Abstract

Using transcranial near-infrared spectroscopy (NIRS) to measure changes in the redox state of cerebral cytochrome c oxidase (Δ[oxCCO]) during functional activation in healthy adults is hampered by instrumentation and algorithm issues. This study reports the Δ[oxCCO] response measured in such a setting and investigates possible confounders of this measurement. Continuous frontal lobe NIRS measurements were collected from 11 healthy volunteers during a 6-minute anagram-solving task, using a hybrid optical spectrometer (pHOS) that combines multi-distance frequency and broadband components. Only data sets showing a hemodynamic response consistent with functional activation were interrogated for a Δ[oxCCO] response. Simultaneous systemic monitoring data were also available. Possible influences on the Δ[oxCCO] response were systematically investigated and there was no effect of: 1) wavelength range chosen for fitting the measured attenuation spectra; 2) constant or measured, with the pHOS in real-time, differential pathlength factor; 3) systemic hemodynamic changes during functional activation; 4) changes in optical scattering during functional activation. The Δ[oxCCO] response measured in the presence of functional activation was heterogeneous, with the majority of subjects showing significant increase in oxidation, but others having a decrease. We conclude that the heterogeneity in the Δ[oxCCO] response is physiological and not induced by confounding factors in the measurements.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Obrig and A. Villringer, “Beyond the visible--imaging the human brain with light,” J. Cereb. Blood Flow Metab.23(1), 1–18 (2003).
    [CrossRef] [PubMed]
  2. Y. Kakihana, A. Matsunaga, T. Yasuda, T. Imabayashi, Y. Kanmura, and M. Tamura, “Brain oxymetry in the operating room: current status and future directions with particular regard to cytochrome oxidase,” J. Biomed. Opt.13(3), 033001 (2008).
    [CrossRef] [PubMed]
  3. D. Highton, C. Elwell, and M. Smith, “Noninvasive cerebral oximetry: is there light at the end of the tunnel?” Curr. Opin. Anaesthesiol.23(5), 576–581 (2010).
    [CrossRef] [PubMed]
  4. M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt.12(6), 062104 (2007).
    [CrossRef] [PubMed]
  5. C. E. Cooper, M. Cope, R. Springett, P. N. Amess, J. Penrice, L. Tyszczuk, S. Punwani, R. Ordidge, J. Wyatt, and D. T. Delpy, “Use of mitochondrial inhibitors to demonstrate that cytochrome oxidase near-infrared spectroscopy can measure mitochondrial dysfunction noninvasively in the brain,” J. Cereb. Blood Flow Metab.19(1), 27–38 (1999).
    [CrossRef] [PubMed]
  6. C. E. Cooper and R. Springett, “Measurement of cytochrome oxidase and mitochondrial energetics by near-infrared spectroscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 669–676 (1997).
    [CrossRef] [PubMed]
  7. F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science198(4323), 1264–1267 (1977).
    [CrossRef] [PubMed]
  8. M. Banaji, “A generic model of electron transport in mitochondria,” J. Theor. Biol.243(4), 501–516 (2006).
    [CrossRef] [PubMed]
  9. M. Banaji, A. Mallet, C. E. Elwell, P. Nicholls, and C. E. Cooper, “A model of brain circulation and metabolism: NIRS signal changes during physiological challenges,” PLOS Comput. Biol.4(11), e1000212 (2008).
    [CrossRef] [PubMed]
  10. M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Changes in the attenuation of near infrared spectra by the healthy adult brain during hypoxaemia cannot be accounted for solely by changes in the concentrations of oxy- and deoxy-haemoglobin,” Adv. Exp. Med. Biol.614, 217–225 (2008).
    [CrossRef] [PubMed]
  11. K. Uludag, M. Kohl, J. Steinbrink, H. Obrig, and A. Villringer, “Cross talk in the Lambert-Beer calculation for near-infrared wavelengths estimated by Monte Carlo simulations,” J. Biomed. Opt.7(1), 51–59 (2002).
    [CrossRef] [PubMed]
  12. K. Uludağ, J. Steinbrink, M. Kohl-Bareis, R. Wenzel, A. Villringer, and H. Obrig, “Cytochrome-c-oxidase redox changes during visual stimulation measured by near-infrared spectroscopy cannot be explained by a mere cross talk artefact,” Neuroimage22(1), 109–119 (2004).
    [CrossRef] [PubMed]
  13. R. Springett, J. Newman, M. Cope, and D. T. Delpy, “Oxygen dependency and precision of cytochrome oxidase signal from full spectral NIRS of the piglet brain,” Am. J. Physiol. Heart Circ. Physiol.279(5), H2202–H2209 (2000).
    [PubMed]
  14. H. R. Heekeren, M. Kohl, H. Obrig, R. Wenzel, W. von Pannwitz, S. J. Matcher, U. Dirnagl, C. E. Cooper, and A. Villringer, “Noninvasive assessment of changes in cytochrome-c oxidase oxidation in human subjects during visual stimulation,” J. Cereb. Blood Flow Metab.19(6), 592–603 (1999).
    [CrossRef] [PubMed]
  15. M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Increase in cerebral aerobic metabolism by normobaric hyperoxia after traumatic brain injury,” J. Neurosurg.109(3), 424–432 (2008).
    [CrossRef] [PubMed]
  16. M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Near-infrared spectroscopic quantification of changes in the concentration of oxidized cytochrome c oxidase in the healthy human brain during hypoxemia,” J. Biomed. Opt.12(2), 024002 (2007).
    [CrossRef] [PubMed]
  17. I. Tachtsidis, M. M. Tisdall, T. S. Leung, C. Pritchard, C. E. Cooper, M. Smith, and C. E. Elwell, “Relationship between brain tissue haemodynamics, oxygenation and metabolism in the healthy human adult brain during hyperoxia and hypercapnea,” Adv. Exp. Med. Biol.645, 315–320 (2009).
    [CrossRef] [PubMed]
  18. I. Tachtsidis, M. Tisdall, T. S. Leung, C. E. Cooper, D. T. Delpy, M. Smith, and C. E. Elwell, “Investigation of in vivo measurement of cerebral cytochrome-c-oxidase redox changes using near-infrared spectroscopy in patients with orthostatic hypotension,” Physiol. Meas.28(2), 199–211 (2007).
    [CrossRef] [PubMed]
  19. Y. Kakihana, A. Matsunaga, K. Tobo, S. Isowaki, M. Kawakami, I. Tsuneyoshi, Y. Kanmura, and M. Tamura, “Redox behavior of cytochrome oxidase and neurological prognosis in 66 patients who underwent thoracic aortic surgery,” Eur. J. Cardiothorac. Surg.21(3), 434–439 (2002).
    [CrossRef] [PubMed]
  20. A. D. McGown, H. Makker, C. Elwell, P. G. Al Rawi, A. Valipour, and S. G. Spiro, “Measurement of changes in cytochrome oxidase redox state during obstructive sleep apnea using near-infrared spectroscopy,” Sleep26(6), 710–716 (2003).
    [PubMed]
  21. I. Tachtsidis, L. Gao, T. S. Leung, M. Kohl-Bareis, C. E. Cooper, and C. E. Elwell, “A hybrid multi-distance phase and broadband spatially resolved spectrometer and algorithm for resolving absolute concentrations of chromophores in the near-infrared light spectrum,” Adv. Exp. Med. Biol.662, 169–175 (2010).
    [CrossRef] [PubMed]
  22. L. Aziz-Zadeh, J. T. Kaplan, and M. Iacoboni, “‘Aha!’: The neural correlates of verbal insight solutions,” Hum. Brain Mapp.30(3), 908–916 (2009).
    [CrossRef] [PubMed]
  23. N. M. Gregg, B. R. White, B. W. Zeff, A. J. Berger, and J. P. Culver, “Brain specificity of diffuse optical imaging: improvements from superficial signal regression and tomography,” Front Neuroenergetics2, 14 (2010).
    [PubMed]
  24. I. Tachtsidis, T. S. Leung, A. Chopra, P. H. Koh, C. B. Reid, and C. E. Elwell, “False positives in functional near-infrared topography,” Adv. Exp. Med. Biol.645, 307–314 (2009).
    [CrossRef] [PubMed]
  25. L. Minati, I. U. Kress, E. Visani, N. Medford, and H. D. Critchley, “Intra- and extra-cranial effects of transient blood pressure changes on brain near-infrared spectroscopy (NIRS) measurements,” J. Neurosci. Methods197(2), 283–288 (2011).
    [CrossRef] [PubMed]
  26. T. Takahashi, Y. Takikawa, R. Kawagoe, S. Shibuya, T. Iwano, and S. Kitazawa, “Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task,” Neuroimage57(3), 991–1002 (2011).
    [CrossRef] [PubMed]
  27. I. Tachtsidis, T. S. Leung, L. Devoto, D. T. Delpy, and C. E. Elwell, “Measurement of frontal lobe functional activation and related systemic effects: a near-infrared spectroscopy investigation,” Adv. Exp. Med. Biol.614, 397–403 (2008).
    [CrossRef] [PubMed]
  28. I. Tachtsidis, T. S. Leung, M. M. Tisdall, P. Devendra, M. Smith, D. T. Delpy, and C. E. Elwell, “Investigation of frontal cortex, motor cortex and systemic haemodynamic changes during anagram solving,” Adv. Exp. Med. Biol.614, 21–28 (2008).
    [CrossRef] [PubMed]
  29. I. Tachtsidis, T. S. Leung, B. Tahir, C. E. Elwell, M. Kohl-Bareis, M. Gramer, and C. E. Cooper, “A hybrid multi-distance phase and broadband spatially resolved algorithm for resolving absolute concentrations of chromophores in the near-infrared light spectrum: application on to dynamic phantoms,” in Biomedical Optics, OSA Technical Digest (Optical Society of America, 2008), paper BSuE76.
  30. L. Gao, C. E. Elwell, M. Kohl-Bareis, M. Gramer, C. E. Cooper, T. S. Leung, and I. Tachtsidis, “Effects of assuming constant optical scattering on haemoglobin concentration measurements using NIRS during a Valsalva manoeuvre,” Adv. Exp. Med. Biol.701, 15–20 (2011).
    [CrossRef] [PubMed]
  31. S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol.44(6), 1543–1563 (1999).
    [CrossRef] [PubMed]
  32. E. R. Reilly, “EEG recording and operation of the apparatus,” in Electroencephalography: Basic Principles, Clinical Applications and Related Fields, E. Niedermeyer and F. H. L. Da Silva, eds. (Lippincott Williams and Wilkins, 2005), pp. 139–160.
  33. S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, and D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithms,” Anal. Biochem.227(1), 54–68 (1995).
    [CrossRef] [PubMed]
  34. M. Essenpreis, C. E. Elwell, M. Cope, P. van der Zee, S. R. Arridge, and D. T. Delpy, “Spectral dependence of temporal point spread functions in human tissues,” Appl. Opt.32(4), 418–425 (1993).
    [CrossRef] [PubMed]
  35. A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. T. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol.40(2), 295–304 (1995).
    [CrossRef] [PubMed]
  36. C. E. Cooper, S. J. Matcher, J. S. Wyatt, M. Cope, G. C. Brown, E. M. Nemoto, and D. T. Delpy, “Near-infrared spectroscopy of the brain: relevance to cytochrome oxidase bioenergetics,” Biochem. Soc. Trans.22(4), 974–980 (1994).
    [PubMed]
  37. B. Chance and G. R. Williams, “Respiratory enzymes in oxidative phosphorylation. III. The steady state,” J. Biol. Chem.217(1), 409–427 (1955).
    [PubMed]
  38. C. W. Shuttleworth, A. M. Brennan, and J. A. Connor, “NAD(P)H fluorescence imaging of postsynaptic neuronal activation in murine hippocampal slices,” J. Neurosci.23(8), 3196–3208 (2003).
    [PubMed]
  39. M. A. Mintun, B. N. Lundstrom, A. Z. Snyder, A. G. Vlassenko, G. L. Shulman, and M. E. Raichle, “Blood flow and oxygen delivery to human brain during functional activity: theoretical modeling and experimental data,” Proc. Natl. Acad. Sci. U.S.A.98(12), 6859–6864 (2001).
    [CrossRef] [PubMed]
  40. S. Asgari, A. Doerfler, T. Engelhorn, H. J. Röhrborn, and D. Stolke, “In-vivo measurement of cytochrome using NIRS during acute focal cerebral ischaemia and reperfusion in rats,” Zentralbl. Neurochir.63(04), 146–152 (2002).
    [CrossRef] [PubMed]
  41. F. Orihuela-Espina, D. R. Leff, D. R. James, A. W. Darzi, and G. Z. Yang, “Quality control and assurance in functional near infrared spectroscopy (fNIRS) experimentation,” Phys. Med. Biol.55(13), 3701–3724 (2010).
    [CrossRef] [PubMed]
  42. F. Tian, B. Chance, and H. Liu, “Investigation of the prefrontal cortex in response to duration-variable anagram tasks using functional near-infrared spectroscopy,” J. Biomed. Opt.14(5), 054016 (2009).
    [CrossRef] [PubMed]
  43. F. Schneider, R. E. Gur, A. Alavi, M. E. Seligman, L. H. Mozley, R. J. Smith, P. D. Mozley, and R. C. Gur, “Cerebral blood flow changes in limbic regions induced by unsolvable anagram tasks,” Am. J. Psychiatry153(2), 206–212 (1996).
    [PubMed]
  44. O. Vartanian and V. Goel, “Task constraints modulate activation in right ventral lateral prefrontal cortex,” Neuroimage27(4), 927–933 (2005).
    [CrossRef] [PubMed]
  45. D. L. Drabkin, “Metabolism of the hemin chromoproteins,” Physiol. Rev.31(4), 345–431 (1951).
    [PubMed]
  46. M. Smith and C. Elwell, “Near-infrared spectroscopy: shedding light on the injured brain,” Anesth. Analg.108(4), 1055–1057 (2009).
    [CrossRef] [PubMed]
  47. H. W. Schytz, T. Wienecke, L. T. Jensen, J. Selb, D. A. Boas, and M. Ashina, “Changes in cerebral blood flow after acetazolamide: an experimental study comparing near-infrared spectroscopy and SPECT,” Eur. J. Neurol.16(4), 461–467 (2009).
    [CrossRef] [PubMed]
  48. T. J. Germon, P. D. Evans, N. J. Barnett, P. Wall, A. R. Manara, and R. J. Nelson, “Cerebral near infrared spectroscopy: emitter-detector separation must be increased,” Br. J. Anaesth.82(6), 831–837 (1999).
    [CrossRef] [PubMed]
  49. T. J. Germon, P. D. Evans, A. R. Manara, N. J. Barnett, P. Wall, and R. J. Nelson, “Sensitivity of near infrared spectroscopy to cerebral and extra-cerebral oxygenation changes is determined by emitter-detector separation,” J. Clin. Monit. Comput.14(5), 353–360 (1998).
    [CrossRef] [PubMed]
  50. M. Dehaes, P. E. Grant, D. D. Sliva, N. Roche-Labarbe, R. Pienaar, D. A. Boas, M. A. Franceschini, and J. Selb, “Assessment of the frequency-domain multi-distance method to evaluate the brain optical properties: Monte Carlo simulations from neonate to adult,” Biomed. Opt. Express2(3), 552–567 (2011).
    [CrossRef] [PubMed]
  51. T. Correia, A. Gibson, and J. Hebden, “Identification of the optimal wavelengths for optical topography: a photon measurement density function analysis,” J. Biomed. Opt.15(5), 056002 (2010).
    [CrossRef] [PubMed]

