Abstract

Digital holographic microscopy (DHM) has been applied extensively to in vitro studies of different living cells. In this paper, we present a novel application of an off-axis DHM system to in vivo study of the development of zebrafish embryos. Even with low magnification microscope objectives, the morphological structures and individual cell types inside developing zebrafish embryos can be clearly observed from reconstructed amplitude images. We further study the dynamic process of blood flow in zebrafish embryos. A calibration routine and post-processing procedures are developed to quantify physiological parameters at different developmental stages. We measure quantitatively the blood flow as well as the heart rate to study the effects of elevated D-glucose (abnormal condition) on circulatory and cardiovascular systems of zebrafish embryos. To enhance our ability to use DHM as a quantitative tool for potential high throughput screening application, the calibration and post-processing algorithms are incorporated into an automated processing software. Our results show that DHM is an excellent non-invasive imaging technique for visualizing the cellular dynamics of organogenesis of zebrafish embryos in vivo.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Y. Stainier and M. C. Fishman, “The zebrafish as a model system to study cardiovascular development,” Trends. Cardiovas. Med.4, 207 – 212 (1994).
    [CrossRef]
  2. Z. Lele and P. Krone, “The zebrafish as a model system in developmental, toxicological and transgenic research,” Biotechnol. Adv.14, 57 – 72 (1996).
    [CrossRef] [PubMed]
  3. D. Traver, P. Hebomel, E. Patton, R. D. Murphey, J. A. Yoder, G. W. Litman, A. Catic, C. T. Amemiya, L. I. Zon, and N. S. Trede, “The zebrafish as a model organism to study development of the immune system,” Adv. Immunol.81, 254 – 330 (2003).
    [CrossRef]
  4. A. S. Glass and R. Dahm, “The zebrafish as a model organism for eye development.” Ophthalmic. Res.36, 4–24 (2004).
    [CrossRef] [PubMed]
  5. K. Dooley and L. I. Zon, “Zebrafish: a model system for the study of human disease,” Curr. Opin. Genet. Dev.10, 252 – 256 (2000).
    [CrossRef] [PubMed]
  6. J. F. Amatruda, J. L. Shepard, H. M. Stern, and L. I. Zon, “Zebrafish as a cancer model system,” Cancer Cell1, 229 – 231 (2002).
    [CrossRef] [PubMed]
  7. J. Berman, K. Hsu, and A. T. Look, “Zebrafish as a model organism for blood diseases,” Brit. J. Haematol.123, 568–576 (2003).
    [CrossRef]
  8. G. J. Lieschke and P. D. Currie, “Animal models of human disease: zebrafish swim into view,” Nat. Rev. Genet.8, 353–367 (2007).
    [CrossRef] [PubMed]
  9. S. Ali, D. L. Champagne, H. P. Spaink, and M. K. Richardson, “Zebrafish embryos and larvae: A new generation of disease models and drug screens,” Birth Defects Res. C93, 115–133 (2011).
    [CrossRef]
  10. L. Jing and L. I. Zon, “Zebrafish as a model for normal and malignant hematopoiesis,” Dis. Model Mech.4, 433–438 (2011).
    [CrossRef] [PubMed]
  11. M. S. Cooper, L. A. D’Amico, and C. A. Henry, “Confocal microscopic analysis of morphogenetic movements,” Method Cell Biol.59, 179–204 (1999).
    [CrossRef]
  12. P. Jayachandran, E. Hong, and R. Brewster, “Labeling and imaging cells in the zebrafish hindbrain,” J. Vis. Exp.41, e1976 (2010).
  13. M. Kamei, S. Isogai, W. Pan, and B. M. Weinstein, “Imaging blood vessels in the zebrafish,” Method Cell Biol.100, 27 – 54 (2010).
    [CrossRef]
  14. P. Kettunen, “Calcium imaging in the zebrafish,” Method Cell Biol.740, 1039–1071 (2012).
  15. C. A. Combs, Fluorescence Microscopy: A Concise Guide to Current Imaging Methods (John Wiley and Sons, Inc., 2010).
  16. M. F. Yanik, C. B. Rohde, and C. Pardo-Martin, “Technologies for micromanipulating, imaging, and phenotyping small invertebrates and vertebrates,” Annu. Rev. Biomed. Eng.13, 185–217 (2011).
    [CrossRef] [PubMed]
  17. G. Ball, R. M. Parton, R. S. Hamilton, and I. Davis, “A cell biologist’s guide to high resolution imaging,” Method Enzymol.504, 29 – 55 (2012).
    [CrossRef]
  18. C. Mann, L. Yu, and M. Kim, “Movies of cellular and sub-cellular motion by digital holographic microscopy,” Biomed. Eng. Online5, 21 (2006).
    [CrossRef] [PubMed]
  19. C. Depeursinge, T. Colomb, Y. Emery, J. Kuhn, F. Charriere, B. Rappaz, and P. Marquet, “Digital holographic microscopy applied to life sciences,” Proc. IEEE Eng. Med. Biol. Soc.2007, 6244–6247 (2007).
  20. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt.38, 6994–7001 (1999).
    [CrossRef]
  21. P. Ferraro, S. D. Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt.42, 1938–1946 (2003).
    [CrossRef] [PubMed]
  22. T. Colomb, J. Kühn, F. Charrière, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express14, 4300–4306 (2006).
    [CrossRef] [PubMed]
  23. L. Xu, X. Peng, J. Miao, and A. K. Asundi, “Studies of digital microscopic holography with applications to microstructure testing,” Appl. Opt.40, 5046–5051 (2001).
    [CrossRef]
  24. G. Coppola, P. Ferraro, M. Iodice, S. D. Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol.15, 529–539 (2004).
    [CrossRef]
  25. C. Mann, L. Yu, C.-M. Lo, and M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express13, 8693–8698 (2005).
    [CrossRef] [PubMed]
  26. F. Charrière, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. D. Mitchell, P. Marquet, and B. Rappaz, “Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba,” Opt. Express14, 7005–7013 (2006).
    [CrossRef] [PubMed]
  27. B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt.11, 034005 (2006).
    [CrossRef]
  28. M. Debailleul, B. Simon, V. Georges, O. Haeberl, and V. Lauer, “Holographic microscopy and diffractive microtomography of transparent samples,” Meas. Sci. Technol.19, 074009 (2008).
    [CrossRef]
  29. B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cell Mol. Dis.42, 228 – 232 (2009).
    [CrossRef]
  30. L. Yu, S. Mohanty, J. Zhang, S. Genc, M. K. Kim, M. W. Berns, and Z. Chen, “Digital holographic microscopy for quantitative cell dynamic evaluation during laser microsurgery,” Opt. Express17, 12031–12038 (2009).
    [CrossRef] [PubMed]
  31. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express13, 9361–9373 (2005).
    [CrossRef] [PubMed]
  32. M. Antkowiak, M. L. Torres-Mapa, K. Dholakia, and F. J. Gunn-Moore, “Quantitative phase study of the dynamic cellular response in femtosecond laser photoporation,” Biomed. Opt. Express1, 414–424 (2010).
    [CrossRef]
  33. S. J. Lee, K. W. Seo, Y. S. Choi, and M. H. Sohn, “Three-dimensional motion measurements of free-swimming microorganisms using digital holographic microscopy,” Meas. Sci. Technol.22, 064004 (2011).
    [CrossRef]
  34. M. F. Toy, S. Richard, J. Kühn, A. Franco-Obregón, M. Egli, and C. Depeursinge, “Enhanced robustness digital holographic microscopy for demanding environment of space biology,” Biomed. Opt. Express3, 313–326 (2012).
    [CrossRef] [PubMed]
  35. G. Popescu, Quantitative Phase Imaging of Cells and Tissues (McGraw-Hill, 2011).
  36. Y. C. Lin, C. J. Cheng, and T. C. Poon, “Optical sectioning with a low-coherence phase-shifting digital holographic microscope,” Appl. Opt.50, B25–B30 (2011).
    [CrossRef] [PubMed]
  37. J. Liang, Y. Gui, W. Wang, S. Gao, J. Li, and H. Song, “Elevated glucose induces congenital heart defects by altering the expression of tbx5, tbx20, and has2 in developing zebrafish embryos,” Birth Defects Res. A88, 480–486 (2010).
    [CrossRef]
  38. D. Gabor, “A new microscopic principle,” Nature161, 777–778 (1948).
    [CrossRef] [PubMed]
  39. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  40. U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2005).
  41. M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev.1, 018005 (2010).
    [CrossRef]
  42. T. M. Kreis, M. Adams, and W. P. O. Jueptner, “Methods of digital holography: a comparison,” Proc. SPIE, 3098, 224–233 (1997).
    [CrossRef]
  43. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt.39, 4070–4075 (2000).
    [CrossRef]
  44. F. C. A. Groen, I. T. Young, and G. Ligthart, “A comparison of different focus functions for use in autofocus algorithms,” Cytometry6, 81–91 (1985).
    [CrossRef] [PubMed]
  45. M. Raffel, C. E. Willert, S. T. Wereley, and J. Kompenhans, Particle Image Velocimetry: A Practical Guide (Springer, 2007).

