Abstract

Radiotherapy generates Čerenkov radiation emission in tissue, and spectral absorption features appearing in the emission spectrum can be used to quantify blood oxygen saturation (StO2) from the known absorptions of hemoglobin. Additionally, the Čerenkov light can be used to excite oxygen-sensitive phosphorescence of probe PtG4, whose emission lifetime directly reports on tissue oxygen partial pressure (pO2). Thus, it is feasible to probe both hemoglobin StO2 and pO2 using external radiation therapy beam to create as an internal light source in tumor tissue. In this study, the sensitivity and spatial origins of these two signals were examined. Emission was detected using a fiber-optic coupled intensifier-gated CCD camera interfaced to a spectrometer. The phosphorescence lifetimes were quantified and compared with StO2 changes previously measured. Monte Carlo simulations of the linear accelerator beam were used together with tracking of the optical signals, to predict the spatial distribution and zone sensitivity within the phantom. As the fiber-to-beam distance (FBD) varied from 0 to 30 mm, i.e. the distance from the fiber tip to the nearest side of the radiotherapy beam, the effective sampling depth for CR emission changed from 4 to 29 mm for the wavelengths in the range of 600-1000 nm. For the secondary emission (phosphorescence) the effective sampling depth was determined to be in the range of 9 to 19 mm. These results indicate that sampling of StO2 and pO2 in tissue should be feasible during radiation therapy, and that the radiation beam and fiber sampling geometry can be set up to acquire signals that originate as deep as a few centimeters in the tissue.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Axelsson, S. C. Davis, D. J. Gladstone, and B. W. Pogue, “Cerenkov emission induced by external beam radiation stimulates molecular fluorescence,” Med. Phys.38(7), 4127–4132 (2011).
    [CrossRef] [PubMed]
  2. J. Axelsson, A. K. Glaser, D. J. Gladstone, and B. W. Pogue, “Quantitative Cherenkov emission spectroscopy for tissue oxygenation assessment,” Opt. Express20(5), 5133–5142 (2012).
    [CrossRef] [PubMed]
  3. T. V. Esipova, A. Karagodov, J. Miller, D. F. Wilson, T. M. Busch, and S. A. Vinogradov, “Two new “protected” oxyphors for biological oximetry: properties and application in tumor imaging,” Anal. Chem.83(22), 8756–8765 (2011).
    [CrossRef] [PubMed]
  4. J. M. Vanderkooi, G. Maniara, T. J. Green, and D. F. Wilson, “An optical method for measurement of dioxygen concentration based upon quenching of phosphorescence,” J. Biol. Chem.262(12), 5476–5482 (1987).
    [PubMed]
  5. P. A. Cherenkov, “The spectrum of visible radiation produced by fast electrons,” C. R. Acad. Sci. URSS20, 651–655 (1938).
  6. C. Li, G. S. Mitchell, and S. R. Cherry, “Cerenkov luminescence tomography for small-animal imaging,” Opt. Lett.35(7), 1109–1111 (2010).
    [CrossRef] [PubMed]
  7. J. V. Jelley, “Cerenkov Radiation and Its Applications,” Br. J. Appl. Phys.6(7), 227–232 (1955).
    [CrossRef]
  8. R. Robertson, M. S. Germanos, C. Li, G. S. Mitchell, S. R. Cherry, and M. D. Silva, “Optical imaging of Cerenkov light generation from positron-emitting radiotracers,” Phys. Med. Biol.54(16), N355–N365 (2009).
    [CrossRef] [PubMed]
  9. A. Ruggiero, J. P. Holland, J. S. Lewis, and J. Grimm, “Cerenkov luminescence imaging of medical isotopes,” J. Nucl. Med.51(7), 1123–1130 (2010).
    [CrossRef] [PubMed]
  10. A. E. Spinelli, D. D’Ambrosio, L. Calderan, M. Marengo, A. Sbarbati, and F. Boschi, “Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers,” Phys. Med. Biol.55(2), 483–495 (2010).
    [CrossRef] [PubMed]
  11. F. Boschi, L. Calderan, D. D’Ambrosio, M. Marengo, A. Fenzi, R. Calandrino, A. Sbarbati, and A. E. Spinelli, “In vivo ¹⁸F-FDG tumour uptake measurements in small animals using Cerenkov radiation,” Eur. J. Nucl. Med. Mol. Imaging38(1), 120–127 (2011).
    [CrossRef] [PubMed]
  12. Y. Xu, E. Chang, H. Liu, H. Jiang, S. S. Gambhir, and Z. Cheng, “Proof-of-concept study of monitoring cancer drug therapy with cerenkov luminescence imaging,” J. Nucl. Med.53(2), 312–317 (2012).
    [CrossRef] [PubMed]
  13. Z. Hu, J. Liang, W. Yang, W. Fan, C. Li, X. Ma, X. Chen, X. Ma, X. Li, X. Qu, J. Wang, F. Cao, and J. Tian, “Experimental Cerenkov luminescence tomography of the mouse model with SPECT imaging validation,” Opt. Express18(24), 24441–24450 (2010).
    [CrossRef] [PubMed]
  14. A. E. Spinelli, C. Kuo, B. W. Rice, R. Calandrino, P. Marzola, A. Sbarbati, and F. Boschi, “Multispectral Cerenkov luminescence tomography for small animal optical imaging,” Opt. Express19(13), 12605–12618 (2011).
    [CrossRef] [PubMed]
  15. J. Zhong, C. Qin, X. Yang, Z. Chen, X. Yang, and J. Tian, “Fast-specific tomography imaging via Cerenkov emission,” Mol. Imaging Biol.14(3), 286–292 (2012).
    [CrossRef] [PubMed]
  16. J. Zhong, C. Qin, X. Yang, S. Zhu, X. Zhang, and J. Tian, “Cerenkov luminescence tomography for in vivo radiopharmaceutical imaging,” Int. J. Biomed. Imaging2011, 641618 (2011).
