Abstract

The combination of high power laser beams with microfluidic delivery of cells is at the heart of high-throughput, single-cell analysis and disease diagnosis with an optical stretcher. So far, the challenges arising from this combination have been addressed by externally aligning optical fibres with microfluidic glass capillaries, which has a limited potential for integration into lab-on-a-chip environments. Here we demonstrate the successful production and use of a monolithic glass chip for optical stretching of white blood cells, featuring microfluidic channels and optical waveguides directly written into bulk glass by femtosecond laser pulses. The performance of this novel chip is compared to the standard capillary configuration. The robustness, durability and potential for intricate flow patterns provided by this monolithic optical stretcher chip suggest its use for future diagnostic and biotechnological applications.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. de Souza, “Single-cell methods,” Nat. Methods9(1), 35 (2011).
    [CrossRef]
  2. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J.81(2), 767–784 (2001).
    [CrossRef] [PubMed]
  3. M. Radmacher, “Measuring the elastic properties of living cells by the atomic force microscope,” Methods Cell Biol.68, 67–90 (2002).
    [CrossRef] [PubMed]
  4. S. Suresh, “Biomechanics and biophysics of cancer cells,” Acta Mater.55(12), 3989–4014 (2007).
    [CrossRef]
  5. J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J.88(5), 3689–3698 (2005).
    [CrossRef] [PubMed]
  6. B. Lincoln, S. Schinkinger, K. Travis, F. Wottawah, S. Ebert, F. Sauer, and J. Guck, “Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications,” Biomed. Microdevices9(5), 703–710 (2007).
    [CrossRef] [PubMed]
  7. F. Lautenschläger, S. Paschke, S. Schinkinger, A. Bruel, M. Beil, and J. Guck, “The regulatory role of cell mechanics for migration of differentiating myeloid cells,” Proc. Natl. Acad. Sci. U.S.A.106(37), 15696–15701 (2009).
    [CrossRef] [PubMed]
  8. J. M. Maloney, D. Nikova, F. Lautenschläger, E. Clarke, R. Langer, J. Guck, and K. J. Van Vliet, “Mesenchymal stem cell mechanics from the attached to the suspended state,” Biophys. J.99(8), 2479–2487 (2010).
    [CrossRef] [PubMed]
  9. T. W. Remmerbach, F. Wottawah, J. Dietrich, B. Lincoln, C. Wittekind, and J. Guck, “Oral cancer diagnosis by mechanical phenotyping,” Cancer Res.69(5), 1728–1732 (2009).
    [CrossRef] [PubMed]
  10. C.-W. Lai, S.-K. Hsiung, C.-L. Yeh, A. Chiou, and G.-B. Lee, “A cell delivery and pre-positioning system utilizing microfluidic devices for dual-beam optical trap-and-stretch,” Sens. Actuators B Chem.135(1), 388–397 (2008).
    [CrossRef]
  11. F. Wottawah, S. Schinkinger, B. Lincoln, S. Ebert, K. Müller, F. Sauer, K. Travis, and J. Guck, “Characterizing single suspended cells by optorheology,” Acta Biomater.1(3), 263–271 (2005).
    [CrossRef] [PubMed]
  12. K. B. Mogensen, H. Klank, and J. P. Kutter, “Recent developments in detection for microfluidic systems,” Electrophoresis25(21–22), 3498–3512 (2004).
    [CrossRef] [PubMed]
  13. A. Cleary, A. Glidle, P. J. R. Laybourn, S. García-Blanco, S. Pellegrini, C. Helfter, G. S. Buller, J. S. Aitchison, and J. M. Cooper, “Integrating optics and microfluidics for time-correlated single-photon counting in lab-on-a-chip devices,” Appl. Phys. Lett.91(7), 071123 (2007).
    [CrossRef]
  14. R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip9(1), 91–96 (2009).
    [CrossRef] [PubMed]
  15. K. Sugioka and Y. Cheng, “Integrated microchips for biological analysis fabricated by femtosecond laser direct writing,” MRS Bull.36(12), 1020–1027 (2011).
    [CrossRef]
  16. Z. Hu, A. Glidle, C. N. Ironside, M. Sorel, M. J. Strain, J. Cooper, and H. Yin, “Integrated microspectrometer for fluorescence based analysis in a microfluidic format,” Lab Chip12(16), 2850–2857 (2012).
    [CrossRef] [PubMed]
  17. N. Bellini, K. C. Vishnubhatla, F. Bragheri, L. Ferrara, P. Minzioni, R. Ramponi, I. Cristiani, and R. Osellame, “Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells,” Opt. Express18(5), 4679–4688 (2010).
    [CrossRef] [PubMed]
  18. F. Bragheri, L. Ferrara, N. Bellini, K. C. Vishnubhatla, P. Minzioni, R. Ramponi, R. Osellame, and I. Cristiani, “Optofluidic chip for single cell trapping and stretching fabricated by a femtosecond laser,” J. Biophotonics3(4), 234–243 (2010).
    [CrossRef] [PubMed]
  19. R. Osellame, V. Maselli, R. Martinez Vazquez, R. Ramponi, and G. Cerullo, “Integration of optical waveguides and microfluidic channels both fabricated by femtosecond laser irradiation,” Appl. Phys. Lett.90(23), 231118 (2007).
    [CrossRef]
  20. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
    [CrossRef]
  21. G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt.11(1), 013001 (2009).
    [CrossRef]
  22. A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett.26(5), 277–279 (2001).
    [CrossRef] [PubMed]
  23. K. C. Vishnubhatla, N. Bellini, R. Ramponi, G. Cerullo, and R. Osellame, “Shape control of microchannels fabricated in fused silica by femtosecond laser irradiation and chemical etching,” Opt. Express17(10), 8685–8695 (2009).
    [CrossRef] [PubMed]
  24. R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photonics Rev.5(3), 442–463 (2011).
    [CrossRef]
  25. A. Schaap, Y. Bellouard, and T. Rohrlack, “Optofluidic lab-on-a-chip for rapid algae population screening,” Biomed. Opt. Express2(3), 658–664 (2011).
    [CrossRef] [PubMed]
  26. F. He, Y. Cheng, Z. Xu, Y. Liao, J. Xu, H. Sun, C. Wang, Z. Zhou, K. Sugioka, K. Midorikawa, Y. Xu, and X. Chen, “Direct fabrication of homogeneous microfluidic channels embedded in fused silica using a femtosecond laser,” Opt. Lett.35(3), 282–284 (2010).
    [CrossRef] [PubMed]
  27. F. He, J. Lin, and Y. Cheng, “Fabrication of hollow optical waveguides in fused silica by three-dimensional femtosecond laser micromachining,” Appl. Phys. B105(2), 379–384 (2011).
    [CrossRef]
  28. M. J. Madou, Fundamentals of Microfabrication: the Science of Miniaturization (CRC Press, Boca Raton, FL, 2002).
  29. E. Murphy, T. Rice, L. McCaughan, G. Harvey, and P. Read, “Permanent attachment of single-mode fiber arrays to waveguides,” J. Lightwave Technol.3(4), 795–799 (1985).
    [CrossRef]
  30. K. J. Chalut, A. E. Ekpenyong, W. L. Clegg, I. C. Melhuish, and J. Guck, “Quantifying cellular differentiation by physical phenotype using digital holographic microscopy,” Integr. Biol. (Camb.)4(3), 280–284 (2012).
    [CrossRef] [PubMed]
  31. L. Boyde, K. J. Chalut, and J. Guck, “Interaction of Gaussian beam with near-spherical particle: an analytic-numerical approach for assessing scattering and stresses,” J. Opt. Soc. Am. A26(8), 1814–1826 (2009).
    [CrossRef] [PubMed]
  32. J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett.84(23), 5451–5454 (2000).
    [CrossRef] [PubMed]
  33. L. Boyde, A. Ekpenyong, G. Whyte, and J. Guck, “Comparison of stresses on homogeneous spheroids in the optical stretcher computed with geometrical optics and generalized Lorenz-Mie theory,” Appl. Opt. (to be published).
    [PubMed]
  34. S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids357(11–13), 2387–2391 (2011).
    [CrossRef]
  35. F. Bragheri, P. Minzioni, R. Martinez Vazquez, N. Bellini, P. Paiè, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip12(19), 3779–3784 (2012).
    [CrossRef] [PubMed]