2012 (3)

P. Kettunen, “Calcium imaging in the zebrafish,” Method Cell Biol.740, 1039–1071 (2012).

G. Ball, R. M. Parton, R. S. Hamilton, and I. Davis, “A cell biologist’s guide to high resolution imaging,” Method Enzymol.504, 29 – 55 (2012).
[CrossRef]

M. F. Toy, S. Richard, J. Kühn, A. Franco-Obregón, M. Egli, and C. Depeursinge, “Enhanced robustness digital holographic microscopy for demanding environment of space biology,” Biomed. Opt. Express3, 313–326 (2012).
[CrossRef] [PubMed]

2011 (5)

Y. C. Lin, C. J. Cheng, and T. C. Poon, “Optical sectioning with a low-coherence phase-shifting digital holographic microscope,” Appl. Opt.50, B25–B30 (2011).
[CrossRef] [PubMed]

M. F. Yanik, C. B. Rohde, and C. Pardo-Martin, “Technologies for micromanipulating, imaging, and phenotyping small invertebrates and vertebrates,” Annu. Rev. Biomed. Eng.13, 185–217 (2011).
[CrossRef] [PubMed]

S. Ali, D. L. Champagne, H. P. Spaink, and M. K. Richardson, “Zebrafish embryos and larvae: A new generation of disease models and drug screens,” Birth Defects Res. C93, 115–133 (2011).
[CrossRef]

L. Jing and L. I. Zon, “Zebrafish as a model for normal and malignant hematopoiesis,” Dis. Model Mech.4, 433–438 (2011).
[CrossRef] [PubMed]

S. J. Lee, K. W. Seo, Y. S. Choi, and M. H. Sohn, “Three-dimensional motion measurements of free-swimming microorganisms using digital holographic microscopy,” Meas. Sci. Technol.22, 064004 (2011).
[CrossRef]

2010 (5)

J. Liang, Y. Gui, W. Wang, S. Gao, J. Li, and H. Song, “Elevated glucose induces congenital heart defects by altering the expression of tbx5, tbx20, and has2 in developing zebrafish embryos,” Birth Defects Res. A88, 480–486 (2010).
[CrossRef]

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev.1, 018005 (2010).
[CrossRef]

P. Jayachandran, E. Hong, and R. Brewster, “Labeling and imaging cells in the zebrafish hindbrain,” J. Vis. Exp.41, e1976 (2010).

M. Kamei, S. Isogai, W. Pan, and B. M. Weinstein, “Imaging blood vessels in the zebrafish,” Method Cell Biol.100, 27 – 54 (2010).
[CrossRef]

M. Antkowiak, M. L. Torres-Mapa, K. Dholakia, and F. J. Gunn-Moore, “Quantitative phase study of the dynamic cellular response in femtosecond laser photoporation,” Biomed. Opt. Express1, 414–424 (2010).
[CrossRef]

2009 (2)

L. Yu, S. Mohanty, J. Zhang, S. Genc, M. K. Kim, M. W. Berns, and Z. Chen, “Digital holographic microscopy for quantitative cell dynamic evaluation during laser microsurgery,” Opt. Express17, 12031–12038 (2009).
[CrossRef] [PubMed]

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cell Mol. Dis.42, 228 – 232 (2009).
[CrossRef]

2008 (1)

M. Debailleul, B. Simon, V. Georges, O. Haeberl, and V. Lauer, “Holographic microscopy and diffractive microtomography of transparent samples,” Meas. Sci. Technol.19, 074009 (2008).
[CrossRef]

2007 (2)

C. Depeursinge, T. Colomb, Y. Emery, J. Kuhn, F. Charriere, B. Rappaz, and P. Marquet, “Digital holographic microscopy applied to life sciences,” Proc. IEEE Eng. Med. Biol. Soc.2007, 6244–6247 (2007).

