Abstract

In this paper, we report our latest progress on proving the concept that ultrasonic phased array can improve the detection sensitivity and field of view (FOV) in laser-scanning photoacoustic microscopy (LS-PAM). A LS-PAM system with a one-dimensional (1D) ultrasonic phased array was built for the experiments. The 1D phased array transducer consists of 64 active elements with an overall active dimension of 3.2 mm × 2 mm. The system was tested on imaging phantom and mouse ear in vivo. Experiments showed a 15 dB increase of the signal-to-noise ratio (SNR) when beamforming was employed compared to the images acquired with each single element. The experimental results demonstrated that ultrasonic phased array can be a better candidate for LS-PAM in high sensitivity applications like ophthalmic imaging.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett.33(9), 929–931 (2008).
    [CrossRef] [PubMed]
  2. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
    [CrossRef] [PubMed]
  3. H. F. Zhang, K. Maslov, and L. V. Wang, “In vivo imaging of subcutaneous structures using functional photoacoustic microscopy,” Nat. Protoc.2(4), 797–804 (2007).
    [CrossRef] [PubMed]
  4. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Imaging acute thermal burns by photoacoustic microscopy,” J. Biomed. Opt.11(5), 054033 (2006).
    [CrossRef] [PubMed]
  5. S. Hu and L. V. Wang, “Photoacoustic imaging and characterization of the microvasculature,” J. Biomed. Opt.15(1), 011101 (2010).
    [CrossRef] [PubMed]
  6. L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics3(9), 503–509 (2009).
    [CrossRef] [PubMed]
  7. Y. Wang, C. Li, and R. K. Wang, “Noncontact photoacoustic imaging achieved by using a low-coherence interferometer as the acoustic detector,” Opt. Lett.36(20), 3975–3977 (2011).
    [CrossRef] [PubMed]
  8. Z. Xie, S. Jiao, H. F. Zhang, and C. A. Puliafito, “Laser-scanning optical-resolution photoacoustic microscopy,” Opt. Lett.34(12), 1771–1773 (2009).
    [CrossRef] [PubMed]
  9. X. Zhang, M. Jiang, A. A. Fawzi, X. Li, K. K. Shung, C. A. Puliafito, H. F. Zhang, and S. Jiao, “Simultaneous dual molecular contrasts provided by the absorbed photons in photoacoustic microscopy,” Opt. Lett.35(23), 4018–4020 (2010).
    [CrossRef] [PubMed]
  10. X. Zhang, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Simultaneous in vivo imaging of melanin and lipofuscin in the retina with photoacoustic ophthalmoscopy and autofluorescence imaging,” J. Biomed. Opt.16(8), 080504 (2011).
    [CrossRef] [PubMed]
  11. L. Song, K. Maslov, and L. V. Wang, “Multifocal optical-resolution photoacoustic microscopy in vivo,” Opt. Lett.36(7), 1236–1238 (2011).
    [CrossRef] [PubMed]
  12. J. M. Cannata, J. A. Williams, L. Zhang, C. H. Hu, and K. K. Shung, “A high-frequency linear ultrasonic array utilizing an interdigitally bonded 2-2 piezo-composite,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control58(10), 2202–2212 (2011).
    [CrossRef] [PubMed]

2011

Y. Wang, C. Li, and R. K. Wang, “Noncontact photoacoustic imaging achieved by using a low-coherence interferometer as the acoustic detector,” Opt. Lett.36(20), 3975–3977 (2011).
[CrossRef] [PubMed]

X. Zhang, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Simultaneous in vivo imaging of melanin and lipofuscin in the retina with photoacoustic ophthalmoscopy and autofluorescence imaging,” J. Biomed. Opt.16(8), 080504 (2011).
[CrossRef] [PubMed]

L. Song, K. Maslov, and L. V. Wang, “Multifocal optical-resolution photoacoustic microscopy in vivo,” Opt. Lett.36(7), 1236–1238 (2011).
[CrossRef] [PubMed]

J. M. Cannata, J. A. Williams, L. Zhang, C. H. Hu, and K. K. Shung, “A high-frequency linear ultrasonic array utilizing an interdigitally bonded 2-2 piezo-composite,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control58(10), 2202–2212 (2011).
[CrossRef] [PubMed]

2010

2009

2008

2007

H. F. Zhang, K. Maslov, and L. V. Wang, “In vivo imaging of subcutaneous structures using functional photoacoustic microscopy,” Nat. Protoc.2(4), 797–804 (2007).
[CrossRef] [PubMed]

2006

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Imaging acute thermal burns by photoacoustic microscopy,” J. Biomed. Opt.11(5), 054033 (2006).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
[CrossRef] [PubMed]

Cannata, J. M.