2011

L. Minati, I. U. Kress, E. Visani, N. Medford, and H. D. Critchley, “Intra- and extra-cranial effects of transient blood pressure changes on brain near-infrared spectroscopy (NIRS) measurements,” J. Neurosci. Methods197(2), 283–288 (2011).
[CrossRef] [PubMed]

T. Takahashi, Y. Takikawa, R. Kawagoe, S. Shibuya, T. Iwano, and S. Kitazawa, “Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task,” Neuroimage57(3), 991–1002 (2011).
[CrossRef] [PubMed]

L. Gao, C. E. Elwell, M. Kohl-Bareis, M. Gramer, C. E. Cooper, T. S. Leung, and I. Tachtsidis, “Effects of assuming constant optical scattering on haemoglobin concentration measurements using NIRS during a Valsalva manoeuvre,” Adv. Exp. Med. Biol.701, 15–20 (2011).
[CrossRef] [PubMed]

M. Dehaes, P. E. Grant, D. D. Sliva, N. Roche-Labarbe, R. Pienaar, D. A. Boas, M. A. Franceschini, and J. Selb, “Assessment of the frequency-domain multi-distance method to evaluate the brain optical properties: Monte Carlo simulations from neonate to adult,” Biomed. Opt. Express2(3), 552–567 (2011).
[CrossRef] [PubMed]

2010

T. Correia, A. Gibson, and J. Hebden, “Identification of the optimal wavelengths for optical topography: a photon measurement density function analysis,” J. Biomed. Opt.15(5), 056002 (2010).
[CrossRef] [PubMed]

F. Orihuela-Espina, D. R. Leff, D. R. James, A. W. Darzi, and G. Z. Yang, “Quality control and assurance in functional near infrared spectroscopy (fNIRS) experimentation,” Phys. Med. Biol.55(13), 3701–3724 (2010).
[CrossRef] [PubMed]

I. Tachtsidis, L. Gao, T. S. Leung, M. Kohl-Bareis, C. E. Cooper, and C. E. Elwell, “A hybrid multi-distance phase and broadband spatially resolved spectrometer and algorithm for resolving absolute concentrations of chromophores in the near-infrared light spectrum,” Adv. Exp. Med. Biol.662, 169–175 (2010).
[CrossRef] [PubMed]

N. M. Gregg, B. R. White, B. W. Zeff, A. J. Berger, and J. P. Culver, “Brain specificity of diffuse optical imaging: improvements from superficial signal regression and tomography,” Front Neuroenergetics2, 14 (2010).
[PubMed]

D. Highton, C. Elwell, and M. Smith, “Noninvasive cerebral oximetry: is there light at the end of the tunnel?” Curr. Opin. Anaesthesiol.23(5), 576–581 (2010).
[CrossRef] [PubMed]

2009

I. Tachtsidis, M. M. Tisdall, T. S. Leung, C. Pritchard, C. E. Cooper, M. Smith, and C. E. Elwell, “Relationship between brain tissue haemodynamics, oxygenation and metabolism in the healthy human adult brain during hyperoxia and hypercapnea,” Adv. Exp. Med. Biol.645, 315–320 (2009).
[CrossRef] [PubMed]

I. Tachtsidis, T. S. Leung, A. Chopra, P. H. Koh, C. B. Reid, and C. E. Elwell, “False positives in functional near-infrared topography,” Adv. Exp. Med. Biol.645, 307–314 (2009).
[CrossRef] [PubMed]

L. Aziz-Zadeh, J. T. Kaplan, and M. Iacoboni, “‘Aha!’: The neural correlates of verbal insight solutions,” Hum. Brain Mapp.30(3), 908–916 (2009).
[CrossRef] [PubMed]

F. Tian, B. Chance, and H. Liu, “Investigation of the prefrontal cortex in response to duration-variable anagram tasks using functional near-infrared spectroscopy,” J. Biomed. Opt.14(5), 054016 (2009).
[CrossRef] [PubMed]

M. Smith and C. Elwell, “Near-infrared spectroscopy: shedding light on the injured brain,” Anesth. Analg.108(4), 1055–1057 (2009).
[CrossRef] [PubMed]

H. W. Schytz, T. Wienecke, L. T. Jensen, J. Selb, D. A. Boas, and M. Ashina, “Changes in cerebral blood flow after acetazolamide: an experimental study comparing near-infrared spectroscopy and SPECT,” Eur. J. Neurol.16(4), 461–467 (2009).
[CrossRef] [PubMed]

2008

I. Tachtsidis, T. S. Leung, L. Devoto, D. T. Delpy, and C. E. Elwell, “Measurement of frontal lobe functional activation and related systemic effects: a near-infrared spectroscopy investigation,” Adv. Exp. Med. Biol.614, 397–403 (2008).
[CrossRef] [PubMed]

I. Tachtsidis, T. S. Leung, M. M. Tisdall, P. Devendra, M. Smith, D. T. Delpy, and C. E. Elwell, “Investigation of frontal cortex, motor cortex and systemic haemodynamic changes during anagram solving,” Adv. Exp. Med. Biol.614, 21–28 (2008).
[CrossRef] [PubMed]

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Increase in cerebral aerobic metabolism by normobaric hyperoxia after traumatic brain injury,” J. Neurosurg.109(3), 424–432 (2008).
[CrossRef] [PubMed]

Y. Kakihana, A. Matsunaga, T. Yasuda, T. Imabayashi, Y. Kanmura, and M. Tamura, “Brain oxymetry in the operating room: current status and future directions with particular regard to cytochrome oxidase,” J. Biomed. Opt.13(3), 033001 (2008).
[CrossRef] [PubMed]

M. Banaji, A. Mallet, C. E. Elwell, P. Nicholls, and C. E. Cooper, “A model of brain circulation and metabolism: NIRS signal changes during physiological challenges,” PLOS Comput. Biol.4(11), e1000212 (2008).
[CrossRef] [PubMed]

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Changes in the attenuation of near infrared spectra by the healthy adult brain during hypoxaemia cannot be accounted for solely by changes in the concentrations of oxy- and deoxy-haemoglobin,” Adv. Exp. Med. Biol.614, 217–225 (2008).
[CrossRef] [PubMed]

2007

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt.12(6), 062104 (2007).
[CrossRef] [PubMed]

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Near-infrared spectroscopic quantification of changes in the concentration of oxidized cytochrome c oxidase in the healthy human brain during hypoxemia,” J. Biomed. Opt.12(2), 024002 (2007).
[CrossRef] [PubMed]

I. Tachtsidis, M. Tisdall, T. S. Leung, C. E. Cooper, D. T. Delpy, M. Smith, and C. E. Elwell, “Investigation of in vivo measurement of cerebral cytochrome-c-oxidase redox changes using near-infrared spectroscopy in patients with orthostatic hypotension,” Physiol. Meas.28(2), 199–211 (2007).
[CrossRef] [PubMed]

2006

M. Banaji, “A generic model of electron transport in mitochondria,” J. Theor. Biol.243(4), 501–516 (2006).
[CrossRef] [PubMed]

2005

O. Vartanian and V. Goel, “Task constraints modulate activation in right ventral lateral prefrontal cortex,” Neuroimage27(4), 927–933 (2005).
[CrossRef] [PubMed]

2004

K. Uludağ, J. Steinbrink, M. Kohl-Bareis, R. Wenzel, A. Villringer, and H. Obrig, “Cytochrome-c-oxidase redox changes during visual stimulation measured by near-infrared spectroscopy cannot be explained by a mere cross talk artefact,” Neuroimage22(1), 109–119 (2004).
[CrossRef] [PubMed]

2003

A. D. McGown, H. Makker, C. Elwell, P. G. Al Rawi, A. Valipour, and S. G. Spiro, “Measurement of changes in cytochrome oxidase redox state during obstructive sleep apnea using near-infrared spectroscopy,” Sleep26(6), 710–716 (2003).
[PubMed]

H. Obrig and A. Villringer, “Beyond the visible--imaging the human brain with light,” J. Cereb. Blood Flow Metab.23(1), 1–18 (2003).
[CrossRef] [PubMed]

C. W. Shuttleworth, A. M. Brennan, and J. A. Connor, “NAD(P)H fluorescence imaging of postsynaptic neuronal activation in murine hippocampal slices,” J. Neurosci.23(8), 3196–3208 (2003).
[PubMed]

2002

K. Uludag, M. Kohl, J. Steinbrink, H. Obrig, and A. Villringer, “Cross talk in the Lambert-Beer calculation for near-infrared wavelengths estimated by Monte Carlo simulations,” J. Biomed. Opt.7(1), 51–59 (2002).
[CrossRef] [PubMed]

Y. Kakihana, A. Matsunaga, K. Tobo, S. Isowaki, M. Kawakami, I. Tsuneyoshi, Y. Kanmura, and M. Tamura, “Redox behavior of cytochrome oxidase and neurological prognosis in 66 patients who underwent thoracic aortic surgery,” Eur. J. Cardiothorac. Surg.21(3), 434–439 (2002).
[CrossRef] [PubMed]

S. Asgari, A. Doerfler, T. Engelhorn, H. J. Röhrborn, and D. Stolke, “In-vivo measurement of cytochrome using NIRS during acute focal cerebral ischaemia and reperfusion in rats,” Zentralbl. Neurochir.63(04), 146–152 (2002).
[CrossRef] [PubMed]

2001

M. A. Mintun, B. N. Lundstrom, A. Z. Snyder, A. G. Vlassenko, G. L. Shulman, and M. E. Raichle, “Blood flow and oxygen delivery to human brain during functional activity: theoretical modeling and experimental data,” Proc. Natl. Acad. Sci. U.S.A.98(12), 6859–6864 (2001).
[CrossRef] [PubMed]

2000

R. Springett, J. Newman, M. Cope, and D. T. Delpy, “Oxygen dependency and precision of cytochrome oxidase signal from full spectral NIRS of the piglet brain,” Am. J. Physiol. Heart Circ. Physiol.279(5), H2202–H2209 (2000).
[PubMed]

1999

H. R. Heekeren, M. Kohl, H. Obrig, R. Wenzel, W. von Pannwitz, S. J. Matcher, U. Dirnagl, C. E. Cooper, and A. Villringer, “Noninvasive assessment of changes in cytochrome-c oxidase oxidation in human subjects during visual stimulation,” J. Cereb. Blood Flow Metab.19(6), 592–603 (1999).
[CrossRef] [PubMed]

C. E. Cooper, M. Cope, R. Springett, P. N. Amess, J. Penrice, L. Tyszczuk, S. Punwani, R. Ordidge, J. Wyatt, and D. T. Delpy, “Use of mitochondrial inhibitors to demonstrate that cytochrome oxidase near-infrared spectroscopy can measure mitochondrial dysfunction noninvasively in the brain,” J. Cereb. Blood Flow Metab.19(1), 27–38 (1999).
[CrossRef] [PubMed]

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol.44(6), 1543–1563 (1999).
[CrossRef] [PubMed]

T. J. Germon, P. D. Evans, N. J. Barnett, P. Wall, A. R. Manara, and R. J. Nelson, “Cerebral near infrared spectroscopy: emitter-detector separation must be increased,” Br. J. Anaesth.82(6), 831–837 (1999).
[CrossRef] [PubMed]

1998

T. J. Germon, P. D. Evans, A. R. Manara, N. J. Barnett, P. Wall, and R. J. Nelson, “Sensitivity of near infrared spectroscopy to cerebral and extra-cerebral oxygenation changes is determined by emitter-detector separation,” J. Clin. Monit. Comput.14(5), 353–360 (1998).
[CrossRef] [PubMed]

1997

C. E. Cooper and R. Springett, “Measurement of cytochrome oxidase and mitochondrial energetics by near-infrared spectroscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 669–676 (1997).
[CrossRef] [PubMed]

1996

F. Schneider, R. E. Gur, A. Alavi, M. E. Seligman, L. H. Mozley, R. J. Smith, P. D. Mozley, and R. C. Gur, “Cerebral blood flow changes in limbic regions induced by unsolvable anagram tasks,” Am. J. Psychiatry153(2), 206–212 (1996).
[PubMed]

1995

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, and D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithms,” Anal. Biochem.227(1), 54–68 (1995).
[CrossRef] [PubMed]

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. T. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol.40(2), 295–304 (1995).
[CrossRef] [PubMed]

1994

C. E. Cooper, S. J. Matcher, J. S. Wyatt, M. Cope, G. C. Brown, E. M. Nemoto, and D. T. Delpy, “Near-infrared spectroscopy of the brain: relevance to cytochrome oxidase bioenergetics,” Biochem. Soc. Trans.22(4), 974–980 (1994).
[PubMed]

1993

1977

F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science198(4323), 1264–1267 (1977).
[CrossRef] [PubMed]

1955

B. Chance and G. R. Williams, “Respiratory enzymes in oxidative phosphorylation. III. The steady state,” J. Biol. Chem.217(1), 409–427 (1955).
[PubMed]

1951

D. L. Drabkin, “Metabolism of the hemin chromoproteins,” Physiol. Rev.31(4), 345–431 (1951).
[PubMed]

Al Rawi, P. G.

A. D. McGown, H. Makker, C. Elwell, P. G. Al Rawi, A. Valipour, and S. G. Spiro, “Measurement of changes in cytochrome oxidase redox state during obstructive sleep apnea using near-infrared spectroscopy,” Sleep26(6), 710–716 (2003).
[PubMed]

Alavi, A.

F. Schneider, R. E. Gur, A. Alavi, M. E. Seligman, L. H. Mozley, R. J. Smith, P. D. Mozley, and R. C. Gur, “Cerebral blood flow changes in limbic regions induced by unsolvable anagram tasks,” Am. J. Psychiatry153(2), 206–212 (1996).
[PubMed]

Amess, P. N.

C. E. Cooper, M. Cope, R. Springett, P. N. Amess, J. Penrice, L. Tyszczuk, S. Punwani, R. Ordidge, J. Wyatt, and D. T. Delpy, “Use of mitochondrial inhibitors to demonstrate that cytochrome oxidase near-infrared spectroscopy can measure mitochondrial dysfunction noninvasively in the brain,” J. Cereb. Blood Flow Metab.19(1), 27–38 (1999).
[CrossRef] [PubMed]

Arridge, S. R.

Asgari, S.

S. Asgari, A. Doerfler, T. Engelhorn, H. J. Röhrborn, and D. Stolke, “In-vivo measurement of cytochrome using NIRS during acute focal cerebral ischaemia and reperfusion in rats,” Zentralbl. Neurochir.63(04), 146–152 (2002).
[CrossRef] [PubMed]

Ashina, M.