G. J. Lieschke and P. D. Currie, “Animal models of human disease: zebrafish swim into view,” Nat. Rev. Genet.8, 353–367 (2007).
[CrossRef] [PubMed]

2006 (4)

C. Mann, L. Yu, and M. Kim, “Movies of cellular and sub-cellular motion by digital holographic microscopy,” Biomed. Eng. Online5, 21 (2006).
[CrossRef] [PubMed]

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt.11, 034005 (2006).
[CrossRef]

T. Colomb, J. Kühn, F. Charrière, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express14, 4300–4306 (2006).
[CrossRef] [PubMed]

F. Charrière, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. D. Mitchell, P. Marquet, and B. Rappaz, “Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba,” Opt. Express14, 7005–7013 (2006).
[CrossRef] [PubMed]

2005 (2)

2004 (2)

G. Coppola, P. Ferraro, M. Iodice, S. D. Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol.15, 529–539 (2004).
[CrossRef]

A. S. Glass and R. Dahm, “The zebrafish as a model organism for eye development.” Ophthalmic. Res.36, 4–24 (2004).
[CrossRef] [PubMed]

2003 (3)

J. Berman, K. Hsu, and A. T. Look, “Zebrafish as a model organism for blood diseases,” Brit. J. Haematol.123, 568–576 (2003).
[CrossRef]

D. Traver, P. Hebomel, E. Patton, R. D. Murphey, J. A. Yoder, G. W. Litman, A. Catic, C. T. Amemiya, L. I. Zon, and N. S. Trede, “The zebrafish as a model organism to study development of the immune system,” Adv. Immunol.81, 254 – 330 (2003).
[CrossRef]

P. Ferraro, S. D. Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt.42, 1938–1946 (2003).
[CrossRef] [PubMed]

2002 (1)

J. F. Amatruda, J. L. Shepard, H. M. Stern, and L. I. Zon, “Zebrafish as a cancer model system,” Cancer Cell1, 229 – 231 (2002).
[CrossRef] [PubMed]

2001 (1)

2000 (2)

E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt.39, 4070–4075 (2000).
[CrossRef]

K. Dooley and L. I. Zon, “Zebrafish: a model system for the study of human disease,” Curr. Opin. Genet. Dev.10, 252 – 256 (2000).
[CrossRef] [PubMed]

1999 (2)

1997 (1)

T. M. Kreis, M. Adams, and W. P. O. Jueptner, “Methods of digital holography: a comparison,” Proc. SPIE, 3098, 224–233 (1997).
[CrossRef]

1996 (1)

Z. Lele and P. Krone, “The zebrafish as a model system in developmental, toxicological and transgenic research,” Biotechnol. Adv.14, 57 – 72 (1996).
[CrossRef] [PubMed]

1994 (1)

D. Y. Stainier and M. C. Fishman, “The zebrafish as a model system to study cardiovascular development,” Trends. Cardiovas. Med.4, 207 – 212 (1994).
[CrossRef]

1985 (1)

F. C. A. Groen, I. T. Young, and G. Ligthart, “A comparison of different focus functions for use in autofocus algorithms,” Cytometry6, 81–91 (1985).
[CrossRef] [PubMed]

1948 (1)

D. Gabor, “A new microscopic principle,” Nature161, 777–778 (1948).
[CrossRef] [PubMed]

Adams, M.

T. M. Kreis, M. Adams, and W. P. O. Jueptner, “Methods of digital holography: a comparison,” Proc. SPIE, 3098, 224–233 (1997).
[CrossRef]

Ali, S.

S. Ali, D. L. Champagne, H. P. Spaink, and M. K. Richardson, “Zebrafish embryos and larvae: A new generation of disease models and drug screens,” Birth Defects Res. C93, 115–133 (2011).
[CrossRef]

Amatruda, J. F.

J. F. Amatruda, J. L. Shepard, H. M. Stern, and L. I. Zon, “Zebrafish as a cancer model system,” Cancer Cell1, 229 – 231 (2002).
[CrossRef] [PubMed]

Amemiya, C. T.

D. Traver, P. Hebomel, E. Patton, R. D. Murphey, J. A. Yoder, G. W. Litman, A. Catic, C. T. Amemiya, L. I. Zon, and N. S. Trede, “The zebrafish as a model organism to study development of the immune system,” Adv. Immunol.81, 254 – 330 (2003).
[CrossRef]

Antkowiak, M.

Aspert, N.

Asundi, A. K.

Ball, G.

G. Ball, R. M. Parton, R. S. Hamilton, and I. Davis, “A cell biologist’s guide to high resolution imaging,” Method Enzymol.504, 29 – 55 (2012).
[CrossRef]

Barbul, A.

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cell Mol. Dis.42, 228 – 232 (2009).
[CrossRef]

Berman, J.

J. Berman, K. Hsu, and A. T. Look, “Zebrafish as a model organism for blood diseases,” Brit. J. Haematol.123, 568–576 (2003).
[CrossRef]

Berns, M. W.

Boss, D.

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cell Mol. Dis.42, 228 – 232 (2009).
[CrossRef]

Bredebusch, I.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt.11, 034005 (2006).
[CrossRef]

Brewster, R.

P. Jayachandran, E. Hong, and R. Brewster, “Labeling and imaging cells in the zebrafish hindbrain,” J. Vis. Exp.41, e1976 (2010).

Carl, D.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt.11, 034005 (2006).
[CrossRef]

Catic, A.

D. Traver, P. Hebomel, E. Patton, R. D. Murphey, J. A. Yoder, G. W. Litman, A. Catic, C. T. Amemiya, L. I. Zon, and N. S. Trede, “The zebrafish as a model organism to study development of the immune system,” Adv. Immunol.81, 254 – 330 (2003).
[CrossRef]

Champagne, D. L.

S. Ali, D. L. Champagne, H. P. Spaink, and M. K. Richardson, “Zebrafish embryos and larvae: A new generation of disease models and drug screens,” Birth Defects Res. C93, 115–133 (2011).
[CrossRef]

Charriere, F.

C. Depeursinge, T. Colomb, Y. Emery, J. Kuhn, F. Charriere, B. Rappaz, and P. Marquet, “Digital holographic microscopy applied to life sciences,” Proc. IEEE Eng. Med. Biol. Soc.2007, 6244–6247 (2007).

Charrière, F.

Chen, Z.

Cheng, C. J.

Choi, Y. S.

S. J. Lee, K. W. Seo, Y. S. Choi, and M. H. Sohn, “Three-dimensional motion measurements of free-swimming microorganisms using digital holographic microscopy,” Meas. Sci. Technol.22, 064004 (2011).
[CrossRef]

Colomb, T.

Combs, C. A.

C. A. Combs, Fluorescence Microscopy: A Concise Guide to Current Imaging Methods (John Wiley and Sons, Inc., 2010).

Cooper, M. S.

M. S. Cooper, L. A. D’Amico, and C. A. Henry, “Confocal microscopic analysis of morphogenetic movements,” Method Cell Biol.59, 179–204 (1999).
[CrossRef]

Coppola, G.

G. Coppola, P. Ferraro, M. Iodice, S. D. Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol.15, 529–539 (2004).
[CrossRef]

P. Ferraro, S. D. Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt.42, 1938–1946 (2003).
[CrossRef] [PubMed]

Cuche, E.

