Abstract

Custom high-resolution high-speed anterior segment spectral domain optical coherence tomography (OCT) was used to characterize three-dimensionally (3-D) the human crystalline lens in vivo. The system was provided with custom algorithms for denoising and segmentation of the images, as well as for fan (scanning) and optical (refraction) distortion correction, to provide fully quantitative images of the anterior and posterior crystalline lens surfaces. The method was tested on an artificial eye with known surfaces geometry and on a human lens in vitro, and demonstrated on three human lenses in vivo. Not correcting for distortion overestimated the anterior lens radius by 25% and the posterior lens radius by more than 65%. In vivo lens surfaces were fitted by biconicoids and Zernike polynomials after distortion correction. The anterior lens radii of curvature ranged from 10.27 to 14.14 mm, and the posterior lens radii of curvature ranged from 6.12 to 7.54 mm. Surface asphericities ranged from −0.04 to −1.96. The lens surfaces were well fitted by quadrics (with variation smaller than 2%, for 5-mm pupils), with low amounts of high order terms. Surface lens astigmatism was significant, with the anterior lens typically showing horizontal astigmatism (Z22 ranging from −11 to −1 µm) and the posterior lens showing vertical astigmatism (Z22 ranging from 6 to 10 µm).

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Kiely, G. Smith, and L. Carney, “The mean shape of the human cornea,” Opt. Acta (Lond.)29(8), 1027–1040 (1982).
    [CrossRef]
  2. J. Schwiegerling, J. E. Greivenkamp, and J. M. Miller, “Representation of videokeratoscopic height data with Zernike polynomials,” J. Opt. Soc. Am. A12(10), 2105–2113 (1995).
    [CrossRef] [PubMed]
  3. M. Dubbelman, H. A. Weeber, R. G. van der Heijde, and H. J. Völker-Dieben, “Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography,” Acta Ophthalmol. Scand.80(4), 379–383 (2002).
    [CrossRef] [PubMed]
  4. A. Gullstrand, “Appendices to Part I,” in Helmholtz's Treatise on Physiological Optics (Optical Society of America, Rochester, NY, 1924), pp. 350–358.
  5. H. Helmholtz, “Ueber die accommodation des auges,” Arch. Ophthal.1, 1–74 (1855).
  6. A. Glasser and M. C. W. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res.38(2), 209–229 (1998).
    [CrossRef] [PubMed]
  7. A. Glasser and P. L. Kaufman, “The mechanism of accommodation in primates,” Ophthalmology106(5), 863–872 (1999).
    [CrossRef] [PubMed]
  8. G. Smith, B. K. Pierscionek, and D. A. Atchison, “The optical modelling of the human lens,” Ophthalmic Physiol. Opt.11(4), 359–369 (1991).
    [CrossRef] [PubMed]
  9. L. F. Garner and M. K. Yap, “Changes in ocular dimensions and refraction with accommodation,” Ophthalmic Physiol. Opt.17(1), 12–17 (1997).
    [CrossRef] [PubMed]
  10. L. F. Garner, “Calculation of the radii of curvature of the crystalline lens surfaces,” Ophthalmic Physiol. Opt.17(1), 75–80 (1997).
    [CrossRef] [PubMed]
  11. A. Glasser and M. C. W. Campbell, “Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia,” Vision Res.39(11), 1991–2015 (1999).
    [CrossRef] [PubMed]
  12. F. Manns, V. Fernandez, S. Zipper, S. Sandadi, M. Hamaoui, A. Ho, and J. M. Parel, “Radius of curvature and asphericity of the anterior and posterior surface of human cadaver crystalline lenses,” Exp. Eye Res.78(1), 39–51 (2004).
    [CrossRef] [PubMed]
  13. A. M. Rosen, D. B. Denham, V. Fernandez, D. Borja, A. Ho, F. Manns, J. M. Parel, and R. C. Augusteyn, “In vitro dimensions and curvatures of human lenses,” Vision Res.46(6-7), 1002–1009 (2006).
    [CrossRef] [PubMed]
  14. Y. Sakamoto, K. Sasaki, Y. Nakamura, and N. Watanabe, “Reproducibility of data obtained by a newly developed anterior eye segment analysis system, EAS-1000,” Ophthalmic Res.24(Suppl 1), 10–20 (1992).
    [CrossRef] [PubMed]
  15. C. A. Cook and J. F. Koretz, “Methods to obtain quantitative parametric descriptions of the optical surfaces of the human crystalline lens from Scheimpflug slit-lamp images. I. Image processing methods,” J. Opt. Soc. Am. A15(6), 1473–1485 (1998).
    [CrossRef] [PubMed]
  16. M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res.41(14), 1867–1877 (2001).
    [CrossRef] [PubMed]
  17. M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optom. Vis. Sci.78(6), 411–416 (2001).
    [CrossRef] [PubMed]
  18. M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res.45(1), 117–132 (2005).
    [CrossRef] [PubMed]
  19. D. A. Goss, H. G. Van Veen, B. B. Rainey, and B. Feng, “Ocular components measured by keratometry, phakometry, and ultrasonography in emmetropic and myopic optometry students,” Optom. Vis. Sci.74(7), 489–495 (1997).
    [CrossRef] [PubMed]
  20. P. Rosales, M. Dubbelman, S. Marcos, and R. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis.6(10), 5 (2006).
    [CrossRef] [PubMed]
  21. P. Rosales and S. Marcos, “Phakometry and lens tilt and decentration using a custom-developed Purkinje imaging apparatus: validation and measurements,” J. Opt. Soc. Am. A23(3), 509–520 (2006).
    [CrossRef] [PubMed]
  22. P. Rosales, M. Wendt, S. Marcos, and A. Glasser, “Changes in crystalline lens radii of curvature and lens tilt and decentration during dynamic accommodation in rhesus monkeys,” J. Vis.8(1), 18, 1–12 (2008).
    [CrossRef] [PubMed]
  23. J. E. Koretz, S. A. Strenk, L. M. Strenk, and J. L. Semmlow, “Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study,” J. Opt. Soc. Am. A21(3), 346–354 (2004).
    [CrossRef] [PubMed]
  24. P. Rosales and S. Marcos, “Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens,” J. Refract. Surg.25(5), 421–428 (2009).
    [CrossRef] [PubMed]
  25. A. S. Vilupuru and A. Glasser, “Dynamic accommodative changes in rhesus monkey eyes assessed with A-scan ultrasound biometry,” Optom. Vis. Sci.80(5), 383–394 (2003).
    [CrossRef] [PubMed]
  26. C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res.45(18), 2352–2366 (2005).
    [CrossRef] [PubMed]
  27. E. A. Hermans, P. J. Pouwels, M. Dubbelman, J. P. Kuijer, R. G. van der Heijde, and R. M. Heethaar, “Constant volume of the human lens and decrease in surface area of the capsular bag during accommodation: an MRI and Scheimpflug study,” Invest. Ophthalmol. Vis. Sci.50(1), 281–289 (2009).
    [CrossRef] [PubMed]
  28. S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “MRI study of the changes in crystalline lens shape with accommodation and aging in humans,” J. Vis.11(3), 19 (2011).
    [CrossRef] [PubMed]
  29. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  30. I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express17(6), 4842–4858 (2009).
    [CrossRef] [PubMed]
  31. M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express17(17), 14880–14894 (2009).
    [CrossRef] [PubMed]
  32. S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Three-dimensional ray tracing on Delaunay-based reconstructed surfaces,” Appl. Opt.48(20), 3886–3893 (2009).
    [CrossRef] [PubMed]
  33. S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Optical coherence tomography for quantitative surface topography,” Appl. Opt.48(35), 6708–6715 (2009).
    [CrossRef] [PubMed]
  34. M. C. M. Dunne, L. N. Davies, and J. S. Wolffsohn, “Accuracy of cornea and lens biometry using anterior segment optical coherence tomography,” J. Biomed. Opt.12(6), 064023 (2007).
    [CrossRef] [PubMed]
  35. R. Yadav, K. Ahmad, and G. Yoon, “Scanning system design for large scan depth anterior segment optical coherence tomography,” Opt. Lett.35(11), 1774–1776 (2010).
    [CrossRef] [PubMed]
  36. M. Shen, M. R. Wang, Y. Yuan, F. Chen, C. L. Karp, S. H. Yoo, and J. Wang, “SD-OCT with prolonged scan depth for imaging the anterior segment of the eye,” Ophthalmic Surg. Lasers Imaging41(6Suppl), S65–S69 (2010).
    [CrossRef] [PubMed]
  37. S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res.48(27), 2732–2738 (2008).
    [CrossRef] [PubMed]
  38. E. Kim, K. Ehrmann, S. Uhlhorn, D. Borja, E. Arrieta-Quintero, and J. M. Parel, “Semiautomated analysis of optical coherence tomography crystalline lens images under simulated accommodation,” J. Biomed. Opt.16(5), 056003 (2011).
    [CrossRef] [PubMed]
  39. B. M. Maceo, F. Manns, D. Borja, D. Nankivil, S. Uhlhorn, E. Arrieta, A. Ho, R. C. Augusteyn, and J. M. Parel, “Contribution of the crystalline lens gradient refractive index to the accommodation amplitude in non-human primates: in vitro studies,” J. Vis.11(13), 23 (2011).
    [CrossRef] [PubMed]
  40. A. de Castro, S. Ortiz, E. Gambra, D. Siedlecki, and S. Marcos, “Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging,” Opt. Express18(21), 21905–21917 (2010).
    [CrossRef] [PubMed]
  41. D. Borja, D. Siedlecki, A. de Castro, S. Uhlhorn, S. Ortiz, E. Arrieta, J. M. Parel, S. Marcos, and F. Manns, “Distortions of the posterior surface in optical coherence tomography images of the isolated crystalline lens: effect of the lens index gradient,” Biomed. Opt. Express1(5), 1331–1340 (2010).
    [CrossRef] [PubMed]
  42. A. de Castro, S. Barbero, S. Ortiz, and S. Marcos, “Accuracy of the reconstruction of the crystalline lens gradient index with optimization methods from ray tracing and Optical Coherence Tomography data,” Opt. Express19(20), 19265–19279 (2011).
    [CrossRef] [PubMed]
  43. A. de Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J. M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the Gradient Index profile in human crystalline lenses,” J. Mod. Opt.58(19-20), 1781–1787 (2011).
    [CrossRef] [PubMed]
  44. D. Siedlecki, A. de Castro, E. Gambra, S. Ortiz, D. Borja, S. Uhlhorn, F. Manns, S. Marcos, and J. M. Parel, “Distortion correction of OCT images of the crystalline lens: gradient index approach,” Optom. Vis. Sci.89(5), E709–E718 (2012).
    [CrossRef] [PubMed]
  45. S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express2(12), 3232–3247 (2011).
    [CrossRef] [PubMed]
  46. S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express18(3), 2782–2796 (2010).
    [CrossRef] [PubMed]
  47. M. Zhao, A. N. Kuo, and J. A. Izatt, “3D refraction correction and extraction of clinical parameters from spectral domain optical coherence tomography of the cornea,” Opt. Express18(9), 8923–8936 (2010).
    [CrossRef] [PubMed]
  48. K. Karnowski, B. J. Kaluzny, M. Szkulmowski, M. Gora, and M. Wojtkowski, “Corneal topography with high-speed swept source OCT in clinical examination,” Biomed. Opt. Express2(9), 2709–2720 (2011).
    [CrossRef] [PubMed]
  49. S. Ortiz, P. Pérez-Merino, N. Alejandre, E. Gambra, I. Jimenez-Alfaro, and S. Marcos, “Quantitative OCT-based corneal topography in keratoconus with intracorneal ring segments,” Biomed. Opt. Express3(5), 814–824 (2012).
    [CrossRef] [PubMed]
  50. A. de Castro, P. Rosales, and S. Marcos, “Tilt and decentration of intraocular lenses in vivo from Purkinje and Scheimpflug imaging. Validation study,” J. Cataract Refract. Surg.33(3), 418–429 (2007).
    [CrossRef] [PubMed]
  51. H. Farid and E. P. Simoncelli, “Differentiation of discrete multidimensional signals,” IEEE Trans. Image Process.13(4), 496–508 (2004).
    [CrossRef] [PubMed]
  52. Y. Yang, K. Thompson, and S. A. Burns, “Pupil location under mesopic, photopic, and pharmacologically dilated conditions,” Invest. Ophthalmol. Vis. Sci.43(7), 2508–2512 (2002).
    [PubMed]
  53. T. Möller and J. F. Hughes, “Efficiently building a matrix to rotate one vector to another,” J Graphics Tools4(4), 1–4 (1999).
    [CrossRef]
  54. H. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modelling,” J. Opt. Soc. Am. A14(8), 1684–1695 (1997).
    [CrossRef]
  55. A. Pérez-Escudero, C. Dorronsoro, and S. Marcos, “Correlation between radius and asphericity in surfaces fitted by conics,” J. Opt. Soc. Am. A27(7), 1541–1548 (2010).
    [CrossRef] [PubMed]
  56. J. Birkenfeld, A. de Castro, S. Ortiz, P. Pérez-Merino, E. Gambra, and S. Marcos, “Three-dimensional reconstruction of the isolated human crystalline lens gradient index distribution,” Invest. Ophthalmol. Vis. Sci.52, E-Abstract 3404 (2011).
  57. P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A19(1), 137–143 (2002).
    [CrossRef] [PubMed]
  58. S. Barbero, S. Marcos, and J. Merayo-Lloves, “Corneal and total optical aberrations in a unilateral aphakic patient,” J. Cataract Refract. Surg.28(9), 1594–1600 (2002).
    [CrossRef] [PubMed]
  59. J. E. Kelly, T. Mihashi, and H. C. Howland, “Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye,” J. Vis.4(4), 2 (2004).
    [CrossRef] [PubMed]
  60. S. Marcos, P. Rosales, L. Llorente, S. Barbero, and I. Jiménez-Alfaro, “Balance of corneal horizontal coma by internal optics in eyes with intraocular artificial lenses: evidence of a passive mechanism,” Vision Res.48(1), 70–79 (2008).
    [CrossRef] [PubMed]
  61. E. Berrio, J. Tabernero, and P. Artal, “Optical aberrations and alignment of the eye with age,” J. Vis. 10(14), 34 (2010).
  62. A. Roorda and A. Glasser, “Wave aberrations of the isolated crystalline lens,” J. Vis.4(4), 1 (2004).
    [CrossRef] [PubMed]
  63. E. Acosta, J. M. Bueno, C. Schwarz, and P. Artal, “Relationship between wave aberrations and histological features in ex vivo porcine crystalline lenses,” J. Biomed. Opt.15(5), 055001 (2010).
    [CrossRef] [PubMed]