H. W. Schytz, T. Wienecke, L. T. Jensen, J. Selb, D. A. Boas, and M. Ashina, “Changes in cerebral blood flow after acetazolamide: an experimental study comparing near-infrared spectroscopy and SPECT,” Eur. J. Neurol.16(4), 461–467 (2009).
[CrossRef] [PubMed]

Aziz-Zadeh, L.

L. Aziz-Zadeh, J. T. Kaplan, and M. Iacoboni, “‘Aha!’: The neural correlates of verbal insight solutions,” Hum. Brain Mapp.30(3), 908–916 (2009).
[CrossRef] [PubMed]

Banaji, M.

M. Banaji, A. Mallet, C. E. Elwell, P. Nicholls, and C. E. Cooper, “A model of brain circulation and metabolism: NIRS signal changes during physiological challenges,” PLOS Comput. Biol.4(11), e1000212 (2008).
[CrossRef] [PubMed]

M. Banaji, “A generic model of electron transport in mitochondria,” J. Theor. Biol.243(4), 501–516 (2006).
[CrossRef] [PubMed]

Barnett, N. J.

T. J. Germon, P. D. Evans, N. J. Barnett, P. Wall, A. R. Manara, and R. J. Nelson, “Cerebral near infrared spectroscopy: emitter-detector separation must be increased,” Br. J. Anaesth.82(6), 831–837 (1999).
[CrossRef] [PubMed]

T. J. Germon, P. D. Evans, A. R. Manara, N. J. Barnett, P. Wall, and R. J. Nelson, “Sensitivity of near infrared spectroscopy to cerebral and extra-cerebral oxygenation changes is determined by emitter-detector separation,” J. Clin. Monit. Comput.14(5), 353–360 (1998).
[CrossRef] [PubMed]

Berger, A. J.

N. M. Gregg, B. R. White, B. W. Zeff, A. J. Berger, and J. P. Culver, “Brain specificity of diffuse optical imaging: improvements from superficial signal regression and tomography,” Front Neuroenergetics2, 14 (2010).
[PubMed]

Boas, D. A.

M. Dehaes, P. E. Grant, D. D. Sliva, N. Roche-Labarbe, R. Pienaar, D. A. Boas, M. A. Franceschini, and J. Selb, “Assessment of the frequency-domain multi-distance method to evaluate the brain optical properties: Monte Carlo simulations from neonate to adult,” Biomed. Opt. Express2(3), 552–567 (2011).
[CrossRef] [PubMed]

H. W. Schytz, T. Wienecke, L. T. Jensen, J. Selb, D. A. Boas, and M. Ashina, “Changes in cerebral blood flow after acetazolamide: an experimental study comparing near-infrared spectroscopy and SPECT,” Eur. J. Neurol.16(4), 461–467 (2009).
[CrossRef] [PubMed]

Brennan, A. M.

C. W. Shuttleworth, A. M. Brennan, and J. A. Connor, “NAD(P)H fluorescence imaging of postsynaptic neuronal activation in murine hippocampal slices,” J. Neurosci.23(8), 3196–3208 (2003).
[PubMed]

Brown, G. C.

C. E. Cooper, S. J. Matcher, J. S. Wyatt, M. Cope, G. C. Brown, E. M. Nemoto, and D. T. Delpy, “Near-infrared spectroscopy of the brain: relevance to cytochrome oxidase bioenergetics,” Biochem. Soc. Trans.22(4), 974–980 (1994).
[PubMed]

Chance, B.

F. Tian, B. Chance, and H. Liu, “Investigation of the prefrontal cortex in response to duration-variable anagram tasks using functional near-infrared spectroscopy,” J. Biomed. Opt.14(5), 054016 (2009).
[CrossRef] [PubMed]

B. Chance and G. R. Williams, “Respiratory enzymes in oxidative phosphorylation. III. The steady state,” J. Biol. Chem.217(1), 409–427 (1955).
[PubMed]

Chopra, A.

I. Tachtsidis, T. S. Leung, A. Chopra, P. H. Koh, C. B. Reid, and C. E. Elwell, “False positives in functional near-infrared topography,” Adv. Exp. Med. Biol.645, 307–314 (2009).
[CrossRef] [PubMed]

Clemence, M.

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. T. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol.40(2), 295–304 (1995).
[CrossRef] [PubMed]

Connor, J. A.

C. W. Shuttleworth, A. M. Brennan, and J. A. Connor, “NAD(P)H fluorescence imaging of postsynaptic neuronal activation in murine hippocampal slices,” J. Neurosci.23(8), 3196–3208 (2003).
[PubMed]

Cooper, C. E.

L. Gao, C. E. Elwell, M. Kohl-Bareis, M. Gramer, C. E. Cooper, T. S. Leung, and I. Tachtsidis, “Effects of assuming constant optical scattering on haemoglobin concentration measurements using NIRS during a Valsalva manoeuvre,” Adv. Exp. Med. Biol.701, 15–20 (2011).
[CrossRef] [PubMed]

I. Tachtsidis, L. Gao, T. S. Leung, M. Kohl-Bareis, C. E. Cooper, and C. E. Elwell, “A hybrid multi-distance phase and broadband spatially resolved spectrometer and algorithm for resolving absolute concentrations of chromophores in the near-infrared light spectrum,” Adv. Exp. Med. Biol.662, 169–175 (2010).
[CrossRef] [PubMed]

I. Tachtsidis, M. M. Tisdall, T. S. Leung, C. Pritchard, C. E. Cooper, M. Smith, and C. E. Elwell, “Relationship between brain tissue haemodynamics, oxygenation and metabolism in the healthy human adult brain during hyperoxia and hypercapnea,” Adv. Exp. Med. Biol.645, 315–320 (2009).
[CrossRef] [PubMed]

M. Banaji, A. Mallet, C. E. Elwell, P. Nicholls, and C. E. Cooper, “A model of brain circulation and metabolism: NIRS signal changes during physiological challenges,” PLOS Comput. Biol.4(11), e1000212 (2008).
[CrossRef] [PubMed]

I. Tachtsidis, M. Tisdall, T. S. Leung, C. E. Cooper, D. T. Delpy, M. Smith, and C. E. Elwell, “Investigation of in vivo measurement of cerebral cytochrome-c-oxidase redox changes using near-infrared spectroscopy in patients with orthostatic hypotension,” Physiol. Meas.28(2), 199–211 (2007).
[CrossRef] [PubMed]

C. E. Cooper, M. Cope, R. Springett, P. N. Amess, J. Penrice, L. Tyszczuk, S. Punwani, R. Ordidge, J. Wyatt, and D. T. Delpy, “Use of mitochondrial inhibitors to demonstrate that cytochrome oxidase near-infrared spectroscopy can measure mitochondrial dysfunction noninvasively in the brain,” J. Cereb. Blood Flow Metab.19(1), 27–38 (1999).
[CrossRef] [PubMed]

H. R. Heekeren, M. Kohl, H. Obrig, R. Wenzel, W. von Pannwitz, S. J. Matcher, U. Dirnagl, C. E. Cooper, and A. Villringer, “Noninvasive assessment of changes in cytochrome-c oxidase oxidation in human subjects during visual stimulation,” J. Cereb. Blood Flow Metab.19(6), 592–603 (1999).
[CrossRef] [PubMed]

C. E. Cooper and R. Springett, “Measurement of cytochrome oxidase and mitochondrial energetics by near-infrared spectroscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 669–676 (1997).
[CrossRef] [PubMed]

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, and D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithms,” Anal. Biochem.227(1), 54–68 (1995).
[CrossRef] [PubMed]

C. E. Cooper, S. J. Matcher, J. S. Wyatt, M. Cope, G. C. Brown, E. M. Nemoto, and D. T. Delpy, “Near-infrared spectroscopy of the brain: relevance to cytochrome oxidase bioenergetics,” Biochem. Soc. Trans.22(4), 974–980 (1994).
[PubMed]

Cope, M.

R. Springett, J. Newman, M. Cope, and D. T. Delpy, “Oxygen dependency and precision of cytochrome oxidase signal from full spectral NIRS of the piglet brain,” Am. J. Physiol. Heart Circ. Physiol.279(5), H2202–H2209 (2000).
[PubMed]

C. E. Cooper, M. Cope, R. Springett, P. N. Amess, J. Penrice, L. Tyszczuk, S. Punwani, R. Ordidge, J. Wyatt, and D. T. Delpy, “Use of mitochondrial inhibitors to demonstrate that cytochrome oxidase near-infrared spectroscopy can measure mitochondrial dysfunction noninvasively in the brain,” J. Cereb. Blood Flow Metab.19(1), 27–38 (1999).
[CrossRef] [PubMed]

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. T. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol.40(2), 295–304 (1995).
[CrossRef] [PubMed]

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, and D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithms,” Anal. Biochem.227(1), 54–68 (1995).
[CrossRef] [PubMed]

C. E. Cooper, S. J. Matcher, J. S. Wyatt, M. Cope, G. C. Brown, E. M. Nemoto, and D. T. Delpy, “Near-infrared spectroscopy of the brain: relevance to cytochrome oxidase bioenergetics,” Biochem. Soc. Trans.22(4), 974–980 (1994).
[PubMed]

M. Essenpreis, C. E. Elwell, M. Cope, P. van der Zee, S. R. Arridge, and D. T. Delpy, “Spectral dependence of temporal point spread functions in human tissues,” Appl. Opt.32(4), 418–425 (1993).
[CrossRef] [PubMed]

Correia, T.

T. Correia, A. Gibson, and J. Hebden, “Identification of the optimal wavelengths for optical topography: a photon measurement density function analysis,” J. Biomed. Opt.15(5), 056002 (2010).
[CrossRef] [PubMed]

Critchley, H. D.

L. Minati, I. U. Kress, E. Visani, N. Medford, and H. D. Critchley, “Intra- and extra-cranial effects of transient blood pressure changes on brain near-infrared spectroscopy (NIRS) measurements,” J. Neurosci. Methods197(2), 283–288 (2011).
[CrossRef] [PubMed]

Culver, J. P.

N. M. Gregg, B. R. White, B. W. Zeff, A. J. Berger, and J. P. Culver, “Brain specificity of diffuse optical imaging: improvements from superficial signal regression and tomography,” Front Neuroenergetics2, 14 (2010).
[PubMed]

Darzi, A. W.

F. Orihuela-Espina, D. R. Leff, D. R. James, A. W. Darzi, and G. Z. Yang, “Quality control and assurance in functional near infrared spectroscopy (fNIRS) experimentation,” Phys. Med. Biol.55(13), 3701–3724 (2010).
[CrossRef] [PubMed]

Dehaes, M.

Delpy, D. T.

I. Tachtsidis, T. S. Leung, L. Devoto, D. T. Delpy, and C. E. Elwell, “Measurement of frontal lobe functional activation and related systemic effects: a near-infrared spectroscopy investigation,” Adv. Exp. Med. Biol.614, 397–403 (2008).
[CrossRef] [PubMed]

I. Tachtsidis, T. S. Leung, M. M. Tisdall, P. Devendra, M. Smith, D. T. Delpy, and C. E. Elwell, “Investigation of frontal cortex, motor cortex and systemic haemodynamic changes during anagram solving,” Adv. Exp. Med. Biol.614, 21–28 (2008).
[CrossRef] [PubMed]

I. Tachtsidis, M. Tisdall, T. S. Leung, C. E. Cooper, D. T. Delpy, M. Smith, and C. E. Elwell, “Investigation of in vivo measurement of cerebral cytochrome-c-oxidase redox changes using near-infrared spectroscopy in patients with orthostatic hypotension,” Physiol. Meas.28(2), 199–211 (2007).
[CrossRef] [PubMed]

R. Springett, J. Newman, M. Cope, and D. T. Delpy, “Oxygen dependency and precision of cytochrome oxidase signal from full spectral NIRS of the piglet brain,” Am. J. Physiol. Heart Circ. Physiol.279(5), H2202–H2209 (2000).
[PubMed]

C. E. Cooper, M. Cope, R. Springett, P. N. Amess, J. Penrice, L. Tyszczuk, S. Punwani, R. Ordidge, J. Wyatt, and D. T. Delpy, “Use of mitochondrial inhibitors to demonstrate that cytochrome oxidase near-infrared spectroscopy can measure mitochondrial dysfunction noninvasively in the brain,” J. Cereb. Blood Flow Metab.19(1), 27–38 (1999).
[CrossRef] [PubMed]

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. T. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol.40(2), 295–304 (1995).
[CrossRef] [PubMed]

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, and D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithms,” Anal. Biochem.227(1), 54–68 (1995).
[CrossRef] [PubMed]

C. E. Cooper, S. J. Matcher, J. S. Wyatt, M. Cope, G. C. Brown, E. M. Nemoto, and D. T. Delpy, “Near-infrared spectroscopy of the brain: relevance to cytochrome oxidase bioenergetics,” Biochem. Soc. Trans.22(4), 974–980 (1994).
[PubMed]

M. Essenpreis, C. E. Elwell, M. Cope, P. van der Zee, S. R. Arridge, and D. T. Delpy, “Spectral dependence of temporal point spread functions in human tissues,” Appl. Opt.32(4), 418–425 (1993).
[CrossRef] [PubMed]

Devendra, P.

I. Tachtsidis, T. S. Leung, M. M. Tisdall, P. Devendra, M. Smith, D. T. Delpy, and C. E. Elwell, “Investigation of frontal cortex, motor cortex and systemic haemodynamic changes during anagram solving,” Adv. Exp. Med. Biol.614, 21–28 (2008).
[CrossRef] [PubMed]

Devoto, L.

I. Tachtsidis, T. S. Leung, L. Devoto, D. T. Delpy, and C. E. Elwell, “Measurement of frontal lobe functional activation and related systemic effects: a near-infrared spectroscopy investigation,” Adv. Exp. Med. Biol.614, 397–403 (2008).
[CrossRef] [PubMed]

Dirnagl, U.

H. R. Heekeren, M. Kohl, H. Obrig, R. Wenzel, W. von Pannwitz, S. J. Matcher, U. Dirnagl, C. E. Cooper, and A. Villringer, “Noninvasive assessment of changes in cytochrome-c oxidase oxidation in human subjects during visual stimulation,” J. Cereb. Blood Flow Metab.19(6), 592–603 (1999).
[CrossRef] [PubMed]

Doerfler, A.

S. Asgari, A. Doerfler, T. Engelhorn, H. J. Röhrborn, and D. Stolke, “In-vivo measurement of cytochrome using NIRS during acute focal cerebral ischaemia and reperfusion in rats,” Zentralbl. Neurochir.63(04), 146–152 (2002).
[CrossRef] [PubMed]

Drabkin, D. L.

D. L. Drabkin, “Metabolism of the hemin chromoproteins,” Physiol. Rev.31(4), 345–431 (1951).
[PubMed]

Duncan, A.

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. T. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol.40(2), 295–304 (1995).
[CrossRef] [PubMed]

Elwell, C.