Currie, P. D.

G. J. Lieschke and P. D. Currie, “Animal models of human disease: zebrafish swim into view,” Nat. Rev. Genet.8, 353–367 (2007).
[CrossRef] [PubMed]

D’Amico, L. A.

M. S. Cooper, L. A. D’Amico, and C. A. Henry, “Confocal microscopic analysis of morphogenetic movements,” Method Cell Biol.59, 179–204 (1999).
[CrossRef]

Dahm, R.

A. S. Glass and R. Dahm, “The zebrafish as a model organism for eye development.” Ophthalmic. Res.36, 4–24 (2004).
[CrossRef] [PubMed]

Davis, I.

G. Ball, R. M. Parton, R. S. Hamilton, and I. Davis, “A cell biologist’s guide to high resolution imaging,” Method Enzymol.504, 29 – 55 (2012).
[CrossRef]

Debailleul, M.

M. Debailleul, B. Simon, V. Georges, O. Haeberl, and V. Lauer, “Holographic microscopy and diffractive microtomography of transparent samples,” Meas. Sci. Technol.19, 074009 (2008).
[CrossRef]

Depeursinge, C.

M. F. Toy, S. Richard, J. Kühn, A. Franco-Obregón, M. Egli, and C. Depeursinge, “Enhanced robustness digital holographic microscopy for demanding environment of space biology,” Biomed. Opt. Express3, 313–326 (2012).
[CrossRef] [PubMed]

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cell Mol. Dis.42, 228 – 232 (2009).
[CrossRef]

C. Depeursinge, T. Colomb, Y. Emery, J. Kuhn, F. Charriere, B. Rappaz, and P. Marquet, “Digital holographic microscopy applied to life sciences,” Proc. IEEE Eng. Med. Biol. Soc.2007, 6244–6247 (2007).

F. Charrière, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. D. Mitchell, P. Marquet, and B. Rappaz, “Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba,” Opt. Express14, 7005–7013 (2006).
[CrossRef] [PubMed]

T. Colomb, J. Kühn, F. Charrière, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express14, 4300–4306 (2006).
[CrossRef] [PubMed]

B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express13, 9361–9373 (2005).
[CrossRef] [PubMed]

E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt.39, 4070–4075 (2000).
[CrossRef]

E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt.38, 6994–7001 (1999).
[CrossRef]

Dholakia, K.

Domschke, W.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt.11, 034005 (2006).
[CrossRef]

Dooley, K.

K. Dooley and L. I. Zon, “Zebrafish: a model system for the study of human disease,” Curr. Opin. Genet. Dev.10, 252 – 256 (2000).
[CrossRef] [PubMed]

Egli, M.

Emery, Y.

C. Depeursinge, T. Colomb, Y. Emery, J. Kuhn, F. Charriere, B. Rappaz, and P. Marquet, “Digital holographic microscopy applied to life sciences,” Proc. IEEE Eng. Med. Biol. Soc.2007, 6244–6247 (2007).

B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express13, 9361–9373 (2005).
[CrossRef] [PubMed]

Ferraro, P.

G. Coppola, P. Ferraro, M. Iodice, S. D. Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol.15, 529–539 (2004).
[CrossRef]

P. Ferraro, S. D. Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt.42, 1938–1946 (2003).
[CrossRef] [PubMed]

Finizio, A.

G. Coppola, P. Ferraro, M. Iodice, S. D. Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol.15, 529–539 (2004).
[CrossRef]

P. Ferraro, S. D. Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt.42, 1938–1946 (2003).
[CrossRef] [PubMed]

Fishman, M. C.

D. Y. Stainier and M. C. Fishman, “The zebrafish as a model system to study cardiovascular development,” Trends. Cardiovas. Med.4, 207 – 212 (1994).
[CrossRef]

Franco-Obregón, A.

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature161, 777–778 (1948).
[CrossRef] [PubMed]

Gao, S.

J. Liang, Y. Gui, W. Wang, S. Gao, J. Li, and H. Song, “Elevated glucose induces congenital heart defects by altering the expression of tbx5, tbx20, and has2 in developing zebrafish embryos,” Birth Defects Res. A88, 480–486 (2010).
[CrossRef]

Genc, S.

Georges, V.

M. Debailleul, B. Simon, V. Georges, O. Haeberl, and V. Lauer, “Holographic microscopy and diffractive microtomography of transparent samples,” Meas. Sci. Technol.19, 074009 (2008).
[CrossRef]

Glass, A. S.

A. S. Glass and R. Dahm, “The zebrafish as a model organism for eye development.” Ophthalmic. Res.36, 4–24 (2004).
[CrossRef] [PubMed]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

Grilli, S.

G. Coppola, P. Ferraro, M. Iodice, S. D. Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol.15, 529–539 (2004).
[CrossRef]

P. Ferraro, S. D. Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt.42, 1938–1946 (2003).
[CrossRef] [PubMed]

Groen, F. C. A.

F. C. A. Groen, I. T. Young, and G. Ligthart, “A comparison of different focus functions for use in autofocus algorithms,” Cytometry6, 81–91 (1985).
[CrossRef] [PubMed]

Gui, Y.

J. Liang, Y. Gui, W. Wang, S. Gao, J. Li, and H. Song, “Elevated glucose induces congenital heart defects by altering the expression of tbx5, tbx20, and has2 in developing zebrafish embryos,” Birth Defects Res. A88, 480–486 (2010).
[CrossRef]

Gunn-Moore, F. J.

Haeberl, O.

M. Debailleul, B. Simon, V. Georges, O. Haeberl, and V. Lauer, “Holographic microscopy and diffractive microtomography of transparent samples,” Meas. Sci. Technol.19, 074009 (2008).
[CrossRef]

Hamilton, R. S.

G. Ball, R. M. Parton, R. S. Hamilton, and I. Davis, “A cell biologist’s guide to high resolution imaging,” Method Enzymol.504, 29 – 55 (2012).
[CrossRef]

Hebomel, P.

D. Traver, P. Hebomel, E. Patton, R. D. Murphey, J. A. Yoder, G. W. Litman, A. Catic, C. T. Amemiya, L. I. Zon, and N. S. Trede, “The zebrafish as a model organism to study development of the immune system,” Adv. Immunol.81, 254 – 330 (2003).
[CrossRef]

Heger, T. J.

Henry, C. A.

M. S. Cooper, L. A. D’Amico, and C. A. Henry, “Confocal microscopic analysis of morphogenetic movements,” Method Cell Biol.59, 179–204 (1999).
[CrossRef]

Hoffmann, A.

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cell Mol. Dis.42, 228 – 232 (2009).
[CrossRef]

Hong, E.