2012 (2)

D. Siedlecki, A. de Castro, E. Gambra, S. Ortiz, D. Borja, S. Uhlhorn, F. Manns, S. Marcos, and J. M. Parel, “Distortion correction of OCT images of the crystalline lens: gradient index approach,” Optom. Vis. Sci.89(5), E709–E718 (2012).
[CrossRef] [PubMed]

S. Ortiz, P. Pérez-Merino, N. Alejandre, E. Gambra, I. Jimenez-Alfaro, and S. Marcos, “Quantitative OCT-based corneal topography in keratoconus with intracorneal ring segments,” Biomed. Opt. Express3(5), 814–824 (2012).
[CrossRef] [PubMed]

2011 (8)

S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express2(12), 3232–3247 (2011).
[CrossRef] [PubMed]

E. Kim, K. Ehrmann, S. Uhlhorn, D. Borja, E. Arrieta-Quintero, and J. M. Parel, “Semiautomated analysis of optical coherence tomography crystalline lens images under simulated accommodation,” J. Biomed. Opt.16(5), 056003 (2011).
[CrossRef] [PubMed]

B. M. Maceo, F. Manns, D. Borja, D. Nankivil, S. Uhlhorn, E. Arrieta, A. Ho, R. C. Augusteyn, and J. M. Parel, “Contribution of the crystalline lens gradient refractive index to the accommodation amplitude in non-human primates: in vitro studies,” J. Vis.11(13), 23 (2011).
[CrossRef] [PubMed]

A. de Castro, S. Barbero, S. Ortiz, and S. Marcos, “Accuracy of the reconstruction of the crystalline lens gradient index with optimization methods from ray tracing and Optical Coherence Tomography data,” Opt. Express19(20), 19265–19279 (2011).
[CrossRef] [PubMed]

A. de Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J. M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the Gradient Index profile in human crystalline lenses,” J. Mod. Opt.58(19-20), 1781–1787 (2011).
[CrossRef] [PubMed]

K. Karnowski, B. J. Kaluzny, M. Szkulmowski, M. Gora, and M. Wojtkowski, “Corneal topography with high-speed swept source OCT in clinical examination,” Biomed. Opt. Express2(9), 2709–2720 (2011).
[CrossRef] [PubMed]

J. Birkenfeld, A. de Castro, S. Ortiz, P. Pérez-Merino, E. Gambra, and S. Marcos, “Three-dimensional reconstruction of the isolated human crystalline lens gradient index distribution,” Invest. Ophthalmol. Vis. Sci.52, E-Abstract 3404 (2011).

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “MRI study of the changes in crystalline lens shape with accommodation and aging in humans,” J. Vis.11(3), 19 (2011).
[CrossRef] [PubMed]

2010 (9)

A. Pérez-Escudero, C. Dorronsoro, and S. Marcos, “Correlation between radius and asphericity in surfaces fitted by conics,” J. Opt. Soc. Am. A27(7), 1541–1548 (2010).
[CrossRef] [PubMed]

E. Berrio, J. Tabernero, and P. Artal, “Optical aberrations and alignment of the eye with age,” J. Vis. 10(14), 34 (2010).

E. Acosta, J. M. Bueno, C. Schwarz, and P. Artal, “Relationship between wave aberrations and histological features in ex vivo porcine crystalline lenses,” J. Biomed. Opt.15(5), 055001 (2010).
[CrossRef] [PubMed]

R. Yadav, K. Ahmad, and G. Yoon, “Scanning system design for large scan depth anterior segment optical coherence tomography,” Opt. Lett.35(11), 1774–1776 (2010).
[CrossRef] [PubMed]

M. Shen, M. R. Wang, Y. Yuan, F. Chen, C. L. Karp, S. H. Yoo, and J. Wang, “SD-OCT with prolonged scan depth for imaging the anterior segment of the eye,” Ophthalmic Surg. Lasers Imaging41(6Suppl), S65–S69 (2010).
[CrossRef] [PubMed]

A. de Castro, S. Ortiz, E. Gambra, D. Siedlecki, and S. Marcos, “Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging,” Opt. Express18(21), 21905–21917 (2010).
[CrossRef] [PubMed]

D. Borja, D. Siedlecki, A. de Castro, S. Uhlhorn, S. Ortiz, E. Arrieta, J. M. Parel, S. Marcos, and F. Manns, “Distortions of the posterior surface in optical coherence tomography images of the isolated crystalline lens: effect of the lens index gradient,” Biomed. Opt. Express1(5), 1331–1340 (2010).
[CrossRef] [PubMed]

S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express18(3), 2782–2796 (2010).
[CrossRef] [PubMed]

M. Zhao, A. N. Kuo, and J. A. Izatt, “3D refraction correction and extraction of clinical parameters from spectral domain optical coherence tomography of the cornea,” Opt. Express18(9), 8923–8936 (2010).
[CrossRef] [PubMed]

2009 (6)

2008 (3)

P. Rosales, M. Wendt, S. Marcos, and A. Glasser, “Changes in crystalline lens radii of curvature and lens tilt and decentration during dynamic accommodation in rhesus monkeys,” J. Vis.8(1), 18, 1–12 (2008).
[CrossRef] [PubMed]

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res.48(27), 2732–2738 (2008).
[CrossRef] [PubMed]

S. Marcos, P. Rosales, L. Llorente, S. Barbero, and I. Jiménez-Alfaro, “Balance of corneal horizontal coma by internal optics in eyes with intraocular artificial lenses: evidence of a passive mechanism,” Vision Res.48(1), 70–79 (2008).
[CrossRef] [PubMed]

2007 (2)

A. de Castro, P. Rosales, and S. Marcos, “Tilt and decentration of intraocular lenses in vivo from Purkinje and Scheimpflug imaging. Validation study,” J. Cataract Refract. Surg.33(3), 418–429 (2007).
[CrossRef] [PubMed]

M. C. M. Dunne, L. N. Davies, and J. S. Wolffsohn, “Accuracy of cornea and lens biometry using anterior segment optical coherence tomography,” J. Biomed. Opt.12(6), 064023 (2007).
[CrossRef] [PubMed]

2006 (3)

P. Rosales, M. Dubbelman, S. Marcos, and R. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis.6(10), 5 (2006).
[CrossRef] [PubMed]

P. Rosales and S. Marcos, “Phakometry and lens tilt and decentration using a custom-developed Purkinje imaging apparatus: validation and measurements,” J. Opt. Soc. Am. A23(3), 509–520 (2006).
[CrossRef] [PubMed]

A. M. Rosen, D. B. Denham, V. Fernandez, D. Borja, A. Ho, F. Manns, J. M. Parel, and R. C. Augusteyn, “In vitro dimensions and curvatures of human lenses,” Vision Res.46(6-7), 1002–1009 (2006).
[CrossRef] [PubMed]

2005 (2)

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res.45(1), 117–132 (2005).
[CrossRef] [PubMed]

C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res.45(18), 2352–2366 (2005).
[CrossRef] [PubMed]

2004 (5)

J. E. Koretz, S. A. Strenk, L. M. Strenk, and J. L. Semmlow, “Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study,” J. Opt. Soc. Am. A21(3), 346–354 (2004).
[CrossRef] [PubMed]

F. Manns, V. Fernandez, S. Zipper, S. Sandadi, M. Hamaoui, A. Ho, and J. M. Parel, “Radius of curvature and asphericity of the anterior and posterior surface of human cadaver crystalline lenses,” Exp. Eye Res.78(1), 39–51 (2004).
[CrossRef] [PubMed]

H. Farid and E. P. Simoncelli, “Differentiation of discrete multidimensional signals,” IEEE Trans. Image Process.13(4), 496–508 (2004).
[CrossRef] [PubMed]

J. E. Kelly, T. Mihashi, and H. C. Howland, “Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye,” J. Vis.4(4), 2 (2004).
[CrossRef] [PubMed]

A. Roorda and A. Glasser, “Wave aberrations of the isolated crystalline lens,” J. Vis.4(4), 1 (2004).
[CrossRef] [PubMed]

2003 (1)

A. S. Vilupuru and A. Glasser, “Dynamic accommodative changes in rhesus monkey eyes assessed with A-scan ultrasound biometry,” Optom. Vis. Sci.80(5), 383–394 (2003).
[CrossRef] [PubMed]

2002 (4)

M. Dubbelman, H. A. Weeber, R. G. van der Heijde, and H. J. Völker-Dieben, “Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography,” Acta Ophthalmol. Scand.80(4), 379–383 (2002).
[CrossRef] [PubMed]