2012 (3)

Z. Hu, A. Glidle, C. N. Ironside, M. Sorel, M. J. Strain, J. Cooper, and H. Yin, “Integrated microspectrometer for fluorescence based analysis in a microfluidic format,” Lab Chip12(16), 2850–2857 (2012).
[CrossRef] [PubMed]

K. J. Chalut, A. E. Ekpenyong, W. L. Clegg, I. C. Melhuish, and J. Guck, “Quantifying cellular differentiation by physical phenotype using digital holographic microscopy,” Integr. Biol. (Camb.)4(3), 280–284 (2012).
[CrossRef] [PubMed]

F. Bragheri, P. Minzioni, R. Martinez Vazquez, N. Bellini, P. Paiè, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip12(19), 3779–3784 (2012).
[CrossRef] [PubMed]

2011 (6)

R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photonics Rev.5(3), 442–463 (2011).
[CrossRef]

F. He, J. Lin, and Y. Cheng, “Fabrication of hollow optical waveguides in fused silica by three-dimensional femtosecond laser micromachining,” Appl. Phys. B105(2), 379–384 (2011).
[CrossRef]

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids357(11–13), 2387–2391 (2011).
[CrossRef]

A. Schaap, Y. Bellouard, and T. Rohrlack, “Optofluidic lab-on-a-chip for rapid algae population screening,” Biomed. Opt. Express2(3), 658–664 (2011).
[CrossRef] [PubMed]

K. Sugioka and Y. Cheng, “Integrated microchips for biological analysis fabricated by femtosecond laser direct writing,” MRS Bull.36(12), 1020–1027 (2011).
[CrossRef]

N. de Souza, “Single-cell methods,” Nat. Methods9(1), 35 (2011).
[CrossRef]

2010 (4)

J. M. Maloney, D. Nikova, F. Lautenschläger, E. Clarke, R. Langer, J. Guck, and K. J. Van Vliet, “Mesenchymal stem cell mechanics from the attached to the suspended state,” Biophys. J.99(8), 2479–2487 (2010).
[CrossRef] [PubMed]

F. Bragheri, L. Ferrara, N. Bellini, K. C. Vishnubhatla, P. Minzioni, R. Ramponi, R. Osellame, and I. Cristiani, “Optofluidic chip for single cell trapping and stretching fabricated by a femtosecond laser,” J. Biophotonics3(4), 234–243 (2010).
[CrossRef] [PubMed]

F. He, Y. Cheng, Z. Xu, Y. Liao, J. Xu, H. Sun, C. Wang, Z. Zhou, K. Sugioka, K. Midorikawa, Y. Xu, and X. Chen, “Direct fabrication of homogeneous microfluidic channels embedded in fused silica using a femtosecond laser,” Opt. Lett.35(3), 282–284 (2010).
[CrossRef] [PubMed]

N. Bellini, K. C. Vishnubhatla, F. Bragheri, L. Ferrara, P. Minzioni, R. Ramponi, I. Cristiani, and R. Osellame, “Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells,” Opt. Express18(5), 4679–4688 (2010).
[CrossRef] [PubMed]

2009 (6)

K. C. Vishnubhatla, N. Bellini, R. Ramponi, G. Cerullo, and R. Osellame, “Shape control of microchannels fabricated in fused silica by femtosecond laser irradiation and chemical etching,” Opt. Express17(10), 8685–8695 (2009).
[CrossRef] [PubMed]

L. Boyde, K. J. Chalut, and J. Guck, “Interaction of Gaussian beam with near-spherical particle: an analytic-numerical approach for assessing scattering and stresses,” J. Opt. Soc. Am. A26(8), 1814–1826 (2009).
[CrossRef] [PubMed]

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt.11(1), 013001 (2009).
[CrossRef]

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip9(1), 91–96 (2009).
[CrossRef] [PubMed]

F. Lautenschläger, S. Paschke, S. Schinkinger, A. Bruel, M. Beil, and J. Guck, “The regulatory role of cell mechanics for migration of differentiating myeloid cells,” Proc. Natl. Acad. Sci. U.S.A.106(37), 15696–15701 (2009).
[CrossRef] [PubMed]

T. W. Remmerbach, F. Wottawah, J. Dietrich, B. Lincoln, C. Wittekind, and J. Guck, “Oral cancer diagnosis by mechanical phenotyping,” Cancer Res.69(5), 1728–1732 (2009).
[CrossRef] [PubMed]

2008 (2)

C.-W. Lai, S.-K. Hsiung, C.-L. Yeh, A. Chiou, and G.-B. Lee, “A cell delivery and pre-positioning system utilizing microfluidic devices for dual-beam optical trap-and-stretch,” Sens. Actuators B Chem.135(1), 388–397 (2008).
[CrossRef]

R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
[CrossRef]

2007 (4)

S. Suresh, “Biomechanics and biophysics of cancer cells,” Acta Mater.55(12), 3989–4014 (2007).
[CrossRef]

A. Cleary, A. Glidle, P. J. R. Laybourn, S. García-Blanco, S. Pellegrini, C. Helfter, G. S. Buller, J. S. Aitchison, and J. M. Cooper, “Integrating optics and microfluidics for time-correlated single-photon counting in lab-on-a-chip devices,” Appl. Phys. Lett.91(7), 071123 (2007).
[CrossRef]

B. Lincoln, S. Schinkinger, K. Travis, F. Wottawah, S. Ebert, F. Sauer, and J. Guck, “Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications,” Biomed. Microdevices9(5), 703–710 (2007).
[CrossRef] [PubMed]

R. Osellame, V. Maselli, R. Martinez Vazquez, R. Ramponi, and G. Cerullo, “Integration of optical waveguides and microfluidic channels both fabricated by femtosecond laser irradiation,” Appl. Phys. Lett.90(23), 231118 (2007).
[CrossRef]

2005 (2)

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J.88(5), 3689–3698 (2005).
[CrossRef] [PubMed]

F. Wottawah, S. Schinkinger, B. Lincoln, S. Ebert, K. Müller, F. Sauer, K. Travis, and J. Guck, “Characterizing single suspended cells by optorheology,” Acta Biomater.1(3), 263–271 (2005).
[CrossRef] [PubMed]

2004 (1)

K. B. Mogensen, H. Klank, and J. P. Kutter, “Recent developments in detection for microfluidic systems,” Electrophoresis25(21–22), 3498–3512 (2004).
[CrossRef] [PubMed]

2002 (1)

M. Radmacher, “Measuring the elastic properties of living cells by the atomic force microscope,” Methods Cell Biol.68, 67–90 (2002).
[CrossRef] [PubMed]

2001 (2)

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J.81(2), 767–784 (2001).
[CrossRef] [PubMed]

A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett.26(5), 277–279 (2001).
[CrossRef] [PubMed]

2000 (1)

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett.84(23), 5451–5454 (2000).
[CrossRef] [PubMed]

1985 (1)

E. Murphy, T. Rice, L. McCaughan, G. Harvey, and P. Read, “Permanent attachment of single-mode fiber arrays to waveguides,” J. Lightwave Technol.3(4), 795–799 (1985).
[CrossRef]

Aitchison, J. S.