P. Jayachandran, E. Hong, and R. Brewster, “Labeling and imaging cells in the zebrafish hindbrain,” J. Vis. Exp.41, e1976 (2010).

Hsu, K.

J. Berman, K. Hsu, and A. T. Look, “Zebrafish as a model organism for blood diseases,” Brit. J. Haematol.123, 568–576 (2003).
[CrossRef]

Iodice, M.

G. Coppola, P. Ferraro, M. Iodice, S. D. Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol.15, 529–539 (2004).
[CrossRef]

Isogai, S.

M. Kamei, S. Isogai, W. Pan, and B. M. Weinstein, “Imaging blood vessels in the zebrafish,” Method Cell Biol.100, 27 – 54 (2010).
[CrossRef]

Jayachandran, P.

P. Jayachandran, E. Hong, and R. Brewster, “Labeling and imaging cells in the zebrafish hindbrain,” J. Vis. Exp.41, e1976 (2010).

Jing, L.

L. Jing and L. I. Zon, “Zebrafish as a model for normal and malignant hematopoiesis,” Dis. Model Mech.4, 433–438 (2011).
[CrossRef] [PubMed]

Jueptner, W.

U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2005).

Jueptner, W. P. O.

T. M. Kreis, M. Adams, and W. P. O. Jueptner, “Methods of digital holography: a comparison,” Proc. SPIE, 3098, 224–233 (1997).
[CrossRef]

Kamei, M.

M. Kamei, S. Isogai, W. Pan, and B. M. Weinstein, “Imaging blood vessels in the zebrafish,” Method Cell Biol.100, 27 – 54 (2010).
[CrossRef]

Kemper, B.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt.11, 034005 (2006).
[CrossRef]

Kettunen, P.

P. Kettunen, “Calcium imaging in the zebrafish,” Method Cell Biol.740, 1039–1071 (2012).

Kim, M.

C. Mann, L. Yu, and M. Kim, “Movies of cellular and sub-cellular motion by digital holographic microscopy,” Biomed. Eng. Online5, 21 (2006).
[CrossRef] [PubMed]

C. Mann, L. Yu, C.-M. Lo, and M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express13, 8693–8698 (2005).
[CrossRef] [PubMed]

Kim, M. K.

Kompenhans, J.

M. Raffel, C. E. Willert, S. T. Wereley, and J. Kompenhans, Particle Image Velocimetry: A Practical Guide (Springer, 2007).

Korenstein, R.

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cell Mol. Dis.42, 228 – 232 (2009).
[CrossRef]

Kreis, T. M.

T. M. Kreis, M. Adams, and W. P. O. Jueptner, “Methods of digital holography: a comparison,” Proc. SPIE, 3098, 224–233 (1997).
[CrossRef]

Krone, P.

Z. Lele and P. Krone, “The zebrafish as a model system in developmental, toxicological and transgenic research,” Biotechnol. Adv.14, 57 – 72 (1996).
[CrossRef] [PubMed]

Kuhn, J.

C. Depeursinge, T. Colomb, Y. Emery, J. Kuhn, F. Charriere, B. Rappaz, and P. Marquet, “Digital holographic microscopy applied to life sciences,” Proc. IEEE Eng. Med. Biol. Soc.2007, 6244–6247 (2007).

Kühn, J.

Lauer, V.

M. Debailleul, B. Simon, V. Georges, O. Haeberl, and V. Lauer, “Holographic microscopy and diffractive microtomography of transparent samples,” Meas. Sci. Technol.19, 074009 (2008).
[CrossRef]

Lee, S. J.

S. J. Lee, K. W. Seo, Y. S. Choi, and M. H. Sohn, “Three-dimensional motion measurements of free-swimming microorganisms using digital holographic microscopy,” Meas. Sci. Technol.22, 064004 (2011).
[CrossRef]

Lele, Z.

Z. Lele and P. Krone, “The zebrafish as a model system in developmental, toxicological and transgenic research,” Biotechnol. Adv.14, 57 – 72 (1996).
[CrossRef] [PubMed]

Li, J.

J. Liang, Y. Gui, W. Wang, S. Gao, J. Li, and H. Song, “Elevated glucose induces congenital heart defects by altering the expression of tbx5, tbx20, and has2 in developing zebrafish embryos,” Birth Defects Res. A88, 480–486 (2010).
[CrossRef]

Liang, J.

J. Liang, Y. Gui, W. Wang, S. Gao, J. Li, and H. Song, “Elevated glucose induces congenital heart defects by altering the expression of tbx5, tbx20, and has2 in developing zebrafish embryos,” Birth Defects Res. A88, 480–486 (2010).
[CrossRef]

Lieschke, G. J.

G. J. Lieschke and P. D. Currie, “Animal models of human disease: zebrafish swim into view,” Nat. Rev. Genet.8, 353–367 (2007).
[CrossRef] [PubMed]

Ligthart, G.

F. C. A. Groen, I. T. Young, and G. Ligthart, “A comparison of different focus functions for use in autofocus algorithms,” Cytometry6, 81–91 (1985).
[CrossRef] [PubMed]

Lin, Y. C.

Litman, G. W.

D. Traver, P. Hebomel, E. Patton, R. D. Murphey, J. A. Yoder, G. W. Litman, A. Catic, C. T. Amemiya, L. I. Zon, and N. S. Trede, “The zebrafish as a model organism to study development of the immune system,” Adv. Immunol.81, 254 – 330 (2003).
[CrossRef]

Lo, C.-M.

Look, A. T.

J. Berman, K. Hsu, and A. T. Look, “Zebrafish as a model organism for blood diseases,” Brit. J. Haematol.123, 568–576 (2003).
[CrossRef]

Magistretti, P.

Magistretti, P. J.

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cell Mol. Dis.42, 228 – 232 (2009).
[CrossRef]

Magro, C.

Mann, C.

C. Mann, L. Yu, and M. Kim, “Movies of cellular and sub-cellular motion by digital holographic microscopy,” Biomed. Eng. Online5, 21 (2006).
[CrossRef] [PubMed]

C. Mann, L. Yu, C.-M. Lo, and M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express13, 8693–8698 (2005).
[CrossRef] [PubMed]

Marquet, P.

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cell Mol. Dis.42, 228 – 232 (2009).
[CrossRef]

C. Depeursinge, T. Colomb, Y. Emery, J. Kuhn, F. Charriere, B. Rappaz, and P. Marquet, “Digital holographic microscopy applied to life sciences,” Proc. IEEE Eng. Med. Biol. Soc.2007, 6244–6247 (2007).