P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A19(1), 137–143 (2002).
[CrossRef] [PubMed]

S. Barbero, S. Marcos, and J. Merayo-Lloves, “Corneal and total optical aberrations in a unilateral aphakic patient,” J. Cataract Refract. Surg.28(9), 1594–1600 (2002).
[CrossRef] [PubMed]

Y. Yang, K. Thompson, and S. A. Burns, “Pupil location under mesopic, photopic, and pharmacologically dilated conditions,” Invest. Ophthalmol. Vis. Sci.43(7), 2508–2512 (2002).
[PubMed]

2001 (2)

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res.41(14), 1867–1877 (2001).
[CrossRef] [PubMed]

M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optom. Vis. Sci.78(6), 411–416 (2001).
[CrossRef] [PubMed]

1999 (3)

A. Glasser and M. C. W. Campbell, “Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia,” Vision Res.39(11), 1991–2015 (1999).
[CrossRef] [PubMed]

A. Glasser and P. L. Kaufman, “The mechanism of accommodation in primates,” Ophthalmology106(5), 863–872 (1999).
[CrossRef] [PubMed]

T. Möller and J. F. Hughes, “Efficiently building a matrix to rotate one vector to another,” J Graphics Tools4(4), 1–4 (1999).
[CrossRef]

1998 (2)

1997 (4)

L. F. Garner and M. K. Yap, “Changes in ocular dimensions and refraction with accommodation,” Ophthalmic Physiol. Opt.17(1), 12–17 (1997).
[CrossRef] [PubMed]

L. F. Garner, “Calculation of the radii of curvature of the crystalline lens surfaces,” Ophthalmic Physiol. Opt.17(1), 75–80 (1997).
[CrossRef] [PubMed]

D. A. Goss, H. G. Van Veen, B. B. Rainey, and B. Feng, “Ocular components measured by keratometry, phakometry, and ultrasonography in emmetropic and myopic optometry students,” Optom. Vis. Sci.74(7), 489–495 (1997).
[CrossRef] [PubMed]

H. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modelling,” J. Opt. Soc. Am. A14(8), 1684–1695 (1997).
[CrossRef]

1995 (1)

1992 (1)

Y. Sakamoto, K. Sasaki, Y. Nakamura, and N. Watanabe, “Reproducibility of data obtained by a newly developed anterior eye segment analysis system, EAS-1000,” Ophthalmic Res.24(Suppl 1), 10–20 (1992).
[CrossRef] [PubMed]

1991 (2)

G. Smith, B. K. Pierscionek, and D. A. Atchison, “The optical modelling of the human lens,” Ophthalmic Physiol. Opt.11(4), 359–369 (1991).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

1982 (1)

P. Kiely, G. Smith, and L. Carney, “The mean shape of the human cornea,” Opt. Acta (Lond.)29(8), 1027–1040 (1982).
[CrossRef]

1855 (1)

H. Helmholtz, “Ueber die accommodation des auges,” Arch. Ophthal.1, 1–74 (1855).

Acosta, E.

E. Acosta, J. M. Bueno, C. Schwarz, and P. Artal, “Relationship between wave aberrations and histological features in ex vivo porcine crystalline lenses,” J. Biomed. Opt.15(5), 055001 (2010).
[CrossRef] [PubMed]

Ahmad, K.

Alejandre, N.

S. Ortiz, P. Pérez-Merino, N. Alejandre, E. Gambra, I. Jimenez-Alfaro, and S. Marcos, “Quantitative OCT-based corneal topography in keratoconus with intracorneal ring segments,” Biomed. Opt. Express3(5), 814–824 (2012).
[CrossRef] [PubMed]

Arrieta, E.

B. M. Maceo, F. Manns, D. Borja, D. Nankivil, S. Uhlhorn, E. Arrieta, A. Ho, R. C. Augusteyn, and J. M. Parel, “Contribution of the crystalline lens gradient refractive index to the accommodation amplitude in non-human primates: in vitro studies,” J. Vis.11(13), 23 (2011).
[CrossRef] [PubMed]

D. Borja, D. Siedlecki, A. de Castro, S. Uhlhorn, S. Ortiz, E. Arrieta, J. M. Parel, S. Marcos, and F. Manns, “Distortions of the posterior surface in optical coherence tomography images of the isolated crystalline lens: effect of the lens index gradient,” Biomed. Opt. Express1(5), 1331–1340 (2010).
[CrossRef] [PubMed]

Arrieta-Quintero, E.

E. Kim, K. Ehrmann, S. Uhlhorn, D. Borja, E. Arrieta-Quintero, and J. M. Parel, “Semiautomated analysis of optical coherence tomography crystalline lens images under simulated accommodation,” J. Biomed. Opt.16(5), 056003 (2011).
[CrossRef] [PubMed]

Artal, P.

E. Berrio, J. Tabernero, and P. Artal, “Optical aberrations and alignment of the eye with age,” J. Vis. 10(14), 34 (2010).

E. Acosta, J. M. Bueno, C. Schwarz, and P. Artal, “Relationship between wave aberrations and histological features in ex vivo porcine crystalline lenses,” J. Biomed. Opt.15(5), 055001 (2010).
[CrossRef] [PubMed]

P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A19(1), 137–143 (2002).
[CrossRef] [PubMed]

Atchison, D. A.

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “MRI study of the changes in crystalline lens shape with accommodation and aging in humans,” J. Vis.11(3), 19 (2011).
[CrossRef] [PubMed]

C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res.45(18), 2352–2366 (2005).
[CrossRef] [PubMed]

G. Smith, B. K. Pierscionek, and D. A. Atchison, “The optical modelling of the human lens,” Ophthalmic Physiol. Opt.11(4), 359–369 (1991).
[CrossRef] [PubMed]

Augusteyn, R. C.

B. M. Maceo, F. Manns, D. Borja, D. Nankivil, S. Uhlhorn, E. Arrieta, A. Ho, R. C. Augusteyn, and J. M. Parel, “Contribution of the crystalline lens gradient refractive index to the accommodation amplitude in non-human primates: in vitro studies,” J. Vis.11(13), 23 (2011).
[CrossRef] [PubMed]

A. M. Rosen, D. B. Denham, V. Fernandez, D. Borja, A. Ho, F. Manns, J. M. Parel, and R. C. Augusteyn, “In vitro dimensions and curvatures of human lenses,” Vision Res.46(6-7), 1002–1009 (2006).
[CrossRef] [PubMed]

Barbero, S.

A. de Castro, S. Barbero, S. Ortiz, and S. Marcos, “Accuracy of the reconstruction of the crystalline lens gradient index with optimization methods from ray tracing and Optical Coherence Tomography data,” Opt. Express19(20), 19265–19279 (2011).
[CrossRef] [PubMed]

S. Marcos, P. Rosales, L. Llorente, S. Barbero, and I. Jiménez-Alfaro, “Balance of corneal horizontal coma by internal optics in eyes with intraocular artificial lenses: evidence of a passive mechanism,” Vision Res.48(1), 70–79 (2008).
[CrossRef] [PubMed]

S. Barbero, S. Marcos, and J. Merayo-Lloves, “Corneal and total optical aberrations in a unilateral aphakic patient,” J. Cataract Refract. Surg.28(9), 1594–1600 (2002).
[CrossRef] [PubMed]

Berrio, E.

E. Berrio, J. Tabernero, and P. Artal, “Optical aberrations and alignment of the eye with age,” J. Vis. 10(14), 34 (2010).

P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A19(1), 137–143 (2002).
[CrossRef] [PubMed]

Birkenfeld, J.

J. Birkenfeld, A. de Castro, S. Ortiz, P. Pérez-Merino, E. Gambra, and S. Marcos, “Three-dimensional reconstruction of the isolated human crystalline lens gradient index distribution,” Invest. Ophthalmol. Vis. Sci.52, E-Abstract 3404 (2011).

Borja, D.

D. Siedlecki, A. de Castro, E. Gambra, S. Ortiz, D. Borja, S. Uhlhorn, F. Manns, S. Marcos, and J. M. Parel, “Distortion correction of OCT images of the crystalline lens: gradient index approach,” Optom. Vis. Sci.89(5), E709–E718 (2012).
[CrossRef] [PubMed]

A. de Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J. M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the Gradient Index profile in human crystalline lenses,” J. Mod. Opt.58(19-20), 1781–1787 (2011).
[CrossRef] [PubMed]

B. M. Maceo, F. Manns, D. Borja, D. Nankivil, S. Uhlhorn, E. Arrieta, A. Ho, R. C. Augusteyn, and J. M. Parel, “Contribution of the crystalline lens gradient refractive index to the accommodation amplitude in non-human primates: in vitro studies,” J. Vis.11(13), 23 (2011).
[CrossRef] [PubMed]

E. Kim, K. Ehrmann, S. Uhlhorn, D. Borja, E. Arrieta-Quintero, and J. M. Parel, “Semiautomated analysis of optical coherence tomography crystalline lens images under simulated accommodation,” J. Biomed. Opt.16(5), 056003 (2011).
[CrossRef] [PubMed]

D. Borja, D. Siedlecki, A. de Castro, S. Uhlhorn, S. Ortiz, E. Arrieta, J. M. Parel, S. Marcos, and F. Manns, “Distortions of the posterior surface in optical coherence tomography images of the isolated crystalline lens: effect of the lens index gradient,” Biomed. Opt. Express1(5), 1331–1340 (2010).
[CrossRef] [PubMed]

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res.48(27), 2732–2738 (2008).
[CrossRef] [PubMed]

A. M. Rosen, D. B. Denham, V. Fernandez, D. Borja, A. Ho, F. Manns, J. M. Parel, and R. C. Augusteyn, “In vitro dimensions and curvatures of human lenses,” Vision Res.46(6-7), 1002–1009 (2006).
[CrossRef] [PubMed]

Brennan, N. A.

Bueno, J. M.

E. Acosta, J. M. Bueno, C. Schwarz, and P. Artal, “Relationship between wave aberrations and histological features in ex vivo porcine crystalline lenses,” J. Biomed. Opt.15(5), 055001 (2010).
[CrossRef] [PubMed]

Burns, S. A.

Y. Yang, K. Thompson, and S. A. Burns, “Pupil location under mesopic, photopic, and pharmacologically dilated conditions,” Invest. Ophthalmol. Vis. Sci.43(7), 2508–2512 (2002).
[PubMed]

Campbell, M. C. W.

A. Glasser and M. C. W. Campbell, “Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia,” Vision Res.39(11), 1991–2015 (1999).
[CrossRef] [PubMed]

A. Glasser and M. C. W. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res.38(2), 209–229 (1998).
[CrossRef] [PubMed]

Carney, L.

P. Kiely, G. Smith, and L. Carney, “The mean shape of the human cornea,” Opt. Acta (Lond.)29(8), 1027–1040 (1982).
[CrossRef]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, F.

M. Shen, M. R. Wang, Y. Yuan, F. Chen, C. L. Karp, S. H. Yoo, and J. Wang, “SD-OCT with prolonged scan depth for imaging the anterior segment of the eye,” Ophthalmic Surg. Lasers Imaging41(6Suppl), S65–S69 (2010).
[CrossRef] [PubMed]

Chia, N.

Cook, C. A.

Davies, L. N.

M. C. M. Dunne, L. N. Davies, and J. S. Wolffsohn, “Accuracy of cornea and lens biometry using anterior segment optical coherence tomography,” J. Biomed. Opt.12(6), 064023 (2007).
[CrossRef] [PubMed]

de Castro, A.