J. M. Cannata, J. A. Williams, L. Zhang, C. H. Hu, and K. K. Shung, “A high-frequency linear ultrasonic array utilizing an interdigitally bonded 2-2 piezo-composite,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control58(10), 2202–2212 (2011).
[CrossRef] [PubMed]

Fawzi, A. A.

Hu, C. H.

J. M. Cannata, J. A. Williams, L. Zhang, C. H. Hu, and K. K. Shung, “A high-frequency linear ultrasonic array utilizing an interdigitally bonded 2-2 piezo-composite,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control58(10), 2202–2212 (2011).
[CrossRef] [PubMed]

Hu, S.

Jiang, M.

Jiao, S.

Li, C.

Li, X.

Maslov, K.

L. Song, K. Maslov, and L. V. Wang, “Multifocal optical-resolution photoacoustic microscopy in vivo,” Opt. Lett.36(7), 1236–1238 (2011).
[CrossRef] [PubMed]

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett.33(9), 929–931 (2008).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, and L. V. Wang, “In vivo imaging of subcutaneous structures using functional photoacoustic microscopy,” Nat. Protoc.2(4), 797–804 (2007).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Imaging acute thermal burns by photoacoustic microscopy,” J. Biomed. Opt.11(5), 054033 (2006).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
[CrossRef] [PubMed]

Puliafito, C. A.

Shung, K. K.

J. M. Cannata, J. A. Williams, L. Zhang, C. H. Hu, and K. K. Shung, “A high-frequency linear ultrasonic array utilizing an interdigitally bonded 2-2 piezo-composite,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control58(10), 2202–2212 (2011).
[CrossRef] [PubMed]

X. Zhang, M. Jiang, A. A. Fawzi, X. Li, K. K. Shung, C. A. Puliafito, H. F. Zhang, and S. Jiao, “Simultaneous dual molecular contrasts provided by the absorbed photons in photoacoustic microscopy,” Opt. Lett.35(23), 4018–4020 (2010).
[CrossRef] [PubMed]

Song, L.

Stoica, G.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Imaging acute thermal burns by photoacoustic microscopy,” J. Biomed. Opt.11(5), 054033 (2006).
[CrossRef] [PubMed]

Wang, L. V.

L. Song, K. Maslov, and L. V. Wang, “Multifocal optical-resolution photoacoustic microscopy in vivo,” Opt. Lett.36(7), 1236–1238 (2011).
[CrossRef] [PubMed]

S. Hu and L. V. Wang, “Photoacoustic imaging and characterization of the microvasculature,” J. Biomed. Opt.15(1), 011101 (2010).
[CrossRef] [PubMed]

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics3(9), 503–509 (2009).
[CrossRef] [PubMed]

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett.33(9), 929–931 (2008).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, and L. V. Wang, “In vivo imaging of subcutaneous structures using functional photoacoustic microscopy,” Nat. Protoc.2(4), 797–804 (2007).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Imaging acute thermal burns by photoacoustic microscopy,” J. Biomed. Opt.11(5), 054033 (2006).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
[CrossRef] [PubMed]

Wang, R. K.

Wang, Y.

Williams, J. A.

J. M. Cannata, J. A. Williams, L. Zhang, C. H. Hu, and K. K. Shung, “A high-frequency linear ultrasonic array utilizing an interdigitally bonded 2-2 piezo-composite,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control58(10), 2202–2212 (2011).
[CrossRef] [PubMed]

Xie, Z.

Zhang, H. F.