D. Highton, C. Elwell, and M. Smith, “Noninvasive cerebral oximetry: is there light at the end of the tunnel?” Curr. Opin. Anaesthesiol.23(5), 576–581 (2010).
[CrossRef] [PubMed]

M. Smith and C. Elwell, “Near-infrared spectroscopy: shedding light on the injured brain,” Anesth. Analg.108(4), 1055–1057 (2009).
[CrossRef] [PubMed]

A. D. McGown, H. Makker, C. Elwell, P. G. Al Rawi, A. Valipour, and S. G. Spiro, “Measurement of changes in cytochrome oxidase redox state during obstructive sleep apnea using near-infrared spectroscopy,” Sleep26(6), 710–716 (2003).
[PubMed]

Elwell, C. E.

L. Gao, C. E. Elwell, M. Kohl-Bareis, M. Gramer, C. E. Cooper, T. S. Leung, and I. Tachtsidis, “Effects of assuming constant optical scattering on haemoglobin concentration measurements using NIRS during a Valsalva manoeuvre,” Adv. Exp. Med. Biol.701, 15–20 (2011).
[CrossRef] [PubMed]

I. Tachtsidis, L. Gao, T. S. Leung, M. Kohl-Bareis, C. E. Cooper, and C. E. Elwell, “A hybrid multi-distance phase and broadband spatially resolved spectrometer and algorithm for resolving absolute concentrations of chromophores in the near-infrared light spectrum,” Adv. Exp. Med. Biol.662, 169–175 (2010).
[CrossRef] [PubMed]

I. Tachtsidis, M. M. Tisdall, T. S. Leung, C. Pritchard, C. E. Cooper, M. Smith, and C. E. Elwell, “Relationship between brain tissue haemodynamics, oxygenation and metabolism in the healthy human adult brain during hyperoxia and hypercapnea,” Adv. Exp. Med. Biol.645, 315–320 (2009).
[CrossRef] [PubMed]

I. Tachtsidis, T. S. Leung, A. Chopra, P. H. Koh, C. B. Reid, and C. E. Elwell, “False positives in functional near-infrared topography,” Adv. Exp. Med. Biol.645, 307–314 (2009).
[CrossRef] [PubMed]

I. Tachtsidis, T. S. Leung, M. M. Tisdall, P. Devendra, M. Smith, D. T. Delpy, and C. E. Elwell, “Investigation of frontal cortex, motor cortex and systemic haemodynamic changes during anagram solving,” Adv. Exp. Med. Biol.614, 21–28 (2008).
[CrossRef] [PubMed]

I. Tachtsidis, T. S. Leung, L. Devoto, D. T. Delpy, and C. E. Elwell, “Measurement of frontal lobe functional activation and related systemic effects: a near-infrared spectroscopy investigation,” Adv. Exp. Med. Biol.614, 397–403 (2008).
[CrossRef] [PubMed]

M. Banaji, A. Mallet, C. E. Elwell, P. Nicholls, and C. E. Cooper, “A model of brain circulation and metabolism: NIRS signal changes during physiological challenges,” PLOS Comput. Biol.4(11), e1000212 (2008).
[CrossRef] [PubMed]

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Changes in the attenuation of near infrared spectra by the healthy adult brain during hypoxaemia cannot be accounted for solely by changes in the concentrations of oxy- and deoxy-haemoglobin,” Adv. Exp. Med. Biol.614, 217–225 (2008).
[CrossRef] [PubMed]

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Increase in cerebral aerobic metabolism by normobaric hyperoxia after traumatic brain injury,” J. Neurosurg.109(3), 424–432 (2008).
[CrossRef] [PubMed]

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Near-infrared spectroscopic quantification of changes in the concentration of oxidized cytochrome c oxidase in the healthy human brain during hypoxemia,” J. Biomed. Opt.12(2), 024002 (2007).
[CrossRef] [PubMed]

I. Tachtsidis, M. Tisdall, T. S. Leung, C. E. Cooper, D. T. Delpy, M. Smith, and C. E. Elwell, “Investigation of in vivo measurement of cerebral cytochrome-c-oxidase redox changes using near-infrared spectroscopy in patients with orthostatic hypotension,” Physiol. Meas.28(2), 199–211 (2007).
[CrossRef] [PubMed]

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, and D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithms,” Anal. Biochem.227(1), 54–68 (1995).
[CrossRef] [PubMed]

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. T. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol.40(2), 295–304 (1995).
[CrossRef] [PubMed]

M. Essenpreis, C. E. Elwell, M. Cope, P. van der Zee, S. R. Arridge, and D. T. Delpy, “Spectral dependence of temporal point spread functions in human tissues,” Appl. Opt.32(4), 418–425 (1993).
[CrossRef] [PubMed]

Engelhorn, T.

S. Asgari, A. Doerfler, T. Engelhorn, H. J. Röhrborn, and D. Stolke, “In-vivo measurement of cytochrome using NIRS during acute focal cerebral ischaemia and reperfusion in rats,” Zentralbl. Neurochir.63(04), 146–152 (2002).
[CrossRef] [PubMed]

Essenpreis, M.

Evans, P. D.

T. J. Germon, P. D. Evans, N. J. Barnett, P. Wall, A. R. Manara, and R. J. Nelson, “Cerebral near infrared spectroscopy: emitter-detector separation must be increased,” Br. J. Anaesth.82(6), 831–837 (1999).
[CrossRef] [PubMed]

T. J. Germon, P. D. Evans, A. R. Manara, N. J. Barnett, P. Wall, and R. J. Nelson, “Sensitivity of near infrared spectroscopy to cerebral and extra-cerebral oxygenation changes is determined by emitter-detector separation,” J. Clin. Monit. Comput.14(5), 353–360 (1998).
[CrossRef] [PubMed]

Fantini, S.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol.44(6), 1543–1563 (1999).
[CrossRef] [PubMed]

Ferrari, M.

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt.12(6), 062104 (2007).
[CrossRef] [PubMed]

Franceschini, M. A.

M. Dehaes, P. E. Grant, D. D. Sliva, N. Roche-Labarbe, R. Pienaar, D. A. Boas, M. A. Franceschini, and J. Selb, “Assessment of the frequency-domain multi-distance method to evaluate the brain optical properties: Monte Carlo simulations from neonate to adult,” Biomed. Opt. Express2(3), 552–567 (2011).
[CrossRef] [PubMed]

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol.44(6), 1543–1563 (1999).
[CrossRef] [PubMed]

Gao, L.

L. Gao, C. E. Elwell, M. Kohl-Bareis, M. Gramer, C. E. Cooper, T. S. Leung, and I. Tachtsidis, “Effects of assuming constant optical scattering on haemoglobin concentration measurements using NIRS during a Valsalva manoeuvre,” Adv. Exp. Med. Biol.701, 15–20 (2011).
[CrossRef] [PubMed]

I. Tachtsidis, L. Gao, T. S. Leung, M. Kohl-Bareis, C. E. Cooper, and C. E. Elwell, “A hybrid multi-distance phase and broadband spatially resolved spectrometer and algorithm for resolving absolute concentrations of chromophores in the near-infrared light spectrum,” Adv. Exp. Med. Biol.662, 169–175 (2010).
[CrossRef] [PubMed]

Germon, T. J.

T. J. Germon, P. D. Evans, N. J. Barnett, P. Wall, A. R. Manara, and R. J. Nelson, “Cerebral near infrared spectroscopy: emitter-detector separation must be increased,” Br. J. Anaesth.82(6), 831–837 (1999).
[CrossRef] [PubMed]

T. J. Germon, P. D. Evans, A. R. Manara, N. J. Barnett, P. Wall, and R. J. Nelson, “Sensitivity of near infrared spectroscopy to cerebral and extra-cerebral oxygenation changes is determined by emitter-detector separation,” J. Clin. Monit. Comput.14(5), 353–360 (1998).
[CrossRef] [PubMed]

Gibson, A.

T. Correia, A. Gibson, and J. Hebden, “Identification of the optimal wavelengths for optical topography: a photon measurement density function analysis,” J. Biomed. Opt.15(5), 056002 (2010).
[CrossRef] [PubMed]

Goel, V.

O. Vartanian and V. Goel, “Task constraints modulate activation in right ventral lateral prefrontal cortex,” Neuroimage27(4), 927–933 (2005).
[CrossRef] [PubMed]

Gramer, M.

L. Gao, C. E. Elwell, M. Kohl-Bareis, M. Gramer, C. E. Cooper, T. S. Leung, and I. Tachtsidis, “Effects of assuming constant optical scattering on haemoglobin concentration measurements using NIRS during a Valsalva manoeuvre,” Adv. Exp. Med. Biol.701, 15–20 (2011).
[CrossRef] [PubMed]

Grant, P. E.

Gratton, E.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol.44(6), 1543–1563 (1999).
[CrossRef] [PubMed]

Gregg, N. M.

N. M. Gregg, B. R. White, B. W. Zeff, A. J. Berger, and J. P. Culver, “Brain specificity of diffuse optical imaging: improvements from superficial signal regression and tomography,” Front Neuroenergetics2, 14 (2010).
[PubMed]

Gur, R. C.

F. Schneider, R. E. Gur, A. Alavi, M. E. Seligman, L. H. Mozley, R. J. Smith, P. D. Mozley, and R. C. Gur, “Cerebral blood flow changes in limbic regions induced by unsolvable anagram tasks,” Am. J. Psychiatry153(2), 206–212 (1996).
[PubMed]

Gur, R. E.

F. Schneider, R. E. Gur, A. Alavi, M. E. Seligman, L. H. Mozley, R. J. Smith, P. D. Mozley, and R. C. Gur, “Cerebral blood flow changes in limbic regions induced by unsolvable anagram tasks,” Am. J. Psychiatry153(2), 206–212 (1996).
[PubMed]

Hebden, J.

T. Correia, A. Gibson, and J. Hebden, “Identification of the optimal wavelengths for optical topography: a photon measurement density function analysis,” J. Biomed. Opt.15(5), 056002 (2010).
[CrossRef] [PubMed]

Heekeren, H. R.

H. R. Heekeren, M. Kohl, H. Obrig, R. Wenzel, W. von Pannwitz, S. J. Matcher, U. Dirnagl, C. E. Cooper, and A. Villringer, “Noninvasive assessment of changes in cytochrome-c oxidase oxidation in human subjects during visual stimulation,” J. Cereb. Blood Flow Metab.19(6), 592–603 (1999).
[CrossRef] [PubMed]

Highton, D.

D. Highton, C. Elwell, and M. Smith, “Noninvasive cerebral oximetry: is there light at the end of the tunnel?” Curr. Opin. Anaesthesiol.23(5), 576–581 (2010).
[CrossRef] [PubMed]

Hueber, D.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol.44(6), 1543–1563 (1999).
[CrossRef] [PubMed]

Iacoboni, M.

L. Aziz-Zadeh, J. T. Kaplan, and M. Iacoboni, “‘Aha!’: The neural correlates of verbal insight solutions,” Hum. Brain Mapp.30(3), 908–916 (2009).
[CrossRef] [PubMed]

Imabayashi, T.

Y. Kakihana, A. Matsunaga, T. Yasuda, T. Imabayashi, Y. Kanmura, and M. Tamura, “Brain oxymetry in the operating room: current status and future directions with particular regard to cytochrome oxidase,” J. Biomed. Opt.13(3), 033001 (2008).
[CrossRef] [PubMed]

Isowaki, S.

Y. Kakihana, A. Matsunaga, K. Tobo, S. Isowaki, M. Kawakami, I. Tsuneyoshi, Y. Kanmura, and M. Tamura, “Redox behavior of cytochrome oxidase and neurological prognosis in 66 patients who underwent thoracic aortic surgery,” Eur. J. Cardiothorac. Surg.21(3), 434–439 (2002).
[CrossRef] [PubMed]

Iwano, T.

T. Takahashi, Y. Takikawa, R. Kawagoe, S. Shibuya, T. Iwano, and S. Kitazawa, “Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task,” Neuroimage57(3), 991–1002 (2011).
[CrossRef] [PubMed]

James, D. R.

F. Orihuela-Espina, D. R. Leff, D. R. James, A. W. Darzi, and G. Z. Yang, “Quality control and assurance in functional near infrared spectroscopy (fNIRS) experimentation,” Phys. Med. Biol.55(13), 3701–3724 (2010).
[CrossRef] [PubMed]

Jensen, L. T.

H. W. Schytz, T. Wienecke, L. T. Jensen, J. Selb, D. A. Boas, and M. Ashina, “Changes in cerebral blood flow after acetazolamide: an experimental study comparing near-infrared spectroscopy and SPECT,” Eur. J. Neurol.16(4), 461–467 (2009).
[CrossRef] [PubMed]

Jöbsis, F. F.

F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science198(4323), 1264–1267 (1977).
[CrossRef] [PubMed]

Kakihana, Y.

Y. Kakihana, A. Matsunaga, T. Yasuda, T. Imabayashi, Y. Kanmura, and M. Tamura, “Brain oxymetry in the operating room: current status and future directions with particular regard to cytochrome oxidase,” J. Biomed. Opt.13(3), 033001 (2008).
[CrossRef] [PubMed]

Y. Kakihana, A. Matsunaga, K. Tobo, S. Isowaki, M. Kawakami, I. Tsuneyoshi, Y. Kanmura, and M. Tamura, “Redox behavior of cytochrome oxidase and neurological prognosis in 66 patients who underwent thoracic aortic surgery,” Eur. J. Cardiothorac. Surg.21(3), 434–439 (2002).
[CrossRef] [PubMed]

Kanmura, Y.

Y. Kakihana, A. Matsunaga, T. Yasuda, T. Imabayashi, Y. Kanmura, and M. Tamura, “Brain oxymetry in the operating room: current status and future directions with particular regard to cytochrome oxidase,” J. Biomed. Opt.13(3), 033001 (2008).
[CrossRef] [PubMed]

Y. Kakihana, A. Matsunaga, K. Tobo, S. Isowaki, M. Kawakami, I. Tsuneyoshi, Y. Kanmura, and M. Tamura, “Redox behavior of cytochrome oxidase and neurological prognosis in 66 patients who underwent thoracic aortic surgery,” Eur. J. Cardiothorac. Surg.21(3), 434–439 (2002).
[CrossRef] [PubMed]

Kaplan, J. T.

L. Aziz-Zadeh, J. T. Kaplan, and M. Iacoboni, “‘Aha!’: The neural correlates of verbal insight solutions,” Hum. Brain Mapp.30(3), 908–916 (2009).
[CrossRef] [PubMed]

Kawagoe, R.

T. Takahashi, Y. Takikawa, R. Kawagoe, S. Shibuya, T. Iwano, and S. Kitazawa, “Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task,” Neuroimage57(3), 991–1002 (2011).
[CrossRef] [PubMed]

Kawakami, M.

Y. Kakihana, A. Matsunaga, K. Tobo, S. Isowaki, M. Kawakami, I. Tsuneyoshi, Y. Kanmura, and M. Tamura, “Redox behavior of cytochrome oxidase and neurological prognosis in 66 patients who underwent thoracic aortic surgery,” Eur. J. Cardiothorac. Surg.21(3), 434–439 (2002).
[CrossRef] [PubMed]

Kitazawa, S.