A. Cleary, A. Glidle, P. J. R. Laybourn, S. García-Blanco, S. Pellegrini, C. Helfter, G. S. Buller, J. S. Aitchison, and J. M. Cooper, “Integrating optics and microfluidics for time-correlated single-photon counting in lab-on-a-chip devices,” Appl. Phys. Lett.91(7), 071123 (2007).
[CrossRef]

Ananthakrishnan, R.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J.88(5), 3689–3698 (2005).
[CrossRef] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J.81(2), 767–784 (2001).
[CrossRef] [PubMed]

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett.84(23), 5451–5454 (2000).
[CrossRef] [PubMed]

Beil, M.

F. Lautenschläger, S. Paschke, S. Schinkinger, A. Bruel, M. Beil, and J. Guck, “The regulatory role of cell mechanics for migration of differentiating myeloid cells,” Proc. Natl. Acad. Sci. U.S.A.106(37), 15696–15701 (2009).
[CrossRef] [PubMed]

Bellini, N.

F. Bragheri, P. Minzioni, R. Martinez Vazquez, N. Bellini, P. Paiè, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip12(19), 3779–3784 (2012).
[CrossRef] [PubMed]

F. Bragheri, L. Ferrara, N. Bellini, K. C. Vishnubhatla, P. Minzioni, R. Ramponi, R. Osellame, and I. Cristiani, “Optofluidic chip for single cell trapping and stretching fabricated by a femtosecond laser,” J. Biophotonics3(4), 234–243 (2010).
[CrossRef] [PubMed]

N. Bellini, K. C. Vishnubhatla, F. Bragheri, L. Ferrara, P. Minzioni, R. Ramponi, I. Cristiani, and R. Osellame, “Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells,” Opt. Express18(5), 4679–4688 (2010).
[CrossRef] [PubMed]

K. C. Vishnubhatla, N. Bellini, R. Ramponi, G. Cerullo, and R. Osellame, “Shape control of microchannels fabricated in fused silica by femtosecond laser irradiation and chemical etching,” Opt. Express17(10), 8685–8695 (2009).
[CrossRef] [PubMed]

Bellouard, Y.

Bilby, C.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J.88(5), 3689–3698 (2005).
[CrossRef] [PubMed]

Boyde, L.

L. Boyde, K. J. Chalut, and J. Guck, “Interaction of Gaussian beam with near-spherical particle: an analytic-numerical approach for assessing scattering and stresses,” J. Opt. Soc. Am. A26(8), 1814–1826 (2009).
[CrossRef] [PubMed]

L. Boyde, A. Ekpenyong, G. Whyte, and J. Guck, “Comparison of stresses on homogeneous spheroids in the optical stretcher computed with geometrical optics and generalized Lorenz-Mie theory,” Appl. Opt. (to be published).
[PubMed]

Bragheri, F.

F. Bragheri, P. Minzioni, R. Martinez Vazquez, N. Bellini, P. Paiè, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip12(19), 3779–3784 (2012).
[CrossRef] [PubMed]

F. Bragheri, L. Ferrara, N. Bellini, K. C. Vishnubhatla, P. Minzioni, R. Ramponi, R. Osellame, and I. Cristiani, “Optofluidic chip for single cell trapping and stretching fabricated by a femtosecond laser,” J. Biophotonics3(4), 234–243 (2010).
[CrossRef] [PubMed]

N. Bellini, K. C. Vishnubhatla, F. Bragheri, L. Ferrara, P. Minzioni, R. Ramponi, I. Cristiani, and R. Osellame, “Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells,” Opt. Express18(5), 4679–4688 (2010).
[CrossRef] [PubMed]

Bruel, A.

F. Lautenschläger, S. Paschke, S. Schinkinger, A. Bruel, M. Beil, and J. Guck, “The regulatory role of cell mechanics for migration of differentiating myeloid cells,” Proc. Natl. Acad. Sci. U.S.A.106(37), 15696–15701 (2009).
[CrossRef] [PubMed]

Buller, G. S.

A. Cleary, A. Glidle, P. J. R. Laybourn, S. García-Blanco, S. Pellegrini, C. Helfter, G. S. Buller, J. S. Aitchison, and J. M. Cooper, “Integrating optics and microfluidics for time-correlated single-photon counting in lab-on-a-chip devices,” Appl. Phys. Lett.91(7), 071123 (2007).
[CrossRef]

Cerullo, G.

R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photonics Rev.5(3), 442–463 (2011).
[CrossRef]

K. C. Vishnubhatla, N. Bellini, R. Ramponi, G. Cerullo, and R. Osellame, “Shape control of microchannels fabricated in fused silica by femtosecond laser irradiation and chemical etching,” Opt. Express17(10), 8685–8695 (2009).
[CrossRef] [PubMed]

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip9(1), 91–96 (2009).
[CrossRef] [PubMed]

R. Osellame, V. Maselli, R. Martinez Vazquez, R. Ramponi, and G. Cerullo, “Integration of optical waveguides and microfluidic channels both fabricated by femtosecond laser irradiation,” Appl. Phys. Lett.90(23), 231118 (2007).
[CrossRef]

Chalut, K. J.

K. J. Chalut, A. E. Ekpenyong, W. L. Clegg, I. C. Melhuish, and J. Guck, “Quantifying cellular differentiation by physical phenotype using digital holographic microscopy,” Integr. Biol. (Camb.)4(3), 280–284 (2012).
[CrossRef] [PubMed]

L. Boyde, K. J. Chalut, and J. Guck, “Interaction of Gaussian beam with near-spherical particle: an analytic-numerical approach for assessing scattering and stresses,” J. Opt. Soc. Am. A26(8), 1814–1826 (2009).
[CrossRef] [PubMed]

Chen, X.

Cheng, Y.

K. Sugioka and Y. Cheng, “Integrated microchips for biological analysis fabricated by femtosecond laser direct writing,” MRS Bull.36(12), 1020–1027 (2011).
[CrossRef]

F. He, J. Lin, and Y. Cheng, “Fabrication of hollow optical waveguides in fused silica by three-dimensional femtosecond laser micromachining,” Appl. Phys. B105(2), 379–384 (2011).
[CrossRef]

F. He, Y. Cheng, Z. Xu, Y. Liao, J. Xu, H. Sun, C. Wang, Z. Zhou, K. Sugioka, K. Midorikawa, Y. Xu, and X. Chen, “Direct fabrication of homogeneous microfluidic channels embedded in fused silica using a femtosecond laser,” Opt. Lett.35(3), 282–284 (2010).
[CrossRef] [PubMed]

Chiou, A.

C.-W. Lai, S.-K. Hsiung, C.-L. Yeh, A. Chiou, and G.-B. Lee, “A cell delivery and pre-positioning system utilizing microfluidic devices for dual-beam optical trap-and-stretch,” Sens. Actuators B Chem.135(1), 388–397 (2008).
[CrossRef]

Clarke, E.

J. M. Maloney, D. Nikova, F. Lautenschläger, E. Clarke, R. Langer, J. Guck, and K. J. Van Vliet, “Mesenchymal stem cell mechanics from the attached to the suspended state,” Biophys. J.99(8), 2479–2487 (2010).
[CrossRef] [PubMed]

Cleary, A.

A. Cleary, A. Glidle, P. J. R. Laybourn, S. García-Blanco, S. Pellegrini, C. Helfter, G. S. Buller, J. S. Aitchison, and J. M. Cooper, “Integrating optics and microfluidics for time-correlated single-photon counting in lab-on-a-chip devices,” Appl. Phys. Lett.91(7), 071123 (2007).
[CrossRef]

Clegg, W. L.

