossRef]

2002

1999

R. K. Wang, “Resolution improved optical coherence-gating tomography for imaging biological tissue,” J. Mod. Opt.46, 1905–1913 (1999).

1997

M. D. Kulkarni, C. W. Thomas, and J. A. Izatt, “Image enhancement in optical coherence tomography using deconvolution,” Electron. Lett.33(16), 1365–1367 (1997).
[CrossRef]

Bachman, M.

A. Divetia, T. H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G. P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett.86(10), 103902 (2005).
[CrossRef]

Boppart, S. A.

B. J. Davis, S. C. Schlachter, D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Nonparaxial vector-field modeling of optical coherence tomography and interferometric synthetic aperture microscopy,” J. Opt. Soc. Am. A24(9), 2527–2542 (2007).
[CrossRef] [PubMed]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys.3(2), 129–134 (2007).
[CrossRef]

T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transverse blurring in optical coherence tomography,” IEEE Trans. Image Process.14(9), 1254–1264 (2005).
[CrossRef] [PubMed]

Bradu, A.

Brenner, M.

Carney, P. S.

Chen, Z.

Chen, Z. P.

Cobb, M. J.

Dainty, Ch.

Davis, B. J.

Dickensheets, L. D.

B. Qi, A. P. Himmer, L. M. Gordon, X. D. V. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a micro-electromechanical mirror,” Opt. Commun.232(1-6), 123–128 (2004).
[CrossRef]

Ding, Z. H.

Divetia, A.

A. Divetia, T. H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G. P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett.86(10), 103902 (2005).
[CrossRef]

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
[CrossRef]

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
[CrossRef]

Gordon, L. M.

B. Qi, A. P. Himmer, L. M. Gordon, X. D. V. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a micro-electromechanical mirror,” Opt. Commun.232(1-6), 123–128 (2004).
[CrossRef]

Gruber, A.

Guo, S.

Hanson, S. R.

Hattersley, S.

J. Holmes and S. Hattersley, “Image blending and speckle noise reduction in multi-beam OCT,” Proc. SPIE7168, 71681N, 71681N-8 (2009).
[CrossRef]

Himmer, A. P.

B. Qi, A. P. Himmer, L. M. Gordon, X. D. V. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a micro-electromechanical mirror,” Opt. Commun.232(1-6), 123–128 (2004).
[CrossRef]

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
[CrossRef]

Holmes, J.

J. Holmes and S. Hattersley, “Image blending and speckle noise reduction in multi-beam OCT,” Proc. SPIE7168, 71681N, 71681N-8 (2009).
[CrossRef]

Hsieh, T. H.

A. Divetia, T. H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G. P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett.86(10), 103902 (2005).
[CrossRef]

Hurst, S.

Itoh, M.

Izatt, J. A.

M. D. Kulkarni, C. W. Thomas, and J. A. Izatt, “Image enhancement in optical coherence tomography using deconvolution,” Electron. Lett.33(16), 1365–1367 (1997).
[CrossRef]

Jacques, S. L.

Kamalabadi, F.

T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transverse blurring in optical coherence tomography,” IEEE Trans. Image Process.14(9), 1254–1264 (2005).
[CrossRef] [PubMed]

Kim, M. K.

Kulkarni, M. D.

M. D. Kulkarni, C. W. Thomas, and J. A. Izatt, “Image enhancement in optical coherence tomography using deconvolution,” Electron. Lett.33(16), 1365–1367 (1997).
[CrossRef]

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
[CrossRef]

Lee, K. S.

Li, G. P.

A. Divetia, T. H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G. P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett.86(10), 103902 (2005).
[CrossRef]

Li, X.

Liang, Y.

Liu, G.

Liu, X.

Liu, Y.

Ma, Z.

R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express15(7), 4083–4097 (2007).
[CrossRef] [PubMed]

R. K. Wang and Z. Ma, “Real-time flow imaging by removing texture pattern artifacts in spectral-domain optical Doppler tomography,” Opt. Lett.31(20), 3001–3003 (2006).
[CrossRef] [PubMed]

Makita, S.

Marks, D. L.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys.3(2), 129–134 (2007).
[CrossRef]

B. J. Davis, S. C. Schlachter, D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Nonparaxial vector-field modeling of optical coherence tomography and interferometric synthetic aperture microscopy,” J. Opt. Soc. Am. A24(9), 2527–2542 (2007).
[CrossRef] [PubMed]

T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transverse blurring in optical coherence tomography,” IEEE Trans. Image Process.14(9), 1254–1264 (2005).
[CrossRef] [PubMed]

Meemon, P.

Merino, D.

Mu, G.

Mukai, D.

Murali, S.

Nakamura, Y.

Nelson, J. S.

Podoleanu, A. G.

Qi, B.