T. Takahashi, Y. Takikawa, R. Kawagoe, S. Shibuya, T. Iwano, and S. Kitazawa, “Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task,” Neuroimage57(3), 991–1002 (2011).
[CrossRef] [PubMed]

Koh, P. H.

I. Tachtsidis, T. S. Leung, A. Chopra, P. H. Koh, C. B. Reid, and C. E. Elwell, “False positives in functional near-infrared topography,” Adv. Exp. Med. Biol.645, 307–314 (2009).
[CrossRef] [PubMed]

Kohl, M.

K. Uludag, M. Kohl, J. Steinbrink, H. Obrig, and A. Villringer, “Cross talk in the Lambert-Beer calculation for near-infrared wavelengths estimated by Monte Carlo simulations,” J. Biomed. Opt.7(1), 51–59 (2002).
[CrossRef] [PubMed]

H. R. Heekeren, M. Kohl, H. Obrig, R. Wenzel, W. von Pannwitz, S. J. Matcher, U. Dirnagl, C. E. Cooper, and A. Villringer, “Noninvasive assessment of changes in cytochrome-c oxidase oxidation in human subjects during visual stimulation,” J. Cereb. Blood Flow Metab.19(6), 592–603 (1999).
[CrossRef] [PubMed]

Kohl-Bareis, M.

L. Gao, C. E. Elwell, M. Kohl-Bareis, M. Gramer, C. E. Cooper, T. S. Leung, and I. Tachtsidis, “Effects of assuming constant optical scattering on haemoglobin concentration measurements using NIRS during a Valsalva manoeuvre,” Adv. Exp. Med. Biol.701, 15–20 (2011).
[CrossRef] [PubMed]

I. Tachtsidis, L. Gao, T. S. Leung, M. Kohl-Bareis, C. E. Cooper, and C. E. Elwell, “A hybrid multi-distance phase and broadband spatially resolved spectrometer and algorithm for resolving absolute concentrations of chromophores in the near-infrared light spectrum,” Adv. Exp. Med. Biol.662, 169–175 (2010).
[CrossRef] [PubMed]

K. Uludağ, J. Steinbrink, M. Kohl-Bareis, R. Wenzel, A. Villringer, and H. Obrig, “Cytochrome-c-oxidase redox changes during visual stimulation measured by near-infrared spectroscopy cannot be explained by a mere cross talk artefact,” Neuroimage22(1), 109–119 (2004).
[CrossRef] [PubMed]

Kress, I. U.

L. Minati, I. U. Kress, E. Visani, N. Medford, and H. D. Critchley, “Intra- and extra-cranial effects of transient blood pressure changes on brain near-infrared spectroscopy (NIRS) measurements,” J. Neurosci. Methods197(2), 283–288 (2011).
[CrossRef] [PubMed]

Leff, D. R.

F. Orihuela-Espina, D. R. Leff, D. R. James, A. W. Darzi, and G. Z. Yang, “Quality control and assurance in functional near infrared spectroscopy (fNIRS) experimentation,” Phys. Med. Biol.55(13), 3701–3724 (2010).
[CrossRef] [PubMed]

Leung, T. S.

L. Gao, C. E. Elwell, M. Kohl-Bareis, M. Gramer, C. E. Cooper, T. S. Leung, and I. Tachtsidis, “Effects of assuming constant optical scattering on haemoglobin concentration measurements using NIRS during a Valsalva manoeuvre,” Adv. Exp. Med. Biol.701, 15–20 (2011).
[CrossRef] [PubMed]

I. Tachtsidis, L. Gao, T. S. Leung, M. Kohl-Bareis, C. E. Cooper, and C. E. Elwell, “A hybrid multi-distance phase and broadband spatially resolved spectrometer and algorithm for resolving absolute concentrations of chromophores in the near-infrared light spectrum,” Adv. Exp. Med. Biol.662, 169–175 (2010).
[CrossRef] [PubMed]

I. Tachtsidis, M. M. Tisdall, T. S. Leung, C. Pritchard, C. E. Cooper, M. Smith, and C. E. Elwell, “Relationship between brain tissue haemodynamics, oxygenation and metabolism in the healthy human adult brain during hyperoxia and hypercapnea,” Adv. Exp. Med. Biol.645, 315–320 (2009).
[CrossRef] [PubMed]

I. Tachtsidis, T. S. Leung, A. Chopra, P. H. Koh, C. B. Reid, and C. E. Elwell, “False positives in functional near-infrared topography,” Adv. Exp. Med. Biol.645, 307–314 (2009).
[CrossRef] [PubMed]

I. Tachtsidis, T. S. Leung, L. Devoto, D. T. Delpy, and C. E. Elwell, “Measurement of frontal lobe functional activation and related systemic effects: a near-infrared spectroscopy investigation,” Adv. Exp. Med. Biol.614, 397–403 (2008).
[CrossRef] [PubMed]

I. Tachtsidis, T. S. Leung, M. M. Tisdall, P. Devendra, M. Smith, D. T. Delpy, and C. E. Elwell, “Investigation of frontal cortex, motor cortex and systemic haemodynamic changes during anagram solving,” Adv. Exp. Med. Biol.614, 21–28 (2008).
[CrossRef] [PubMed]

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Changes in the attenuation of near infrared spectra by the healthy adult brain during hypoxaemia cannot be accounted for solely by changes in the concentrations of oxy- and deoxy-haemoglobin,” Adv. Exp. Med. Biol.614, 217–225 (2008).
[CrossRef] [PubMed]

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Increase in cerebral aerobic metabolism by normobaric hyperoxia after traumatic brain injury,” J. Neurosurg.109(3), 424–432 (2008).
[CrossRef] [PubMed]

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Near-infrared spectroscopic quantification of changes in the concentration of oxidized cytochrome c oxidase in the healthy human brain during hypoxemia,” J. Biomed. Opt.12(2), 024002 (2007).
[CrossRef] [PubMed]

I. Tachtsidis, M. Tisdall, T. S. Leung, C. E. Cooper, D. T. Delpy, M. Smith, and C. E. Elwell, “Investigation of in vivo measurement of cerebral cytochrome-c-oxidase redox changes using near-infrared spectroscopy in patients with orthostatic hypotension,” Physiol. Meas.28(2), 199–211 (2007).
[CrossRef] [PubMed]

Liu, H.

F. Tian, B. Chance, and H. Liu, “Investigation of the prefrontal cortex in response to duration-variable anagram tasks using functional near-infrared spectroscopy,” J. Biomed. Opt.14(5), 054016 (2009).
[CrossRef] [PubMed]

Lundstrom, B. N.

M. A. Mintun, B. N. Lundstrom, A. Z. Snyder, A. G. Vlassenko, G. L. Shulman, and M. E. Raichle, “Blood flow and oxygen delivery to human brain during functional activity: theoretical modeling and experimental data,” Proc. Natl. Acad. Sci. U.S.A.98(12), 6859–6864 (2001).
[CrossRef] [PubMed]

Makker, H.

A. D. McGown, H. Makker, C. Elwell, P. G. Al Rawi, A. Valipour, and S. G. Spiro, “Measurement of changes in cytochrome oxidase redox state during obstructive sleep apnea using near-infrared spectroscopy,” Sleep26(6), 710–716 (2003).
[PubMed]

Mallet, A.

M. Banaji, A. Mallet, C. E. Elwell, P. Nicholls, and C. E. Cooper, “A model of brain circulation and metabolism: NIRS signal changes during physiological challenges,” PLOS Comput. Biol.4(11), e1000212 (2008).
[CrossRef] [PubMed]

Manara, A. R.

T. J. Germon, P. D. Evans, N. J. Barnett, P. Wall, A. R. Manara, and R. J. Nelson, “Cerebral near infrared spectroscopy: emitter-detector separation must be increased,” Br. J. Anaesth.82(6), 831–837 (1999).
[CrossRef] [PubMed]

T. J. Germon, P. D. Evans, A. R. Manara, N. J. Barnett, P. Wall, and R. J. Nelson, “Sensitivity of near infrared spectroscopy to cerebral and extra-cerebral oxygenation changes is determined by emitter-detector separation,” J. Clin. Monit. Comput.14(5), 353–360 (1998).
[CrossRef] [PubMed]

Matcher, S. J.

H. R. Heekeren, M. Kohl, H. Obrig, R. Wenzel, W. von Pannwitz, S. J. Matcher, U. Dirnagl, C. E. Cooper, and A. Villringer, “Noninvasive assessment of changes in cytochrome-c oxidase oxidation in human subjects during visual stimulation,” J. Cereb. Blood Flow Metab.19(6), 592–603 (1999).
[CrossRef] [PubMed]

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, and D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithms,” Anal. Biochem.227(1), 54–68 (1995).
[CrossRef] [PubMed]

C. E. Cooper, S. J. Matcher, J. S. Wyatt, M. Cope, G. C. Brown, E. M. Nemoto, and D. T. Delpy, “Near-infrared spectroscopy of the brain: relevance to cytochrome oxidase bioenergetics,” Biochem. Soc. Trans.22(4), 974–980 (1994).
[PubMed]

Matsunaga, A.

Y. Kakihana, A. Matsunaga, T. Yasuda, T. Imabayashi, Y. Kanmura, and M. Tamura, “Brain oxymetry in the operating room: current status and future directions with particular regard to cytochrome oxidase,” J. Biomed. Opt.13(3), 033001 (2008).
[CrossRef] [PubMed]

Y. Kakihana, A. Matsunaga, K. Tobo, S. Isowaki, M. Kawakami, I. Tsuneyoshi, Y. Kanmura, and M. Tamura, “Redox behavior of cytochrome oxidase and neurological prognosis in 66 patients who underwent thoracic aortic surgery,” Eur. J. Cardiothorac. Surg.21(3), 434–439 (2002).
[CrossRef] [PubMed]

Maulik, D.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol.44(6), 1543–1563 (1999).
[CrossRef] [PubMed]

McGown, A. D.

A. D. McGown, H. Makker, C. Elwell, P. G. Al Rawi, A. Valipour, and S. G. Spiro, “Measurement of changes in cytochrome oxidase redox state during obstructive sleep apnea using near-infrared spectroscopy,” Sleep26(6), 710–716 (2003).
[PubMed]

Medford, N.

L. Minati, I. U. Kress, E. Visani, N. Medford, and H. D. Critchley, “Intra- and extra-cranial effects of transient blood pressure changes on brain near-infrared spectroscopy (NIRS) measurements,” J. Neurosci. Methods197(2), 283–288 (2011).
[CrossRef] [PubMed]

Meek, J. H.

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. T. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol.40(2), 295–304 (1995).
[CrossRef] [PubMed]

Minati, L.

L. Minati, I. U. Kress, E. Visani, N. Medford, and H. D. Critchley, “Intra- and extra-cranial effects of transient blood pressure changes on brain near-infrared spectroscopy (NIRS) measurements,” J. Neurosci. Methods197(2), 283–288 (2011).
[CrossRef] [PubMed]

Mintun, M. A.

M. A. Mintun, B. N. Lundstrom, A. Z. Snyder, A. G. Vlassenko, G. L. Shulman, and M. E. Raichle, “Blood flow and oxygen delivery to human brain during functional activity: theoretical modeling and experimental data,” Proc. Natl. Acad. Sci. U.S.A.98(12), 6859–6864 (2001).
[CrossRef] [PubMed]

Mozley, L. H.

F. Schneider, R. E. Gur, A. Alavi, M. E. Seligman, L. H. Mozley, R. J. Smith, P. D. Mozley, and R. C. Gur, “Cerebral blood flow changes in limbic regions induced by unsolvable anagram tasks,” Am. J. Psychiatry153(2), 206–212 (1996).
[PubMed]

Mozley, P. D.

F. Schneider, R. E. Gur, A. Alavi, M. E. Seligman, L. H. Mozley, R. J. Smith, P. D. Mozley, and R. C. Gur, “Cerebral blood flow changes in limbic regions induced by unsolvable anagram tasks,” Am. J. Psychiatry153(2), 206–212 (1996).
[PubMed]

Nelson, R. J.

T. J. Germon, P. D. Evans, N. J. Barnett, P. Wall, A. R. Manara, and R. J. Nelson, “Cerebral near infrared spectroscopy: emitter-detector separation must be increased,” Br. J. Anaesth.82(6), 831–837 (1999).
[CrossRef] [PubMed]

T. J. Germon, P. D. Evans, A. R. Manara, N. J. Barnett, P. Wall, and R. J. Nelson, “Sensitivity of near infrared spectroscopy to cerebral and extra-cerebral oxygenation changes is determined by emitter-detector separation,” J. Clin. Monit. Comput.14(5), 353–360 (1998).
[CrossRef] [PubMed]

Nemoto, E. M.

C. E. Cooper, S. J. Matcher, J. S. Wyatt, M. Cope, G. C. Brown, E. M. Nemoto, and D. T. Delpy, “Near-infrared spectroscopy of the brain: relevance to cytochrome oxidase bioenergetics,” Biochem. Soc. Trans.22(4), 974–980 (1994).
[PubMed]

Newman, J.

R. Springett, J. Newman, M. Cope, and D. T. Delpy, “Oxygen dependency and precision of cytochrome oxidase signal from full spectral NIRS of the piglet brain,” Am. J. Physiol. Heart Circ. Physiol.279(5), H2202–H2209 (2000).
[PubMed]

Nicholls, P.

M. Banaji, A. Mallet, C. E. Elwell, P. Nicholls, and C. E. Cooper, “A model of brain circulation and metabolism: NIRS signal changes during physiological challenges,” PLOS Comput. Biol.4(11), e1000212 (2008).
[CrossRef] [PubMed]

Obrig, H.

K. Uludağ, J. Steinbrink, M. Kohl-Bareis, R. Wenzel, A. Villringer, and H. Obrig, “Cytochrome-c-oxidase redox changes during visual stimulation measured by near-infrared spectroscopy cannot be explained by a mere cross talk artefact,” Neuroimage22(1), 109–119 (2004).
[CrossRef] [PubMed]

H. Obrig and A. Villringer, “Beyond the visible--imaging the human brain with light,” J. Cereb. Blood Flow Metab.23(1), 1–18 (2003).
[CrossRef] [PubMed]

K. Uludag, M. Kohl, J. Steinbrink, H. Obrig, and A. Villringer, “Cross talk in the Lambert-Beer calculation for near-infrared wavelengths estimated by Monte Carlo simulations,” J. Biomed. Opt.7(1), 51–59 (2002).
[CrossRef] [PubMed]

H. R. Heekeren, M. Kohl, H. Obrig, R. Wenzel, W. von Pannwitz, S. J. Matcher, U. Dirnagl, C. E. Cooper, and A. Villringer, “Noninvasive assessment of changes in cytochrome-c oxidase oxidation in human subjects during visual stimulation,” J. Cereb. Blood Flow Metab.19(6), 592–603 (1999).
[CrossRef] [PubMed]

Ordidge, R.

