Abstract

Abstract: We compare, in detail, the phase-resolved color Doppler (PRCD), phase-resolved Doppler variance (PRDV) and intensity-based Doppler variance (IBDV) methods. All the methods are able to quantify flow speed when the flow rate is within a certain range, which is dependent on the adjacent A-line time interval. While PRCD is most sensitive when the flow direction is along the probing beam, PRDV and IBDV can be used to measure the flow when the flow direction is near perpendicular to the probing beam. However, the values of PRDV and IBDV are Doppler angle-dependent when the Doppler angle is above a certain threshold. The sensitivity of all the methods can be improved by increasing the adjacent A-line time interval while still maintaining a high sampling density level. We also demonstrate for the first time, to the best of our knowledge, high resolution inter-frame PRDV method. In applications where mapping vascular network such as angiogram is more important than flow velocity quantification, IBDV and PRDV images show better contrast than PRCD images. The IBDV and PRDV show very similar characteristics and demonstrate comparable results for vasculature mapping. However, the IBDV is less sensitive to bulk motion and with less post-processing steps, which is preferred for fast data processing situations. In vivo imaging of mouse brain with intact skull and human skin with the three methods were demonstrated and the results were compared. The IBDV method was found to be able to obtain high resolution image with a relative simple processing procedure.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett.28(21), 2067–2069 (2003).
    [CrossRef] [PubMed]
  3. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11(18), 2183–2189 (2003).
    [CrossRef] [PubMed]
  4. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003).
    [CrossRef] [PubMed]
  5. Z. Chen, T. E. Milner, S. Srinivas, X. J. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett.22(14), 1119–1121 (1997).
    [CrossRef] [PubMed]
  6. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett.22(18), 1439–1441 (1997).
    [CrossRef] [PubMed]
  7. Z. Chen, T. E. Milner, X. Wang, S. Srinivas, and J. S. Nelson, “Optical Doppler tomography: imaging in vivo blood flow dynamics following pharmacological intervention and photodynamic therapy,” Photochem. Photobiol.67(1), 56–60 (1998).
    [CrossRef] [PubMed]
  8. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett.25(2), 114–116 (2000).
    [CrossRef] [PubMed]
  9. Y. Zhao, K. M. Brecke, H. Ren, Z. Ding, J. S. Nelson, and Z. Chen, “Three-dimensional reconstruction of in vivo blood vessels in human skin using phase-resolved optical Doppler tomography,” IEEE J. Sel. Top. Quantum Electron.7(6), 931–935 (2001).
    [CrossRef]
  10. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express14(17), 7821–7840 (2006).
    [CrossRef] [PubMed]
  11. D. Y. Kim, J. Fingler, J. S. Werner, D. M. Schwartz, S. E. Fraser, and R. J. Zawadzki, “In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography,” Biomed. Opt. Express2(6), 1504–1513 (2011).
    [CrossRef] [PubMed]
  12. J. Fingler, R. J. Zawadzki, J. S. Werner, D. Schwartz, and S. E. Fraser, “Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique,” Opt. Express17(24), 22190–22200 (2009).
    [CrossRef] [PubMed]
  13. H. Ren, Y. Wang, J. S. Nelson, and Z. Chen, “Power optical Doppler tomography imaging of blood vessel in human skin and M-mode Doppler imaging of blood flow in chick chrioallantoic membrane,” Proc. SPIE4956, 225–231 (2003).
    [CrossRef]
  14. J. Barton and S. Stromski, “Flow measurement without phase information in optical coherence tomography images,” Opt. Express13(14), 5234–5239 (2005).
    [CrossRef] [PubMed]
  15. A. Mariampillai, M. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett.35(8), 1257–1259 (2010).
    [CrossRef] [PubMed]
  16. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett.33(13), 1530–1532 (2008).
    [CrossRef] [PubMed]
  17. R. Motaghiannezam and S. Fraser, “Logarithmic intensity and speckle-based motion contrast methods for human retinal vasculature visualization using swept source optical coherence tomography,” Biomed. Opt. Express3(3), 503–521 (2012).
    [CrossRef] [PubMed]
  18. Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express15(10), 6121–6139 (2007).
    [CrossRef] [PubMed]