K. J. Chalut, A. E. Ekpenyong, W. L. Clegg, I. C. Melhuish, and J. Guck, “Quantifying cellular differentiation by physical phenotype using digital holographic microscopy,” Integr. Biol. (Camb.)4(3), 280–284 (2012).
[CrossRef] [PubMed]

Cooper, J.

Z. Hu, A. Glidle, C. N. Ironside, M. Sorel, M. J. Strain, J. Cooper, and H. Yin, “Integrated microspectrometer for fluorescence based analysis in a microfluidic format,” Lab Chip12(16), 2850–2857 (2012).
[CrossRef] [PubMed]

Cooper, J. M.

A. Cleary, A. Glidle, P. J. R. Laybourn, S. García-Blanco, S. Pellegrini, C. Helfter, G. S. Buller, J. S. Aitchison, and J. M. Cooper, “Integrating optics and microfluidics for time-correlated single-photon counting in lab-on-a-chip devices,” Appl. Phys. Lett.91(7), 071123 (2007).
[CrossRef]

Cristiani, I.

F. Bragheri, P. Minzioni, R. Martinez Vazquez, N. Bellini, P. Paiè, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip12(19), 3779–3784 (2012).
[CrossRef] [PubMed]

F. Bragheri, L. Ferrara, N. Bellini, K. C. Vishnubhatla, P. Minzioni, R. Ramponi, R. Osellame, and I. Cristiani, “Optofluidic chip for single cell trapping and stretching fabricated by a femtosecond laser,” J. Biophotonics3(4), 234–243 (2010).
[CrossRef] [PubMed]

N. Bellini, K. C. Vishnubhatla, F. Bragheri, L. Ferrara, P. Minzioni, R. Ramponi, I. Cristiani, and R. Osellame, “Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells,” Opt. Express18(5), 4679–4688 (2010).
[CrossRef] [PubMed]

Cunningham, C. C.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J.81(2), 767–784 (2001).
[CrossRef] [PubMed]

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett.84(23), 5451–5454 (2000).
[CrossRef] [PubMed]

de Souza, N.

N. de Souza, “Single-cell methods,” Nat. Methods9(1), 35 (2011).
[CrossRef]

Della Valle, G.

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt.11(1), 013001 (2009).
[CrossRef]

Dietrich, J.

T. W. Remmerbach, F. Wottawah, J. Dietrich, B. Lincoln, C. Wittekind, and J. Guck, “Oral cancer diagnosis by mechanical phenotyping,” Cancer Res.69(5), 1728–1732 (2009).
[CrossRef] [PubMed]

Dongre, C.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip9(1), 91–96 (2009).
[CrossRef] [PubMed]

Eaton, S. M.

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids357(11–13), 2387–2391 (2011).
[CrossRef]

Ebert, S.

B. Lincoln, S. Schinkinger, K. Travis, F. Wottawah, S. Ebert, F. Sauer, and J. Guck, “Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications,” Biomed. Microdevices9(5), 703–710 (2007).
[CrossRef] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J.88(5), 3689–3698 (2005).
[CrossRef] [PubMed]

F. Wottawah, S. Schinkinger, B. Lincoln, S. Ebert, K. Müller, F. Sauer, K. Travis, and J. Guck, “Characterizing single suspended cells by optorheology,” Acta Biomater.1(3), 263–271 (2005).
[CrossRef] [PubMed]

Ekpenyong, A.

L. Boyde, A. Ekpenyong, G. Whyte, and J. Guck, “Comparison of stresses on homogeneous spheroids in the optical stretcher computed with geometrical optics and generalized Lorenz-Mie theory,” Appl. Opt. (to be published).
[PubMed]

Ekpenyong, A. E.

K. J. Chalut, A. E. Ekpenyong, W. L. Clegg, I. C. Melhuish, and J. Guck, “Quantifying cellular differentiation by physical phenotype using digital holographic microscopy,” Integr. Biol. (Camb.)4(3), 280–284 (2012).
[CrossRef] [PubMed]

Erickson, H. M.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J.88(5), 3689–3698 (2005).
[CrossRef] [PubMed]

Ferrara, L.

N. Bellini, K. C. Vishnubhatla, F. Bragheri, L. Ferrara, P. Minzioni, R. Ramponi, I. Cristiani, and R. Osellame, “Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells,” Opt. Express18(5), 4679–4688 (2010).
[CrossRef] [PubMed]

F. Bragheri, L. Ferrara, N. Bellini, K. C. Vishnubhatla, P. Minzioni, R. Ramponi, R. Osellame, and I. Cristiani, “Optofluidic chip for single cell trapping and stretching fabricated by a femtosecond laser,” J. Biophotonics3(4), 234–243 (2010).
[CrossRef] [PubMed]

García-Blanco, S.

A. Cleary, A. Glidle, P. J. R. Laybourn, S. García-Blanco, S. Pellegrini, C. Helfter, G. S. Buller, J. S. Aitchison, and J. M. Cooper, “Integrating optics and microfluidics for time-correlated single-photon counting in lab-on-a-chip devices,” Appl. Phys. Lett.91(7), 071123 (2007).
[CrossRef]

Gattass, R.

R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
[CrossRef]

Glidle, A.

Z. Hu, A. Glidle, C. N. Ironside, M. Sorel, M. J. Strain, J. Cooper, and H. Yin, “Integrated microspectrometer for fluorescence based analysis in a microfluidic format,” Lab Chip12(16), 2850–2857 (2012).
[CrossRef] [PubMed]

A. Cleary, A. Glidle, P. J. R. Laybourn, S. García-Blanco, S. Pellegrini, C. Helfter, G. S. Buller, J. S. Aitchison, and J. M. Cooper, “Integrating optics and microfluidics for time-correlated single-photon counting in lab-on-a-chip devices,” Appl. Phys. Lett.91(7), 071123 (2007).
[CrossRef]

Guck, J.

K. J. Chalut, A. E. Ekpenyong, W. L. Clegg, I. C. Melhuish, and J. Guck, “Quantifying cellular differentiation by physical phenotype using digital holographic microscopy,” Integr. Biol. (Camb.)4(3), 280–284 (2012).
[CrossRef] [PubMed]

J. M. Maloney, D. Nikova, F. Lautenschläger, E. Clarke, R. Langer, J. Guck, and K. J. Van Vliet, “Mesenchymal stem cell mechanics from the attached to the suspended state,” Biophys. J.99(8), 2479–2487 (2010).
[CrossRef] [PubMed]

L. Boyde, K. J. Chalut, and J. Guck, “Interaction of Gaussian beam with near-spherical particle: an analytic-numerical approach for assessing scattering and stresses,” J. Opt. Soc. Am. A26(8), 1814–1826 (2009).
[CrossRef] [PubMed]

F. Lautenschläger, S. Paschke, S. Schinkinger, A. Bruel, M. Beil, and J. Guck, “The regulatory role of cell mechanics for migration of differentiating myeloid cells,” Proc. Natl. Acad. Sci. U.S.A.106(37), 15696–15701 (2009).
[CrossRef] [PubMed]

T. W. Remmerbach, F. Wottawah, J. Dietrich, B. Lincoln, C. Wittekind, and J. Guck, “Oral cancer diagnosis by mechanical phenotyping,” Cancer Res.69(5), 1728–1732 (2009).
[CrossRef] [PubMed]

B. Lincoln, S. Schinkinger, K. Travis, F. Wottawah, S. Ebert, F. Sauer, and J. Guck, “Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications,” Biomed. Microdevices9(5), 703–710 (2007).
[CrossRef] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J.88(5), 3689–3698 (2005).
[CrossRef] [PubMed]

F. Wottawah, S. Schinkinger, B. Lincoln, S. Ebert, K. Müller, F. Sauer, K. Travis, and J. Guck, “Characterizing single suspended cells by optorheology,” Acta Biomater.1(3), 263–271 (2005).
[CrossRef] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J.81(2), 767–784 (2001).
[CrossRef] [PubMed]

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett.84(23), 5451–5454 (2000).
[CrossRef] [PubMed]

L. Boyde, A. Ekpenyong, G. Whyte, and J. Guck, “Comparison of stresses on homogeneous spheroids in the optical stretcher computed with geometrical optics and generalized Lorenz-Mie theory,” Appl. Opt. (to be published).
[PubMed]

Harvey, G.