F. Charrière, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. D. Mitchell, P. Marquet, and B. Rappaz, “Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba,” Opt. Express14, 7005–7013 (2006).
[CrossRef] [PubMed]

T. Colomb, J. Kühn, F. Charrière, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express14, 4300–4306 (2006).
[CrossRef] [PubMed]

B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express13, 9361–9373 (2005).
[CrossRef] [PubMed]

E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt.39, 4070–4075 (2000).
[CrossRef]

E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt.38, 6994–7001 (1999).
[CrossRef]

Miao, J.

Mitchell, E. A. D.

Mohanty, S.

Murphey, R. D.

D. Traver, P. Hebomel, E. Patton, R. D. Murphey, J. A. Yoder, G. W. Litman, A. Catic, C. T. Amemiya, L. I. Zon, and N. S. Trede, “The zebrafish as a model organism to study development of the immune system,” Adv. Immunol.81, 254 – 330 (2003).
[CrossRef]

Nicola, S. D.

G. Coppola, P. Ferraro, M. Iodice, S. D. Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol.15, 529–539 (2004).
[CrossRef]

P. Ferraro, S. D. Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt.42, 1938–1946 (2003).
[CrossRef] [PubMed]

Pan, W.

M. Kamei, S. Isogai, W. Pan, and B. M. Weinstein, “Imaging blood vessels in the zebrafish,” Method Cell Biol.100, 27 – 54 (2010).
[CrossRef]

Pardo-Martin, C.

M. F. Yanik, C. B. Rohde, and C. Pardo-Martin, “Technologies for micromanipulating, imaging, and phenotyping small invertebrates and vertebrates,” Annu. Rev. Biomed. Eng.13, 185–217 (2011).
[CrossRef] [PubMed]

Parton, R. M.

G. Ball, R. M. Parton, R. S. Hamilton, and I. Davis, “A cell biologist’s guide to high resolution imaging,” Method Enzymol.504, 29 – 55 (2012).
[CrossRef]

Patton, E.

D. Traver, P. Hebomel, E. Patton, R. D. Murphey, J. A. Yoder, G. W. Litman, A. Catic, C. T. Amemiya, L. I. Zon, and N. S. Trede, “The zebrafish as a model organism to study development of the immune system,” Adv. Immunol.81, 254 – 330 (2003).
[CrossRef]

Pavillon, N.

Peng, X.

Pierattini, G.

Poon, T. C.

Popescu, G.

G. Popescu, Quantitative Phase Imaging of Cells and Tissues (McGraw-Hill, 2011).

Raffel, M.

M. Raffel, C. E. Willert, S. T. Wereley, and J. Kompenhans, Particle Image Velocimetry: A Practical Guide (Springer, 2007).

Rappaz, B.

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cell Mol. Dis.42, 228 – 232 (2009).
[CrossRef]

C. Depeursinge, T. Colomb, Y. Emery, J. Kuhn, F. Charriere, B. Rappaz, and P. Marquet, “Digital holographic microscopy applied to life sciences,” Proc. IEEE Eng. Med. Biol. Soc.2007, 6244–6247 (2007).

F. Charrière, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. D. Mitchell, P. Marquet, and B. Rappaz, “Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba,” Opt. Express14, 7005–7013 (2006).
[CrossRef] [PubMed]

B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express13, 9361–9373 (2005).
[CrossRef] [PubMed]

Richard, S.

Richardson, M. K.

S. Ali, D. L. Champagne, H. P. Spaink, and M. K. Richardson, “Zebrafish embryos and larvae: A new generation of disease models and drug screens,” Birth Defects Res. C93, 115–133 (2011).
[CrossRef]

Rohde, C. B.

M. F. Yanik, C. B. Rohde, and C. Pardo-Martin, “Technologies for micromanipulating, imaging, and phenotyping small invertebrates and vertebrates,” Annu. Rev. Biomed. Eng.13, 185–217 (2011).
[CrossRef] [PubMed]

Schäfer, M.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt.11, 034005 (2006).
[CrossRef]

Schnars, U.

U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2005).

Schnekenburger, J.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt.11, 034005 (2006).
[CrossRef]

Seo, K. W.

S. J. Lee, K. W. Seo, Y. S. Choi, and M. H. Sohn, “Three-dimensional motion measurements of free-swimming microorganisms using digital holographic microscopy,” Meas. Sci. Technol.22, 064004 (2011).
[CrossRef]

Shepard, J. L.

J. F. Amatruda, J. L. Shepard, H. M. Stern, and L. I. Zon, “Zebrafish as a cancer model system,” Cancer Cell1, 229 – 231 (2002).
[CrossRef] [PubMed]

Simon, B.

M. Debailleul, B. Simon, V. Georges, O. Haeberl, and V. Lauer, “Holographic microscopy and diffractive microtomography of transparent samples,” Meas. Sci. Technol.19, 074009 (2008).
[CrossRef]

Sohn, M. H.

S. J. Lee, K. W. Seo, Y. S. Choi, and M. H. Sohn, “Three-dimensional motion measurements of free-swimming microorganisms using digital holographic microscopy,” Meas. Sci. Technol.22, 064004 (2011).
[CrossRef]

Song, H.

J. Liang, Y. Gui, W. Wang, S. Gao, J. Li, and H. Song, “Elevated glucose induces congenital heart defects by altering the expression of tbx5, tbx20, and has2 in developing zebrafish embryos,” Birth Defects Res. A88, 480–486 (2010).
[CrossRef]

Spaink, H. P.

S. Ali, D. L. Champagne, H. P. Spaink, and M. K. Richardson, “Zebrafish embryos and larvae: A new generation of disease models and drug screens,” Birth Defects Res. C93, 115–133 (2011).
[CrossRef]

Stainier, D. Y.

D. Y. Stainier and M. C. Fishman, “The zebrafish as a model system to study cardiovascular development,” Trends. Cardiovas. Med.4, 207 – 212 (1994).
[CrossRef]

Stern, H. M.

J. F. Amatruda, J. L. Shepard, H. M. Stern, and L. I. Zon, “Zebrafish as a cancer model system,” Cancer Cell1, 229 – 231 (2002).
[CrossRef] [PubMed]

Torres-Mapa, M. L.

Toy, M. F.

Traver, D.

D. Traver, P. Hebomel, E. Patton, R. D. Murphey, J. A. Yoder, G. W. Litman, A. Catic, C. T. Amemiya, L. I. Zon, and N. S. Trede, “The zebrafish as a model organism to study development of the immune system,” Adv. Immunol.81, 254 – 330 (2003).
[CrossRef]

Trede, N. S.

D. Traver, P. Hebomel, E. Patton, R. D. Murphey, J. A. Yoder, G. W. Litman, A. Catic, C. T. Amemiya, L. I. Zon, and N. S. Trede, “The zebrafish as a model organism to study development of the immune system,” Adv. Immunol.81, 254 – 330 (2003).
[CrossRef]

von Bally, G.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt.11, 034005 (2006).
[CrossRef]

Wang, W.