  19. E. Jonathan, J. Enfield, and M. J. Leahy, “Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images,” J Biophotonics4(9), 583–587 (2011).
    [PubMed]
  20. Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express20(4), 4710–4725 (2012).
    [CrossRef] [PubMed]
  21. G. Liu, L. Chou, W. Jia, W. Qi, B. Choi, and Z. Chen, “Intensity-based modified Doppler variance algorithm: application to phase instable and phase stable optical coherence tomography systems,” Opt. Express19(12), 11429–11440 (2011).
    [CrossRef] [PubMed]
  22. Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J. F. de Boer, and J. S. Nelson, “Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,” Opt. Lett.25(18), 1358–1360 (2000).
    [CrossRef] [PubMed]
  23. H. Ren, T. Sun, D. J. MacDonald, M. J. Cobb, and X. Li, “Real-time in vivo blood-flow imaging by moving-scatterer-sensitive spectral-domain optical Doppler tomography,” Opt. Lett.31(7), 927–929 (2006).
    [CrossRef] [PubMed]
  24. H. Ren and X. Li, “Clutter rejection filters for optical Doppler tomography,” Opt. Express14(13), 6103–6112 (2006).
    [CrossRef] [PubMed]
  25. R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express15(7), 4083–4097 (2007).
    [CrossRef] [PubMed]
  26. Z. Yuan, Z. C. Luo, H. G. Ren, C. W. Du, and Y. Pan, “A digital frequency ramping method for enhancing Doppler flow imaging in Fourier-domain optical coherence tomography,” Opt. Express17(5), 3951–3963 (2009).
    [CrossRef] [PubMed]
  27. Y. K. Tao, A. M. Davis, and J. A. Izatt, “Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform,” Opt. Express16(16), 12350–12361 (2008).
    [CrossRef] [PubMed]
  28. S. Zotter, M. Pircher, T. Torzicky, M. Bonesi, E. Götzinger, R. A. Leitgeb, and C. K. Hitzenberger, “Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography,” Opt. Express19(2), 1217–1227 (2011).
    [CrossRef] [PubMed]
  29. S. Makita, F. Jaillon, M. Yamanari, M. Miura, and Y. Yasuno, “Comprehensive in vivo micro-vascular imaging of the human eye by dual-beam-scan Doppler optical coherence angiography,” Opt. Express19(2), 1271–1283 (2011).
    [CrossRef] [PubMed]
  30. L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express18(8), 8220–8228 (2010).
    [CrossRef] [PubMed]
  31. G. Liu, W. Jia, V. Sun, B. Choi, and Z. Chen, “High-resolution imaging of microvasculature in human skin in-vivo with optical coherence tomography,” Opt. Express20(7), 7694–7705 (2012).
    [CrossRef] [PubMed]
  32. H. Ren, K. M. Brecke, Z. Ding, Y. Zhao, J. S. Nelson, and Z. Chen, “Imaging and quantifying transverse flow velocity with the Doppler bandwidth in a phase-resolved functional optical coherence tomography,” Opt. Lett.27(6), 409–411 (2002).
    [CrossRef] [PubMed]
  33. V. Yang, M. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. Wilson, and I. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance,” Opt. Express11(7), 794–809 (2003).
    [CrossRef] [PubMed]
  34. B. Rao, L. Yu, H. K. Chiang, L. C. Zacharias, R. M. Kurtz, B. D. Kuppermann, and Z. Chen, “Imaging pulsatile retinal blood flow in human eye,” J. Biomed. Opt.13(4), 040505 (2008).
    [CrossRef] [PubMed]
  35. L. Yu, E. Nguyen, G. Liu, B. Choi, and Z. Chen, “Spectral Doppler optical coherence tomography imaging of localized ischemic stroke in a mouse model,” J. Biomed. Opt.15(6), 066006 (2010).
    [CrossRef] [PubMed]
  36. Y.-C. Ahn, W. Jung, and Z. Chen, “Quantification of a three-dimensional velocity vector using spectral-domain Doppler optical coherence tomography,” Opt. Lett.32(11), 1587–1589 (2007).
    [CrossRef] [PubMed]
  37. Y.-C. Ahn, W. Jung, and Z. Chen, “Optical sectioning for microfluidics: secondary flow and mixing in a meandering microchannel,” Lab Chip8(1), 125–133 (2008).
    [CrossRef] [PubMed]
  38. H. C. Hendargo, R. P. McNabb, A.-H. Dhalla, N. Shepherd, and J. A. Izatt, “Doppler velocity detection limitations in spectrometer-based versus swept-source optical coherence tomography,” Biomed. Opt. Express2(8), 2175–2188 (2011).
    [CrossRef] [PubMed]
  39. G. Liu, W. Qi, L. Yu, and Z. Chen, “Real-time bulk-motion-correction free Doppler variance optical coherence tomography for choroidal capillary vasculature imaging,” Opt. Express19(4), 3657–3666 (2011).
    [CrossRef] [PubMed]
  40. L. Yu and Z. Chen, “Doppler variance imaging for three-dimensional retina and choroid angiography,” J. Biomed. Opt.15(1), 016029 (2010).
    [CrossRef] [PubMed]