C. E. Cooper, M. Cope, R. Springett, P. N. Amess, J. Penrice, L. Tyszczuk, S. Punwani, R. Ordidge, J. Wyatt, and D. T. Delpy, “Use of mitochondrial inhibitors to demonstrate that cytochrome oxidase near-infrared spectroscopy can measure mitochondrial dysfunction noninvasively in the brain,” J. Cereb. Blood Flow Metab.19(1), 27–38 (1999).
[CrossRef] [PubMed]

Orihuela-Espina, F.

F. Orihuela-Espina, D. R. Leff, D. R. James, A. W. Darzi, and G. Z. Yang, “Quality control and assurance in functional near infrared spectroscopy (fNIRS) experimentation,” Phys. Med. Biol.55(13), 3701–3724 (2010).
[CrossRef] [PubMed]

Penrice, J.

C. E. Cooper, M. Cope, R. Springett, P. N. Amess, J. Penrice, L. Tyszczuk, S. Punwani, R. Ordidge, J. Wyatt, and D. T. Delpy, “Use of mitochondrial inhibitors to demonstrate that cytochrome oxidase near-infrared spectroscopy can measure mitochondrial dysfunction noninvasively in the brain,” J. Cereb. Blood Flow Metab.19(1), 27–38 (1999).
[CrossRef] [PubMed]

Pienaar, R.

Pritchard, C.

I. Tachtsidis, M. M. Tisdall, T. S. Leung, C. Pritchard, C. E. Cooper, M. Smith, and C. E. Elwell, “Relationship between brain tissue haemodynamics, oxygenation and metabolism in the healthy human adult brain during hyperoxia and hypercapnea,” Adv. Exp. Med. Biol.645, 315–320 (2009).
[CrossRef] [PubMed]

Punwani, S.

C. E. Cooper, M. Cope, R. Springett, P. N. Amess, J. Penrice, L. Tyszczuk, S. Punwani, R. Ordidge, J. Wyatt, and D. T. Delpy, “Use of mitochondrial inhibitors to demonstrate that cytochrome oxidase near-infrared spectroscopy can measure mitochondrial dysfunction noninvasively in the brain,” J. Cereb. Blood Flow Metab.19(1), 27–38 (1999).
[CrossRef] [PubMed]

Quaresima, V.

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt.12(6), 062104 (2007).
[CrossRef] [PubMed]

Raichle, M. E.

M. A. Mintun, B. N. Lundstrom, A. Z. Snyder, A. G. Vlassenko, G. L. Shulman, and M. E. Raichle, “Blood flow and oxygen delivery to human brain during functional activity: theoretical modeling and experimental data,” Proc. Natl. Acad. Sci. U.S.A.98(12), 6859–6864 (2001).
[CrossRef] [PubMed]

Reid, C. B.

I. Tachtsidis, T. S. Leung, A. Chopra, P. H. Koh, C. B. Reid, and C. E. Elwell, “False positives in functional near-infrared topography,” Adv. Exp. Med. Biol.645, 307–314 (2009).
[CrossRef] [PubMed]

Roche-Labarbe, N.

Röhrborn, H. J.

S. Asgari, A. Doerfler, T. Engelhorn, H. J. Röhrborn, and D. Stolke, “In-vivo measurement of cytochrome using NIRS during acute focal cerebral ischaemia and reperfusion in rats,” Zentralbl. Neurochir.63(04), 146–152 (2002).
[CrossRef] [PubMed]

Rosenfeld, W.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol.44(6), 1543–1563 (1999).
[CrossRef] [PubMed]

Schneider, F.

F. Schneider, R. E. Gur, A. Alavi, M. E. Seligman, L. H. Mozley, R. J. Smith, P. D. Mozley, and R. C. Gur, “Cerebral blood flow changes in limbic regions induced by unsolvable anagram tasks,” Am. J. Psychiatry153(2), 206–212 (1996).
[PubMed]

Schytz, H. W.

H. W. Schytz, T. Wienecke, L. T. Jensen, J. Selb, D. A. Boas, and M. Ashina, “Changes in cerebral blood flow after acetazolamide: an experimental study comparing near-infrared spectroscopy and SPECT,” Eur. J. Neurol.16(4), 461–467 (2009).
[CrossRef] [PubMed]

Selb, J.

M. Dehaes, P. E. Grant, D. D. Sliva, N. Roche-Labarbe, R. Pienaar, D. A. Boas, M. A. Franceschini, and J. Selb, “Assessment of the frequency-domain multi-distance method to evaluate the brain optical properties: Monte Carlo simulations from neonate to adult,” Biomed. Opt. Express2(3), 552–567 (2011).
[CrossRef] [PubMed]

H. W. Schytz, T. Wienecke, L. T. Jensen, J. Selb, D. A. Boas, and M. Ashina, “Changes in cerebral blood flow after acetazolamide: an experimental study comparing near-infrared spectroscopy and SPECT,” Eur. J. Neurol.16(4), 461–467 (2009).
[CrossRef] [PubMed]

Seligman, M. E.

F. Schneider, R. E. Gur, A. Alavi, M. E. Seligman, L. H. Mozley, R. J. Smith, P. D. Mozley, and R. C. Gur, “Cerebral blood flow changes in limbic regions induced by unsolvable anagram tasks,” Am. J. Psychiatry153(2), 206–212 (1996).
[PubMed]

Shibuya, S.

T. Takahashi, Y. Takikawa, R. Kawagoe, S. Shibuya, T. Iwano, and S. Kitazawa, “Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task,” Neuroimage57(3), 991–1002 (2011).
[CrossRef] [PubMed]

Shulman, G. L.

M. A. Mintun, B. N. Lundstrom, A. Z. Snyder, A. G. Vlassenko, G. L. Shulman, and M. E. Raichle, “Blood flow and oxygen delivery to human brain during functional activity: theoretical modeling and experimental data,” Proc. Natl. Acad. Sci. U.S.A.98(12), 6859–6864 (2001).
[CrossRef] [PubMed]

Shuttleworth, C. W.

C. W. Shuttleworth, A. M. Brennan, and J. A. Connor, “NAD(P)H fluorescence imaging of postsynaptic neuronal activation in murine hippocampal slices,” J. Neurosci.23(8), 3196–3208 (2003).
[PubMed]

Sliva, D. D.

Smith, M.

D. Highton, C. Elwell, and M. Smith, “Noninvasive cerebral oximetry: is there light at the end of the tunnel?” Curr. Opin. Anaesthesiol.23(5), 576–581 (2010).
[CrossRef] [PubMed]

I. Tachtsidis, M. M. Tisdall, T. S. Leung, C. Pritchard, C. E. Cooper, M. Smith, and C. E. Elwell, “Relationship between brain tissue haemodynamics, oxygenation and metabolism in the healthy human adult brain during hyperoxia and hypercapnea,” Adv. Exp. Med. Biol.645, 315–320 (2009).
[CrossRef] [PubMed]

M. Smith and C. Elwell, “Near-infrared spectroscopy: shedding light on the injured brain,” Anesth. Analg.108(4), 1055–1057 (2009).
[CrossRef] [PubMed]

I. Tachtsidis, T. S. Leung, M. M. Tisdall, P. Devendra, M. Smith, D. T. Delpy, and C. E. Elwell, “Investigation of frontal cortex, motor cortex and systemic haemodynamic changes during anagram solving,” Adv. Exp. Med. Biol.614, 21–28 (2008).
[CrossRef] [PubMed]

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Changes in the attenuation of near infrared spectra by the healthy adult brain during hypoxaemia cannot be accounted for solely by changes in the concentrations of oxy- and deoxy-haemoglobin,” Adv. Exp. Med. Biol.614, 217–225 (2008).
[CrossRef] [PubMed]

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Increase in cerebral aerobic metabolism by normobaric hyperoxia after traumatic brain injury,” J. Neurosurg.109(3), 424–432 (2008).
[CrossRef] [PubMed]

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Near-infrared spectroscopic quantification of changes in the concentration of oxidized cytochrome c oxidase in the healthy human brain during hypoxemia,” J. Biomed. Opt.12(2), 024002 (2007).
[CrossRef] [PubMed]

I. Tachtsidis, M. Tisdall, T. S. Leung, C. E. Cooper, D. T. Delpy, M. Smith, and C. E. Elwell, “Investigation of in vivo measurement of cerebral cytochrome-c-oxidase redox changes using near-infrared spectroscopy in patients with orthostatic hypotension,” Physiol. Meas.28(2), 199–211 (2007).
[CrossRef] [PubMed]

Smith, R. J.

F. Schneider, R. E. Gur, A. Alavi, M. E. Seligman, L. H. Mozley, R. J. Smith, P. D. Mozley, and R. C. Gur, “Cerebral blood flow changes in limbic regions induced by unsolvable anagram tasks,” Am. J. Psychiatry153(2), 206–212 (1996).
[PubMed]

Snyder, A. Z.

M. A. Mintun, B. N. Lundstrom, A. Z. Snyder, A. G. Vlassenko, G. L. Shulman, and M. E. Raichle, “Blood flow and oxygen delivery to human brain during functional activity: theoretical modeling and experimental data,” Proc. Natl. Acad. Sci. U.S.A.98(12), 6859–6864 (2001).
[CrossRef] [PubMed]

Spiro, S. G.

A. D. McGown, H. Makker, C. Elwell, P. G. Al Rawi, A. Valipour, and S. G. Spiro, “Measurement of changes in cytochrome oxidase redox state during obstructive sleep apnea using near-infrared spectroscopy,” Sleep26(6), 710–716 (2003).
[PubMed]

Springett, R.

R. Springett, J. Newman, M. Cope, and D. T. Delpy, “Oxygen dependency and precision of cytochrome oxidase signal from full spectral NIRS of the piglet brain,” Am. J. Physiol. Heart Circ. Physiol.279(5), H2202–H2209 (2000).
[PubMed]

C. E. Cooper, M. Cope, R. Springett, P. N. Amess, J. Penrice, L. Tyszczuk, S. Punwani, R. Ordidge, J. Wyatt, and D. T. Delpy, “Use of mitochondrial inhibitors to demonstrate that cytochrome oxidase near-infrared spectroscopy can measure mitochondrial dysfunction noninvasively in the brain,” J. Cereb. Blood Flow Metab.19(1), 27–38 (1999).
[CrossRef] [PubMed]

C. E. Cooper and R. Springett, “Measurement of cytochrome oxidase and mitochondrial energetics by near-infrared spectroscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 669–676 (1997).
[CrossRef] [PubMed]

Stankovic, M. R.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol.44(6), 1543–1563 (1999).
[CrossRef] [PubMed]

Steinbrink, J.

K. Uludağ, J. Steinbrink, M. Kohl-Bareis, R. Wenzel, A. Villringer, and H. Obrig, “Cytochrome-c-oxidase redox changes during visual stimulation measured by near-infrared spectroscopy cannot be explained by a mere cross talk artefact,” Neuroimage22(1), 109–119 (2004).
[CrossRef] [PubMed]

K. Uludag, M. Kohl, J. Steinbrink, H. Obrig, and A. Villringer, “Cross talk in the Lambert-Beer calculation for near-infrared wavelengths estimated by Monte Carlo simulations,” J. Biomed. Opt.7(1), 51–59 (2002).
[CrossRef] [PubMed]

Stolke, D.

S. Asgari, A. Doerfler, T. Engelhorn, H. J. Röhrborn, and D. Stolke, “In-vivo measurement of cytochrome using NIRS during acute focal cerebral ischaemia and reperfusion in rats,” Zentralbl. Neurochir.63(04), 146–152 (2002).
[CrossRef] [PubMed]

Stubblefield, P. G.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol.44(6), 1543–1563 (1999).
[CrossRef] [PubMed]

Tachtsidis, I.

L. Gao, C. E. Elwell, M. Kohl-Bareis, M. Gramer, C. E. Cooper, T. S. Leung, and I. Tachtsidis, “Effects of assuming constant optical scattering on haemoglobin concentration measurements using NIRS during a Valsalva manoeuvre,” Adv. Exp. Med. Biol.701, 15–20 (2011).
[CrossRef] [PubMed]

I. Tachtsidis, L. Gao, T. S. Leung, M. Kohl-Bareis, C. E. Cooper, and C. E. Elwell, “A hybrid multi-distance phase and broadband spatially resolved spectrometer and algorithm for resolving absolute concentrations of chromophores in the near-infrared light spectrum,” Adv. Exp. Med. Biol.662, 169–175 (2010).
[CrossRef] [PubMed]

I. Tachtsidis, T. S. Leung, A. Chopra, P. H. Koh, C. B. Reid, and C. E. Elwell, “False positives in functional near-infrared topography,” Adv. Exp. Med. Biol.645, 307–314 (2009).
[CrossRef] [PubMed]

I. Tachtsidis, M. M. Tisdall, T. S. Leung, C. Pritchard, C. E. Cooper, M. Smith, and C. E. Elwell, “Relationship between brain tissue haemodynamics, oxygenation and metabolism in the healthy human adult brain during hyperoxia and hypercapnea,” Adv. Exp. Med. Biol.645, 315–320 (2009).
[CrossRef] [PubMed]

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Increase in cerebral aerobic metabolism by normobaric hyperoxia after traumatic brain injury,” J. Neurosurg.109(3), 424–432 (2008).
[CrossRef] [PubMed]

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Changes in the attenuation of near infrared spectra by the healthy adult brain during hypoxaemia cannot be accounted for solely by changes in the concentrations of oxy- and deoxy-haemoglobin,” Adv. Exp. Med. Biol.614, 217–225 (2008).
[CrossRef] [PubMed]

I. Tachtsidis, T. S. Leung, L. Devoto, D. T. Delpy, and C. E. Elwell, “Measurement of frontal lobe functional activation and related systemic effects: a near-infrared spectroscopy investigation,” Adv. Exp. Med. Biol.614, 397–403 (2008).
[CrossRef] [PubMed]

I. Tachtsidis, T. S. Leung, M. M. Tisdall, P. Devendra, M. Smith, D. T. Delpy, and C. E. Elwell, “Investigation of frontal cortex, motor cortex and systemic haemodynamic changes during anagram solving,” Adv. Exp. Med. Biol.614, 21–28 (2008).
[CrossRef] [PubMed]

I. Tachtsidis, M. Tisdall, T. S. Leung, C. E. Cooper, D. T. Delpy, M. Smith, and C. E. Elwell, “Investigation of in vivo measurement of cerebral cytochrome-c-oxidase redox changes using near-infrared spectroscopy in patients with orthostatic hypotension,” Physiol. Meas.28(2), 199–211 (2007).
[CrossRef] [PubMed]

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Near-infrared spectroscopic quantification of changes in the concentration of oxidized cytochrome c oxidase in the healthy human brain during hypoxemia,” J. Biomed. Opt.12(2), 024002 (2007).
[CrossRef] [PubMed]

Takahashi, T.

T. Takahashi, Y. Takikawa, R. Kawagoe, S. Shibuya, T. Iwano, and S. Kitazawa, “Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task,” Neuroimage57(3), 991–1002 (2011).
[CrossRef] [PubMed]

Takikawa, Y.

T. Takahashi, Y. Takikawa, R. Kawagoe, S. Shibuya, T. Iwano, and S. Kitazawa, “Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task,” Neuroimage57(3), 991–1002 (2011).
[CrossRef] [PubMed]

Tamura, M.