    [CrossRef] [PubMed]
  17. S. M. Evans and C. J. Koch, “Prognostic significance of tumor oxygenation in humans,” Cancer Lett.195(1), 1–16 (2003).
    [CrossRef] [PubMed]
  18. P. Vaupel, A. Mayer, and M. Höckel, “Einfluss des Hämoglobingehalts auf die Tumoroxygenierung: je höher, desto besser? [Impact of hemoglobin levels on tumor oxygenation: the higher, the better?]” Strahlenther. Onkol.182(2), 63–71 (2006).
    [CrossRef] [PubMed]
  19. M. Nordsmark, J. Loncaster, C. Aquino-Parsons, S. C. Chou, M. Ladekarl, H. Havsteen, J. C. Lindegaard, S. E. Davidson, M. Varia, C. West, R. Hunter, J. Overgaard, and J. A. Raleigh, “Measurements of hypoxia using pimonidazole and polarographic oxygen-sensitive electrodes in human cervix carcinomas,” Radiother. Oncol.67(1), 35–44 (2003).
    [CrossRef] [PubMed]
  20. D. M. Brizel, S. P. Scully, J. M. Harrelson, L. J. Layfield, J. M. Bean, L. R. Prosnitz, and M. W. Dewhirst, “Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma,” Cancer Res.56(5), 941–943 (1996).
    [PubMed]
  21. P. Vaupel, “Prognostic potential of the pre-therapeutic tumor oxygenation status,” Adv. Exp. Med. Biol.645, 241–246 (2009).
    [CrossRef] [PubMed]
  22. K. Vishwanath, D. Klein, K. Chang, T. Schroeder, M. W. Dewhirst, and N. Ramanujam, “Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine head and neck xenografts,” J. Biomed. Opt.14(5), 054051 (2009).
    [CrossRef] [PubMed]
  23. R. S. Dothager, R. J. Goiffon, E. Jackson, S. Harpstrite, and D. Piwnica-Worms, “Cerenkov radiation energy transfer (CRET) imaging: a novel method for optical imaging of PET isotopes in biological systems,” PLoS ONE5(10), e13300 (2010).
    [CrossRef] [PubMed]
  24. A. Y. Lebedev, A. V. Cheprakov, S. Sakadzić, D. A. Boas, D. F. Wilson, and S. A. Vinogradov, “Dendritic phosphorescent probes for oxygen imaging in biological systems,” ACS Appl. Mater. Interfaces1(6), 1292–1304 (2009).
    [CrossRef] [PubMed]
  25. J. Fabian, “Simple method of anaerobic cultivation with removal of oxygen by a buffered glucose oxidase-catalase system,” J. Bacteriol.89, 921 (1965).
    [PubMed]
  26. S. A. Vinogradov, M. A. Fernandez-Seara, B. W. Dupan, and D. F. Wilson, “A method for measuring oxygen distributions in tissue using frequency domain phosphorometry,” Comp. Biochem. Physiol. A Mol. Integr. Physiol.132(1), 147–152 (2002).
    [CrossRef] [PubMed]
  27. K. Amako, S. Guatelli, V. N. Ivanchenko, M. Maire, B. Mascialino, K. Murakami, P. Nieminen, L. Pandola, S. Parlati, M. G. Pia, M. Piergentili, T. Sasaki, and L. Urban, “Comparison of Geant4 electromagnetic physics models against the NIST reference data,” IEEE Trans. Nucl. Sci.52(4), 910–918 (2005).
    [CrossRef]
  28. Geant4 User’s Guide for Application Developers (2009).
  29. J. M. H. H. H. Buiteveld and M. Donze, “The optical properties of pure water,” Proc. SPIE2258, 174–183 (1994).
    [CrossRef]
  30. D. J. Segelstein, “The complex refractive index of water,” M.S. thesis (University of Missouri—Kansas City, 1981).
  31. W. B. Gratzer, “Human hemoglobin optical characteristics” (Medical Research Council Laboratories, Holly Hill, London).
  32. N. Kollias, “Tabulated molar extinction coefficient for hemoglobin in water” (Wellman Laboratories, Harvard Medical School, Boston).
  33. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med.12(5), 510–519 (1992).
    [CrossRef] [PubMed]
  34. H. J. van Staveren, C. J. Moes, J. van Marie, S. A. Prahl, and M. J. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt.30(31), 4507–4514 (1991).
    [CrossRef] [PubMed]
  35. Physics Reference Manual [Geant4] (2008), http://nemu.web.psi.ch/doc/manuals/software_manuals/Geant4/Geant4_PhysicsReferenceManual.pdf .
  36. S. A. Vinogradov, M. A. Fernandez-Searra, B. W. Dugan, and D. F. Wilson, “Frequency domain instrument for measuring phosphorescence lifetime distributions in heterogeneous samples,” Rev. Sci. Instrum.72(8), 3396–3406 (2001).
    [CrossRef]
  37. A. K. Glaser, R. Zhang, S. C. Davis, D. J. Gladstone, and B. W. Pogue, “Time-gated Cherenkov emission spectroscopy from linear accelerator irradiation of tissue phantoms,” Opt. Lett.37(7), 1193–1195 (2012).
    [CrossRef] [PubMed]
  38. E. G. Mik, T. Johannes, and C. Ince, “Monitoring of renal venous PO2 and kidney oxygen consumption in rats by a near-infrared phosphorescence lifetime technique,” Am. J. Physiol. Renal Physiol.294(3), F676–F681 (2008).
    [CrossRef] [PubMed]
  39. D. F. Wilson, W. M. F. Lee, S. Makonnen, O. Finikova, S. Apreleva, and S. A. Vinogradov, “Oxygen pressures in the interstitial space and their relationship to those in the blood plasma in resting skeletal muscle,” J. Appl. Physiol.101(6), 1648–1656 (2006).
    [CrossRef] [PubMed]
  40. L. S. Ziemer, W. M. F. Lee, S. A. Vinogradov, C. Sehgal, and D. F. Wilson, “Oxygen distribution in murine tumors: characterization using oxygen-dependent quenching of phosphorescence,” J. Appl. Physiol.98(4), 1503–1510 (2005).
    [CrossRef] [PubMed]