2012 (3)

2011 (7)

S. Zotter, M. Pircher, T. Torzicky, M. Bonesi, E. Götzinger, R. A. Leitgeb, and C. K. Hitzenberger, “Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography,” Opt. Express19(2), 1217–1227 (2011).
[CrossRef] [PubMed]

S. Makita, F. Jaillon, M. Yamanari, M. Miura, and Y. Yasuno, “Comprehensive in vivo micro-vascular imaging of the human eye by dual-beam-scan Doppler optical coherence angiography,” Opt. Express19(2), 1271–1283 (2011).
[CrossRef] [PubMed]

G. Liu, L. Chou, W. Jia, W. Qi, B. Choi, and Z. Chen, “Intensity-based modified Doppler variance algorithm: application to phase instable and phase stable optical coherence tomography systems,” Opt. Express19(12), 11429–11440 (2011).
[CrossRef] [PubMed]

E. Jonathan, J. Enfield, and M. J. Leahy, “Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images,” J Biophotonics4(9), 583–587 (2011).
[PubMed]

D. Y. Kim, J. Fingler, J. S. Werner, D. M. Schwartz, S. E. Fraser, and R. J. Zawadzki, “In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography,” Biomed. Opt. Express2(6), 1504–1513 (2011).
[CrossRef] [PubMed]

H. C. Hendargo, R. P. McNabb, A.-H. Dhalla, N. Shepherd, and J. A. Izatt, “Doppler velocity detection limitations in spectrometer-based versus swept-source optical coherence tomography,” Biomed. Opt. Express2(8), 2175–2188 (2011).
[CrossRef] [PubMed]

G. Liu, W. Qi, L. Yu, and Z. Chen, “Real-time bulk-motion-correction free Doppler variance optical coherence tomography for choroidal capillary vasculature imaging,” Opt. Express19(4), 3657–3666 (2011).
[CrossRef] [PubMed]

2010 (4)

L. Yu and Z. Chen, “Doppler variance imaging for three-dimensional retina and choroid angiography,” J. Biomed. Opt.15(1), 016029 (2010).
[CrossRef] [PubMed]

A. Mariampillai, M. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett.35(8), 1257–1259 (2010).
[CrossRef] [PubMed]

L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express18(8), 8220–8228 (2010).
[CrossRef] [PubMed]

L. Yu, E. Nguyen, G. Liu, B. Choi, and Z. Chen, “Spectral Doppler optical coherence tomography imaging of localized ischemic stroke in a mouse model,” J. Biomed. Opt.15(6), 066006 (2010).
[CrossRef] [PubMed]

2009 (2)

2008 (4)

2007 (3)

2006 (3)

2005 (1)

2003 (5)

2002 (1)

2001 (1)

Y. Zhao, K. M. Brecke, H. Ren, Z. Ding, J. S. Nelson, and Z. Chen, “Three-dimensional reconstruction of in vivo blood vessels in human skin using phase-resolved optical Doppler tomography,” IEEE J. Sel. Top. Quantum Electron.7(6), 931–935 (2001).
[CrossRef]

2000 (2)

1998 (1)

Z. Chen, T. E. Milner, X. Wang, S. Srinivas, and J. S. Nelson, “Optical Doppler tomography: imaging in vivo blood flow dynamics following pharmacological intervention and photodynamic therapy,” Photochem. Photobiol.67(1), 56–60 (1998).
[CrossRef] [PubMed]

1997 (2)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Ahn, Y.-C.

Y.-C. Ahn, W. Jung, and Z. Chen, “Optical sectioning for microfluidics: secondary flow and mixing in a meandering microchannel,” Lab Chip8(1), 125–133 (2008).
[CrossRef] [PubMed]

Y.-C. Ahn, W. Jung, and Z. Chen, “Quantification of a three-dimensional velocity vector using spectral-domain Doppler optical coherence tomography,” Opt. Lett.32(11), 1587–1589 (2007).
[CrossRef] [PubMed]

Akiba, M.

An, L.

Barton, J.

Barton, J. K.

Bonesi, M.

Bouma, B. E.

Brecke, K. M.

H. Ren, K. M. Brecke, Z. Ding, Y. Zhao, J. S. Nelson, and Z. Chen, “Imaging and quantifying transverse flow velocity with the Doppler bandwidth in a phase-resolved functional optical coherence tomography,” Opt. Lett.27(6), 409–411 (2002).
[CrossRef] [PubMed]

Y. Zhao, K. M. Brecke, H. Ren, Z. Ding, J. S. Nelson, and Z. Chen, “Three-dimensional reconstruction of in vivo blood vessels in human skin using phase-resolved optical Doppler tomography,” IEEE J. Sel. Top. Quantum Electron.7(6), 931–935 (2001).
[CrossRef]

Cable, A.

Cense, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, Z.

G. Liu, W. Jia, V. Sun, B. Choi, and Z. Chen, “High-resolution imaging of microvasculature in human skin in-vivo with optical coherence tomography,” Opt. Express20(7), 7694–7705 (2012).
[CrossRef] [PubMed]

G. Liu, W. Qi, L. Yu, and Z. Chen, “Real-time bulk-motion-correction free Doppler variance optical coherence tomography for choroidal capillary vasculature imaging,” Opt. Express19(4), 3657–3666 (2011).
[CrossRef] [PubMed]

G. Liu, L. Chou, W. Jia, W. Qi, B. Choi, and Z. Chen, “Intensity-based modified Doppler variance algorithm: application to phase instable and phase stable optical coherence tomography systems,” Opt. Express19(12), 11429–11440 (2011).
[CrossRef] [PubMed]

L. Yu and Z. Chen, “Doppler variance imaging for three-dimensional retina and choroid angiography,” J. Biomed. Opt.15(1), 016029 (2010).
[CrossRef] [PubMed]