E. Murphy, T. Rice, L. McCaughan, G. Harvey, and P. Read, “Permanent attachment of single-mode fiber arrays to waveguides,” J. Lightwave Technol.3(4), 795–799 (1985).
[CrossRef]

He, F.

Helfter, C.

A. Cleary, A. Glidle, P. J. R. Laybourn, S. García-Blanco, S. Pellegrini, C. Helfter, G. S. Buller, J. S. Aitchison, and J. M. Cooper, “Integrating optics and microfluidics for time-correlated single-photon counting in lab-on-a-chip devices,” Appl. Phys. Lett.91(7), 071123 (2007).
[CrossRef]

Herman, P. R.

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids357(11–13), 2387–2391 (2011).
[CrossRef]

Hoekstra, H. J. W. M.

R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photonics Rev.5(3), 442–463 (2011).
[CrossRef]

Hsiung, S.-K.

C.-W. Lai, S.-K. Hsiung, C.-L. Yeh, A. Chiou, and G.-B. Lee, “A cell delivery and pre-positioning system utilizing microfluidic devices for dual-beam optical trap-and-stretch,” Sens. Actuators B Chem.135(1), 388–397 (2008).
[CrossRef]

Hu, Z.

Z. Hu, A. Glidle, C. N. Ironside, M. Sorel, M. J. Strain, J. Cooper, and H. Yin, “Integrated microspectrometer for fluorescence based analysis in a microfluidic format,” Lab Chip12(16), 2850–2857 (2012).
[CrossRef] [PubMed]

Ironside, C. N.

Z. Hu, A. Glidle, C. N. Ironside, M. Sorel, M. J. Strain, J. Cooper, and H. Yin, “Integrated microspectrometer for fluorescence based analysis in a microfluidic format,” Lab Chip12(16), 2850–2857 (2012).
[CrossRef] [PubMed]

Juodkazis, S.

Käs, J.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J.88(5), 3689–3698 (2005).
[CrossRef] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J.81(2), 767–784 (2001).
[CrossRef] [PubMed]

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett.84(23), 5451–5454 (2000).
[CrossRef] [PubMed]

Klank, H.

K. B. Mogensen, H. Klank, and J. P. Kutter, “Recent developments in detection for microfluidic systems,” Electrophoresis25(21–22), 3498–3512 (2004).
[CrossRef] [PubMed]

Kutter, J. P.

K. B. Mogensen, H. Klank, and J. P. Kutter, “Recent developments in detection for microfluidic systems,” Electrophoresis25(21–22), 3498–3512 (2004).
[CrossRef] [PubMed]

Lai, C.-W.

C.-W. Lai, S.-K. Hsiung, C.-L. Yeh, A. Chiou, and G.-B. Lee, “A cell delivery and pre-positioning system utilizing microfluidic devices for dual-beam optical trap-and-stretch,” Sens. Actuators B Chem.135(1), 388–397 (2008).
[CrossRef]

Langer, R.

J. M. Maloney, D. Nikova, F. Lautenschläger, E. Clarke, R. Langer, J. Guck, and K. J. Van Vliet, “Mesenchymal stem cell mechanics from the attached to the suspended state,” Biophys. J.99(8), 2479–2487 (2010).
[CrossRef] [PubMed]

Laporta, P.

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt.11(1), 013001 (2009).
[CrossRef]

Lautenschläger, F.

J. M. Maloney, D. Nikova, F. Lautenschläger, E. Clarke, R. Langer, J. Guck, and K. J. Van Vliet, “Mesenchymal stem cell mechanics from the attached to the suspended state,” Biophys. J.99(8), 2479–2487 (2010).
[CrossRef] [PubMed]

F. Lautenschläger, S. Paschke, S. Schinkinger, A. Bruel, M. Beil, and J. Guck, “The regulatory role of cell mechanics for migration of differentiating myeloid cells,” Proc. Natl. Acad. Sci. U.S.A.106(37), 15696–15701 (2009).
[CrossRef] [PubMed]

Laybourn, P. J. R.

A. Cleary, A. Glidle, P. J. R. Laybourn, S. García-Blanco, S. Pellegrini, C. Helfter, G. S. Buller, J. S. Aitchison, and J. M. Cooper, “Integrating optics and microfluidics for time-correlated single-photon counting in lab-on-a-chip devices,” Appl. Phys. Lett.91(7), 071123 (2007).
[CrossRef]

Lee, G.-B.

C.-W. Lai, S.-K. Hsiung, C.-L. Yeh, A. Chiou, and G.-B. Lee, “A cell delivery and pre-positioning system utilizing microfluidic devices for dual-beam optical trap-and-stretch,” Sens. Actuators B Chem.135(1), 388–397 (2008).
[CrossRef]

Lenz, D.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J.88(5), 3689–3698 (2005).
[CrossRef] [PubMed]

Liao, Y.

Lin, J.

F. He, J. Lin, and Y. Cheng, “Fabrication of hollow optical waveguides in fused silica by three-dimensional femtosecond laser micromachining,” Appl. Phys. B105(2), 379–384 (2011).
[CrossRef]

Lincoln, B.

T. W. Remmerbach, F. Wottawah, J. Dietrich, B. Lincoln, C. Wittekind, and J. Guck, “Oral cancer diagnosis by mechanical phenotyping,” Cancer Res.69(5), 1728–1732 (2009).
[CrossRef] [PubMed]

B. Lincoln, S. Schinkinger, K. Travis, F. Wottawah, S. Ebert, F. Sauer, and J. Guck, “Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications,” Biomed. Microdevices9(5), 703–710 (2007).
[CrossRef] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J.88(5), 3689–3698 (2005).
[CrossRef] [PubMed]

F. Wottawah, S. Schinkinger, B. Lincoln, S. Ebert, K. Müller, F. Sauer, K. Travis, and J. Guck, “Characterizing single suspended cells by optorheology,” Acta Biomater.1(3), 263–271 (2005).
[CrossRef] [PubMed]

Mahmood, H.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J.81(2), 767–784 (2001).
[CrossRef] [PubMed]

Maloney, J. M.

J. M. Maloney, D. Nikova, F. Lautenschläger, E. Clarke, R. Langer, J. Guck, and K. J. Van Vliet, “Mesenchymal stem cell mechanics from the attached to the suspended state,” Biophys. J.99(8), 2479–2487 (2010).
[CrossRef] [PubMed]

Marcinkevicius, A.

Martinez Vazquez, R.

F. Bragheri, P. Minzioni, R. Martinez Vazquez, N. Bellini, P. Paiè, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip12(19), 3779–3784 (2012).
[CrossRef] [PubMed]

R. Osellame, V. Maselli, R. Martinez Vazquez, R. Ramponi, and G. Cerullo, “Integration of optical waveguides and microfluidic channels both fabricated by femtosecond laser irradiation,” Appl. Phys. Lett.90(23), 231118 (2007).
[CrossRef]

Maselli, V.

R. Osellame, V. Maselli, R. Martinez Vazquez, R. Ramponi, and G. Cerullo, “Integration of optical waveguides and microfluidic channels both fabricated by femtosecond laser irradiation,” Appl. Phys. Lett.90(23), 231118 (2007).
[CrossRef]

Matsuo, S.