2012

J. Zhong, C. Qin, X. Yang, Z. Chen, X. Yang, and J. Tian, “Fast-specific tomography imaging via Cerenkov emission,” Mol. Imaging Biol.14(3), 286–292 (2012).
[CrossRef] [PubMed]

Y. Xu, E. Chang, H. Liu, H. Jiang, S. S. Gambhir, and Z. Cheng, “Proof-of-concept study of monitoring cancer drug therapy with cerenkov luminescence imaging,” J. Nucl. Med.53(2), 312–317 (2012).
[CrossRef] [PubMed]

J. Axelsson, A. K. Glaser, D. J. Gladstone, and B. W. Pogue, “Quantitative Cherenkov emission spectroscopy for tissue oxygenation assessment,” Opt. Express20(5), 5133–5142 (2012).
[CrossRef] [PubMed]

A. K. Glaser, R. Zhang, S. C. Davis, D. J. Gladstone, and B. W. Pogue, “Time-gated Cherenkov emission spectroscopy from linear accelerator irradiation of tissue phantoms,” Opt. Lett.37(7), 1193–1195 (2012).
[CrossRef] [PubMed]

2011

F. Boschi, L. Calderan, D. D’Ambrosio, M. Marengo, A. Fenzi, R. Calandrino, A. Sbarbati, and A. E. Spinelli, “In vivo ¹⁸F-FDG tumour uptake measurements in small animals using Cerenkov radiation,” Eur. J. Nucl. Med. Mol. Imaging38(1), 120–127 (2011).
[CrossRef] [PubMed]

A. E. Spinelli, C. Kuo, B. W. Rice, R. Calandrino, P. Marzola, A. Sbarbati, and F. Boschi, “Multispectral Cerenkov luminescence tomography for small animal optical imaging,” Opt. Express19(13), 12605–12618 (2011).
[CrossRef] [PubMed]

J. Axelsson, S. C. Davis, D. J. Gladstone, and B. W. Pogue, “Cerenkov emission induced by external beam radiation stimulates molecular fluorescence,” Med. Phys.38(7), 4127–4132 (2011).
[CrossRef] [PubMed]

T. V. Esipova, A. Karagodov, J. Miller, D. F. Wilson, T. M. Busch, and S. A. Vinogradov, “Two new “protected” oxyphors for biological oximetry: properties and application in tumor imaging,” Anal. Chem.83(22), 8756–8765 (2011).
[CrossRef] [PubMed]

J. Zhong, C. Qin, X. Yang, S. Zhu, X. Zhang, and J. Tian, “Cerenkov luminescence tomography for in vivo radiopharmaceutical imaging,” Int. J. Biomed. Imaging2011, 641618 (2011).
[CrossRef] [PubMed]

2010

R. S. Dothager, R. J. Goiffon, E. Jackson, S. Harpstrite, and D. Piwnica-Worms, “Cerenkov radiation energy transfer (CRET) imaging: a novel method for optical imaging of PET isotopes in biological systems,” PLoS ONE5(10), e13300 (2010).
[CrossRef] [PubMed]

A. Ruggiero, J. P. Holland, J. S. Lewis, and J. Grimm, “Cerenkov luminescence imaging of medical isotopes,” J. Nucl. Med.51(7), 1123–1130 (2010).
[CrossRef] [PubMed]

A. E. Spinelli, D. D’Ambrosio, L. Calderan, M. Marengo, A. Sbarbati, and F. Boschi, “Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers,” Phys. Med. Biol.55(2), 483–495 (2010).
[CrossRef] [PubMed]

C. Li, G. S. Mitchell, and S. R. Cherry, “Cerenkov luminescence tomography for small-animal imaging,” Opt. Lett.35(7), 1109–1111 (2010).
[CrossRef] [PubMed]

Z. Hu, J. Liang, W. Yang, W. Fan, C. Li, X. Ma, X. Chen, X. Ma, X. Li, X. Qu, J. Wang, F. Cao, and J. Tian, “Experimental Cerenkov luminescence tomography of the mouse model with SPECT imaging validation,” Opt. Express18(24), 24441–24450 (2010).
[CrossRef] [PubMed]

2009

R. Robertson, M. S. Germanos, C. Li, G. S. Mitchell, S. R. Cherry, and M. D. Silva, “Optical imaging of Cerenkov light generation from positron-emitting radiotracers,” Phys. Med. Biol.54(16), N355–N365 (2009).
[CrossRef] [PubMed]