Y. Kakihana, A. Matsunaga, T. Yasuda, T. Imabayashi, Y. Kanmura, and M. Tamura, “Brain oxymetry in the operating room: current status and future directions with particular regard to cytochrome oxidase,” J. Biomed. Opt.13(3), 033001 (2008).
[CrossRef] [PubMed]

Y. Kakihana, A. Matsunaga, K. Tobo, S. Isowaki, M. Kawakami, I. Tsuneyoshi, Y. Kanmura, and M. Tamura, “Redox behavior of cytochrome oxidase and neurological prognosis in 66 patients who underwent thoracic aortic surgery,” Eur. J. Cardiothorac. Surg.21(3), 434–439 (2002).
[CrossRef] [PubMed]

Tian, F.

F. Tian, B. Chance, and H. Liu, “Investigation of the prefrontal cortex in response to duration-variable anagram tasks using functional near-infrared spectroscopy,” J. Biomed. Opt.14(5), 054016 (2009).
[CrossRef] [PubMed]

Tisdall, M.

I. Tachtsidis, M. Tisdall, T. S. Leung, C. E. Cooper, D. T. Delpy, M. Smith, and C. E. Elwell, “Investigation of in vivo measurement of cerebral cytochrome-c-oxidase redox changes using near-infrared spectroscopy in patients with orthostatic hypotension,” Physiol. Meas.28(2), 199–211 (2007).
[CrossRef] [PubMed]

Tisdall, M. M.

I. Tachtsidis, M. M. Tisdall, T. S. Leung, C. Pritchard, C. E. Cooper, M. Smith, and C. E. Elwell, “Relationship between brain tissue haemodynamics, oxygenation and metabolism in the healthy human adult brain during hyperoxia and hypercapnea,” Adv. Exp. Med. Biol.645, 315–320 (2009).
[CrossRef] [PubMed]

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Increase in cerebral aerobic metabolism by normobaric hyperoxia after traumatic brain injury,” J. Neurosurg.109(3), 424–432 (2008).
[CrossRef] [PubMed]

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Changes in the attenuation of near infrared spectra by the healthy adult brain during hypoxaemia cannot be accounted for solely by changes in the concentrations of oxy- and deoxy-haemoglobin,” Adv. Exp. Med. Biol.614, 217–225 (2008).
[CrossRef] [PubMed]

I. Tachtsidis, T. S. Leung, M. M. Tisdall, P. Devendra, M. Smith, D. T. Delpy, and C. E. Elwell, “Investigation of frontal cortex, motor cortex and systemic haemodynamic changes during anagram solving,” Adv. Exp. Med. Biol.614, 21–28 (2008).
[CrossRef] [PubMed]

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Near-infrared spectroscopic quantification of changes in the concentration of oxidized cytochrome c oxidase in the healthy human brain during hypoxemia,” J. Biomed. Opt.12(2), 024002 (2007).
[CrossRef] [PubMed]

Tobo, K.

Y. Kakihana, A. Matsunaga, K. Tobo, S. Isowaki, M. Kawakami, I. Tsuneyoshi, Y. Kanmura, and M. Tamura, “Redox behavior of cytochrome oxidase and neurological prognosis in 66 patients who underwent thoracic aortic surgery,” Eur. J. Cardiothorac. Surg.21(3), 434–439 (2002).
[CrossRef] [PubMed]

Tsuneyoshi, I.

Y. Kakihana, A. Matsunaga, K. Tobo, S. Isowaki, M. Kawakami, I. Tsuneyoshi, Y. Kanmura, and M. Tamura, “Redox behavior of cytochrome oxidase and neurological prognosis in 66 patients who underwent thoracic aortic surgery,” Eur. J. Cardiothorac. Surg.21(3), 434–439 (2002).
[CrossRef] [PubMed]

Tyszczuk, L.

C. E. Cooper, M. Cope, R. Springett, P. N. Amess, J. Penrice, L. Tyszczuk, S. Punwani, R. Ordidge, J. Wyatt, and D. T. Delpy, “Use of mitochondrial inhibitors to demonstrate that cytochrome oxidase near-infrared spectroscopy can measure mitochondrial dysfunction noninvasively in the brain,” J. Cereb. Blood Flow Metab.19(1), 27–38 (1999).
[CrossRef] [PubMed]

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. T. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol.40(2), 295–304 (1995).
[CrossRef] [PubMed]

Uludag, K.

K. Uludağ, J. Steinbrink, M. Kohl-Bareis, R. Wenzel, A. Villringer, and H. Obrig, “Cytochrome-c-oxidase redox changes during visual stimulation measured by near-infrared spectroscopy cannot be explained by a mere cross talk artefact,” Neuroimage22(1), 109–119 (2004).
[CrossRef] [PubMed]

K. Uludag, M. Kohl, J. Steinbrink, H. Obrig, and A. Villringer, “Cross talk in the Lambert-Beer calculation for near-infrared wavelengths estimated by Monte Carlo simulations,” J. Biomed. Opt.7(1), 51–59 (2002).
[CrossRef] [PubMed]

Valipour, A.

A. D. McGown, H. Makker, C. Elwell, P. G. Al Rawi, A. Valipour, and S. G. Spiro, “Measurement of changes in cytochrome oxidase redox state during obstructive sleep apnea using near-infrared spectroscopy,” Sleep26(6), 710–716 (2003).
[PubMed]

van der Zee, P.

Vartanian, O.

O. Vartanian and V. Goel, “Task constraints modulate activation in right ventral lateral prefrontal cortex,” Neuroimage27(4), 927–933 (2005).
[CrossRef] [PubMed]

Villringer, A.

K. Uludağ, J. Steinbrink, M. Kohl-Bareis, R. Wenzel, A. Villringer, and H. Obrig, “Cytochrome-c-oxidase redox changes during visual stimulation measured by near-infrared spectroscopy cannot be explained by a mere cross talk artefact,” Neuroimage22(1), 109–119 (2004).
[CrossRef] [PubMed]

H. Obrig and A. Villringer, “Beyond the visible--imaging the human brain with light,” J. Cereb. Blood Flow Metab.23(1), 1–18 (2003).
[CrossRef] [PubMed]

K. Uludag, M. Kohl, J. Steinbrink, H. Obrig, and A. Villringer, “Cross talk in the Lambert-Beer calculation for near-infrared wavelengths estimated by Monte Carlo simulations,” J. Biomed. Opt.7(1), 51–59 (2002).
[CrossRef] [PubMed]

H. R. Heekeren, M. Kohl, H. Obrig, R. Wenzel, W. von Pannwitz, S. J. Matcher, U. Dirnagl, C. E. Cooper, and A. Villringer, “Noninvasive assessment of changes in cytochrome-c oxidase oxidation in human subjects during visual stimulation,” J. Cereb. Blood Flow Metab.19(6), 592–603 (1999).
[CrossRef] [PubMed]

Visani, E.

L. Minati, I. U. Kress, E. Visani, N. Medford, and H. D. Critchley, “Intra- and extra-cranial effects of transient blood pressure changes on brain near-infrared spectroscopy (NIRS) measurements,” J. Neurosci. Methods197(2), 283–288 (2011).
[CrossRef] [PubMed]

Vlassenko, A. G.

M. A. Mintun, B. N. Lundstrom, A. Z. Snyder, A. G. Vlassenko, G. L. Shulman, and M. E. Raichle, “Blood flow and oxygen delivery to human brain during functional activity: theoretical modeling and experimental data,” Proc. Natl. Acad. Sci. U.S.A.98(12), 6859–6864 (2001).
[CrossRef] [PubMed]

von Pannwitz, W.

H. R. Heekeren, M. Kohl, H. Obrig, R. Wenzel, W. von Pannwitz, S. J. Matcher, U. Dirnagl, C. E. Cooper, and A. Villringer, “Noninvasive assessment of changes in cytochrome-c oxidase oxidation in human subjects during visual stimulation,” J. Cereb. Blood Flow Metab.19(6), 592–603 (1999).
[CrossRef] [PubMed]

Wall, P.

T. J. Germon, P. D. Evans, N. J. Barnett, P. Wall, A. R. Manara, and R. J. Nelson, “Cerebral near infrared spectroscopy: emitter-detector separation must be increased,” Br. J. Anaesth.82(6), 831–837 (1999).
[CrossRef] [PubMed]

T. J. Germon, P. D. Evans, A. R. Manara, N. J. Barnett, P. Wall, and R. J. Nelson, “Sensitivity of near infrared spectroscopy to cerebral and extra-cerebral oxygenation changes is determined by emitter-detector separation,” J. Clin. Monit. Comput.14(5), 353–360 (1998).
[CrossRef] [PubMed]

Wenzel, R.

K. Uludağ, J. Steinbrink, M. Kohl-Bareis, R. Wenzel, A. Villringer, and H. Obrig, “Cytochrome-c-oxidase redox changes during visual stimulation measured by near-infrared spectroscopy cannot be explained by a mere cross talk artefact,” Neuroimage22(1), 109–119 (2004).
[CrossRef] [PubMed]

H. R. Heekeren, M. Kohl, H. Obrig, R. Wenzel, W. von Pannwitz, S. J. Matcher, U. Dirnagl, C. E. Cooper, and A. Villringer, “Noninvasive assessment of changes in cytochrome-c oxidase oxidation in human subjects during visual stimulation,” J. Cereb. Blood Flow Metab.19(6), 592–603 (1999).
[CrossRef] [PubMed]

White, B. R.

N. M. Gregg, B. R. White, B. W. Zeff, A. J. Berger, and J. P. Culver, “Brain specificity of diffuse optical imaging: improvements from superficial signal regression and tomography,” Front Neuroenergetics2, 14 (2010).
[PubMed]

Wienecke, T.

H. W. Schytz, T. Wienecke, L. T. Jensen, J. Selb, D. A. Boas, and M. Ashina, “Changes in cerebral blood flow after acetazolamide: an experimental study comparing near-infrared spectroscopy and SPECT,” Eur. J. Neurol.16(4), 461–467 (2009).
[CrossRef] [PubMed]

Williams, G. R.

B. Chance and G. R. Williams, “Respiratory enzymes in oxidative phosphorylation. III. The steady state,” J. Biol. Chem.217(1), 409–427 (1955).
[PubMed]

Wolf, M.

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt.12(6), 062104 (2007).
[CrossRef] [PubMed]

Wyatt, J.

C. E. Cooper, M. Cope, R. Springett, P. N. Amess, J. Penrice, L. Tyszczuk, S. Punwani, R. Ordidge, J. Wyatt, and D. T. Delpy, “Use of mitochondrial inhibitors to demonstrate that cytochrome oxidase near-infrared spectroscopy can measure mitochondrial dysfunction noninvasively in the brain,” J. Cereb. Blood Flow Metab.19(1), 27–38 (1999).
[CrossRef] [PubMed]

Wyatt, J. S.

C. E. Cooper, S. J. Matcher, J. S. Wyatt, M. Cope, G. C. Brown, E. M. Nemoto, and D. T. Delpy, “Near-infrared spectroscopy of the brain: relevance to cytochrome oxidase bioenergetics,” Biochem. Soc. Trans.22(4), 974–980 (1994).
[PubMed]

Yang, G. Z.

F. Orihuela-Espina, D. R. Leff, D. R. James, A. W. Darzi, and G. Z. Yang, “Quality control and assurance in functional near infrared spectroscopy (fNIRS) experimentation,” Phys. Med. Biol.55(13), 3701–3724 (2010).
[CrossRef] [PubMed]

Yasuda, T.

Y. Kakihana, A. Matsunaga, T. Yasuda, T. Imabayashi, Y. Kanmura, and M. Tamura, “Brain oxymetry in the operating room: current status and future directions with particular regard to cytochrome oxidase,” J. Biomed. Opt.13(3), 033001 (2008).
[CrossRef] [PubMed]

Zeff, B. W.

N. M. Gregg, B. R. White, B. W. Zeff, A. J. Berger, and J. P. Culver, “Brain specificity of diffuse optical imaging: improvements from superficial signal regression and tomography,” Front Neuroenergetics2, 14 (2010).
[PubMed]

Adv. Exp. Med. Biol.

I. Tachtsidis, T. S. Leung, M. M. Tisdall, P. Devendra, M. Smith, D. T. Delpy, and C. E. Elwell, “Investigation of frontal cortex, motor cortex and systemic haemodynamic changes during anagram solving,” Adv. Exp. Med. Biol.614, 21–28 (2008).
[CrossRef] [PubMed]

Adv. Exp. Med. Biol.

I. Tachtsidis, L. Gao, T. S. Leung, M. Kohl-Bareis, C. E. Cooper, and C. E. Elwell, “A hybrid multi-distance phase and broadband spatially resolved spectrometer and algorithm for resolving absolute concentrations of chromophores in the near-infrared light spectrum,” Adv. Exp. Med. Biol.662, 169–175 (2010).
[CrossRef] [PubMed]

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Changes in the attenuation of near infrared spectra by the healthy adult brain during hypoxaemia cannot be accounted for solely by changes in the concentrations of oxy- and deoxy-haemoglobin,” Adv. Exp. Med. Biol.614, 217–225 (2008).
[CrossRef] [PubMed]

Adv. Exp. Med. Biol.

I. Tachtsidis, M. M. Tisdall, T. S. Leung, C. Pritchard, C. E. Cooper, M. Smith, and C. E. Elwell, “Relationship between brain tissue haemodynamics, oxygenation and metabolism in the healthy human adult brain during hyperoxia and hypercapnea,” Adv. Exp. Med. Biol.645, 315–320 (2009).
[CrossRef] [PubMed]

I. Tachtsidis, T. S. Leung, A. Chopra, P. H. Koh, C. B. Reid, and C. E. Elwell, “False positives in functional near-infrared topography,” Adv. Exp. Med. Biol.645, 307–314 (2009).
[CrossRef] [PubMed]

L. Gao, C. E. Elwell, M. Kohl-Bareis, M. Gramer, C. E. Cooper, T. S. Leung, and I. Tachtsidis, “Effects of assuming constant optical scattering on haemoglobin concentration measurements using NIRS during a Valsalva manoeuvre,” Adv. Exp. Med. Biol.701, 15–20 (2011).
[CrossRef] [PubMed]

I. Tachtsidis, T. S. Leung, L. Devoto, D. T. Delpy, and C. E. Elwell, “Measurement of frontal lobe functional activation and related systemic effects: a near-infrared spectroscopy investigation,” Adv. Exp. Med. Biol.614, 397–403 (2008).
[CrossRef] [PubMed]

Am. J. Physiol. Heart Circ. Physiol.

R. Springett, J. Newman, M. Cope, and D. T. Delpy, “Oxygen dependency and precision of cytochrome oxidase signal from full spectral NIRS of the piglet brain,” Am. J. Physiol. Heart Circ. Physiol.279(5), H2202–H2209 (2000).
[PubMed]

Am. J. Psychiatry

F. Schneider, R. E. Gur, A. Alavi, M. E. Seligman, L. H. Mozley, R. J. Smith, P. D. Mozley, and R. C. Gur, “Cerebral blood flow changes in limbic regions induced by unsolvable anagram tasks,” Am. J. Psychiatry153(2), 206–212 (1996).
[PubMed]

Anal. Biochem.