Mazur, E.

R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
[CrossRef]

McCaughan, L.

E. Murphy, T. Rice, L. McCaughan, G. Harvey, and P. Read, “Permanent attachment of single-mode fiber arrays to waveguides,” J. Lightwave Technol.3(4), 795–799 (1985).
[CrossRef]

Melhuish, I. C.

K. J. Chalut, A. E. Ekpenyong, W. L. Clegg, I. C. Melhuish, and J. Guck, “Quantifying cellular differentiation by physical phenotype using digital holographic microscopy,” Integr. Biol. (Camb.)4(3), 280–284 (2012).
[CrossRef] [PubMed]

Midorikawa, K.

Minzioni, P.

F. Bragheri, P. Minzioni, R. Martinez Vazquez, N. Bellini, P. Paiè, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip12(19), 3779–3784 (2012).
[CrossRef] [PubMed]

F. Bragheri, L. Ferrara, N. Bellini, K. C. Vishnubhatla, P. Minzioni, R. Ramponi, R. Osellame, and I. Cristiani, “Optofluidic chip for single cell trapping and stretching fabricated by a femtosecond laser,” J. Biophotonics3(4), 234–243 (2010).
[CrossRef] [PubMed]

N. Bellini, K. C. Vishnubhatla, F. Bragheri, L. Ferrara, P. Minzioni, R. Ramponi, I. Cristiani, and R. Osellame, “Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells,” Opt. Express18(5), 4679–4688 (2010).
[CrossRef] [PubMed]

Misawa, H.

Mitchell, D.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J.88(5), 3689–3698 (2005).
[CrossRef] [PubMed]

Miwa, M.

Mogensen, K. B.

K. B. Mogensen, H. Klank, and J. P. Kutter, “Recent developments in detection for microfluidic systems,” Electrophoresis25(21–22), 3498–3512 (2004).
[CrossRef] [PubMed]

Mondello, C.

F. Bragheri, P. Minzioni, R. Martinez Vazquez, N. Bellini, P. Paiè, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip12(19), 3779–3784 (2012).
[CrossRef] [PubMed]

Moon, T. J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J.81(2), 767–784 (2001).
[CrossRef] [PubMed]

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett.84(23), 5451–5454 (2000).
[CrossRef] [PubMed]

Müller, K.

F. Wottawah, S. Schinkinger, B. Lincoln, S. Ebert, K. Müller, F. Sauer, K. Travis, and J. Guck, “Characterizing single suspended cells by optorheology,” Acta Biomater.1(3), 263–271 (2005).
[CrossRef] [PubMed]

Murphy, E.

E. Murphy, T. Rice, L. McCaughan, G. Harvey, and P. Read, “Permanent attachment of single-mode fiber arrays to waveguides,” J. Lightwave Technol.3(4), 795–799 (1985).
[CrossRef]

Ng, M. L.

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids357(11–13), 2387–2391 (2011).
[CrossRef]

Nikova, D.

J. M. Maloney, D. Nikova, F. Lautenschläger, E. Clarke, R. Langer, J. Guck, and K. J. Van Vliet, “Mesenchymal stem cell mechanics from the attached to the suspended state,” Biophys. J.99(8), 2479–2487 (2010).
[CrossRef] [PubMed]

Nishii, J.

Nolli, D.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip9(1), 91–96 (2009).
[CrossRef] [PubMed]

Osellame, R.

F. Bragheri, P. Minzioni, R. Martinez Vazquez, N. Bellini, P. Paiè, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip12(19), 3779–3784 (2012).
[CrossRef] [PubMed]

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids357(11–13), 2387–2391 (2011).
[CrossRef]

R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photonics Rev.5(3), 442–463 (2011).
[CrossRef]

N. Bellini, K. C. Vishnubhatla, F. Bragheri, L. Ferrara, P. Minzioni, R. Ramponi, I. Cristiani, and R. Osellame, “Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells,” Opt. Express18(5), 4679–4688 (2010).
[CrossRef] [PubMed]

F. Bragheri, L. Ferrara, N. Bellini, K. C. Vishnubhatla, P. Minzioni, R. Ramponi, R. Osellame, and I. Cristiani, “Optofluidic chip for single cell trapping and stretching fabricated by a femtosecond laser,” J. Biophotonics3(4), 234–243 (2010).
[CrossRef] [PubMed]

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt.11(1), 013001 (2009).
[CrossRef]

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip9(1), 91–96 (2009).
[CrossRef] [PubMed]

K. C. Vishnubhatla, N. Bellini, R. Ramponi, G. Cerullo, and R. Osellame, “Shape control of microchannels fabricated in fused silica by femtosecond laser irradiation and chemical etching,” Opt. Express17(10), 8685–8695 (2009).
[CrossRef] [PubMed]

R. Osellame, V. Maselli, R. Martinez Vazquez, R. Ramponi, and G. Cerullo, “Integration of optical waveguides and microfluidic channels both fabricated by femtosecond laser irradiation,” Appl. Phys. Lett.90(23), 231118 (2007).
[CrossRef]

Paiè, P.

F. Bragheri, P. Minzioni, R. Martinez Vazquez, N. Bellini, P. Paiè, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip12(19), 3779–3784 (2012).
[CrossRef] [PubMed]

Paschke, S.

F. Lautenschläger, S. Paschke, S. Schinkinger, A. Bruel, M. Beil, and J. Guck, “The regulatory role of cell mechanics for migration of differentiating myeloid cells,” Proc. Natl. Acad. Sci. U.S.A.106(37), 15696–15701 (2009).
[CrossRef] [PubMed]

Pellegrini, S.

A. Cleary, A. Glidle, P. J. R. Laybourn, S. García-Blanco, S. Pellegrini, C. Helfter, G. S. Buller, J. S. Aitchison, and J. M. Cooper, “Integrating optics and microfluidics for time-correlated single-photon counting in lab-on-a-chip devices,” Appl. Phys. Lett.91(7), 071123 (2007).
[CrossRef]

Pollnau, M.

R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photonics Rev.5(3), 442–463 (2011).
[CrossRef]

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip9(1), 91–96 (2009).
[CrossRef] [PubMed]

Radmacher, M.

M. Radmacher, “Measuring the elastic properties of living cells by the atomic force microscope,” Methods Cell Biol.68, 67–90 (2002).
[CrossRef] [PubMed]

Ramponi, R.

F. Bragheri, P. Minzioni, R. Martinez Vazquez, N. Bellini, P. Paiè, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip12(19), 3779–3784 (2012).
[CrossRef] [PubMed]

F. Bragheri, L. Ferrara, N. Bellini, K. C. Vishnubhatla, P. Minzioni, R. Ramponi, R. Osellame, and I. Cristiani, “Optofluidic chip for single cell trapping and stretching fabricated by a femtosecond laser,” J. Biophotonics3(4), 234–243 (2010).
[CrossRef] [PubMed]

N. Bellini, K. C. Vishnubhatla, F. Bragheri, L. Ferrara, P. Minzioni, R. Ramponi, I. Cristiani, and R. Osellame, “Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells,” Opt. Express18(5), 4679–4688 (2010).
[CrossRef] [PubMed]

K. C. Vishnubhatla, N. Bellini, R. Ramponi, G. Cerullo, and R. Osellame, “Shape control of microchannels fabricated in fused silica by femtosecond laser irradiation and chemical etching,” Opt. Express17(10), 8685–8695 (2009).
[CrossRef] [PubMed]

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip9(1), 91–96 (2009).
[CrossRef] [PubMed]

R. Osellame, V. Maselli, R. Martinez Vazquez, R. Ramponi, and G. Cerullo, “Integration of optical waveguides and microfluidic channels both fabricated by femtosecond laser irradiation,” Appl. Phys. Lett.90(23), 231118 (2007).
[CrossRef]

Read, P.