A. Y. Lebedev, A. V. Cheprakov, S. Sakadzić, D. A. Boas, D. F. Wilson, and S. A. Vinogradov, “Dendritic phosphorescent probes for oxygen imaging in biological systems,” ACS Appl. Mater. Interfaces1(6), 1292–1304 (2009).
[CrossRef] [PubMed]

P. Vaupel, “Prognostic potential of the pre-therapeutic tumor oxygenation status,” Adv. Exp. Med. Biol.645, 241–246 (2009).
[CrossRef] [PubMed]

K. Vishwanath, D. Klein, K. Chang, T. Schroeder, M. W. Dewhirst, and N. Ramanujam, “Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine head and neck xenografts,” J. Biomed. Opt.14(5), 054051 (2009).
[CrossRef] [PubMed]

2008

E. G. Mik, T. Johannes, and C. Ince, “Monitoring of renal venous PO2 and kidney oxygen consumption in rats by a near-infrared phosphorescence lifetime technique,” Am. J. Physiol. Renal Physiol.294(3), F676–F681 (2008).
[CrossRef] [PubMed]

2006

D. F. Wilson, W. M. F. Lee, S. Makonnen, O. Finikova, S. Apreleva, and S. A. Vinogradov, “Oxygen pressures in the interstitial space and their relationship to those in the blood plasma in resting skeletal muscle,” J. Appl. Physiol.101(6), 1648–1656 (2006).
[CrossRef] [PubMed]

P. Vaupel, A. Mayer, and M. Höckel, “Einfluss des Hämoglobingehalts auf die Tumoroxygenierung: je höher, desto besser? [Impact of hemoglobin levels on tumor oxygenation: the higher, the better?]” Strahlenther. Onkol.182(2), 63–71 (2006).
[CrossRef] [PubMed]

2005

K. Amako, S. Guatelli, V. N. Ivanchenko, M. Maire, B. Mascialino, K. Murakami, P. Nieminen, L. Pandola, S. Parlati, M. G. Pia, M. Piergentili, T. Sasaki, and L. Urban, “Comparison of Geant4 electromagnetic physics models against the NIST reference data,” IEEE Trans. Nucl. Sci.52(4), 910–918 (2005).
[CrossRef]

L. S. Ziemer, W. M. F. Lee, S. A. Vinogradov, C. Sehgal, and D. F. Wilson, “Oxygen distribution in murine tumors: characterization using oxygen-dependent quenching of phosphorescence,” J. Appl. Physiol.98(4), 1503–1510 (2005).
[CrossRef] [PubMed]

2003

M. Nordsmark, J. Loncaster, C. Aquino-Parsons, S. C. Chou, M. Ladekarl, H. Havsteen, J. C. Lindegaard, S. E. Davidson, M. Varia, C. West, R. Hunter, J. Overgaard, and J. A. Raleigh, “Measurements of hypoxia using pimonidazole and polarographic oxygen-sensitive electrodes in human cervix carcinomas,” Radiother. Oncol.67(1), 35–44 (2003).
[CrossRef] [PubMed]

S. M. Evans and C. J. Koch, “Prognostic significance of tumor oxygenation in humans,” Cancer Lett.195(1), 1–16 (2003).
[CrossRef] [PubMed]

2002

S. A. Vinogradov, M. A. Fernandez-Seara, B. W. Dupan, and D. F. Wilson, “A method for measuring oxygen distributions in tissue using frequency domain phosphorometry,” Comp. Biochem. Physiol. A Mol. Integr. Physiol.132(1), 147–152 (2002).
[CrossRef] [PubMed]

2001

S. A. Vinogradov, M. A. Fernandez-Searra, B. W. Dugan, and D. F. Wilson, “Frequency domain instrument for measuring phosphorescence lifetime distributions in heterogeneous samples,” Rev. Sci. Instrum.72(8), 3396–3406 (2001).
[CrossRef]

1996

D. M. Brizel, S. P. Scully, J. M. Harrelson, L. J. Layfield, J. M. Bean, L. R. Prosnitz, and M. W. Dewhirst, “Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma,” Cancer Res.56(5), 941–943 (1996).
[PubMed]

1994

J. M. H. H. H. Buiteveld and M. Donze, “The optical properties of pure water,” Proc. SPIE2258, 174–183 (1994).
[CrossRef]

1992

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med.12(5), 510–519 (1992).
[CrossRef] [PubMed]

1991

1987

J. M. Vanderkooi, G. Maniara, T. J. Green, and D. F. Wilson, “An optical method for measurement of dioxygen concentration based upon quenching of phosphorescence,” J. Biol. Chem.262(12), 5476–5482 (1987).
[PubMed]

1965

J. Fabian, “Simple method of anaerobic cultivation with removal of oxygen by a buffered glucose oxidase-catalase system,” J. Bacteriol.89, 921 (1965).
[PubMed]

1955

J. V. Jelley, “Cerenkov Radiation and Its Applications,” Br. J. Appl. Phys.6(7), 227–232 (1955).
[CrossRef]

1938

P. A. Cherenkov, “The spectrum of visible radiation produced by fast electrons,” C. R. Acad. Sci. URSS20, 651–655 (1938).

Amako, K.

K. Amako, S. Guatelli, V. N. Ivanchenko, M. Maire, B. Mascialino, K. Murakami, P. Nieminen, L. Pandola, S. Parlati, M. G. Pia, M. Piergentili, T. Sasaki, and L. Urban, “Comparison of Geant4 electromagnetic physics models against the NIST reference data,” IEEE Trans. Nucl. Sci.52(4), 910–918 (2005).
[CrossRef]

Apreleva, S.