D. Siedlecki, A. de Castro, E. Gambra, S. Ortiz, D. Borja, S. Uhlhorn, F. Manns, S. Marcos, and J. M. Parel, “Distortion correction of OCT images of the crystalline lens: gradient index approach,” Optom. Vis. Sci.89(5), E709–E718 (2012).
[CrossRef] [PubMed]

A. de Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J. M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the Gradient Index profile in human crystalline lenses,” J. Mod. Opt.58(19-20), 1781–1787 (2011).
[CrossRef] [PubMed]

A. de Castro, S. Barbero, S. Ortiz, and S. Marcos, “Accuracy of the reconstruction of the crystalline lens gradient index with optimization methods from ray tracing and Optical Coherence Tomography data,” Opt. Express19(20), 19265–19279 (2011).
[CrossRef] [PubMed]

S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express2(12), 3232–3247 (2011).
[CrossRef] [PubMed]

J. Birkenfeld, A. de Castro, S. Ortiz, P. Pérez-Merino, E. Gambra, and S. Marcos, “Three-dimensional reconstruction of the isolated human crystalline lens gradient index distribution,” Invest. Ophthalmol. Vis. Sci.52, E-Abstract 3404 (2011).

D. Borja, D. Siedlecki, A. de Castro, S. Uhlhorn, S. Ortiz, E. Arrieta, J. M. Parel, S. Marcos, and F. Manns, “Distortions of the posterior surface in optical coherence tomography images of the isolated crystalline lens: effect of the lens index gradient,” Biomed. Opt. Express1(5), 1331–1340 (2010).
[CrossRef] [PubMed]

A. de Castro, S. Ortiz, E. Gambra, D. Siedlecki, and S. Marcos, “Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging,” Opt. Express18(21), 21905–21917 (2010).
[CrossRef] [PubMed]

A. de Castro, P. Rosales, and S. Marcos, “Tilt and decentration of intraocular lenses in vivo from Purkinje and Scheimpflug imaging. Validation study,” J. Cataract Refract. Surg.33(3), 418–429 (2007).
[CrossRef] [PubMed]

Denham, D. B.

A. M. Rosen, D. B. Denham, V. Fernandez, D. Borja, A. Ho, F. Manns, J. M. Parel, and R. C. Augusteyn, “In vitro dimensions and curvatures of human lenses,” Vision Res.46(6-7), 1002–1009 (2006).
[CrossRef] [PubMed]

Dorronsoro, C.

Dubbelman, M.

E. A. Hermans, P. J. Pouwels, M. Dubbelman, J. P. Kuijer, R. G. van der Heijde, and R. M. Heethaar, “Constant volume of the human lens and decrease in surface area of the capsular bag during accommodation: an MRI and Scheimpflug study,” Invest. Ophthalmol. Vis. Sci.50(1), 281–289 (2009).
[CrossRef] [PubMed]

P. Rosales, M. Dubbelman, S. Marcos, and R. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis.6(10), 5 (2006).
[CrossRef] [PubMed]

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res.45(1), 117–132 (2005).
[CrossRef] [PubMed]

M. Dubbelman, H. A. Weeber, R. G. van der Heijde, and H. J. Völker-Dieben, “Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography,” Acta Ophthalmol. Scand.80(4), 379–383 (2002).
[CrossRef] [PubMed]

M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optom. Vis. Sci.78(6), 411–416 (2001).
[CrossRef] [PubMed]

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res.41(14), 1867–1877 (2001).
[CrossRef] [PubMed]

Dunne, M. C. M.

M. C. M. Dunne, L. N. Davies, and J. S. Wolffsohn, “Accuracy of cornea and lens biometry using anterior segment optical coherence tomography,” J. Biomed. Opt.12(6), 064023 (2007).
[CrossRef] [PubMed]

Ehrmann, K.

E. Kim, K. Ehrmann, S. Uhlhorn, D. Borja, E. Arrieta-Quintero, and J. M. Parel, “Semiautomated analysis of optical coherence tomography crystalline lens images under simulated accommodation,” J. Biomed. Opt.16(5), 056003 (2011).
[CrossRef] [PubMed]

Farid, H.

H. Farid and E. P. Simoncelli, “Differentiation of discrete multidimensional signals,” IEEE Trans. Image Process.13(4), 496–508 (2004).
[CrossRef] [PubMed]

Feng, B.

D. A. Goss, H. G. Van Veen, B. B. Rainey, and B. Feng, “Ocular components measured by keratometry, phakometry, and ultrasonography in emmetropic and myopic optometry students,” Optom. Vis. Sci.74(7), 489–495 (1997).
[CrossRef] [PubMed]

Fernandez, V.

A. M. Rosen, D. B. Denham, V. Fernandez, D. Borja, A. Ho, F. Manns, J. M. Parel, and R. C. Augusteyn, “In vitro dimensions and curvatures of human lenses,” Vision Res.46(6-7), 1002–1009 (2006).
[CrossRef] [PubMed]

F. Manns, V. Fernandez, S. Zipper, S. Sandadi, M. Hamaoui, A. Ho, and J. M. Parel, “Radius of curvature and asphericity of the anterior and posterior surface of human cadaver crystalline lenses,” Exp. Eye Res.78(1), 39–51 (2004).
[CrossRef] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Gambra, E.

D. Siedlecki, A. de Castro, E. Gambra, S. Ortiz, D. Borja, S. Uhlhorn, F. Manns, S. Marcos, and J. M. Parel, “Distortion correction of OCT images of the crystalline lens: gradient index approach,” Optom. Vis. Sci.89(5), E709–E718 (2012).
[CrossRef] [PubMed]

S. Ortiz, P. Pérez-Merino, N. Alejandre, E. Gambra, I. Jimenez-Alfaro, and S. Marcos, “Quantitative OCT-based corneal topography in keratoconus with intracorneal ring segments,” Biomed. Opt. Express3(5), 814–824 (2012).
[CrossRef] [PubMed]

J. Birkenfeld, A. de Castro, S. Ortiz, P. Pérez-Merino, E. Gambra, and S. Marcos, “Three-dimensional reconstruction of the isolated human crystalline lens gradient index distribution,” Invest. Ophthalmol. Vis. Sci.52, E-Abstract 3404 (2011).

A. de Castro, S. Ortiz, E. Gambra, D. Siedlecki, and S. Marcos, “Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging,” Opt. Express18(21), 21905–21917 (2010).
[CrossRef] [PubMed]

Garner, L. F.

L. F. Garner and M. K. Yap, “Changes in ocular dimensions and refraction with accommodation,” Ophthalmic Physiol. Opt.17(1), 12–17 (1997).
[CrossRef] [PubMed]

L. F. Garner, “Calculation of the radii of curvature of the crystalline lens surfaces,” Ophthalmic Physiol. Opt.17(1), 75–80 (1997).
[CrossRef] [PubMed]

Glasser, A.

P. Rosales, M. Wendt, S. Marcos, and A. Glasser, “Changes in crystalline lens radii of curvature and lens tilt and decentration during dynamic accommodation in rhesus monkeys,” J. Vis.8(1), 18, 1–12 (2008).
[CrossRef] [PubMed]

A. Roorda and A. Glasser, “Wave aberrations of the isolated crystalline lens,” J. Vis.4(4), 1 (2004).
[CrossRef] [PubMed]

A. S. Vilupuru and A. Glasser, “Dynamic accommodative changes in rhesus monkey eyes assessed with A-scan ultrasound biometry,” Optom. Vis. Sci.80(5), 383–394 (2003).
[CrossRef] [PubMed]

A. Glasser and M. C. W. Campbell, “Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia,” Vision Res.39(11), 1991–2015 (1999).
[CrossRef] [PubMed]

A. Glasser and P. L. Kaufman, “The mechanism of accommodation in primates,” Ophthalmology106(5), 863–872 (1999).
[CrossRef] [PubMed]

A. Glasser and M. C. W. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res.38(2), 209–229 (1998).
[CrossRef] [PubMed]

Gora, M.

Gorczynska, I.

Goss, D. A.

D. A. Goss, H. G. Van Veen, B. B. Rainey, and B. Feng, “Ocular components measured by keratometry, phakometry, and ultrasonography in emmetropic and myopic optometry students,” Optom. Vis. Sci.74(7), 489–495 (1997).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Greivenkamp, J. E.

Grulkowski, I.

Guirao, A.

P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A19(1), 137–143 (2002).
[CrossRef] [PubMed]

Hamaoui, M.

F. Manns, V. Fernandez, S. Zipper, S. Sandadi, M. Hamaoui, A. Ho, and J. M. Parel, “Radius of curvature and asphericity of the anterior and posterior surface of human cadaver crystalline lenses,” Exp. Eye Res.78(1), 39–51 (2004).
[CrossRef] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Heethaar, R. M.

E. A. Hermans, P. J. Pouwels, M. Dubbelman, J. P. Kuijer, R. G. van der Heijde, and R. M. Heethaar, “Constant volume of the human lens and decrease in surface area of the capsular bag during accommodation: an MRI and Scheimpflug study,” Invest. Ophthalmol. Vis. Sci.50(1), 281–289 (2009).
[CrossRef] [PubMed]

Helmholtz, H.

H. Helmholtz, “Ueber die accommodation des auges,” Arch. Ophthal.1, 1–74 (1855).

Hermans, E. A.

E. A. Hermans, P. J. Pouwels, M. Dubbelman, J. P. Kuijer, R. G. van der Heijde, and R. M. Heethaar, “Constant volume of the human lens and decrease in surface area of the capsular bag during accommodation: an MRI and Scheimpflug study,” Invest. Ophthalmol. Vis. Sci.50(1), 281–289 (2009).
[CrossRef] [PubMed]

Ho, A.

B. M. Maceo, F. Manns, D. Borja, D. Nankivil, S. Uhlhorn, E. Arrieta, A. Ho, R. C. Augusteyn, and J. M. Parel, “Contribution of the crystalline lens gradient refractive index to the accommodation amplitude in non-human primates: in vitro studies,” J. Vis.11(13), 23 (2011).
[CrossRef] [PubMed]

A. M. Rosen, D. B. Denham, V. Fernandez, D. Borja, A. Ho, F. Manns, J. M. Parel, and R. C. Augusteyn, “In vitro dimensions and curvatures of human lenses,” Vision Res.46(6-7), 1002–1009 (2006).
[CrossRef] [PubMed]

F. Manns, V. Fernandez, S. Zipper, S. Sandadi, M. Hamaoui, A. Ho, and J. M. Parel, “Radius of curvature and asphericity of the anterior and posterior surface of human cadaver crystalline lenses,” Exp. Eye Res.78(1), 39–51 (2004).
[CrossRef] [PubMed]

Howland, H. C.

J. E. Kelly, T. Mihashi, and H. C. Howland, “Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye,” J. Vis.4(4), 2 (2004).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Huber, R.

Hughes, J. F.

T. Möller and J. F. Hughes, “Efficiently building a matrix to rotate one vector to another,” J Graphics Tools4(4), 1–4 (1999).
[CrossRef]

Izatt, J. A.

Jimenez-Alfaro, I.

S. Ortiz, P. Pérez-Merino, N. Alejandre, E. Gambra, I. Jimenez-Alfaro, and S. Marcos, “Quantitative OCT-based corneal topography in keratoconus with intracorneal ring segments,” Biomed. Opt. Express3(5), 814–824 (2012).
[CrossRef] [PubMed]

Jiménez-Alfaro, I.

S. Marcos, P. Rosales, L. Llorente, S. Barbero, and I. Jiménez-Alfaro, “Balance of corneal horizontal coma by internal optics in eyes with intraocular artificial lenses: evidence of a passive mechanism,” Vision Res.48(1), 70–79 (2008).
[CrossRef] [PubMed]

Jones, C. E.