X. Zhang, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Simultaneous in vivo imaging of melanin and lipofuscin in the retina with photoacoustic ophthalmoscopy and autofluorescence imaging,” J. Biomed. Opt.16(8), 080504 (2011).
[CrossRef] [PubMed]

X. Zhang, M. Jiang, A. A. Fawzi, X. Li, K. K. Shung, C. A. Puliafito, H. F. Zhang, and S. Jiao, “Simultaneous dual molecular contrasts provided by the absorbed photons in photoacoustic microscopy,” Opt. Lett.35(23), 4018–4020 (2010).
[CrossRef] [PubMed]

Z. Xie, S. Jiao, H. F. Zhang, and C. A. Puliafito, “Laser-scanning optical-resolution photoacoustic microscopy,” Opt. Lett.34(12), 1771–1773 (2009).
[CrossRef] [PubMed]

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett.33(9), 929–931 (2008).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, and L. V. Wang, “In vivo imaging of subcutaneous structures using functional photoacoustic microscopy,” Nat. Protoc.2(4), 797–804 (2007).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Imaging acute thermal burns by photoacoustic microscopy,” J. Biomed. Opt.11(5), 054033 (2006).
[CrossRef] [PubMed]

Zhang, L.

J. M. Cannata, J. A. Williams, L. Zhang, C. H. Hu, and K. K. Shung, “A high-frequency linear ultrasonic array utilizing an interdigitally bonded 2-2 piezo-composite,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control58(10), 2202–2212 (2011).
[CrossRef] [PubMed]

Zhang, X.

X. Zhang, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Simultaneous in vivo imaging of melanin and lipofuscin in the retina with photoacoustic ophthalmoscopy and autofluorescence imaging,” J. Biomed. Opt.16(8), 080504 (2011).
[CrossRef] [PubMed]

X. Zhang, M. Jiang, A. A. Fawzi, X. Li, K. K. Shung, C. A. Puliafito, H. F. Zhang, and S. Jiao, “Simultaneous dual molecular contrasts provided by the absorbed photons in photoacoustic microscopy,” Opt. Lett.35(23), 4018–4020 (2010).
[CrossRef] [PubMed]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control

J. M. Cannata, J. A. Williams, L. Zhang, C. H. Hu, and K. K. Shung, “A high-frequency linear ultrasonic array utilizing an interdigitally bonded 2-2 piezo-composite,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control58(10), 2202–2212 (2011).
[CrossRef] [PubMed]

J. Biomed. Opt.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Imaging acute thermal burns by photoacoustic microscopy,” J. Biomed. Opt.11(5), 054033 (2006).
[CrossRef] [PubMed]

S. Hu and L. V. Wang, “Photoacoustic imaging and characterization of the microvasculature,” J. Biomed. Opt.15(1), 011101 (2010).
[CrossRef] [PubMed]

X. Zhang, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Simultaneous in vivo imaging of melanin and lipofuscin in the retina with photoacoustic ophthalmoscopy and autofluorescence imaging,” J. Biomed. Opt.16(8), 080504 (2011).
[CrossRef] [PubMed]

Nat. Biotechnol.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
[CrossRef] [PubMed]

Nat. Photonics

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics3(9), 503–509 (2009).
[CrossRef] [PubMed]

Nat. Protoc.

H. F. Zhang, K. Maslov, and L. V. Wang, “In vivo imaging of subcutaneous structures using functional photoacoustic microscopy,” Nat. Protoc.2(4), 797–804 (2007).
[CrossRef] [PubMed]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the experimental laser-scanning PAM system with an ultrasonic phased array. ND: neutral density filter; M: mirror; L: lens; PAUT: phased array ultrasonic transducer; DSP: digital signal processor. x: lateral direction; y: elevation direction; z: axial direction.

Fig. 2
Fig. 2

(a) A photograph of the ultrasonic phased array; (b) A-line signals from all 64 channels; (c) resultant A-line signal after 64-channnel beamforming.

Fig. 3
Fig. 3

Mean SNR of the each element and the mean SNR with 64-channel beamforming.

Fig. 4
Fig. 4

Images of the resolution target (both images are displayed with a dynamic range of 30 dB). (a) Maximum amplitude projection (MAP) image acquired by one of the array elements (#32); (b) MAP image after 64-channel beamforming. Bar: 200 µm.

Fig. 5
Fig. 5

Microvascular images of a mouse ear in vivo (both images are displayed with a dynamic range of 30 dB). (a) MAP image acquired by one of the array elements (#32); (b) MAP image after 64-channel beamforming. Bar: 200 µm.

Metrics