D. F. Wilson, W. M. F. Lee, S. Makonnen, O. Finikova, S. Apreleva, and S. A. Vinogradov, “Oxygen pressures in the interstitial space and their relationship to those in the blood plasma in resting skeletal muscle,” J. Appl. Physiol.101(6), 1648–1656 (2006).
[CrossRef] [PubMed]

Aquino-Parsons, C.

M. Nordsmark, J. Loncaster, C. Aquino-Parsons, S. C. Chou, M. Ladekarl, H. Havsteen, J. C. Lindegaard, S. E. Davidson, M. Varia, C. West, R. Hunter, J. Overgaard, and J. A. Raleigh, “Measurements of hypoxia using pimonidazole and polarographic oxygen-sensitive electrodes in human cervix carcinomas,” Radiother. Oncol.67(1), 35–44 (2003).
[CrossRef] [PubMed]

Axelsson, J.

J. Axelsson, A. K. Glaser, D. J. Gladstone, and B. W. Pogue, “Quantitative Cherenkov emission spectroscopy for tissue oxygenation assessment,” Opt. Express20(5), 5133–5142 (2012).
[CrossRef] [PubMed]

J. Axelsson, S. C. Davis, D. J. Gladstone, and B. W. Pogue, “Cerenkov emission induced by external beam radiation stimulates molecular fluorescence,” Med. Phys.38(7), 4127–4132 (2011).
[CrossRef] [PubMed]

Bean, J. M.

D. M. Brizel, S. P. Scully, J. M. Harrelson, L. J. Layfield, J. M. Bean, L. R. Prosnitz, and M. W. Dewhirst, “Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma,” Cancer Res.56(5), 941–943 (1996).
[PubMed]

Boas, D. A.

A. Y. Lebedev, A. V. Cheprakov, S. Sakadzić, D. A. Boas, D. F. Wilson, and S. A. Vinogradov, “Dendritic phosphorescent probes for oxygen imaging in biological systems,” ACS Appl. Mater. Interfaces1(6), 1292–1304 (2009).
[CrossRef] [PubMed]

Boschi, F.

F. Boschi, L. Calderan, D. D’Ambrosio, M. Marengo, A. Fenzi, R. Calandrino, A. Sbarbati, and A. E. Spinelli, “In vivo ¹⁸F-FDG tumour uptake measurements in small animals using Cerenkov radiation,” Eur. J. Nucl. Med. Mol. Imaging38(1), 120–127 (2011).
[CrossRef] [PubMed]

A. E. Spinelli, C. Kuo, B. W. Rice, R. Calandrino, P. Marzola, A. Sbarbati, and F. Boschi, “Multispectral Cerenkov luminescence tomography for small animal optical imaging,” Opt. Express19(13), 12605–12618 (2011).
[CrossRef] [PubMed]

A. E. Spinelli, D. D’Ambrosio, L. Calderan, M. Marengo, A. Sbarbati, and F. Boschi, “Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers,” Phys. Med. Biol.55(2), 483–495 (2010).
[CrossRef] [PubMed]

Brizel, D. M.

D. M. Brizel, S. P. Scully, J. M. Harrelson, L. J. Layfield, J. M. Bean, L. R. Prosnitz, and M. W. Dewhirst, “Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma,” Cancer Res.56(5), 941–943 (1996).
[PubMed]

Buiteveld, J. M. H. H. H.

J. M. H. H. H. Buiteveld and M. Donze, “The optical properties of pure water,” Proc. SPIE2258, 174–183 (1994).
[CrossRef]

Busch, T. M.

T. V. Esipova, A. Karagodov, J. Miller, D. F. Wilson, T. M. Busch, and S. A. Vinogradov, “Two new “protected” oxyphors for biological oximetry: properties and application in tumor imaging,” Anal. Chem.83(22), 8756–8765 (2011).
[CrossRef] [PubMed]

Calandrino, R.

F. Boschi, L. Calderan, D. D’Ambrosio, M. Marengo, A. Fenzi, R. Calandrino, A. Sbarbati, and A. E. Spinelli, “In vivo ¹⁸F-FDG tumour uptake measurements in small animals using Cerenkov radiation,” Eur. J. Nucl. Med. Mol. Imaging38(1), 120–127 (2011).
[CrossRef] [PubMed]

A. E. Spinelli, C. Kuo, B. W. Rice, R. Calandrino, P. Marzola, A. Sbarbati, and F. Boschi, “Multispectral Cerenkov luminescence tomography for small animal optical imaging,” Opt. Express19(13), 12605–12618 (2011).
[CrossRef] [PubMed]

Calderan, L.

F. Boschi, L. Calderan, D. D’Ambrosio, M. Marengo, A. Fenzi, R. Calandrino, A. Sbarbati, and A. E. Spinelli, “In vivo ¹⁸F-FDG tumour uptake measurements in small animals using Cerenkov radiation,” Eur. J. Nucl. Med. Mol. Imaging38(1), 120–127 (2011).
[CrossRef] [PubMed]

A. E. Spinelli, D. D’Ambrosio, L. Calderan, M. Marengo, A. Sbarbati, and F. Boschi, “Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers,” Phys. Med. Biol.55(2), 483–495 (2010).
[CrossRef] [PubMed]

Cao, F.

Chang, E.