E. Murphy, T. Rice, L. McCaughan, G. Harvey, and P. Read, “Permanent attachment of single-mode fiber arrays to waveguides,” J. Lightwave Technol.3(4), 795–799 (1985).
[CrossRef]

Remmerbach, T. W.

T. W. Remmerbach, F. Wottawah, J. Dietrich, B. Lincoln, C. Wittekind, and J. Guck, “Oral cancer diagnosis by mechanical phenotyping,” Cancer Res.69(5), 1728–1732 (2009).
[CrossRef] [PubMed]

Rice, T.

E. Murphy, T. Rice, L. McCaughan, G. Harvey, and P. Read, “Permanent attachment of single-mode fiber arrays to waveguides,” J. Lightwave Technol.3(4), 795–799 (1985).
[CrossRef]

Rohrlack, T.

Romeyke, M.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J.88(5), 3689–3698 (2005).
[CrossRef] [PubMed]

Sauer, F.

B. Lincoln, S. Schinkinger, K. Travis, F. Wottawah, S. Ebert, F. Sauer, and J. Guck, “Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications,” Biomed. Microdevices9(5), 703–710 (2007).
[CrossRef] [PubMed]

F. Wottawah, S. Schinkinger, B. Lincoln, S. Ebert, K. Müller, F. Sauer, K. Travis, and J. Guck, “Characterizing single suspended cells by optorheology,” Acta Biomater.1(3), 263–271 (2005).
[CrossRef] [PubMed]

Schaap, A.

Schinkinger, S.

F. Lautenschläger, S. Paschke, S. Schinkinger, A. Bruel, M. Beil, and J. Guck, “The regulatory role of cell mechanics for migration of differentiating myeloid cells,” Proc. Natl. Acad. Sci. U.S.A.106(37), 15696–15701 (2009).
[CrossRef] [PubMed]

B. Lincoln, S. Schinkinger, K. Travis, F. Wottawah, S. Ebert, F. Sauer, and J. Guck, “Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications,” Biomed. Microdevices9(5), 703–710 (2007).
[CrossRef] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J.88(5), 3689–3698 (2005).
[CrossRef] [PubMed]

F. Wottawah, S. Schinkinger, B. Lincoln, S. Ebert, K. Müller, F. Sauer, K. Travis, and J. Guck, “Characterizing single suspended cells by optorheology,” Acta Biomater.1(3), 263–271 (2005).
[CrossRef] [PubMed]

Sorel, M.

Z. Hu, A. Glidle, C. N. Ironside, M. Sorel, M. J. Strain, J. Cooper, and H. Yin, “Integrated microspectrometer for fluorescence based analysis in a microfluidic format,” Lab Chip12(16), 2850–2857 (2012).
[CrossRef] [PubMed]

Strain, M. J.

Z. Hu, A. Glidle, C. N. Ironside, M. Sorel, M. J. Strain, J. Cooper, and H. Yin, “Integrated microspectrometer for fluorescence based analysis in a microfluidic format,” Lab Chip12(16), 2850–2857 (2012).
[CrossRef] [PubMed]

Sugioka, K.

Sun, H.

Suresh, S.

S. Suresh, “Biomechanics and biophysics of cancer cells,” Acta Mater.55(12), 3989–4014 (2007).
[CrossRef]

Travis, K.

B. Lincoln, S. Schinkinger, K. Travis, F. Wottawah, S. Ebert, F. Sauer, and J. Guck, “Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications,” Biomed. Microdevices9(5), 703–710 (2007).
[CrossRef] [PubMed]

F. Wottawah, S. Schinkinger, B. Lincoln, S. Ebert, K. Müller, F. Sauer, K. Travis, and J. Guck, “Characterizing single suspended cells by optorheology,” Acta Biomater.1(3), 263–271 (2005).
[CrossRef] [PubMed]

Ulvick, S.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J.88(5), 3689–3698 (2005).
[CrossRef] [PubMed]

van den Vlekkert, H.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip9(1), 91–96 (2009).
[CrossRef] [PubMed]

Van Vliet, K. J.

J. M. Maloney, D. Nikova, F. Lautenschläger, E. Clarke, R. Langer, J. Guck, and K. J. Van Vliet, “Mesenchymal stem cell mechanics from the attached to the suspended state,” Biophys. J.99(8), 2479–2487 (2010).
[CrossRef] [PubMed]

Vazquez, R. M.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip9(1), 91–96 (2009).
[CrossRef] [PubMed]

Vishnubhatla, K. C.

Wang, C.

Watanabe, M.

Whyte, G.

L. Boyde, A. Ekpenyong, G. Whyte, and J. Guck, “Comparison of stresses on homogeneous spheroids in the optical stretcher computed with geometrical optics and generalized Lorenz-Mie theory,” Appl. Opt. (to be published).
[PubMed]

Wittekind, C.

T. W. Remmerbach, F. Wottawah, J. Dietrich, B. Lincoln, C. Wittekind, and J. Guck, “Oral cancer diagnosis by mechanical phenotyping,” Cancer Res.69(5), 1728–1732 (2009).
[CrossRef] [PubMed]

Wottawah, F.

T. W. Remmerbach, F. Wottawah, J. Dietrich, B. Lincoln, C. Wittekind, and J. Guck, “Oral cancer diagnosis by mechanical phenotyping,” Cancer Res.69(5), 1728–1732 (2009).
[CrossRef] [PubMed]

B. Lincoln, S. Schinkinger, K. Travis, F. Wottawah, S. Ebert, F. Sauer, and J. Guck, “Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications,” Biomed. Microdevices9(5), 703–710 (2007).
[CrossRef] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J.88(5), 3689–3698 (2005).
[CrossRef] [PubMed]

F. Wottawah, S. Schinkinger, B. Lincoln, S. Ebert, K. Müller, F. Sauer, K. Travis, and J. Guck, “Characterizing single suspended cells by optorheology,” Acta Biomater.1(3), 263–271 (2005).
[CrossRef] [PubMed]

Xu, J.

Xu, Y.

Xu, Z.

Yeh, C.-L.

C.-W. Lai, S.-K. Hsiung, C.-L. Yeh, A. Chiou, and G.-B. Lee, “A cell delivery and pre-positioning system utilizing microfluidic devices for dual-beam optical trap-and-stretch,” Sens. Actuators B Chem.135(1), 388–397 (2008).
[CrossRef]

Yin, H.

Z. Hu, A. Glidle, C. N. Ironside, M. Sorel, M. J. Strain, J. Cooper, and H. Yin, “Integrated microspectrometer for fluorescence based analysis in a microfluidic format,” Lab Chip12(16), 2850–2857 (2012).
[CrossRef] [PubMed]

Zhou, Z.