C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res.45(18), 2352–2366 (2005).
[CrossRef] [PubMed]

Kaluzny, B. J.

Karnowski, K.

Karp, C. L.

M. Shen, M. R. Wang, Y. Yuan, F. Chen, C. L. Karp, S. H. Yoo, and J. Wang, “SD-OCT with prolonged scan depth for imaging the anterior segment of the eye,” Ophthalmic Surg. Lasers Imaging41(6Suppl), S65–S69 (2010).
[CrossRef] [PubMed]

Kasthurirangan, S.

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “MRI study of the changes in crystalline lens shape with accommodation and aging in humans,” J. Vis.11(3), 19 (2011).
[CrossRef] [PubMed]

Kaufman, P. L.

A. Glasser and P. L. Kaufman, “The mechanism of accommodation in primates,” Ophthalmology106(5), 863–872 (1999).
[CrossRef] [PubMed]

Kelly, J. E.

J. E. Kelly, T. Mihashi, and H. C. Howland, “Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye,” J. Vis.4(4), 2 (2004).
[CrossRef] [PubMed]

Kiely, P.

P. Kiely, G. Smith, and L. Carney, “The mean shape of the human cornea,” Opt. Acta (Lond.)29(8), 1027–1040 (1982).
[CrossRef]

Kim, E.

E. Kim, K. Ehrmann, S. Uhlhorn, D. Borja, E. Arrieta-Quintero, and J. M. Parel, “Semiautomated analysis of optical coherence tomography crystalline lens images under simulated accommodation,” J. Biomed. Opt.16(5), 056003 (2011).
[CrossRef] [PubMed]

Koretz, J. E.

J. E. Koretz, S. A. Strenk, L. M. Strenk, and J. L. Semmlow, “Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study,” J. Opt. Soc. Am. A21(3), 346–354 (2004).
[CrossRef] [PubMed]

Koretz, J. F.

Kowalczyk, A.

Kuijer, J. P.

E. A. Hermans, P. J. Pouwels, M. Dubbelman, J. P. Kuijer, R. G. van der Heijde, and R. M. Heethaar, “Constant volume of the human lens and decrease in surface area of the capsular bag during accommodation: an MRI and Scheimpflug study,” Invest. Ophthalmol. Vis. Sci.50(1), 281–289 (2009).
[CrossRef] [PubMed]

Kuo, A. N.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Liou, H.

Llorente, L.

S. Marcos, P. Rosales, L. Llorente, S. Barbero, and I. Jiménez-Alfaro, “Balance of corneal horizontal coma by internal optics in eyes with intraocular artificial lenses: evidence of a passive mechanism,” Vision Res.48(1), 70–79 (2008).
[CrossRef] [PubMed]

Maceo, B. M.

B. M. Maceo, F. Manns, D. Borja, D. Nankivil, S. Uhlhorn, E. Arrieta, A. Ho, R. C. Augusteyn, and J. M. Parel, “Contribution of the crystalline lens gradient refractive index to the accommodation amplitude in non-human primates: in vitro studies,” J. Vis.11(13), 23 (2011).
[CrossRef] [PubMed]

Manns, F.

D. Siedlecki, A. de Castro, E. Gambra, S. Ortiz, D. Borja, S. Uhlhorn, F. Manns, S. Marcos, and J. M. Parel, “Distortion correction of OCT images of the crystalline lens: gradient index approach,” Optom. Vis. Sci.89(5), E709–E718 (2012).
[CrossRef] [PubMed]

A. de Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J. M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the Gradient Index profile in human crystalline lenses,” J. Mod. Opt.58(19-20), 1781–1787 (2011).
[CrossRef] [PubMed]

B. M. Maceo, F. Manns, D. Borja, D. Nankivil, S. Uhlhorn, E. Arrieta, A. Ho, R. C. Augusteyn, and J. M. Parel, “Contribution of the crystalline lens gradient refractive index to the accommodation amplitude in non-human primates: in vitro studies,” J. Vis.11(13), 23 (2011).
[CrossRef] [PubMed]

D. Borja, D. Siedlecki, A. de Castro, S. Uhlhorn, S. Ortiz, E. Arrieta, J. M. Parel, S. Marcos, and F. Manns, “Distortions of the posterior surface in optical coherence tomography images of the isolated crystalline lens: effect of the lens index gradient,” Biomed. Opt. Express1(5), 1331–1340 (2010).
[CrossRef] [PubMed]

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res.48(27), 2732–2738 (2008).
[CrossRef] [PubMed]

A. M. Rosen, D. B. Denham, V. Fernandez, D. Borja, A. Ho, F. Manns, J. M. Parel, and R. C. Augusteyn, “In vitro dimensions and curvatures of human lenses,” Vision Res.46(6-7), 1002–1009 (2006).
[CrossRef] [PubMed]

F. Manns, V. Fernandez, S. Zipper, S. Sandadi, M. Hamaoui, A. Ho, and J. M. Parel, “Radius of curvature and asphericity of the anterior and posterior surface of human cadaver crystalline lenses,” Exp. Eye Res.78(1), 39–51 (2004).
[CrossRef] [PubMed]

Marcos, S.

D. Siedlecki, A. de Castro, E. Gambra, S. Ortiz, D. Borja, S. Uhlhorn, F. Manns, S. Marcos, and J. M. Parel, “Distortion correction of OCT images of the crystalline lens: gradient index approach,” Optom. Vis. Sci.89(5), E709–E718 (2012).
[CrossRef] [PubMed]

S. Ortiz, P. Pérez-Merino, N. Alejandre, E. Gambra, I. Jimenez-Alfaro, and S. Marcos, “Quantitative OCT-based corneal topography in keratoconus with intracorneal ring segments,” Biomed. Opt. Express3(5), 814–824 (2012).
[CrossRef] [PubMed]

S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express2(12), 3232–3247 (2011).
[CrossRef] [PubMed]

A. de Castro, S. Barbero, S. Ortiz, and S. Marcos, “Accuracy of the reconstruction of the crystalline lens gradient index with optimization methods from ray tracing and Optical Coherence Tomography data,” Opt. Express19(20), 19265–19279 (2011).
[CrossRef] [PubMed]

A. de Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J. M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the Gradient Index profile in human crystalline lenses,” J. Mod. Opt.58(19-20), 1781–1787 (2011).
[CrossRef] [PubMed]

J. Birkenfeld, A. de Castro, S. Ortiz, P. Pérez-Merino, E. Gambra, and S. Marcos, “Three-dimensional reconstruction of the isolated human crystalline lens gradient index distribution,” Invest. Ophthalmol. Vis. Sci.52, E-Abstract 3404 (2011).

A. Pérez-Escudero, C. Dorronsoro, and S. Marcos, “Correlation between radius and asphericity in surfaces fitted by conics,” J. Opt. Soc. Am. A27(7), 1541–1548 (2010).
[CrossRef] [PubMed]

D. Borja, D. Siedlecki, A. de Castro, S. Uhlhorn, S. Ortiz, E. Arrieta, J. M. Parel, S. Marcos, and F. Manns, “Distortions of the posterior surface in optical coherence tomography images of the isolated crystalline lens: effect of the lens index gradient,” Biomed. Opt. Express1(5), 1331–1340 (2010).
[CrossRef] [PubMed]

A. de Castro, S. Ortiz, E. Gambra, D. Siedlecki, and S. Marcos, “Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging,” Opt. Express18(21), 21905–21917 (2010).
[CrossRef] [PubMed]

S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express18(3), 2782–2796 (2010).
[CrossRef] [PubMed]

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express17(6), 4842–4858 (2009).
[CrossRef] [PubMed]

S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Three-dimensional ray tracing on Delaunay-based reconstructed surfaces,” Appl. Opt.48(20), 3886–3893 (2009).
[CrossRef] [PubMed]

S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Optical coherence tomography for quantitative surface topography,” Appl. Opt.48(35), 6708–6715 (2009).
[CrossRef] [PubMed]

P. Rosales and S. Marcos, “Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens,” J. Refract. Surg.25(5), 421–428 (2009).
[CrossRef] [PubMed]

P. Rosales, M. Wendt, S. Marcos, and A. Glasser, “Changes in crystalline lens radii of curvature and lens tilt and decentration during dynamic accommodation in rhesus monkeys,” J. Vis.8(1), 18, 1–12 (2008).
[CrossRef] [PubMed]

S. Marcos, P. Rosales, L. Llorente, S. Barbero, and I. Jiménez-Alfaro, “Balance of corneal horizontal coma by internal optics in eyes with intraocular artificial lenses: evidence of a passive mechanism,” Vision Res.48(1), 70–79 (2008).
[CrossRef] [PubMed]

A. de Castro, P. Rosales, and S. Marcos, “Tilt and decentration of intraocular lenses in vivo from Purkinje and Scheimpflug imaging. Validation study,” J. Cataract Refract. Surg.33(3), 418–429 (2007).
[CrossRef] [PubMed]

P. Rosales and S. Marcos, “Phakometry and lens tilt and decentration using a custom-developed Purkinje imaging apparatus: validation and measurements,” J. Opt. Soc. Am. A23(3), 509–520 (2006).
[CrossRef] [PubMed]

P. Rosales, M. Dubbelman, S. Marcos, and R. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis.6(10), 5 (2006).
[CrossRef] [PubMed]

S. Barbero, S. Marcos, and J. Merayo-Lloves, “Corneal and total optical aberrations in a unilateral aphakic patient,” J. Cataract Refract. Surg.28(9), 1594–1600 (2002).
[CrossRef] [PubMed]

Markwell, E. L.

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “MRI study of the changes in crystalline lens shape with accommodation and aging in humans,” J. Vis.11(3), 19 (2011).
[CrossRef] [PubMed]

Meder, R.

C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res.45(18), 2352–2366 (2005).
[CrossRef] [PubMed]

Merayo-Lloves, J.

S. Barbero, S. Marcos, and J. Merayo-Lloves, “Corneal and total optical aberrations in a unilateral aphakic patient,” J. Cataract Refract. Surg.28(9), 1594–1600 (2002).
[CrossRef] [PubMed]

Mihashi, T.

J. E. Kelly, T. Mihashi, and H. C. Howland, “Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye,” J. Vis.4(4), 2 (2004).
[CrossRef] [PubMed]

Miller, J. M.

Möller, T.

T. Möller and J. F. Hughes, “Efficiently building a matrix to rotate one vector to another,” J Graphics Tools4(4), 1–4 (1999).
[CrossRef]

Nakamura, Y.

Y. Sakamoto, K. Sasaki, Y. Nakamura, and N. Watanabe, “Reproducibility of data obtained by a newly developed anterior eye segment analysis system, EAS-1000,” Ophthalmic Res.24(Suppl 1), 10–20 (1992).
[CrossRef] [PubMed]

Nankivil, D.

B. M. Maceo, F. Manns, D. Borja, D. Nankivil, S. Uhlhorn, E. Arrieta, A. Ho, R. C. Augusteyn, and J. M. Parel, “Contribution of the crystalline lens gradient refractive index to the accommodation amplitude in non-human primates: in vitro studies,” J. Vis.11(13), 23 (2011).
[CrossRef] [PubMed]

Ortiz, S.