J. Liang, Y. Gui, W. Wang, S. Gao, J. Li, and H. Song, “Elevated glucose induces congenital heart defects by altering the expression of tbx5, tbx20, and has2 in developing zebrafish embryos,” Birth Defects Res. A88, 480–486 (2010).
[CrossRef]

Weinstein, B. M.

M. Kamei, S. Isogai, W. Pan, and B. M. Weinstein, “Imaging blood vessels in the zebrafish,” Method Cell Biol.100, 27 – 54 (2010).
[CrossRef]

Wereley, S. T.

M. Raffel, C. E. Willert, S. T. Wereley, and J. Kompenhans, Particle Image Velocimetry: A Practical Guide (Springer, 2007).

Willert, C. E.

M. Raffel, C. E. Willert, S. T. Wereley, and J. Kompenhans, Particle Image Velocimetry: A Practical Guide (Springer, 2007).

Xu, L.

Yanik, M. F.

M. F. Yanik, C. B. Rohde, and C. Pardo-Martin, “Technologies for micromanipulating, imaging, and phenotyping small invertebrates and vertebrates,” Annu. Rev. Biomed. Eng.13, 185–217 (2011).
[CrossRef] [PubMed]

Yoder, J. A.

D. Traver, P. Hebomel, E. Patton, R. D. Murphey, J. A. Yoder, G. W. Litman, A. Catic, C. T. Amemiya, L. I. Zon, and N. S. Trede, “The zebrafish as a model organism to study development of the immune system,” Adv. Immunol.81, 254 – 330 (2003).
[CrossRef]

Young, I. T.

F. C. A. Groen, I. T. Young, and G. Ligthart, “A comparison of different focus functions for use in autofocus algorithms,” Cytometry6, 81–91 (1985).
[CrossRef] [PubMed]

Yu, L.

Zhang, J.

Zon, L. I.

L. Jing and L. I. Zon, “Zebrafish as a model for normal and malignant hematopoiesis,” Dis. Model Mech.4, 433–438 (2011).
[CrossRef] [PubMed]

D. Traver, P. Hebomel, E. Patton, R. D. Murphey, J. A. Yoder, G. W. Litman, A. Catic, C. T. Amemiya, L. I. Zon, and N. S. Trede, “The zebrafish as a model organism to study development of the immune system,” Adv. Immunol.81, 254 – 330 (2003).
[CrossRef]

J. F. Amatruda, J. L. Shepard, H. M. Stern, and L. I. Zon, “Zebrafish as a cancer model system,” Cancer Cell1, 229 – 231 (2002).
[CrossRef] [PubMed]

K. Dooley and L. I. Zon, “Zebrafish: a model system for the study of human disease,” Curr. Opin. Genet. Dev.10, 252 – 256 (2000).
[CrossRef] [PubMed]

Adv. Immunol. (1)

D. Traver, P. Hebomel, E. Patton, R. D. Murphey, J. A. Yoder, G. W. Litman, A. Catic, C. T. Amemiya, L. I. Zon, and N. S. Trede, “The zebrafish as a model organism to study development of the immune system,” Adv. Immunol.81, 254 – 330 (2003).
[CrossRef]

Annu. Rev. Biomed. Eng. (1)

M. F. Yanik, C. B. Rohde, and C. Pardo-Martin, “Technologies for micromanipulating, imaging, and phenotyping small invertebrates and vertebrates,” Annu. Rev. Biomed. Eng.13, 185–217 (2011).
[CrossRef] [PubMed]

Appl. Opt. (5)

Biomed. Eng. Online (1)

C. Mann, L. Yu, and M. Kim, “Movies of cellular and sub-cellular motion by digital holographic microscopy,” Biomed. Eng. Online5, 21 (2006).
[CrossRef] [PubMed]

Biomed. Opt. Express (2)

Biotechnol. Adv. (1)

Z. Lele and P. Krone, “The zebrafish as a model system in developmental, toxicological and transgenic research,” Biotechnol. Adv.14, 57 – 72 (1996).
[CrossRef] [PubMed]

Birth Defects Res. A (1)

J. Liang, Y. Gui, W. Wang, S. Gao, J. Li, and H. Song, “Elevated glucose induces congenital heart defects by altering the expression of tbx5, tbx20, and has2 in developing zebrafish embryos,” Birth Defects Res. A88, 480–486 (2010).
[CrossRef]

Birth Defects Res. C (1)

S. Ali, D. L. Champagne, H. P. Spaink, and M. K. Richardson, “Zebrafish embryos and larvae: A new generation of disease models and drug screens,” Birth Defects Res. C93, 115–133 (2011).
[CrossRef]

Blood Cell Mol. Dis. (1)

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cell Mol. Dis.42, 228 – 232 (2009).
[CrossRef]

Brit. J. Haematol. (1)

J. Berman, K. Hsu, and A. T. Look, “Zebrafish as a model organism for blood diseases,” Brit. J. Haematol.123, 568–576 (2003).
[CrossRef]

Cancer Cell (1)

J. F. Amatruda, J. L. Shepard, H. M. Stern, and L. I. Zon, “Zebrafish as a cancer model system,” Cancer Cell1, 229 – 231 (2002).
[CrossRef] [PubMed]

Curr. Opin. Genet. Dev. (1)

K. Dooley and L. I. Zon, “Zebrafish: a model system for the study of human disease,” Curr. Opin. Genet. Dev.10, 252 – 256 (2000).
[CrossRef] [PubMed]

Cytometry (1)

F. C. A. Groen, I. T. Young, and G. Ligthart, “A comparison of different focus functions for use in autofocus algorithms,” Cytometry6, 81–91 (1985).
[CrossRef] [PubMed]

Dis. Model Mech. (1)

L. Jing and L. I. Zon, “Zebrafish as a model for normal and malignant hematopoiesis,” Dis. Model Mech.4, 433–438 (2011).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt.11, 034005 (2006).
[CrossRef]

J. Vis. Exp. (1)

P. Jayachandran, E. Hong, and R. Brewster, “Labeling and imaging cells in the zebrafish hindbrain,” J. Vis. Exp.41, e1976 (2010).