Y. Xu, E. Chang, H. Liu, H. Jiang, S. S. Gambhir, and Z. Cheng, “Proof-of-concept study of monitoring cancer drug therapy with cerenkov luminescence imaging,” J. Nucl. Med.53(2), 312–317 (2012).
[CrossRef] [PubMed]

Chang, K.

K. Vishwanath, D. Klein, K. Chang, T. Schroeder, M. W. Dewhirst, and N. Ramanujam, “Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine head and neck xenografts,” J. Biomed. Opt.14(5), 054051 (2009).
[CrossRef] [PubMed]

Chen, X.

Chen, Z.

J. Zhong, C. Qin, X. Yang, Z. Chen, X. Yang, and J. Tian, “Fast-specific tomography imaging via Cerenkov emission,” Mol. Imaging Biol.14(3), 286–292 (2012).
[CrossRef] [PubMed]

Cheng, Z.

Y. Xu, E. Chang, H. Liu, H. Jiang, S. S. Gambhir, and Z. Cheng, “Proof-of-concept study of monitoring cancer drug therapy with cerenkov luminescence imaging,” J. Nucl. Med.53(2), 312–317 (2012).
[CrossRef] [PubMed]

Cheprakov, A. V.

A. Y. Lebedev, A. V. Cheprakov, S. Sakadzić, D. A. Boas, D. F. Wilson, and S. A. Vinogradov, “Dendritic phosphorescent probes for oxygen imaging in biological systems,” ACS Appl. Mater. Interfaces1(6), 1292–1304 (2009).
[CrossRef] [PubMed]

Cherenkov, P. A.

P. A. Cherenkov, “The spectrum of visible radiation produced by fast electrons,” C. R. Acad. Sci. URSS20, 651–655 (1938).

Cherry, S. R.

C. Li, G. S. Mitchell, and S. R. Cherry, “Cerenkov luminescence tomography for small-animal imaging,” Opt. Lett.35(7), 1109–1111 (2010).
[CrossRef] [PubMed]

R. Robertson, M. S. Germanos, C. Li, G. S. Mitchell, S. R. Cherry, and M. D. Silva, “Optical imaging of Cerenkov light generation from positron-emitting radiotracers,” Phys. Med. Biol.54(16), N355–N365 (2009).
[CrossRef] [PubMed]

Chou, S. C.

M. Nordsmark, J. Loncaster, C. Aquino-Parsons, S. C. Chou, M. Ladekarl, H. Havsteen, J. C. Lindegaard, S. E. Davidson, M. Varia, C. West, R. Hunter, J. Overgaard, and J. A. Raleigh, “Measurements of hypoxia using pimonidazole and polarographic oxygen-sensitive electrodes in human cervix carcinomas,” Radiother. Oncol.67(1), 35–44 (2003).
[CrossRef] [PubMed]

D’Ambrosio, D.

F. Boschi, L. Calderan, D. D’Ambrosio, M. Marengo, A. Fenzi, R. Calandrino, A. Sbarbati, and A. E. Spinelli, “In vivo ¹⁸F-FDG tumour uptake measurements in small animals using Cerenkov radiation,” Eur. J. Nucl. Med. Mol. Imaging38(1), 120–127 (2011).
[CrossRef] [PubMed]

A. E. Spinelli, D. D’Ambrosio, L. Calderan, M. Marengo, A. Sbarbati, and F. Boschi, “Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers,” Phys. Med. Biol.55(2), 483–495 (2010).
[CrossRef] [PubMed]

Davidson, S. E.

M. Nordsmark, J. Loncaster, C. Aquino-Parsons, S. C. Chou, M. Ladekarl, H. Havsteen, J. C. Lindegaard, S. E. Davidson, M. Varia, C. West, R. Hunter, J. Overgaard, and J. A. Raleigh, “Measurements of hypoxia using pimonidazole and polarographic oxygen-sensitive electrodes in human cervix carcinomas,” Radiother. Oncol.67(1), 35–44 (2003).
[CrossRef] [PubMed]

Davis, S. C.

A. K. Glaser, R. Zhang, S. C. Davis, D. J. Gladstone, and B. W. Pogue, “Time-gated Cherenkov emission spectroscopy from linear accelerator irradiation of tissue phantoms,” Opt. Lett.37(7), 1193–1195 (2012).
[CrossRef] [PubMed]

J. Axelsson, S. C. Davis, D. J. Gladstone, and B. W. Pogue, “Cerenkov emission induced by external beam radiation stimulates molecular fluorescence,” Med. Phys.38(7), 4127–4132 (2011).
[CrossRef] [PubMed]

Dewhirst, M. W.

K. Vishwanath, D. Klein, K. Chang, T. Schroeder, M. W. Dewhirst, and N. Ramanujam, “Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine head and neck xenografts,” J. Biomed. Opt.14(5), 054051 (2009).
[CrossRef] [PubMed]

D. M. Brizel, S. P. Scully, J. M. Harrelson, L. J. Layfield, J. M. Bean, L. R. Prosnitz, and M. W. Dewhirst, “Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma,” Cancer Res.56(5), 941–943 (1996).
[PubMed]

Donze, M.

J. M. H. H. H. Buiteveld and M. Donze, “The optical properties of pure water,” Proc. SPIE2258, 174–183 (1994).
[CrossRef]

Dothager, R. S.

R. S. Dothager, R. J. Goiffon, E. Jackson, S. Harpstrite, and D. Piwnica-Worms, “Cerenkov radiation energy transfer (CRET) imaging: a novel method for optical imaging of PET isotopes in biological systems,” PLoS ONE5(10), e13300 (2010).
[CrossRef] [PubMed]

Dugan, B. W.