B. Qi, A. P. Himmer, L. M. Gordon, X. D. V. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a micro-electromechanical mirror,” Opt. Commun.232(1-6), 123–128 (2004).
[CrossRef]

Ralston, T. S.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys.3(2), 129–134 (2007).
[CrossRef]

B. J. Davis, S. C. Schlachter, D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Nonparaxial vector-field modeling of optical coherence tomography and interferometric synthetic aperture microscopy,” J. Opt. Soc. Am. A24(9), 2527–2542 (2007).
[CrossRef] [PubMed]

T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transverse blurring in optical coherence tomography,” IEEE Trans. Image Process.14(9), 1254–1264 (2005).
[CrossRef] [PubMed]

Rao, B.

Ren, H. W.

Rolland, J. P.

Sando, Y.

Schlachter, S. C.

Su, J.

Sugisaka, J. I.

Thomas, C. W.

M. D. Kulkarni, C. W. Thomas, and J. A. Izatt, “Image enhancement in optical coherence tomography using deconvolution,” Electron. Lett.33(16), 1365–1367 (1997).
[CrossRef]

Thompson, K. P.

Tomlins, P. H.

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys.38(15), 2519–2535 (2005).
[CrossRef]

Vitkin, I. A.

B. Qi, A. P. Himmer, L. M. Gordon, X. D. V. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a micro-electromechanical mirror,” Opt. Commun.232(1-6), 123–128 (2004).
[CrossRef]

Wang, Q.

Wang, R. K.

G. Liu, S. Yousefi, Z. Zhi, and R. K. Wang, “Automatic estimation of point-spread-function for deconvoluting out-of-focus optical coherence tomographic images using information entropy-based approach,” Opt. Express19(19), 18135–18148 (2011).
[CrossRef] [PubMed]

R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express15(7), 4083–4097 (2007).
[CrossRef] [PubMed]

R. K. Wang and Z. Ma, “Real-time flow imaging by removing texture pattern artifacts in spectral-domain optical Doppler tomography,” Opt. Lett.31(20), 3001–3003 (2006).
[CrossRef] [PubMed]

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys.38(15), 2519–2535 (2005).
[CrossRef]

R. K. Wang, “Resolution improved optical coherence-gating tomography for imaging biological tissue,” J. Mod. Opt.46, 1905–1913 (1999).

Xie, T.

Yang, X. D. V.

B. Qi, A. P. Himmer, L. M. Gordon, X. D. V. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a micro-electromechanical mirror,” Opt. Commun.232(1-6), 123–128 (2004).
[CrossRef]

Yasuno, Y.

Yatagai, T.

Yousefi, S.

Yu, L.

Zhang, J.

L. Yu, B. Rao, J. Zhang, J. Su, Q. Wang, S. Guo, and Z. Chen, “Improved lateral resolution in optical coherence tomography by digital focusing using two-dimensional numerical diffraction method,” Opt. Express15(12), 7634–7641 (2007).
[CrossRef] [PubMed]

A. Divetia, T. H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G. P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett.86(10), 103902 (2005).
[CrossRef]

Zhao, Y. H.

Zhi, Z.

Zhu, X.

Appl. Phys. Lett.

A. Divetia, T. H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G. P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett.86(10), 103902 (2005).
[CrossRef]

Electron. Lett.

M. D. Kulkarni, C. W. Thomas, and J. A. Izatt, “Image enhancement in optical coherence tomography using deconvolution,” Electron. Lett.33(16), 1365–1367 (1997).
[CrossRef]

IEEE Trans. Image Process.

T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution methods for mitigation of transverse blurring in optical coherence tomography,” IEEE Trans. Image Process.14(9), 1254–1264 (2005).
[CrossRef] [PubMed]

J. Mod. Opt.

R. K. Wang, “Resolution improved optical coherence-gating tomography for imaging biological tissue,” J. Mod. Opt.46, 1905–1913 (1999).

J. Opt. Soc. Am. A

J. Phys. D Appl. Phys.

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys.38(15), 2519–2535 (2005).
[CrossRef]

Nat. Phys.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys.3(2), 129–134 (2007).
[CrossRef]

Opt. Commun.

B. Qi, A. P. Himmer, L. M. Gordon, X. D. V. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a micro-electromechanical mirror,” Opt. Commun.232(1-6), 123–128 (2004).
[CrossRef]

Opt. Lett.

R. K. Wang and Z. Ma, “Real-time flow imaging by removing texture pattern artifacts in spectral-domain optical Doppler tomography,” Opt. Lett.31(20), 3001–3003 (2006).
[CrossRef] [PubMed]

Opt. Express

Y. Yasuno, J. I. Sugisaka, Y. Sando, Y. Nakamura, S. Makita, M. Itoh, and T. Yatagai, “Non-iterative numerical method for laterally superresolving Fourier domain optical coherence tomography,” Opt. Express14(3), 1006–1020 (2006).
[CrossRef] [PubMed]

T. Xie, S. Guo, Z. Chen, D. Mukai, and M. Brenner, “GRIN lens rod based probe for endoscopic spectral domain optical coherence tomography with fast dynamic focus tracking,” Opt. Express14(8), 3238–3246 (2006).
[CrossRef] [PubMed]