L. Yu, E. Nguyen, G. Liu, B. Choi, and Z. Chen, “Spectral Doppler optical coherence tomography imaging of localized ischemic stroke in a mouse model,” J. Biomed. Opt.15(6), 066006 (2010).
[CrossRef] [PubMed]

Y.-C. Ahn, W. Jung, and Z. Chen, “Optical sectioning for microfluidics: secondary flow and mixing in a meandering microchannel,” Lab Chip8(1), 125–133 (2008).
[CrossRef] [PubMed]

B. Rao, L. Yu, H. K. Chiang, L. C. Zacharias, R. M. Kurtz, B. D. Kuppermann, and Z. Chen, “Imaging pulsatile retinal blood flow in human eye,” J. Biomed. Opt.13(4), 040505 (2008).
[CrossRef] [PubMed]

Y.-C. Ahn, W. Jung, and Z. Chen, “Quantification of a three-dimensional velocity vector using spectral-domain Doppler optical coherence tomography,” Opt. Lett.32(11), 1587–1589 (2007).
[CrossRef] [PubMed]

H. Ren, Y. Wang, J. S. Nelson, and Z. Chen, “Power optical Doppler tomography imaging of blood vessel in human skin and M-mode Doppler imaging of blood flow in chick chrioallantoic membrane,” Proc. SPIE4956, 225–231 (2003).
[CrossRef]

H. Ren, K. M. Brecke, Z. Ding, Y. Zhao, J. S. Nelson, and Z. Chen, “Imaging and quantifying transverse flow velocity with the Doppler bandwidth in a phase-resolved functional optical coherence tomography,” Opt. Lett.27(6), 409–411 (2002).
[CrossRef] [PubMed]

Y. Zhao, K. M. Brecke, H. Ren, Z. Ding, J. S. Nelson, and Z. Chen, “Three-dimensional reconstruction of in vivo blood vessels in human skin using phase-resolved optical Doppler tomography,” IEEE J. Sel. Top. Quantum Electron.7(6), 931–935 (2001).
[CrossRef]

Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett.25(2), 114–116 (2000).
[CrossRef] [PubMed]

Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J. F. de Boer, and J. S. Nelson, “Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,” Opt. Lett.25(18), 1358–1360 (2000).
[CrossRef] [PubMed]

Z. Chen, T. E. Milner, X. Wang, S. Srinivas, and J. S. Nelson, “Optical Doppler tomography: imaging in vivo blood flow dynamics following pharmacological intervention and photodynamic therapy,” Photochem. Photobiol.67(1), 56–60 (1998).
[CrossRef] [PubMed]

Z. Chen, T. E. Milner, S. Srinivas, X. J. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett.22(14), 1119–1121 (1997).
[CrossRef] [PubMed]

Chiang, H. K.

B. Rao, L. Yu, H. K. Chiang, L. C. Zacharias, R. M. Kurtz, B. D. Kuppermann, and Z. Chen, “Imaging pulsatile retinal blood flow in human eye,” J. Biomed. Opt.13(4), 040505 (2008).
[CrossRef] [PubMed]

Choi, B.

Choma, M. A.

Chou, L.

Cobb, M. J.

Davis, A. M.

de Boer, J. F.

Dhalla, A.-H.

Ding, Z.

H. Ren, K. M. Brecke, Z. Ding, Y. Zhao, J. S. Nelson, and Z. Chen, “Imaging and quantifying transverse flow velocity with the Doppler bandwidth in a phase-resolved functional optical coherence tomography,” Opt. Lett.27(6), 409–411 (2002).
[CrossRef] [PubMed]

Y. Zhao, K. M. Brecke, H. Ren, Z. Ding, J. S. Nelson, and Z. Chen, “Three-dimensional reconstruction of in vivo blood vessels in human skin using phase-resolved optical Doppler tomography,” IEEE J. Sel. Top. Quantum Electron.7(6), 931–935 (2001).
[CrossRef]

Du, C. W.

Enfield, J.

E. Jonathan, J. Enfield, and M. J. Leahy, “Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images,” J Biophotonics4(9), 583–587 (2011).
[PubMed]

Fercher, A. F.

Fingler, J.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fraser, S.

Fraser, S. E.

Fujimoto, J. G.

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express20(4), 4710–4725 (2012).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Gordon, M.

Götzinger, E.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Gruber, A.

Hanson, S. R.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hendargo, H. C.

Hitzenberger, C. K.

Hong, Y.

Hornegger, J.

Huang, D.

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express20(4), 4710–4725 (2012).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hurst, S.

Izatt, J. A.

Jacques, S. L.

Jaillon, F.

Jarvi, M.

Jia, W.

Jia, Y.

Jiang, J.

Jonathan, E.

E. Jonathan, J. Enfield, and M. J. Leahy, “Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images,” J Biophotonics4(9), 583–587 (2011).
[PubMed]

Jung, W.

Y.-C. Ahn, W. Jung, and Z. Chen, “Optical sectioning for microfluidics: secondary flow and mixing in a meandering microchannel,” Lab Chip8(1), 125–133 (2008).
[CrossRef] [PubMed]

Y.-C. Ahn, W. Jung, and Z. Chen, “Quantification of a three-dimensional velocity vector using spectral-domain Doppler optical coherence tomography,” Opt. Lett.32(11), 1587–1589 (2007).
[CrossRef] [PubMed]

Khurana, M.