Acta Biomater. (1)

F. Wottawah, S. Schinkinger, B. Lincoln, S. Ebert, K. Müller, F. Sauer, K. Travis, and J. Guck, “Characterizing single suspended cells by optorheology,” Acta Biomater.1(3), 263–271 (2005).
[CrossRef] [PubMed]

Acta Mater. (1)

S. Suresh, “Biomechanics and biophysics of cancer cells,” Acta Mater.55(12), 3989–4014 (2007).
[CrossRef]

Appl. Opt. (1)

L. Boyde, A. Ekpenyong, G. Whyte, and J. Guck, “Comparison of stresses on homogeneous spheroids in the optical stretcher computed with geometrical optics and generalized Lorenz-Mie theory,” Appl. Opt. (to be published).
[PubMed]

Appl. Phys. B (1)

F. He, J. Lin, and Y. Cheng, “Fabrication of hollow optical waveguides in fused silica by three-dimensional femtosecond laser micromachining,” Appl. Phys. B105(2), 379–384 (2011).
[CrossRef]

Appl. Phys. Lett. (2)

A. Cleary, A. Glidle, P. J. R. Laybourn, S. García-Blanco, S. Pellegrini, C. Helfter, G. S. Buller, J. S. Aitchison, and J. M. Cooper, “Integrating optics and microfluidics for time-correlated single-photon counting in lab-on-a-chip devices,” Appl. Phys. Lett.91(7), 071123 (2007).
[CrossRef]

R. Osellame, V. Maselli, R. Martinez Vazquez, R. Ramponi, and G. Cerullo, “Integration of optical waveguides and microfluidic channels both fabricated by femtosecond laser irradiation,” Appl. Phys. Lett.90(23), 231118 (2007).
[CrossRef]

Biomed. Microdevices (1)

B. Lincoln, S. Schinkinger, K. Travis, F. Wottawah, S. Ebert, F. Sauer, and J. Guck, “Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications,” Biomed. Microdevices9(5), 703–710 (2007).
[CrossRef] [PubMed]

Biomed. Opt. Express (1)

Biophys. J. (3)

J. M. Maloney, D. Nikova, F. Lautenschläger, E. Clarke, R. Langer, J. Guck, and K. J. Van Vliet, “Mesenchymal stem cell mechanics from the attached to the suspended state,” Biophys. J.99(8), 2479–2487 (2010).
[CrossRef] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J.88(5), 3689–3698 (2005).
[CrossRef] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J.81(2), 767–784 (2001).
[CrossRef] [PubMed]

Cancer Res. (1)

T. W. Remmerbach, F. Wottawah, J. Dietrich, B. Lincoln, C. Wittekind, and J. Guck, “Oral cancer diagnosis by mechanical phenotyping,” Cancer Res.69(5), 1728–1732 (2009).
[CrossRef] [PubMed]

Electrophoresis (1)

K. B. Mogensen, H. Klank, and J. P. Kutter, “Recent developments in detection for microfluidic systems,” Electrophoresis25(21–22), 3498–3512 (2004).
[CrossRef] [PubMed]

Integr. Biol. (Camb.) (1)

K. J. Chalut, A. E. Ekpenyong, W. L. Clegg, I. C. Melhuish, and J. Guck, “Quantifying cellular differentiation by physical phenotype using digital holographic microscopy,” Integr. Biol. (Camb.)4(3), 280–284 (2012).
[CrossRef] [PubMed]

J. Biophotonics (1)

F. Bragheri, L. Ferrara, N. Bellini, K. C. Vishnubhatla, P. Minzioni, R. Ramponi, R. Osellame, and I. Cristiani, “Optofluidic chip for single cell trapping and stretching fabricated by a femtosecond laser,” J. Biophotonics3(4), 234–243 (2010).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

E. Murphy, T. Rice, L. McCaughan, G. Harvey, and P. Read, “Permanent attachment of single-mode fiber arrays to waveguides,” J. Lightwave Technol.3(4), 795–799 (1985).
[CrossRef]

J. Non-Cryst. Solids (1)

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids357(11–13), 2387–2391 (2011).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt.11(1), 013001 (2009).
[CrossRef]

J. Opt. Soc. Am. A (1)

Lab Chip (3)

F. Bragheri, P. Minzioni, R. Martinez Vazquez, N. Bellini, P. Paiè, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip12(19), 3779–3784 (2012).
[CrossRef] [PubMed]

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip9(1), 91–96 (2009).
[CrossRef] [PubMed]

Z. Hu, A. Glidle, C. N. Ironside, M. Sorel, M. J. Strain, J. Cooper, and H. Yin, “Integrated microspectrometer for fluorescence based analysis in a microfluidic format,” Lab Chip12(16), 2850–2857 (2012).
[CrossRef] [PubMed]

Laser Photonics Rev. (1)

R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photonics Rev.5(3), 442–463 (2011).
[CrossRef]

Methods Cell Biol. (1)

M. Radmacher, “Measuring the elastic properties of living cells by the atomic force microscope,” Methods Cell Biol.68, 67–90 (2002).
[CrossRef] [PubMed]

MRS Bull. (1)

K. Sugioka and Y. Cheng, “Integrated microchips for biological analysis fabricated by femtosecond laser direct writing,” MRS Bull.36(12), 1020–1027 (2011).
[CrossRef]

Nat. Methods (1)

N. de Souza, “Single-cell methods,” Nat. Methods9(1), 35 (2011).
[CrossRef]

Nat. Photonics (1)

R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett.84(23), 5451–5454 (2000).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

F. Lautenschläger, S. Paschke, S. Schinkinger, A. Bruel, M. Beil, and J. Guck, “The regulatory role of cell mechanics for migration of differentiating myeloid cells,” Proc. Natl. Acad. Sci. U.S.A.106(37), 15696–15701 (2009).
[CrossRef] [PubMed]

Sens. Actuators B Chem. (1)

C.-W. Lai, S.-K. Hsiung, C.-L. Yeh, A. Chiou, and G.-B. Lee, “A cell delivery and pre-positioning system utilizing microfluidic devices for dual-beam optical trap-and-stretch,” Sens. Actuators B Chem.135(1), 388–397 (2008).
[CrossRef]

Other (1)

M. J. Madou, Fundamentals of Microfabrication: the Science of Miniaturization (CRC Press, Boca Raton, FL, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Comparison of experimental setups. (a) 3D rendering, (b) 2D schematic diagram of the optical trapping region including relevant dimensions in µm, and (c) picture of the assembled optical stretcher (AOS). (d-f) Corresponding panels for the monolithic optical stretcher (MOS). 2w0 indicates the mode field diameter of the fibre (b) and waveguide (e).

Fig. 2
Fig. 2

Schematic representation of the microfluidic chip fabrication technique: a) three-layer technology with the central fused silica glass slide machined by femtosecond lasers and b) sealing of the channel with two polished glass slides. Image of the microfluidic chip c) without and d) with fluidic connections to the straight microchannel. e) Phase contrast microscope picture of femtosecond-laser-written optical waveguides integrated in the microfluidic chip facing the channel to create the MOS.

Fig. 3
Fig. 3

(a) Schematic representation of the experimental setup for the MOS device: ‘SP’ indicates the fused splice, while ‘cal-SP’ indicates the splice used for trap calibration; ‘t1’ and ‘t2’ indicate the two PEEK tubing terminations; ‘p1’ and ‘p2’ are the two fibre pigtails. (b) Phase contrast microscope image of an HL60 cell trapped in the MOS; optical waveguides are also visible at the two sides.

Fig. 4
Fig. 4

Comparison between phase contrast microscope images of HL60 cells trapped using (a) the AOS and (b) the MOS device. Scale bars correspond to 10 µm.

Fig. 5
Fig. 5

Phase contrast microscope images of (a) trapped and (b) stretched HL60 cell in a MOS stretching experiment with automatic contour recognition. (c) HL60 response to step-like increase in applied optical stress for different stretching power values. The inset represents the temporal shape of the step-like optical stimulus applied at the fibre output PF. The plot represents the average deformation of about 40–60 cells each as a function of time for different values of PUP of the step stimulus.

Fig. 6
Fig. 6

Plot of the peak deformation of HL60 cells, for the MOS and AOS devices, as a function of the power PC delivered by each waveguide/fibre at the microchannel. The peak deformation is linearly proportional to the power for both the devices but with different slopes.

Fig. 7
Fig. 7

Plot of the GGF as a function of the beam waist size 2w0 for both AOS and MOS devices.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε(t)= Δl(t) l 0 = l(t) l 0 l 0 ,
D(t)= ε(t) σ 0 GF = ε(t) P C GGF ,
ε MAX = D MAX P C GGF,

Metrics