D. Merino, Ch. Dainty, A. Bradu, and A. G. Podoleanu, “Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy,” Opt. Express14(8), 3345–3353 (2006).
[CrossRef] [PubMed]

R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express15(7), 4083–4097 (2007).
[CrossRef] [PubMed]

L. Yu, B. Rao, J. Zhang, J. Su, Q. Wang, S. Guo, and Z. Chen, “Improved lateral resolution in optical coherence tomography by digital focusing using two-dimensional numerical diffraction method,” Opt. Express15(12), 7634–7641 (2007).
[CrossRef] [PubMed]

J. P. Rolland, P. Meemon, S. Murali, K. P. Thompson, and K. S. Lee, “Gabor-based fusion technique for optical coherence microscopy,” Opt. Express18(4), 3632–3642 (2010).
[CrossRef] [PubMed]

G. Liu, S. Yousefi, Z. Zhi, and R. K. Wang, “Automatic estimation of point-spread-function for deconvoluting out-of-focus optical coherence tomographic images using information entropy-based approach,” Opt. Express19(19), 18135–18148 (2011).
[CrossRef] [PubMed]

Opt. Lett.

Proc. SPIE

J. Holmes and S. Hattersley, “Image blending and speckle noise reduction in multi-beam OCT,” Proc. SPIE7168, 71681N, 71681N-8 (2009).
[CrossRef]

Rep. Prog. Phys.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
[CrossRef]

Other

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw Hill, Boston, 1996).

Supplementary Material (2)

» Media 1: AVI (10466 KB)     
» Media 2: AVI (6515 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The effect of numerical aperture on the desirable lateral resolution and the DOF in the OCT imaging, for the cases of (a) low NA, resulting in relatively long DOF but low lateral resolution; and (b) high NA, leading to relatively shorter DOF but much high lateral resolution.

Fig. 2
Fig. 2

Geometry of diffraction. Σ0, de-focal plane; Σ, focal plane.

Fig. 3
Fig. 3

Flow diagram of OCT 3D volume recovery.

Fig. 4
Fig. 4

Schematic of the OCT system used in this study

Fig. 5
Fig. 5

Change of the information entropy of recovered images A-F as a function of the diffraction distance z. Image C is the original de-focal image (z = 0) and image D is the clearest image with the lowest entropy, deemed as the recovered image at this plane.

Fig. 6
Fig. 6

(a) Typical defocused en face image of an onion when the sample was placed outside the DOF region. (b) Recovered image from (a). (c) Typical en- face image of the onion when the sample was placed within DOF region.

Fig. 7
Fig. 7

Plots of OCT signal strength across the line located at the marked position in Fig. 6. The x-axis indicates the pixel numbers, and the y-axis gives the grey-scale values corresponding to the OCT image.

Fig. 8
Fig. 8

(a) Defocused en face image of the fat tissue when the sample was placed outside the DOF region. (b) Recovered image from (a). (c) Typical en- face image of the fat tissue when the sample was placed within DOF region.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

u ( P 0 , t ) = A ( P 0 ) cos [ 2 π ν t + φ ( P 0 ) ]
U ( P 0 ) = A ( P 0 ) exp [ j φ ( P 0 ) ]
( 2 + k 2 ) U = 0
k = 2 π n ν c = 2 π λ
U ( P ) = 1 j λ Σ 0 U ( P 0 ) exp ( j k r ) r cos ( n , r ) d Σ 0
U ( x , y ) = 1 j λ Σ 0 U ( x 0 , y 0 ) exp ( j k ( x x 0 ) 2 + ( y y 0 ) 2 + z 2 ) ( x x 0 ) 2 + ( y y 0 ) 2 + z 2 z ( x x 0 ) 2 + ( y y 0 ) 2 + z 2 d x 0 d y 0 = z j λ Σ 0 U ( x 0 , y 0 ) exp ( j k ( x x 0 ) 2 + ( y y 0 ) 2 + z 2 ) ( x x 0 ) 2 + ( y y 0 ) 2 + z 2 d x 0 d y 0
U ( x , y ) = 1 j λ z Σ 0 U ( x 0 , y 0 ) exp { j k z + j k 2 z ( x x 0 ) 2 + ( y y 0 ) 2 } d x 0 d y 0
U ( x , y ) = 1 j λ z exp ( j k z ) { U ( x 0 , y 0 ) exp [ j k 2 z ( x 2 + y 2 ) ] }
U ( x , y ) = 1 2 π exp ( j k z ) F 1 { F [ U ( x 0 , y 0 ) ] × exp [ j z 2 k ( k x 2 + k y 2 ) ] }
| U ( x , y ) | = 1 2 π | F 1 { F [ U ( x 0 , y 0 ) ] × exp [ j z 2 k ( k x 2 + k y 2 ) ] } |
P ( X ) = P ( p i ) = i = 1 n p i log ( 1 / p i )
E ( I ) = i = 1 n p ( I i ) log ( p ( I i ) )
p ( I i ) = The number of pixels with intensity value equal to  I i  in the image    Total number of pixels in the image
{ F i n d M i n s . t . z E ( I z ) z min < z < z max

Metrics