Kim, D. Y.

Kraus, M. F.

Kulkarni, M. D.

Kuppermann, B. D.

B. Rao, L. Yu, H. K. Chiang, L. C. Zacharias, R. M. Kurtz, B. D. Kuppermann, and Z. Chen, “Imaging pulsatile retinal blood flow in human eye,” J. Biomed. Opt.13(4), 040505 (2008).
[CrossRef] [PubMed]

Kurtz, R. M.

B. Rao, L. Yu, H. K. Chiang, L. C. Zacharias, R. M. Kurtz, B. D. Kuppermann, and Z. Chen, “Imaging pulsatile retinal blood flow in human eye,” J. Biomed. Opt.13(4), 040505 (2008).
[CrossRef] [PubMed]

Leahy, M. J.

E. Jonathan, J. Enfield, and M. J. Leahy, “Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images,” J Biophotonics4(9), 583–587 (2011).
[PubMed]

Lee, K.

Leitgeb, R.

Leitgeb, R. A.

Leung, M. K.

Li, X.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Liu, G.

Liu, J. J.

Lo, S.

Luo, Z. C.

Ma, Z.

MacDonald, D. J.

Makita, S.

Malekafzali, A.

Mariampillai, A.

McNabb, R. P.

Milner, T. E.

Z. Chen, T. E. Milner, X. Wang, S. Srinivas, and J. S. Nelson, “Optical Doppler tomography: imaging in vivo blood flow dynamics following pharmacological intervention and photodynamic therapy,” Photochem. Photobiol.67(1), 56–60 (1998).
[CrossRef] [PubMed]

Z. Chen, T. E. Milner, S. Srinivas, X. J. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett.22(14), 1119–1121 (1997).
[CrossRef] [PubMed]

Miura, M.

Mok, A.

Moriyama, E. H.

Motaghiannezam, R.

Munce, N. R.

Nelson, J. S.

H. Ren, Y. Wang, J. S. Nelson, and Z. Chen, “Power optical Doppler tomography imaging of blood vessel in human skin and M-mode Doppler imaging of blood flow in chick chrioallantoic membrane,” Proc. SPIE4956, 225–231 (2003).
[CrossRef]

H. Ren, K. M. Brecke, Z. Ding, Y. Zhao, J. S. Nelson, and Z. Chen, “Imaging and quantifying transverse flow velocity with the Doppler bandwidth in a phase-resolved functional optical coherence tomography,” Opt. Lett.27(6), 409–411 (2002).
[CrossRef] [PubMed]

Y. Zhao, K. M. Brecke, H. Ren, Z. Ding, J. S. Nelson, and Z. Chen, “Three-dimensional reconstruction of in vivo blood vessels in human skin using phase-resolved optical Doppler tomography,” IEEE J. Sel. Top. Quantum Electron.7(6), 931–935 (2001).
[CrossRef]

Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett.25(2), 114–116 (2000).
[CrossRef] [PubMed]

Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J. F. de Boer, and J. S. Nelson, “Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,” Opt. Lett.25(18), 1358–1360 (2000).
[CrossRef] [PubMed]

Z. Chen, T. E. Milner, X. Wang, S. Srinivas, and J. S. Nelson, “Optical Doppler tomography: imaging in vivo blood flow dynamics following pharmacological intervention and photodynamic therapy,” Photochem. Photobiol.67(1), 56–60 (1998).
[CrossRef] [PubMed]

Z. Chen, T. E. Milner, S. Srinivas, X. J. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett.22(14), 1119–1121 (1997).
[CrossRef] [PubMed]

Nguyen, E.

L. Yu, E. Nguyen, G. Liu, B. Choi, and Z. Chen, “Spectral Doppler optical coherence tomography imaging of localized ischemic stroke in a mouse model,” J. Biomed. Opt.15(6), 066006 (2010).
[CrossRef] [PubMed]

Pan, Y.

Park, B. H.

Pekar, J.

Pierce, M. C.

Pircher, M.

Potsaid, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Qi, B.

Qi, W.

Qin, J.

Rao, B.

B. Rao, L. Yu, H. K. Chiang, L. C. Zacharias, R. M. Kurtz, B. D. Kuppermann, and Z. Chen, “Imaging pulsatile retinal blood flow in human eye,” J. Biomed. Opt.13(4), 040505 (2008).
[CrossRef] [PubMed]

Ren, H.