D. Siedlecki, A. de Castro, E. Gambra, S. Ortiz, D. Borja, S. Uhlhorn, F. Manns, S. Marcos, and J. M. Parel, “Distortion correction of OCT images of the crystalline lens: gradient index approach,” Optom. Vis. Sci.89(5), E709–E718 (2012).
[CrossRef] [PubMed]

S. Ortiz, P. Pérez-Merino, N. Alejandre, E. Gambra, I. Jimenez-Alfaro, and S. Marcos, “Quantitative OCT-based corneal topography in keratoconus with intracorneal ring segments,” Biomed. Opt. Express3(5), 814–824 (2012).
[CrossRef] [PubMed]

S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express2(12), 3232–3247 (2011).
[CrossRef] [PubMed]

A. de Castro, S. Barbero, S. Ortiz, and S. Marcos, “Accuracy of the reconstruction of the crystalline lens gradient index with optimization methods from ray tracing and Optical Coherence Tomography data,” Opt. Express19(20), 19265–19279 (2011).
[CrossRef] [PubMed]

J. Birkenfeld, A. de Castro, S. Ortiz, P. Pérez-Merino, E. Gambra, and S. Marcos, “Three-dimensional reconstruction of the isolated human crystalline lens gradient index distribution,” Invest. Ophthalmol. Vis. Sci.52, E-Abstract 3404 (2011).

A. de Castro, S. Ortiz, E. Gambra, D. Siedlecki, and S. Marcos, “Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging,” Opt. Express18(21), 21905–21917 (2010).
[CrossRef] [PubMed]

D. Borja, D. Siedlecki, A. de Castro, S. Uhlhorn, S. Ortiz, E. Arrieta, J. M. Parel, S. Marcos, and F. Manns, “Distortions of the posterior surface in optical coherence tomography images of the isolated crystalline lens: effect of the lens index gradient,” Biomed. Opt. Express1(5), 1331–1340 (2010).
[CrossRef] [PubMed]

S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express18(3), 2782–2796 (2010).
[CrossRef] [PubMed]

S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Optical coherence tomography for quantitative surface topography,” Appl. Opt.48(35), 6708–6715 (2009).
[CrossRef] [PubMed]

S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Three-dimensional ray tracing on Delaunay-based reconstructed surfaces,” Appl. Opt.48(20), 3886–3893 (2009).
[CrossRef] [PubMed]

Parel, J. M.

D. Siedlecki, A. de Castro, E. Gambra, S. Ortiz, D. Borja, S. Uhlhorn, F. Manns, S. Marcos, and J. M. Parel, “Distortion correction of OCT images of the crystalline lens: gradient index approach,” Optom. Vis. Sci.89(5), E709–E718 (2012).
[CrossRef] [PubMed]

A. de Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J. M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the Gradient Index profile in human crystalline lenses,” J. Mod. Opt.58(19-20), 1781–1787 (2011).
[CrossRef] [PubMed]

B. M. Maceo, F. Manns, D. Borja, D. Nankivil, S. Uhlhorn, E. Arrieta, A. Ho, R. C. Augusteyn, and J. M. Parel, “Contribution of the crystalline lens gradient refractive index to the accommodation amplitude in non-human primates: in vitro studies,” J. Vis.11(13), 23 (2011).
[CrossRef] [PubMed]

E. Kim, K. Ehrmann, S. Uhlhorn, D. Borja, E. Arrieta-Quintero, and J. M. Parel, “Semiautomated analysis of optical coherence tomography crystalline lens images under simulated accommodation,” J. Biomed. Opt.16(5), 056003 (2011).
[CrossRef] [PubMed]

D. Borja, D. Siedlecki, A. de Castro, S. Uhlhorn, S. Ortiz, E. Arrieta, J. M. Parel, S. Marcos, and F. Manns, “Distortions of the posterior surface in optical coherence tomography images of the isolated crystalline lens: effect of the lens index gradient,” Biomed. Opt. Express1(5), 1331–1340 (2010).
[CrossRef] [PubMed]

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res.48(27), 2732–2738 (2008).
[CrossRef] [PubMed]

A. M. Rosen, D. B. Denham, V. Fernandez, D. Borja, A. Ho, F. Manns, J. M. Parel, and R. C. Augusteyn, “In vitro dimensions and curvatures of human lenses,” Vision Res.46(6-7), 1002–1009 (2006).
[CrossRef] [PubMed]

F. Manns, V. Fernandez, S. Zipper, S. Sandadi, M. Hamaoui, A. Ho, and J. M. Parel, “Radius of curvature and asphericity of the anterior and posterior surface of human cadaver crystalline lenses,” Exp. Eye Res.78(1), 39–51 (2004).
[CrossRef] [PubMed]

Pascual, D.

Pérez-Escudero, A.

Pérez-Merino, P.

S. Ortiz, P. Pérez-Merino, N. Alejandre, E. Gambra, I. Jimenez-Alfaro, and S. Marcos, “Quantitative OCT-based corneal topography in keratoconus with intracorneal ring segments,” Biomed. Opt. Express3(5), 814–824 (2012).
[CrossRef] [PubMed]

S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express2(12), 3232–3247 (2011).
[CrossRef] [PubMed]

J. Birkenfeld, A. de Castro, S. Ortiz, P. Pérez-Merino, E. Gambra, and S. Marcos, “Three-dimensional reconstruction of the isolated human crystalline lens gradient index distribution,” Invest. Ophthalmol. Vis. Sci.52, E-Abstract 3404 (2011).

Piers, P.

P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A19(1), 137–143 (2002).
[CrossRef] [PubMed]

Pierscionek, B. K.

G. Smith, B. K. Pierscionek, and D. A. Atchison, “The optical modelling of the human lens,” Ophthalmic Physiol. Opt.11(4), 359–369 (1991).
[CrossRef] [PubMed]

Pope, J. M.

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “MRI study of the changes in crystalline lens shape with accommodation and aging in humans,” J. Vis.11(3), 19 (2011).
[CrossRef] [PubMed]

C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res.45(18), 2352–2366 (2005).
[CrossRef] [PubMed]

Pouwels, P. J.

E. A. Hermans, P. J. Pouwels, M. Dubbelman, J. P. Kuijer, R. G. van der Heijde, and R. M. Heethaar, “Constant volume of the human lens and decrease in surface area of the capsular bag during accommodation: an MRI and Scheimpflug study,” Invest. Ophthalmol. Vis. Sci.50(1), 281–289 (2009).
[CrossRef] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Rainey, B. B.

D. A. Goss, H. G. Van Veen, B. B. Rainey, and B. Feng, “Ocular components measured by keratometry, phakometry, and ultrasonography in emmetropic and myopic optometry students,” Optom. Vis. Sci.74(7), 489–495 (1997).
[CrossRef] [PubMed]

Remon, L.

Roorda, A.

A. Roorda and A. Glasser, “Wave aberrations of the isolated crystalline lens,” J. Vis.4(4), 1 (2004).
[CrossRef] [PubMed]

Rosales, P.

P. Rosales and S. Marcos, “Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens,” J. Refract. Surg.25(5), 421–428 (2009).
[CrossRef] [PubMed]

P. Rosales, M. Wendt, S. Marcos, and A. Glasser, “Changes in crystalline lens radii of curvature and lens tilt and decentration during dynamic accommodation in rhesus monkeys,” J. Vis.8(1), 18, 1–12 (2008).
[CrossRef] [PubMed]

S. Marcos, P. Rosales, L. Llorente, S. Barbero, and I. Jiménez-Alfaro, “Balance of corneal horizontal coma by internal optics in eyes with intraocular artificial lenses: evidence of a passive mechanism,” Vision Res.48(1), 70–79 (2008).
[CrossRef] [PubMed]

A. de Castro, P. Rosales, and S. Marcos, “Tilt and decentration of intraocular lenses in vivo from Purkinje and Scheimpflug imaging. Validation study,” J. Cataract Refract. Surg.33(3), 418–429 (2007).
[CrossRef] [PubMed]

P. Rosales and S. Marcos, “Phakometry and lens tilt and decentration using a custom-developed Purkinje imaging apparatus: validation and measurements,” J. Opt. Soc. Am. A23(3), 509–520 (2006).
[CrossRef] [PubMed]

P. Rosales, M. Dubbelman, S. Marcos, and R. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis.6(10), 5 (2006).
[CrossRef] [PubMed]

Rosen, A. M.

A. M. Rosen, D. B. Denham, V. Fernandez, D. Borja, A. Ho, F. Manns, J. M. Parel, and R. C. Augusteyn, “In vitro dimensions and curvatures of human lenses,” Vision Res.46(6-7), 1002–1009 (2006).
[CrossRef] [PubMed]

Sakamoto, Y.

Y. Sakamoto, K. Sasaki, Y. Nakamura, and N. Watanabe, “Reproducibility of data obtained by a newly developed anterior eye segment analysis system, EAS-1000,” Ophthalmic Res.24(Suppl 1), 10–20 (1992).
[CrossRef] [PubMed]

Sandadi, S.

F. Manns, V. Fernandez, S. Zipper, S. Sandadi, M. Hamaoui, A. Ho, and J. M. Parel, “Radius of curvature and asphericity of the anterior and posterior surface of human cadaver crystalline lenses,” Exp. Eye Res.78(1), 39–51 (2004).
[CrossRef] [PubMed]

Sasaki, K.

Y. Sakamoto, K. Sasaki, Y. Nakamura, and N. Watanabe, “Reproducibility of data obtained by a newly developed anterior eye segment analysis system, EAS-1000,” Ophthalmic Res.24(Suppl 1), 10–20 (1992).
[CrossRef] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Schwarz, C.

E. Acosta, J. M. Bueno, C. Schwarz, and P. Artal, “Relationship between wave aberrations and histological features in ex vivo porcine crystalline lenses,” J. Biomed. Opt.15(5), 055001 (2010).
[CrossRef] [PubMed]

Schwiegerling, J.

Semmlow, J. L.

J. E. Koretz, S. A. Strenk, L. M. Strenk, and J. L. Semmlow, “Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study,” J. Opt. Soc. Am. A21(3), 346–354 (2004).
[CrossRef] [PubMed]

Shen, M.

M. Shen, M. R. Wang, Y. Yuan, F. Chen, C. L. Karp, S. H. Yoo, and J. Wang, “SD-OCT with prolonged scan depth for imaging the anterior segment of the eye,” Ophthalmic Surg. Lasers Imaging41(6Suppl), S65–S69 (2010).
[CrossRef] [PubMed]

Siedlecki, D.

D. Siedlecki, A. de Castro, E. Gambra, S. Ortiz, D. Borja, S. Uhlhorn, F. Manns, S. Marcos, and J. M. Parel, “Distortion correction of OCT images of the crystalline lens: gradient index approach,” Optom. Vis. Sci.89(5), E709–E718 (2012).
[CrossRef] [PubMed]

A. de Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J. M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the Gradient Index profile in human crystalline lenses,” J. Mod. Opt.58(19-20), 1781–1787 (2011).
[CrossRef] [PubMed]

S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express2(12), 3232–3247 (2011).
[CrossRef] [PubMed]

S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express18(3), 2782–2796 (2010).
[CrossRef] [PubMed]

A. de Castro, S. Ortiz, E. Gambra, D. Siedlecki, and S. Marcos, “Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging,” Opt. Express18(21), 21905–21917 (2010).
[CrossRef] [PubMed]

D. Borja, D. Siedlecki, A. de Castro, S. Uhlhorn, S. Ortiz, E. Arrieta, J. M. Parel, S. Marcos, and F. Manns, “Distortions of the posterior surface in optical coherence tomography images of the isolated crystalline lens: effect of the lens index gradient,” Biomed. Opt. Express1(5), 1331–1340 (2010).
[CrossRef] [PubMed]

S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Three-dimensional ray tracing on Delaunay-based reconstructed surfaces,” Appl. Opt.48(20), 3886–3893 (2009).
[CrossRef] [PubMed]

S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Optical coherence tomography for quantitative surface topography,” Appl. Opt.48(35), 6708–6715 (2009).
[CrossRef] [PubMed]

Simoncelli, E. P.