S. A. Vinogradov, M. A. Fernandez-Searra, B. W. Dugan, and D. F. Wilson, “Frequency domain instrument for measuring phosphorescence lifetime distributions in heterogeneous samples,” Rev. Sci. Instrum.72(8), 3396–3406 (2001).
[CrossRef]

Dupan, B. W.

S. A. Vinogradov, M. A. Fernandez-Seara, B. W. Dupan, and D. F. Wilson, “A method for measuring oxygen distributions in tissue using frequency domain phosphorometry,” Comp. Biochem. Physiol. A Mol. Integr. Physiol.132(1), 147–152 (2002).
[CrossRef] [PubMed]

Esipova, T. V.

T. V. Esipova, A. Karagodov, J. Miller, D. F. Wilson, T. M. Busch, and S. A. Vinogradov, “Two new “protected” oxyphors for biological oximetry: properties and application in tumor imaging,” Anal. Chem.83(22), 8756–8765 (2011).
[CrossRef] [PubMed]

Evans, S. M.

S. M. Evans and C. J. Koch, “Prognostic significance of tumor oxygenation in humans,” Cancer Lett.195(1), 1–16 (2003).
[CrossRef] [PubMed]

Fabian, J.

J. Fabian, “Simple method of anaerobic cultivation with removal of oxygen by a buffered glucose oxidase-catalase system,” J. Bacteriol.89, 921 (1965).
[PubMed]

Fan, W.

Fenzi, A.

F. Boschi, L. Calderan, D. D’Ambrosio, M. Marengo, A. Fenzi, R. Calandrino, A. Sbarbati, and A. E. Spinelli, “In vivo ¹⁸F-FDG tumour uptake measurements in small animals using Cerenkov radiation,” Eur. J. Nucl. Med. Mol. Imaging38(1), 120–127 (2011).
[CrossRef] [PubMed]

Fernandez-Seara, M. A.

S. A. Vinogradov, M. A. Fernandez-Seara, B. W. Dupan, and D. F. Wilson, “A method for measuring oxygen distributions in tissue using frequency domain phosphorometry,” Comp. Biochem. Physiol. A Mol. Integr. Physiol.132(1), 147–152 (2002).
[CrossRef] [PubMed]

Fernandez-Searra, M. A.

S. A. Vinogradov, M. A. Fernandez-Searra, B. W. Dugan, and D. F. Wilson, “Frequency domain instrument for measuring phosphorescence lifetime distributions in heterogeneous samples,” Rev. Sci. Instrum.72(8), 3396–3406 (2001).
[CrossRef]

Finikova, O.

D. F. Wilson, W. M. F. Lee, S. Makonnen, O. Finikova, S. Apreleva, and S. A. Vinogradov, “Oxygen pressures in the interstitial space and their relationship to those in the blood plasma in resting skeletal muscle,” J. Appl. Physiol.101(6), 1648–1656 (2006).
[CrossRef] [PubMed]

Flock, S. T.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med.12(5), 510–519 (1992).
[CrossRef] [PubMed]

Gambhir, S. S.

Y. Xu, E. Chang, H. Liu, H. Jiang, S. S. Gambhir, and Z. Cheng, “Proof-of-concept study of monitoring cancer drug therapy with cerenkov luminescence imaging,” J. Nucl. Med.53(2), 312–317 (2012).
[CrossRef] [PubMed]

Germanos, M. S.

R. Robertson, M. S. Germanos, C. Li, G. S. Mitchell, S. R. Cherry, and M. D. Silva, “Optical imaging of Cerenkov light generation from positron-emitting radiotracers,” Phys. Med. Biol.54(16), N355–N365 (2009).
[CrossRef] [PubMed]

Gladstone, D. J.

Glaser, A. K.

Goiffon, R. J.

R. S. Dothager, R. J. Goiffon, E. Jackson, S. Harpstrite, and D. Piwnica-Worms, “Cerenkov radiation energy transfer (CRET) imaging: a novel method for optical imaging of PET isotopes in biological systems,” PLoS ONE5(10), e13300 (2010).
[CrossRef] [PubMed]

Green, T. J.

J. M. Vanderkooi, G. Maniara, T. J. Green, and D. F. Wilson, “An optical method for measurement of dioxygen concentration based upon quenching of phosphorescence,” J. Biol. Chem.262(12), 5476–5482 (1987).
[PubMed]

Grimm, J.

A. Ruggiero, J. P. Holland, J. S. Lewis, and J. Grimm, “Cerenkov luminescence imaging of medical isotopes,” J. Nucl. Med.51(7), 1123–1130 (2010).
[CrossRef] [PubMed]

Guatelli, S.

K. Amako, S. Guatelli, V. N. Ivanchenko, M. Maire, B. Mascialino, K. Murakami, P. Nieminen, L. Pandola, S. Parlati, M. G. Pia, M. Piergentili, T. Sasaki, and L. Urban, “Comparison of Geant4 electromagnetic physics models against the NIST reference data,” IEEE Trans. Nucl. Sci.52(4), 910–918 (2005).
[CrossRef]

Harpstrite, S.

R. S. Dothager, R. J. Goiffon, E. Jackson, S. Harpstrite, and D. Piwnica-Worms, “Cerenkov radiation energy transfer (CRET) imaging: a novel method for optical imaging of PET isotopes in biological systems,” PLoS ONE5(10), e13300 (2010).
[CrossRef] [PubMed]

Harrelson, J. M.