H. Ren, T. Sun, D. J. MacDonald, M. J. Cobb, and X. Li, “Real-time in vivo blood-flow imaging by moving-scatterer-sensitive spectral-domain optical Doppler tomography,” Opt. Lett.31(7), 927–929 (2006).
[CrossRef] [PubMed]

H. Ren and X. Li, “Clutter rejection filters for optical Doppler tomography,” Opt. Express14(13), 6103–6112 (2006).
[CrossRef] [PubMed]

H. Ren, Y. Wang, J. S. Nelson, and Z. Chen, “Power optical Doppler tomography imaging of blood vessel in human skin and M-mode Doppler imaging of blood flow in chick chrioallantoic membrane,” Proc. SPIE4956, 225–231 (2003).
[CrossRef]

H. Ren, K. M. Brecke, Z. Ding, Y. Zhao, J. S. Nelson, and Z. Chen, “Imaging and quantifying transverse flow velocity with the Doppler bandwidth in a phase-resolved functional optical coherence tomography,” Opt. Lett.27(6), 409–411 (2002).
[CrossRef] [PubMed]

Y. Zhao, K. M. Brecke, H. Ren, Z. Ding, J. S. Nelson, and Z. Chen, “Three-dimensional reconstruction of in vivo blood vessels in human skin using phase-resolved optical Doppler tomography,” IEEE J. Sel. Top. Quantum Electron.7(6), 931–935 (2001).
[CrossRef]

Ren, H. G.

Sarunic, M. V.

Saxer, C.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Schwartz, D.

Schwartz, D. M.

Seng-Yue, E.

Shen, Q.

Shepherd, N.

Srinivas, S.

Z. Chen, T. E. Milner, X. Wang, S. Srinivas, and J. S. Nelson, “Optical Doppler tomography: imaging in vivo blood flow dynamics following pharmacological intervention and photodynamic therapy,” Photochem. Photobiol.67(1), 56–60 (1998).
[CrossRef] [PubMed]

Z. Chen, T. E. Milner, S. Srinivas, X. J. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett.22(14), 1119–1121 (1997).
[CrossRef] [PubMed]

Standish, B. A.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Stromski, S.

Subhash, H.

Sun, T.

Sun, V.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Tan, O.

Tao, Y. K.

Tearney, G. J.

Tokayer, J.

Torzicky, T.

van Gemert, M. J. C.

Vitkin, A.

Vitkin, I.

Vitkin, I. A.

Wang, R. K.

Wang, X.

Z. Chen, T. E. Milner, X. Wang, S. Srinivas, and J. S. Nelson, “Optical Doppler tomography: imaging in vivo blood flow dynamics following pharmacological intervention and photodynamic therapy,” Photochem. Photobiol.67(1), 56–60 (1998).
[CrossRef] [PubMed]

Wang, X. J.

Wang, Y.

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express20(4), 4710–4725 (2012).
[CrossRef] [PubMed]

H. Ren, Y. Wang, J. S. Nelson, and Z. Chen, “Power optical Doppler tomography imaging of blood vessel in human skin and M-mode Doppler imaging of blood flow in chick chrioallantoic membrane,” Proc. SPIE4956, 225–231 (2003).
[CrossRef]

Welch, A. J.

Werner, J. S.

Wilson, B.

Wilson, B. C.

Xiang, S.

Yamanari, M.

Yang, C.

Yang, V.

Yang, V. X.

Yasuno, Y.

Yatagai, T.

Yazdanfar, S.

Yu, L.

G. Liu, W. Qi, L. Yu, and Z. Chen, “Real-time bulk-motion-correction free Doppler variance optical coherence tomography for choroidal capillary vasculature imaging,” Opt. Express19(4), 3657–3666 (2011).
[CrossRef] [PubMed]

L. Yu, E. Nguyen, G. Liu, B. Choi, and Z. Chen, “Spectral Doppler optical coherence tomography imaging of localized ischemic stroke in a mouse model,” J. Biomed. Opt.15(6), 066006 (2010).
[CrossRef] [PubMed]

L. Yu and Z. Chen, “Doppler variance imaging for three-dimensional retina and choroid angiography,” J. Biomed. Opt.15(1), 016029 (2010).
[CrossRef] [PubMed]

B. Rao, L. Yu, H. K. Chiang, L. C. Zacharias, R. M. Kurtz, B. D. Kuppermann, and Z. Chen, “Imaging pulsatile retinal blood flow in human eye,” J. Biomed. Opt.13(4), 040505 (2008).
[CrossRef] [PubMed]

Yuan, Z.

Zacharias, L. C.

B. Rao, L. Yu, H. K. Chiang, L. C. Zacharias, R. M. Kurtz, B. D. Kuppermann, and Z. Chen, “Imaging pulsatile retinal blood flow in human eye,” J. Biomed. Opt.13(4), 040505 (2008).
[CrossRef] [PubMed]

Zawadzki, R. J.

Zhao, Y.

Zotter, S.