H. Farid and E. P. Simoncelli, “Differentiation of discrete multidimensional signals,” IEEE Trans. Image Process.13(4), 496–508 (2004).
[CrossRef] [PubMed]

Smith, G.

G. Smith, B. K. Pierscionek, and D. A. Atchison, “The optical modelling of the human lens,” Ophthalmic Physiol. Opt.11(4), 359–369 (1991).
[CrossRef] [PubMed]

P. Kiely, G. Smith, and L. Carney, “The mean shape of the human cornea,” Opt. Acta (Lond.)29(8), 1027–1040 (1982).
[CrossRef]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Strenk, L. M.

J. E. Koretz, S. A. Strenk, L. M. Strenk, and J. L. Semmlow, “Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study,” J. Opt. Soc. Am. A21(3), 346–354 (2004).
[CrossRef] [PubMed]

Strenk, S. A.

J. E. Koretz, S. A. Strenk, L. M. Strenk, and J. L. Semmlow, “Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study,” J. Opt. Soc. Am. A21(3), 346–354 (2004).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Szkulmowski, M.

Szlag, D.

Tabernero, J.

E. Berrio, J. Tabernero, and P. Artal, “Optical aberrations and alignment of the eye with age,” J. Vis. 10(14), 34 (2010).

Thompson, K.

Y. Yang, K. Thompson, and S. A. Burns, “Pupil location under mesopic, photopic, and pharmacologically dilated conditions,” Invest. Ophthalmol. Vis. Sci.43(7), 2508–2512 (2002).
[PubMed]

Uhlhorn, S.

D. Siedlecki, A. de Castro, E. Gambra, S. Ortiz, D. Borja, S. Uhlhorn, F. Manns, S. Marcos, and J. M. Parel, “Distortion correction of OCT images of the crystalline lens: gradient index approach,” Optom. Vis. Sci.89(5), E709–E718 (2012).
[CrossRef] [PubMed]

B. M. Maceo, F. Manns, D. Borja, D. Nankivil, S. Uhlhorn, E. Arrieta, A. Ho, R. C. Augusteyn, and J. M. Parel, “Contribution of the crystalline lens gradient refractive index to the accommodation amplitude in non-human primates: in vitro studies,” J. Vis.11(13), 23 (2011).
[CrossRef] [PubMed]

A. de Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J. M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the Gradient Index profile in human crystalline lenses,” J. Mod. Opt.58(19-20), 1781–1787 (2011).
[CrossRef] [PubMed]

E. Kim, K. Ehrmann, S. Uhlhorn, D. Borja, E. Arrieta-Quintero, and J. M. Parel, “Semiautomated analysis of optical coherence tomography crystalline lens images under simulated accommodation,” J. Biomed. Opt.16(5), 056003 (2011).
[CrossRef] [PubMed]

D. Borja, D. Siedlecki, A. de Castro, S. Uhlhorn, S. Ortiz, E. Arrieta, J. M. Parel, S. Marcos, and F. Manns, “Distortions of the posterior surface in optical coherence tomography images of the isolated crystalline lens: effect of the lens index gradient,” Biomed. Opt. Express1(5), 1331–1340 (2010).
[CrossRef] [PubMed]

Uhlhorn, S. R.

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res.48(27), 2732–2738 (2008).
[CrossRef] [PubMed]

Van der Heijde, G. L.

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res.45(1), 117–132 (2005).
[CrossRef] [PubMed]

M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optom. Vis. Sci.78(6), 411–416 (2001).
[CrossRef] [PubMed]

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res.41(14), 1867–1877 (2001).
[CrossRef] [PubMed]

van der Heijde, R.

P. Rosales, M. Dubbelman, S. Marcos, and R. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis.6(10), 5 (2006).
[CrossRef] [PubMed]

van der Heijde, R. G.

E. A. Hermans, P. J. Pouwels, M. Dubbelman, J. P. Kuijer, R. G. van der Heijde, and R. M. Heethaar, “Constant volume of the human lens and decrease in surface area of the capsular bag during accommodation: an MRI and Scheimpflug study,” Invest. Ophthalmol. Vis. Sci.50(1), 281–289 (2009).
[CrossRef] [PubMed]

M. Dubbelman, H. A. Weeber, R. G. van der Heijde, and H. J. Völker-Dieben, “Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography,” Acta Ophthalmol. Scand.80(4), 379–383 (2002).
[CrossRef] [PubMed]

Van Veen, H. G.

D. A. Goss, H. G. Van Veen, B. B. Rainey, and B. Feng, “Ocular components measured by keratometry, phakometry, and ultrasonography in emmetropic and myopic optometry students,” Optom. Vis. Sci.74(7), 489–495 (1997).
[CrossRef] [PubMed]

Vilupuru, A. S.

A. S. Vilupuru and A. Glasser, “Dynamic accommodative changes in rhesus monkey eyes assessed with A-scan ultrasound biometry,” Optom. Vis. Sci.80(5), 383–394 (2003).
[CrossRef] [PubMed]

Völker-Dieben, H. J.

M. Dubbelman, H. A. Weeber, R. G. van der Heijde, and H. J. Völker-Dieben, “Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography,” Acta Ophthalmol. Scand.80(4), 379–383 (2002).
[CrossRef] [PubMed]

Wang, J.

M. Shen, M. R. Wang, Y. Yuan, F. Chen, C. L. Karp, S. H. Yoo, and J. Wang, “SD-OCT with prolonged scan depth for imaging the anterior segment of the eye,” Ophthalmic Surg. Lasers Imaging41(6Suppl), S65–S69 (2010).
[CrossRef] [PubMed]

Wang, M. R.

M. Shen, M. R. Wang, Y. Yuan, F. Chen, C. L. Karp, S. H. Yoo, and J. Wang, “SD-OCT with prolonged scan depth for imaging the anterior segment of the eye,” Ophthalmic Surg. Lasers Imaging41(6Suppl), S65–S69 (2010).
[CrossRef] [PubMed]

Watanabe, N.

Y. Sakamoto, K. Sasaki, Y. Nakamura, and N. Watanabe, “Reproducibility of data obtained by a newly developed anterior eye segment analysis system, EAS-1000,” Ophthalmic Res.24(Suppl 1), 10–20 (1992).
[CrossRef] [PubMed]

Weeber, H. A.

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res.45(1), 117–132 (2005).
[CrossRef] [PubMed]

M. Dubbelman, H. A. Weeber, R. G. van der Heijde, and H. J. Völker-Dieben, “Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography,” Acta Ophthalmol. Scand.80(4), 379–383 (2002).
[CrossRef] [PubMed]

M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optom. Vis. Sci.78(6), 411–416 (2001).
[CrossRef] [PubMed]

Wendt, M.

P. Rosales, M. Wendt, S. Marcos, and A. Glasser, “Changes in crystalline lens radii of curvature and lens tilt and decentration during dynamic accommodation in rhesus monkeys,” J. Vis.8(1), 18, 1–12 (2008).
[CrossRef] [PubMed]

Wojtkowski, M.

Wolffsohn, J. S.

M. C. M. Dunne, L. N. Davies, and J. S. Wolffsohn, “Accuracy of cornea and lens biometry using anterior segment optical coherence tomography,” J. Biomed. Opt.12(6), 064023 (2007).
[CrossRef] [PubMed]

Yadav, R.

Yang, Y.

Y. Yang, K. Thompson, and S. A. Burns, “Pupil location under mesopic, photopic, and pharmacologically dilated conditions,” Invest. Ophthalmol. Vis. Sci.43(7), 2508–2512 (2002).
[PubMed]

Yap, M. K.

L. F. Garner and M. K. Yap, “Changes in ocular dimensions and refraction with accommodation,” Ophthalmic Physiol. Opt.17(1), 12–17 (1997).
[CrossRef] [PubMed]

Yoo, S. H.

M. Shen, M. R. Wang, Y. Yuan, F. Chen, C. L. Karp, S. H. Yoo, and J. Wang, “SD-OCT with prolonged scan depth for imaging the anterior segment of the eye,” Ophthalmic Surg. Lasers Imaging41(6Suppl), S65–S69 (2010).
[CrossRef] [PubMed]

Yoon, G.

Yuan, Y.

M. Shen, M. R. Wang, Y. Yuan, F. Chen, C. L. Karp, S. H. Yoo, and J. Wang, “SD-OCT with prolonged scan depth for imaging the anterior segment of the eye,” Ophthalmic Surg. Lasers Imaging41(6Suppl), S65–S69 (2010).
[CrossRef] [PubMed]

Zhao, M.

Zipper, S.

F. Manns, V. Fernandez, S. Zipper, S. Sandadi, M. Hamaoui, A. Ho, and J. M. Parel, “Radius of curvature and asphericity of the anterior and posterior surface of human cadaver crystalline lenses,” Exp. Eye Res.78(1), 39–51 (2004).
[CrossRef] [PubMed]

Acta Ophthalmol. Scand. (1)

M. Dubbelman, H. A. Weeber, R. G. van der Heijde, and H. J. Völker-Dieben, “Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography,” Acta Ophthalmol. Scand.80(4), 379–383 (2002).
[CrossRef] [PubMed]

Appl. Opt. (2)

Arch. Ophthal. (1)

H. Helmholtz, “Ueber die accommodation des auges,” Arch. Ophthal.1, 1–74 (1855).

Biomed. Opt. Express (1)

S. Ortiz, P. Pérez-Merino, N. Alejandre, E. Gambra, I. Jimenez-Alfaro, and S. Marcos, “Quantitative OCT-based corneal topography in keratoconus with intracorneal ring segments,” Biomed. Opt. Express3(5), 814–824 (2012).
[CrossRef] [PubMed]

Biomed. Opt. Express (3)

Exp. Eye Res. (1)

F. Manns, V. Fernandez, S. Zipper, S. Sandadi, M. Hamaoui, A. Ho, and J. M. Parel, “Radius of curvature and asphericity of the anterior and posterior surface of human cadaver crystalline lenses,” Exp. Eye Res.78(1), 39–51 (2004).
[CrossRef] [PubMed]

IEEE Trans. Image Process. (1)

H. Farid and E. P. Simoncelli, “Differentiation of discrete multidimensional signals,” IEEE Trans. Image Process.13(4), 496–508 (2004).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

J. Birkenfeld, A. de Castro, S. Ortiz, P. Pérez-Merino, E. Gambra, and S. Marcos, “Three-dimensional reconstruction of the isolated human crystalline lens gradient index distribution,” Invest. Ophthalmol. Vis. Sci.52, E-Abstract 3404 (2011).