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, and D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithms,” Anal. Biochem.227(1), 54–68 (1995).
[CrossRef] [PubMed]

Anesth. Analg.

M. Smith and C. Elwell, “Near-infrared spectroscopy: shedding light on the injured brain,” Anesth. Analg.108(4), 1055–1057 (2009).
[CrossRef] [PubMed]

Appl. Opt.

Biochem. Soc. Trans.

C. E. Cooper, S. J. Matcher, J. S. Wyatt, M. Cope, G. C. Brown, E. M. Nemoto, and D. T. Delpy, “Near-infrared spectroscopy of the brain: relevance to cytochrome oxidase bioenergetics,” Biochem. Soc. Trans.22(4), 974–980 (1994).
[PubMed]

Biomed. Opt. Express

Br. J. Anaesth.

T. J. Germon, P. D. Evans, N. J. Barnett, P. Wall, A. R. Manara, and R. J. Nelson, “Cerebral near infrared spectroscopy: emitter-detector separation must be increased,” Br. J. Anaesth.82(6), 831–837 (1999).
[CrossRef] [PubMed]

Curr. Opin. Anaesthesiol.

D. Highton, C. Elwell, and M. Smith, “Noninvasive cerebral oximetry: is there light at the end of the tunnel?” Curr. Opin. Anaesthesiol.23(5), 576–581 (2010).
[CrossRef] [PubMed]

Eur. J. Cardiothorac. Surg.

Y. Kakihana, A. Matsunaga, K. Tobo, S. Isowaki, M. Kawakami, I. Tsuneyoshi, Y. Kanmura, and M. Tamura, “Redox behavior of cytochrome oxidase and neurological prognosis in 66 patients who underwent thoracic aortic surgery,” Eur. J. Cardiothorac. Surg.21(3), 434–439 (2002).
[CrossRef] [PubMed]

Eur. J. Neurol.

H. W. Schytz, T. Wienecke, L. T. Jensen, J. Selb, D. A. Boas, and M. Ashina, “Changes in cerebral blood flow after acetazolamide: an experimental study comparing near-infrared spectroscopy and SPECT,” Eur. J. Neurol.16(4), 461–467 (2009).
[CrossRef] [PubMed]

Front Neuroenergetics

N. M. Gregg, B. R. White, B. W. Zeff, A. J. Berger, and J. P. Culver, “Brain specificity of diffuse optical imaging: improvements from superficial signal regression and tomography,” Front Neuroenergetics2, 14 (2010).
[PubMed]

Hum. Brain Mapp.

L. Aziz-Zadeh, J. T. Kaplan, and M. Iacoboni, “‘Aha!’: The neural correlates of verbal insight solutions,” Hum. Brain Mapp.30(3), 908–916 (2009).
[CrossRef] [PubMed]

J. Biomed. Opt.

T. Correia, A. Gibson, and J. Hebden, “Identification of the optimal wavelengths for optical topography: a photon measurement density function analysis,” J. Biomed. Opt.15(5), 056002 (2010).
[CrossRef] [PubMed]

J. Biol. Chem.

B. Chance and G. R. Williams, “Respiratory enzymes in oxidative phosphorylation. III. The steady state,” J. Biol. Chem.217(1), 409–427 (1955).
[PubMed]

J. Biomed. Opt.

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt.12(6), 062104 (2007).
[CrossRef] [PubMed]

J. Biomed. Opt.

Y. Kakihana, A. Matsunaga, T. Yasuda, T. Imabayashi, Y. Kanmura, and M. Tamura, “Brain oxymetry in the operating room: current status and future directions with particular regard to cytochrome oxidase,” J. Biomed. Opt.13(3), 033001 (2008).
[CrossRef] [PubMed]

K. Uludag, M. Kohl, J. Steinbrink, H. Obrig, and A. Villringer, “Cross talk in the Lambert-Beer calculation for near-infrared wavelengths estimated by Monte Carlo simulations,” J. Biomed. Opt.7(1), 51–59 (2002).
[CrossRef] [PubMed]

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Near-infrared spectroscopic quantification of changes in the concentration of oxidized cytochrome c oxidase in the healthy human brain during hypoxemia,” J. Biomed. Opt.12(2), 024002 (2007).
[CrossRef] [PubMed]

F. Tian, B. Chance, and H. Liu, “Investigation of the prefrontal cortex in response to duration-variable anagram tasks using functional near-infrared spectroscopy,” J. Biomed. Opt.14(5), 054016 (2009).
[CrossRef] [PubMed]

J. Cereb. Blood Flow Metab.

C. E. Cooper, M. Cope, R. Springett, P. N. Amess, J. Penrice, L. Tyszczuk, S. Punwani, R. Ordidge, J. Wyatt, and D. T. Delpy, “Use of mitochondrial inhibitors to demonstrate that cytochrome oxidase near-infrared spectroscopy can measure mitochondrial dysfunction noninvasively in the brain,” J. Cereb. Blood Flow Metab.19(1), 27–38 (1999).
[CrossRef] [PubMed]

J. Cereb. Blood Flow Metab.

H. Obrig and A. Villringer, “Beyond the visible--imaging the human brain with light,” J. Cereb. Blood Flow Metab.23(1), 1–18 (2003).
[CrossRef] [PubMed]

H. R. Heekeren, M. Kohl, H. Obrig, R. Wenzel, W. von Pannwitz, S. J. Matcher, U. Dirnagl, C. E. Cooper, and A. Villringer, “Noninvasive assessment of changes in cytochrome-c oxidase oxidation in human subjects during visual stimulation,” J. Cereb. Blood Flow Metab.19(6), 592–603 (1999).
[CrossRef] [PubMed]

J. Clin. Monit. Comput.

T. J. Germon, P. D. Evans, A. R. Manara, N. J. Barnett, P. Wall, and R. J. Nelson, “Sensitivity of near infrared spectroscopy to cerebral and extra-cerebral oxygenation changes is determined by emitter-detector separation,” J. Clin. Monit. Comput.14(5), 353–360 (1998).
[CrossRef] [PubMed]

J. Neurosci.

C. W. Shuttleworth, A. M. Brennan, and J. A. Connor, “NAD(P)H fluorescence imaging of postsynaptic neuronal activation in murine hippocampal slices,” J. Neurosci.23(8), 3196–3208 (2003).
[PubMed]

J. Neurosci. Methods

L. Minati, I. U. Kress, E. Visani, N. Medford, and H. D. Critchley, “Intra- and extra-cranial effects of transient blood pressure changes on brain near-infrared spectroscopy (NIRS) measurements,” J. Neurosci. Methods197(2), 283–288 (2011).
[CrossRef] [PubMed]

J. Neurosurg.

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Increase in cerebral aerobic metabolism by normobaric hyperoxia after traumatic brain injury,” J. Neurosurg.109(3), 424–432 (2008).
[CrossRef] [PubMed]

J. Theor. Biol.

M. Banaji, “A generic model of electron transport in mitochondria,” J. Theor. Biol.243(4), 501–516 (2006).
[CrossRef] [PubMed]

Neuroimage

K. Uludağ, J. Steinbrink, M. Kohl-Bareis, R. Wenzel, A. Villringer, and H. Obrig, “Cytochrome-c-oxidase redox changes during visual stimulation measured by near-infrared spectroscopy cannot be explained by a mere cross talk artefact,” Neuroimage22(1), 109–119 (2004).
[CrossRef] [PubMed]

T. Takahashi, Y. Takikawa, R. Kawagoe, S. Shibuya, T. Iwano, and S. Kitazawa, “Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task,” Neuroimage57(3), 991–1002 (2011).
[CrossRef] [PubMed]

O. Vartanian and V. Goel, “Task constraints modulate activation in right ventral lateral prefrontal cortex,” Neuroimage27(4), 927–933 (2005).
[CrossRef] [PubMed]

Philos. Trans. R. Soc. Lond. B Biol. Sci.

C. E. Cooper and R. Springett, “Measurement of cytochrome oxidase and mitochondrial energetics by near-infrared spectroscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 669–676 (1997).
[CrossRef] [PubMed]

Phys. Med. Biol.

F. Orihuela-Espina, D. R. Leff, D. R. James, A. W. Darzi, and G. Z. Yang, “Quality control and assurance in functional near infrared spectroscopy (fNIRS) experimentation,” Phys. Med. Biol.55(13), 3701–3724 (2010).
[CrossRef] [PubMed]

Phys. Med. Biol.

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. T. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol.40(2), 295–304 (1995).
[CrossRef] [PubMed]

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol.44(6), 1543–1563 (1999).
[CrossRef] [PubMed]

Physiol. Meas.

I. Tachtsidis, M. Tisdall, T. S. Leung, C. E. Cooper, D. T. Delpy, M. Smith, and C. E. Elwell, “Investigation of in vivo measurement of cerebral cytochrome-c-oxidase redox changes using near-infrared spectroscopy in patients with orthostatic hypotension,” Physiol. Meas.28(2), 199–211 (2007).
[CrossRef] [PubMed]

Physiol. Rev.

D. L. Drabkin, “Metabolism of the hemin chromoproteins,” Physiol. Rev.31(4), 345–431 (1951).
[PubMed]

PLOS Comput. Biol.

M. Banaji, A. Mallet, C. E. Elwell, P. Nicholls, and C. E. Cooper, “A model of brain circulation and metabolism: NIRS signal changes during physiological challenges,” PLOS Comput. Biol.4(11), e1000212 (2008).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A.

M. A. Mintun, B. N. Lundstrom, A. Z. Snyder, A. G. Vlassenko, G. L. Shulman, and M. E. Raichle, “Blood flow and oxygen delivery to human brain during functional activity: theoretical modeling and experimental data,” Proc. Natl. Acad. Sci. U.S.A.98(12), 6859–6864 (2001).
[CrossRef] [PubMed]

Science

F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science198(4323), 1264–1267 (1977).
[CrossRef] [PubMed]

Sleep

A. D. McGown, H. Makker, C. Elwell, P. G. Al Rawi, A. Valipour, and S. G. Spiro, “Measurement of changes in cytochrome oxidase redox state during obstructive sleep apnea using near-infrared spectroscopy,” Sleep26(6), 710–716 (2003).
[PubMed]

Zentralbl. Neurochir.

S. Asgari, A. Doerfler, T. Engelhorn, H. J. Röhrborn, and D. Stolke, “In-vivo measurement of cytochrome using NIRS during acute focal cerebral ischaemia and reperfusion in rats,” Zentralbl. Neurochir.63(04), 146–152 (2002).
[CrossRef] [PubMed]

Other

E. R. Reilly, “EEG recording and operation of the apparatus,” in Electroencephalography: Basic Principles, Clinical Applications and Related Fields, E. Niedermeyer and F. H. L. Da Silva, eds. (Lippincott Williams and Wilkins, 2005), pp. 139–160.

I. Tachtsidis, T. S. Leung, B. Tahir, C. E. Elwell, M. Kohl-Bareis, M. Gramer, and C. E. Cooper, “A hybrid multi-distance phase and broadband spatially resolved algorithm for resolving absolute concentrations of chromophores in the near-infrared light spectrum: application on to dynamic phantoms,” in Biomedical Optics, OSA Technical Digest (Optical Society of America, 2008), paper BSuE76.

Supplementary Material (3)

» Media 1: PDF (309 KB)     
» Media 2: PDF (303 KB)     
» Media 3: PDF (158 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Selection of baseline and activation time windows for the three chromophores. For all chromophores the baseline window was the 60-second window just before the subject started solving anagrams. The activation window for HbO2 was the 60-second window of maximum Δ[HbO2] increase with respect to baseline. The search area for the middle of this window was any time during the anagram exercise, except for the first and last 30 seconds. The activation windows for CCO and HHb were the 60-second windows of maximum Δ[HHb] and Δ[oxCCO] response with respect to baseline. The search areas for the centres of both windows were tied to the HbO2 activation window and were set to start as early as 27 seconds before the beginning of the HbO2 window and end as late as 27 seconds after its end.

Fig. 2
Fig. 2

Grand averages of the time course of Δ[HbO2] and Δ[HHb] over the 8 subjects that showed hemodynamic response consistent with functional activation. The vertical lines at 120 s and 480 s denote the onset and end of anagram exercise. (a): detector 1 (furthest detector); (b): detector 2; (c): detector 3; (d): detector 4.

Fig. 3
Fig. 3

Response of Δ[HbO2] between baseline and activation for each of the four detectors. Each symbol corresponds to a different subject, in agreement with Fig. 4, 5 and 6. det1-4 denotes detector number, as indicated in the legend. No hemodynamic response consistent with functional activation was recorded in detectors 3 and 4 for subject “X”.

Fig. 4
Fig. 4

Attenuation-change spectra back-calculated from the calculated concentration changes at peak Δ[oxCCO] response for different subjects. The presented spectra are the average of all spectra falling within the window of peak Δ[oxCCO] activation. The difference between the 3 and the 2-chromophore fit is plotted. All data are from the furthest detector. The symbols at the top left-hand-side corner of each plot indicate the correspondence with Fig. 3, 5 and 6.

Fig. 5
Fig. 5

Response of Δ[oxCCO] between baseline and activation for each of the four detectors. Each symbol corresponds to a different subject, consistent with Fig. 3, 4 and 6. det1-4 denotes detector number, as indicated in the legend. All responses were statistically significant.

Fig. 6
Fig. 6

Examples of the individual time-courses of Δ[HbO2] and Δ[oxCCO] for two subjects. (a): Δ[oxCCO] increased during functional activation (detector 1) and (b): Δ[oxCCO] decreased (detector 2). The signals are presented after being filtered with a Butterworth filter and smoothed with a 60-second sliding average window, as described in the Methods. The vertical lines at 120 s and 480 s denote the onset and end of anagram exercise. The symbols at the top left-hand-side corner of each plot indicate the correspondence with Fig. 3, 4 and 5. See Media 2.

Fig. 7
Fig. 7

Modelling of NIRS changes following functional activation. The BRAINSIGNALS model was used [9]. Functional activation was modelled as a 30% increase in demand (parameter change from 1 to 1.3). (a): Model parameter D_NADH was varied with respect to its normal value in the model and the accompanying optical changes and NAD/NADH ratios plotted. (b): Model parameter ck1 was varied with respect to its normal value in the model and the accompanying optical changes plotted. See Media 3.

Tables (1)

Tables Icon

Table 1 Pathlength, presented as DPF x distance (group data, n = 8)

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

[ Δ[HbO 2 ] Δ[HHb] Δ[oxCCO] ] = 1 pathlengh [ ε HbO 2 1 ) ε HbO 2 2 ) ... ε HbO 2 n ) ε HHb 1 ) ε HHb 2 ) ... ε HHb n ) ε oxCCO 1 ) ε oxCCO 2 ) ... ε oxCCO n ) ] -1 [ ΔA(λ 1 ) ΔA(λ 2 ) ... ΔA(λ n ) ]

Metrics