Biomed. Opt. Express (3)

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Zhao, K. M. Brecke, H. Ren, Z. Ding, J. S. Nelson, and Z. Chen, “Three-dimensional reconstruction of in vivo blood vessels in human skin using phase-resolved optical Doppler tomography,” IEEE J. Sel. Top. Quantum Electron.7(6), 931–935 (2001).
[CrossRef]

J Biophotonics (1)

E. Jonathan, J. Enfield, and M. J. Leahy, “Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images,” J Biophotonics4(9), 583–587 (2011).
[PubMed]

J. Biomed. Opt. (3)

B. Rao, L. Yu, H. K. Chiang, L. C. Zacharias, R. M. Kurtz, B. D. Kuppermann, and Z. Chen, “Imaging pulsatile retinal blood flow in human eye,” J. Biomed. Opt.13(4), 040505 (2008).
[CrossRef] [PubMed]

L. Yu, E. Nguyen, G. Liu, B. Choi, and Z. Chen, “Spectral Doppler optical coherence tomography imaging of localized ischemic stroke in a mouse model,” J. Biomed. Opt.15(6), 066006 (2010).
[CrossRef] [PubMed]

L. Yu and Z. Chen, “Doppler variance imaging for three-dimensional retina and choroid angiography,” J. Biomed. Opt.15(1), 016029 (2010).
[CrossRef] [PubMed]

Lab Chip (1)

Y.-C. Ahn, W. Jung, and Z. Chen, “Optical sectioning for microfluidics: secondary flow and mixing in a meandering microchannel,” Lab Chip8(1), 125–133 (2008).
[CrossRef] [PubMed]

Opt. Express (18)

G. Liu, W. Qi, L. Yu, and Z. Chen, “Real-time bulk-motion-correction free Doppler variance optical coherence tomography for choroidal capillary vasculature imaging,” Opt. Express19(4), 3657–3666 (2011).
[CrossRef] [PubMed]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express15(10), 6121–6139 (2007).
[CrossRef] [PubMed]

V. Yang, M. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. Wilson, and I. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance,” Opt. Express11(7), 794–809 (2003).
[CrossRef] [PubMed]

H. Ren and X. Li, “Clutter rejection filters for optical Doppler tomography,” Opt. Express14(13), 6103–6112 (2006).
[CrossRef] [PubMed]

R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express15(7), 4083–4097 (2007).
[CrossRef] [PubMed]

Z. Yuan, Z. C. Luo, H. G. Ren, C. W. Du, and Y. Pan, “A digital frequency ramping method for enhancing Doppler flow imaging in Fourier-domain optical coherence tomography,” Opt. Express17(5), 3951–3963 (2009).
[CrossRef] [PubMed]

Y. K. Tao, A. M. Davis, and J. A. Izatt, “Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform,” Opt. Express16(16), 12350–12361 (2008).
[CrossRef] [PubMed]

S. Zotter, M. Pircher, T. Torzicky, M. Bonesi, E. Götzinger, R. A. Leitgeb, and C. K. Hitzenberger, “Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography,” Opt. Express19(2), 1217–1227 (2011).
[CrossRef] [PubMed]

S. Makita, F. Jaillon, M. Yamanari, M. Miura, and Y. Yasuno, “Comprehensive in vivo micro-vascular imaging of the human eye by dual-beam-scan Doppler optical coherence angiography,” Opt. Express19(2), 1271–1283 (2011).
[CrossRef] [PubMed]

L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express18(8), 8220–8228 (2010).
[CrossRef] [PubMed]

G. Liu, W. Jia, V. Sun, B. Choi, and Z. Chen, “High-resolution imaging of microvasculature in human skin in-vivo with optical coherence tomography,” Opt. Express20(7), 7694–7705 (2012).
[CrossRef] [PubMed]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express20(4), 4710–4725 (2012).
[CrossRef] [PubMed]

G. Liu, L. Chou, W. Jia, W. Qi, B. Choi, and Z. Chen, “Intensity-based modified Doppler variance algorithm: application to phase instable and phase stable optical coherence tomography systems,” Opt. Express19(12), 11429–11440 (2011).
[CrossRef] [PubMed]

J. Fingler, R. J. Zawadzki, J. S. Werner, D. Schwartz, and S. E. Fraser, “Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique,” Opt. Express17(24), 22190–22200 (2009).
[CrossRef] [PubMed]

J. Barton and S. Stromski, “Flow measurement without phase information in optical coherence tomography images,” Opt. Express13(14), 5234–5239 (2005).
[CrossRef] [PubMed]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express14(17), 7821–7840 (2006).
[CrossRef] [PubMed]

M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11(18), 2183–2189 (2003).
[CrossRef] [PubMed]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003).
[CrossRef] [PubMed]

Opt. Lett. (10)

Z. Chen, T. E. Milner, S. Srinivas, X. J. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett.22(14), 1119–1121 (1997).
[CrossRef] [PubMed]

J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett.22(18), 1439–1441 (1997).
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett.28(21), 2067–2069 (2003).
[CrossRef] [PubMed]

A. Mariampillai, M. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett.35(8), 1257–1259 (2010).
[CrossRef] [PubMed]

A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett.33(13), 1530–1532 (2008).
[CrossRef] [PubMed]

Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J. F. de Boer, and J. S. Nelson, “Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,” Opt. Lett.25(18), 1358–1360 (2000).
[CrossRef] [PubMed]

H. Ren, T. Sun, D. J. MacDonald, M. J. Cobb, and X. Li, “Real-time in vivo blood-flow imaging by moving-scatterer-sensitive spectral-domain optical Doppler tomography,” Opt. Lett.31(7), 927–929 (2006).
[CrossRef] [PubMed]