Invest. Ophthalmol. Vis. Sci. (1)

Y. Yang, K. Thompson, and S. A. Burns, “Pupil location under mesopic, photopic, and pharmacologically dilated conditions,” Invest. Ophthalmol. Vis. Sci.43(7), 2508–2512 (2002).
[PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

E. A. Hermans, P. J. Pouwels, M. Dubbelman, J. P. Kuijer, R. G. van der Heijde, and R. M. Heethaar, “Constant volume of the human lens and decrease in surface area of the capsular bag during accommodation: an MRI and Scheimpflug study,” Invest. Ophthalmol. Vis. Sci.50(1), 281–289 (2009).
[CrossRef] [PubMed]

J Graphics Tools (1)

T. Möller and J. F. Hughes, “Efficiently building a matrix to rotate one vector to another,” J Graphics Tools4(4), 1–4 (1999).
[CrossRef]

J. Biomed. Opt. (1)

E. Kim, K. Ehrmann, S. Uhlhorn, D. Borja, E. Arrieta-Quintero, and J. M. Parel, “Semiautomated analysis of optical coherence tomography crystalline lens images under simulated accommodation,” J. Biomed. Opt.16(5), 056003 (2011).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

E. Acosta, J. M. Bueno, C. Schwarz, and P. Artal, “Relationship between wave aberrations and histological features in ex vivo porcine crystalline lenses,” J. Biomed. Opt.15(5), 055001 (2010).
[CrossRef] [PubMed]

M. C. M. Dunne, L. N. Davies, and J. S. Wolffsohn, “Accuracy of cornea and lens biometry using anterior segment optical coherence tomography,” J. Biomed. Opt.12(6), 064023 (2007).
[CrossRef] [PubMed]

J. Cataract Refract. Surg. (2)

A. de Castro, P. Rosales, and S. Marcos, “Tilt and decentration of intraocular lenses in vivo from Purkinje and Scheimpflug imaging. Validation study,” J. Cataract Refract. Surg.33(3), 418–429 (2007).
[CrossRef] [PubMed]

S. Barbero, S. Marcos, and J. Merayo-Lloves, “Corneal and total optical aberrations in a unilateral aphakic patient,” J. Cataract Refract. Surg.28(9), 1594–1600 (2002).
[CrossRef] [PubMed]

J. Mod. Opt. (1)

A. de Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J. M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the Gradient Index profile in human crystalline lenses,” J. Mod. Opt.58(19-20), 1781–1787 (2011).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

J. E. Koretz, S. A. Strenk, L. M. Strenk, and J. L. Semmlow, “Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study,” J. Opt. Soc. Am. A21(3), 346–354 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A19(1), 137–143 (2002).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (5)

J. Refract. Surg. (1)

P. Rosales and S. Marcos, “Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens,” J. Refract. Surg.25(5), 421–428 (2009).
[CrossRef] [PubMed]

J. Vis. (6)

P. Rosales, M. Dubbelman, S. Marcos, and R. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis.6(10), 5 (2006).
[CrossRef] [PubMed]

P. Rosales, M. Wendt, S. Marcos, and A. Glasser, “Changes in crystalline lens radii of curvature and lens tilt and decentration during dynamic accommodation in rhesus monkeys,” J. Vis.8(1), 18, 1–12 (2008).
[CrossRef] [PubMed]

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “MRI study of the changes in crystalline lens shape with accommodation and aging in humans,” J. Vis.11(3), 19 (2011).
[CrossRef] [PubMed]

B. M. Maceo, F. Manns, D. Borja, D. Nankivil, S. Uhlhorn, E. Arrieta, A. Ho, R. C. Augusteyn, and J. M. Parel, “Contribution of the crystalline lens gradient refractive index to the accommodation amplitude in non-human primates: in vitro studies,” J. Vis.11(13), 23 (2011).
[CrossRef] [PubMed]

J. E. Kelly, T. Mihashi, and H. C. Howland, “Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye,” J. Vis.4(4), 2 (2004).
[CrossRef] [PubMed]

A. Roorda and A. Glasser, “Wave aberrations of the isolated crystalline lens,” J. Vis.4(4), 1 (2004).
[CrossRef] [PubMed]

Ophthalmic Res. (1)

Y. Sakamoto, K. Sasaki, Y. Nakamura, and N. Watanabe, “Reproducibility of data obtained by a newly developed anterior eye segment analysis system, EAS-1000,” Ophthalmic Res.24(Suppl 1), 10–20 (1992).
[CrossRef] [PubMed]

Ophthalmic Physiol. Opt. (3)

G. Smith, B. K. Pierscionek, and D. A. Atchison, “The optical modelling of the human lens,” Ophthalmic Physiol. Opt.11(4), 359–369 (1991).
[CrossRef] [PubMed]

L. F. Garner and M. K. Yap, “Changes in ocular dimensions and refraction with accommodation,” Ophthalmic Physiol. Opt.17(1), 12–17 (1997).
[CrossRef] [PubMed]

L. F. Garner, “Calculation of the radii of curvature of the crystalline lens surfaces,” Ophthalmic Physiol. Opt.17(1), 75–80 (1997).
[CrossRef] [PubMed]

Ophthalmic Surg. Lasers Imaging (1)

M. Shen, M. R. Wang, Y. Yuan, F. Chen, C. L. Karp, S. H. Yoo, and J. Wang, “SD-OCT with prolonged scan depth for imaging the anterior segment of the eye,” Ophthalmic Surg. Lasers Imaging41(6Suppl), S65–S69 (2010).
[CrossRef] [PubMed]

Ophthalmology (1)

A. Glasser and P. L. Kaufman, “The mechanism of accommodation in primates,” Ophthalmology106(5), 863–872 (1999).
[CrossRef] [PubMed]

Opt. Express (1)

A. de Castro, S. Ortiz, E. Gambra, D. Siedlecki, and S. Marcos, “Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging,” Opt. Express18(21), 21905–21917 (2010).
[CrossRef] [PubMed]

Opt. Acta (Lond.) (1)

P. Kiely, G. Smith, and L. Carney, “The mean shape of the human cornea,” Opt. Acta (Lond.)29(8), 1027–1040 (1982).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Optom. Vis. Sci. (1)

A. S. Vilupuru and A. Glasser, “Dynamic accommodative changes in rhesus monkey eyes assessed with A-scan ultrasound biometry,” Optom. Vis. Sci.80(5), 383–394 (2003).
[CrossRef] [PubMed]

Optom. Vis. Sci. (3)

D. A. Goss, H. G. Van Veen, B. B. Rainey, and B. Feng, “Ocular components measured by keratometry, phakometry, and ultrasonography in emmetropic and myopic optometry students,” Optom. Vis. Sci.74(7), 489–495 (1997).
[CrossRef] [PubMed]

M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optom. Vis. Sci.78(6), 411–416 (2001).
[CrossRef] [PubMed]

D. Siedlecki, A. de Castro, E. Gambra, S. Ortiz, D. Borja, S. Uhlhorn, F. Manns, S. Marcos, and J. M. Parel, “Distortion correction of OCT images of the crystalline lens: gradient index approach,” Optom. Vis. Sci.89(5), E709–E718 (2012).
[CrossRef] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Vision Res. (2)

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res.41(14), 1867–1877 (2001).
[CrossRef] [PubMed]

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res.48(27), 2732–2738 (2008).
[CrossRef] [PubMed]

Vision Res. (6)

S. Marcos, P. Rosales, L. Llorente, S. Barbero, and I. Jiménez-Alfaro, “Balance of corneal horizontal coma by internal optics in eyes with intraocular artificial lenses: evidence of a passive mechanism,” Vision Res.48(1), 70–79 (2008).
[CrossRef] [PubMed]

A. M. Rosen, D. B. Denham, V. Fernandez, D. Borja, A. Ho, F. Manns, J. M. Parel, and R. C. Augusteyn, “In vitro dimensions and curvatures of human lenses,” Vision Res.46(6-7), 1002–1009 (2006).
[CrossRef] [PubMed]

A. Glasser and M. C. W. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res.38(2), 209–229 (1998).
[CrossRef] [PubMed]

A. Glasser and M. C. W. Campbell, “Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia,” Vision Res.39(11), 1991–2015 (1999).
[CrossRef] [PubMed]

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res.45(1), 117–132 (2005).
[CrossRef] [PubMed]

C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res.45(18), 2352–2366 (2005).
[CrossRef] [PubMed]

Other (2)

A. Gullstrand, “Appendices to Part I,” in Helmholtz's Treatise on Physiological Optics (Optical Society of America, Rochester, NY, 1924), pp. 350–358.

E. Berrio, J. Tabernero, and P. Artal, “Optical aberrations and alignment of the eye with age,” J. Vis. 10(14), 34 (2010).

Supplementary Material (2)

» Media 1: MOV (478 KB)     
» Media 2: MOV (3647 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Illustration of the three acquisitions of an individual data collection in subject S#1. (a) cornea and iris; (b) anterior lens and iris; (c) posterior lens and iris.

Fig. 2
Fig. 2

(a) Illustration of the algorithm for maxima detection: Original A-Scan black; Filtered signal by Gaussian filtering, blue; Detected local maxima (red asterisks) by First derivative 9-pixel kernel computation. The anterior and posterior corneal peaks are marked by green and yellow asterisks, respectively. (b) Detection of maxima in corneal B-Scan (in red), and multilayer segmentation of the anterior surface (green line) and posterior surface (yellow line) by the neighborhood algorithm.

Fig. 3
Fig. 3

(Media 1). Illustration of the merging of three volumetric acquisitions to obtain a 3-D full anterior segment image.

Fig. 4
Fig. 4

(Media 2) Illustration of the effect of optical (refraction) correction (in green), in comparison with the correction of the surfaces by simple division by their corresponding refractive indices in an anterior segment image (in red). From left to right: segmented anterior and posterior corneal surfaces, and anterior and posterior lens surfaces.

Fig. 5
Fig. 5

Quantitative elevation maps of the posterior lens surface for the in vitro 65-year donor lens. Left panel: Measurements with the posterior surface of the lens facing the OCT beam (“posterior up”); Middle panel: Measurement of the posterior surface of the lens viewed through the anterior surface of the lens, and no optical distortion correction (simple division by the index of refraction); Left panel: Measurement of the posterior surface of the lens viewed through the anterior surface of the lens, after application of optical distortion correction Maps are Zernike fits to the elevation maps, relative to the best fitting sphere. R = radii of curvature of the best fitting sphere (from fits to sphere quadrics).

Fig. 6
Fig. 6

Difference lens anterior (top) and posterior (bottom) elevation maps after optical distortion correction relative to elevation maps obtained by simple division of the optical distances by their corresponding refractive indices. Data are for 5-mm pupils.

Fig. 7
Fig. 7

Representative 2nd and 3rd order Zernike terms from the Zernike fit to full distortion corrected (a) anterior lens surface, and (b) posterior lens surface in 3 human lenses in vivo. Data are average values of 3 repeated measurements on S#1 (red squares), S#2 (green triangles), and S#3 (blue diamonds). Error bars are not represented since the error is smaller than the symbol. Data are for 5-mm pupils.

Fig. 8
Fig. 8

Quantitative anterior (top) and posterior (bottom) crystalline lens elevation maps in 3 eyes in vivo, after full distortion correction. Maps are Zernike fits to the elevation maps, relative to the best fitting sphere. R = radii of curvature of the best fitting sphere (from fits to sphere quadrics). Data are for 5-mm pupils.

Fig. 9
Fig. 9

Three repeated anterior and posterior lens surface elevation maps in subject #3. R = radii of curvature of the best fitting sphere (from fits to sphere quadrics). Data are for 5-mm pupils.

Fig. 10
Fig. 10

Crystalline lens thickness maps obtained as direct subtraction from anterior to the posterior elevation maps, for uncorrected surfaces (top) and for fully corrected surfaces (bottom). Data are for 5-mm optical zone.

Tables (4)

Tables Icon

Table 1 Surface radii of curvature from sphere fittings in the model eye: nominal values, values estimated from OCT measurements before and after correction of optical distortion.

Tables Icon

Table 2 Radii of curvature and asphericity (Q-value) of the anterior and posterior cornea from biconicoid and conicoid fittings

Tables Icon

Table 3 Radii of curvature from biconicoid and conicoid fits of the uncorrected and optical distortion corrected crystalline lens surfaces in vivo

Tables Icon

Table 4 Asphericity (Q-value) from biconicoid and conicoid fits of the uncorrected and optical distortion corrected crystalline lens surfaces

Metrics