Meas. Sci. Technol. (3)

M. Debailleul, B. Simon, V. Georges, O. Haeberl, and V. Lauer, “Holographic microscopy and diffractive microtomography of transparent samples,” Meas. Sci. Technol.19, 074009 (2008).
[CrossRef]

G. Coppola, P. Ferraro, M. Iodice, S. D. Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol.15, 529–539 (2004).
[CrossRef]

S. J. Lee, K. W. Seo, Y. S. Choi, and M. H. Sohn, “Three-dimensional motion measurements of free-swimming microorganisms using digital holographic microscopy,” Meas. Sci. Technol.22, 064004 (2011).
[CrossRef]

Method Cell Biol. (3)

M. Kamei, S. Isogai, W. Pan, and B. M. Weinstein, “Imaging blood vessels in the zebrafish,” Method Cell Biol.100, 27 – 54 (2010).
[CrossRef]

P. Kettunen, “Calcium imaging in the zebrafish,” Method Cell Biol.740, 1039–1071 (2012).

M. S. Cooper, L. A. D’Amico, and C. A. Henry, “Confocal microscopic analysis of morphogenetic movements,” Method Cell Biol.59, 179–204 (1999).
[CrossRef]

Method Enzymol. (1)

G. Ball, R. M. Parton, R. S. Hamilton, and I. Davis, “A cell biologist’s guide to high resolution imaging,” Method Enzymol.504, 29 – 55 (2012).
[CrossRef]

Nat. Rev. Genet. (1)

G. J. Lieschke and P. D. Currie, “Animal models of human disease: zebrafish swim into view,” Nat. Rev. Genet.8, 353–367 (2007).
[CrossRef] [PubMed]

Nature (1)

D. Gabor, “A new microscopic principle,” Nature161, 777–778 (1948).
[CrossRef] [PubMed]

Ophthalmic. Res. (1)

A. S. Glass and R. Dahm, “The zebrafish as a model organism for eye development.” Ophthalmic. Res.36, 4–24 (2004).
[CrossRef] [PubMed]

Opt. Express (5)

Proc. IEEE Eng. Med. Biol. Soc. (1)

C. Depeursinge, T. Colomb, Y. Emery, J. Kuhn, F. Charriere, B. Rappaz, and P. Marquet, “Digital holographic microscopy applied to life sciences,” Proc. IEEE Eng. Med. Biol. Soc.2007, 6244–6247 (2007).

Proc. SPIE (1)

T. M. Kreis, M. Adams, and W. P. O. Jueptner, “Methods of digital holography: a comparison,” Proc. SPIE, 3098, 224–233 (1997).
[CrossRef]

SPIE Rev. (1)

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev.1, 018005 (2010).
[CrossRef]

Trends. Cardiovas. Med. (1)

D. Y. Stainier and M. C. Fishman, “The zebrafish as a model system to study cardiovascular development,” Trends. Cardiovas. Med.4, 207 – 212 (1994).
[CrossRef]

Other (5)

C. A. Combs, Fluorescence Microscopy: A Concise Guide to Current Imaging Methods (John Wiley and Sons, Inc., 2010).

M. Raffel, C. E. Willert, S. T. Wereley, and J. Kompenhans, Particle Image Velocimetry: A Practical Guide (Springer, 2007).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2005).

G. Popescu, Quantitative Phase Imaging of Cells and Tissues (McGraw-Hill, 2011).

Supplementary Material (1)

» Media 1: MOV (2302 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic illustration of the principle of holography. (a) In-line recording. (b) In-line reconstruction. (c) Off-axis recording. (d) Off-axis reconstruction.

Fig. 2
Fig. 2

Schematic illustration of the DHM system. BS, beam splitter; O, object beam; R, reference beam; M, mirror; PD, petri dish; R-MO, reference MO; θ, off-axis angle.

Fig. 3
Fig. 3

Processing of zebrafish embryo holograms. (a) Reconstructed amplitude image of a 54 hour-post-fertilization (hpf) zebrafish embryo. The hologram is obtained using a 3.5X MO. Because of the limited field of view (FOV), two reconstructed image are combined to form the entire zebrafish embryo image. The square encloses the region of interest in subplots (b)–(g). (b) A hologram that records the trunk of the zebrafish, recorded using a 10X MO. Inset gives a zoom-in view of the recorded interference pattern. (c) The 2D Fourier spectrum of the hologram in (b). The twin image term (circled) and DC term (squared) are identified in a pre-processing step. (d) The Fourier spectrum with twin image term and DC term filtered digitally. (e) Reconstructed image at depth location d = 0.040 m. The spots on the body are in focus (inset). (f) Reconstruction at d = 0.065 m. The blood cells (white dots, inset) are in focus. (g) Reconstruction at d = 0.080 m. The gaps between somites and nodal cords are in focus (inset).

Fig. 4
Fig. 4

Calibration method. (a) Schematic diagram of the calibration process. (b) A representative of calibration results for the 10X MO. (c) A representative of calibration results for the 40X MO.

Fig. 5
Fig. 5

Illustration of the auto-focusing and velocity extraction procedure. All images are recorded using the 10X MO. (a) Blood flow video made from reconstructed images ( Media 1). (b) A difference image. (c) A raw image of the blood vessel reconstructed at d = 0.025 m. (d) A raw image of the blood vessel reconstructed at d = 0.06 m. (e) A raw binary image of the blood vessel. (f) The binary image of the blood vessel of interest. (g) A sample normalized variance profile. (h) Velocities of blood cell (shown as blue arrows) extracted by PIV algorithms.

Fig. 6
Fig. 6

Reconstructed amplitude images of developing whole zebrafish embryos and tissue structures. (a) Lateral view of an early zebrafish embryo at 4 hpf with animal pole to the top. (b)–(f) Side views with head (anterior) region to the left and back(dorsal) region to the top. Normal morphology of zebrafish embryos at 12 (b), 15 (c), 17 (d), 24 (e) and 48 (d) hpf. (g)–(i) Lateral views with anterior to the left. Higher magnification of the mid-body section of the developing zebrafish embryo at 48 hpf. A, animal pole; BC, blood cells; E, eye; F, fin; H, head; N, notochord; S, somites; T, tail; V, vegetal pole and Y, yolk. The scale bars are 150 μm in (a)–(f) and 75 μm in (g)–(i), respectively.

Fig. 7
Fig. 7

Effects of elevated D-glucose on cardiovascular function of zebrafish embryos. (a) Comparison of time-resolved blood flow rate between D-glucose treated and untreated wild-type zebrafish embryos. (b) Comparison of mean heart rate between D-glucose treated and untreated wild-type zebrafish embryo at 36 hpf and 54 hpf.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

t ( x , y ) = | E r ( x , y ) + E o ( x , y ) | 2 ,
E i ( x , y , d ) = [ t ( x , y ) E r ( x , y ) ] h ( x , y , d ) ,
h ( x , y , d ) = 1 j λ exp ( j k x 2 + y 2 + d 2 ) x 2 + y 2 + d 2 ,
1 z o , i + 1 z img , i = 1 f M i = z img , i z o , i z img , i = l d i ,
M i = 1 f d i + l f 1 .
M = 62.35 × d + 28.49 ,
z o = 0.016 + 0.016 2 0.454 d .
1 d 2 = 1 d 2 1 z r + 1 z r and M = d 2 d 2 .

Metrics