H. Ren, K. M. Brecke, Z. Ding, Y. Zhao, J. S. Nelson, and Z. Chen, “Imaging and quantifying transverse flow velocity with the Doppler bandwidth in a phase-resolved functional optical coherence tomography,” Opt. Lett.27(6), 409–411 (2002).
[CrossRef] [PubMed]

Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett.25(2), 114–116 (2000).
[CrossRef] [PubMed]

Y.-C. Ahn, W. Jung, and Z. Chen, “Quantification of a three-dimensional velocity vector using spectral-domain Doppler optical coherence tomography,” Opt. Lett.32(11), 1587–1589 (2007).
[CrossRef] [PubMed]

Photochem. Photobiol. (1)

Z. Chen, T. E. Milner, X. Wang, S. Srinivas, and J. S. Nelson, “Optical Doppler tomography: imaging in vivo blood flow dynamics following pharmacological intervention and photodynamic therapy,” Photochem. Photobiol.67(1), 56–60 (1998).
[CrossRef] [PubMed]

Proc. SPIE (1)

H. Ren, Y. Wang, J. S. Nelson, and Z. Chen, “Power optical Doppler tomography imaging of blood vessel in human skin and M-mode Doppler imaging of blood flow in chick chrioallantoic membrane,” Proc. SPIE4956, 225–231 (2003).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The dependence of IBDV and PRDV values on the flow rate.

Fig. 2
Fig. 2

The dependence of IBDV and PRDV values on the Doppler angle.

Fig. 3
Fig. 3

The dependence of IBDV and PRDV values on the time interval.

Fig. 4
Fig. 4

Beam scanning protocol for acquiring the 3D OCT data set.

Fig. 5
Fig. 5

In vivo OCT imaging of mouse brain with intact skull: (a) OCT image; (b) IF-PRDV image without bulk phase removal; (c) IF-PRCD image without bulk phase removal; (d) IF-IBDV image; (e) IF-PRDV image with bulk phase removal; (f) IF-PRCD image with bulk phase removal. Scale bar: 1mm.

Fig. 6
Fig. 6

En face maximum intensity projection (MIP) view image of mouse brain with intact skull. (a) MIP view IF-IBDV image for depth 0–360 μm. (b) MIP view IF-PRDV image for depth 150–360 μm. (c) MIP view IF-PRCD image for depth 150–360 μm. (d) MIP view IF-IBDV image for depth 150–540 μm. (e) MIP view IF-PRDV image for depth 150–540 μm. (f) MIP view IF-PRCD image for depth 150–540 μm. Scale bar, 1mm.

Fig. 7
Fig. 7

En face MIP view image of human palm skin. (a) Photography of the imaging area (in the white rectangle). (b) En face MIP view IF-IBDV image for depth of 120–360 μm. (c) En face MIP view IF-PRDV image for depth of 120–360 μm. (d) En face MIP view IF-PRCD image for depth of 120–360 μm. (e) En face MIP view IF-IBDV image for depth of 120–600 μm. (f) En face MIP view IF-PRDV image for depth of 120–600 μm. (g) En face MIP view IF-PRCD image for depth of 120–600 μm. (h) En face MIP view IF-IBDV image for depth of 120–640 μm. (i) En face MIP view IF-PRDV image for depth of 120–840 μm. (j) En face MIP view IF-PRCD image for depth of 120–840 μm. Scale bar, 1mm.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

f ¯ = dθ(z) dt = θ j+1,z θ j,z T ,
f ¯ = 1 T arctan[ Im( A j+1,z )Re( A j,z )Im( A j,z )Re( A j+1,z ) Re( A j,z )Re( A j+1,z )+Im( A j+1,z )Im( A j,z ) ],
σ 2 = (f f ¯ ) 2 P(f)df P(f)df = f 2 ¯ f ¯ 2 .
σ 2 = 1 T 2 ( 1 | A j,z A j+1,z * | 1 2 ( A j,z A j,z * + A j+1,z A j+1,z * ) ).
f ¯ = 1 T arctan{ j=1 J [ Im( A j+1,z )Re( A j,z )Im( A j,z )Re( A j+1,z ) ] j=1 J [ Re( A j,z )Re( A j+1,z )+Im( A j+1,z )Im( A j,z ) ] },
σ 2 = 1 T 2 [ 1 | j=1 J ( A j,z A j+1,z * ) | j=1 J 1 2 ( A j,z A j,z * + A j+1,z A j+1,z * ) ],
f ¯ = 1 T arctan{ j=1 J z=1 N [ Im( A j+1,z )Re( A j,z )Im( A j,z )Re( A j+1,z ) ] j=1 J z=1 N [ Re( A j,z )Re( A j+1,z )+Im( A j+1,z )Im( A j,z ) ] },
σ 2 = 1 T 2 [ 1 | j=1 J z=1 N ( A j,z A j+1,z * ) | j=1 J z=1 N 1 2 ( A j,z A j,z * + A j+1,z A j+1,z * ) ]
σ 2 = 1 T 2 [ 1 j=1 J z=1 N ( | A j,z || A j+1,z | ) j=1 J z=1 N 1 2 ( | A j,z | 2 + | A j+1,z | 2 ) ].

Metrics