D. M. Brizel, S. P. Scully, J. M. Harrelson, L. J. Layfield, J. M. Bean, L. R. Prosnitz, and M. W. Dewhirst, “Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma,” Cancer Res.56(5), 941–943 (1996).
[PubMed]

Havsteen, H.

M. Nordsmark, J. Loncaster, C. Aquino-Parsons, S. C. Chou, M. Ladekarl, H. Havsteen, J. C. Lindegaard, S. E. Davidson, M. Varia, C. West, R. Hunter, J. Overgaard, and J. A. Raleigh, “Measurements of hypoxia using pimonidazole and polarographic oxygen-sensitive electrodes in human cervix carcinomas,” Radiother. Oncol.67(1), 35–44 (2003).
[CrossRef] [PubMed]

Höckel, M.

P. Vaupel, A. Mayer, and M. Höckel, “Einfluss des Hämoglobingehalts auf die Tumoroxygenierung: je höher, desto besser? [Impact of hemoglobin levels on tumor oxygenation: the higher, the better?]” Strahlenther. Onkol.182(2), 63–71 (2006).
[CrossRef] [PubMed]

Holland, J. P.

A. Ruggiero, J. P. Holland, J. S. Lewis, and J. Grimm, “Cerenkov luminescence imaging of medical isotopes,” J. Nucl. Med.51(7), 1123–1130 (2010).
[CrossRef] [PubMed]

Hu, Z.

Hunter, R.

M. Nordsmark, J. Loncaster, C. Aquino-Parsons, S. C. Chou, M. Ladekarl, H. Havsteen, J. C. Lindegaard, S. E. Davidson, M. Varia, C. West, R. Hunter, J. Overgaard, and J. A. Raleigh, “Measurements of hypoxia using pimonidazole and polarographic oxygen-sensitive electrodes in human cervix carcinomas,” Radiother. Oncol.67(1), 35–44 (2003).
[CrossRef] [PubMed]

Ince, C.

E. G. Mik, T. Johannes, and C. Ince, “Monitoring of renal venous PO2 and kidney oxygen consumption in rats by a near-infrared phosphorescence lifetime technique,” Am. J. Physiol. Renal Physiol.294(3), F676–F681 (2008).
[CrossRef] [PubMed]

Ivanchenko, V. N.

K. Amako, S. Guatelli, V. N. Ivanchenko, M. Maire, B. Mascialino, K. Murakami, P. Nieminen, L. Pandola, S. Parlati, M. G. Pia, M. Piergentili, T. Sasaki, and L. Urban, “Comparison of Geant4 electromagnetic physics models against the NIST reference data,” IEEE Trans. Nucl. Sci.52(4), 910–918 (2005).
[CrossRef]

Jackson, E.

R. S. Dothager, R. J. Goiffon, E. Jackson, S. Harpstrite, and D. Piwnica-Worms, “Cerenkov radiation energy transfer (CRET) imaging: a novel method for optical imaging of PET isotopes in biological systems,” PLoS ONE5(10), e13300 (2010).
[CrossRef] [PubMed]

Jacques, S. L.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med.12(5), 510–519 (1992).
[CrossRef] [PubMed]

Jelley, J. V.

J. V. Jelley, “Cerenkov Radiation and Its Applications,” Br. J. Appl. Phys.6(7), 227–232 (1955).
[CrossRef]

Jiang, H.

Y. Xu, E. Chang, H. Liu, H. Jiang, S. S. Gambhir, and Z. Cheng, “Proof-of-concept study of monitoring cancer drug therapy with cerenkov luminescence imaging,” J. Nucl. Med.53(2), 312–317 (2012).
[CrossRef] [PubMed]

Johannes, T.

E. G. Mik, T. Johannes, and C. Ince, “Monitoring of renal venous PO2 and kidney oxygen consumption in rats by a near-infrared phosphorescence lifetime technique,” Am. J. Physiol. Renal Physiol.294(3), F676–F681 (2008).
[CrossRef] [PubMed]

Karagodov, A.

T. V. Esipova, A. Karagodov, J. Miller, D. F. Wilson, T. M. Busch, and S. A. Vinogradov, “Two new “protected” oxyphors for biological oximetry: properties and application in tumor imaging,” Anal. Chem.83(22), 8756–8765 (2011).
[CrossRef] [PubMed]

Klein, D.

K. Vishwanath, D. Klein, K. Chang, T. Schroeder, M. W. Dewhirst, and N. Ramanujam, “Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine head and neck xenografts,” J. Biomed. Opt.14(5), 054051 (2009).
[CrossRef] [PubMed]

Koch, C. J.

S. M. Evans and C. J. Koch, “Prognostic significance of tumor oxygenation in humans,” Cancer Lett.195(1), 1–16 (2003).
[CrossRef] [PubMed]

Kuo, C.

Ladekarl, M.

M. Nordsmark, J. Loncaster, C. Aquino-Parsons, S. C. Chou, M. Ladekarl, H. Havsteen, J. C. Lindegaard, S. E. Davidson, M. Varia, C. West, R. Hunter, J. Overgaard, and J. A. Raleigh, “Measurements of hypoxia using pimonidazole and polarographic oxygen-sensitive electrodes in human cervix carcinomas,” Radiother. Oncol.67(1), 35–44 (2003).
[CrossRef] [PubMed]

Layfield, L. J.

D. M. Brizel, S. P. Scully, J. M. Harrelson, L. J. Layfield, J. M. Bean, L. R. Prosnitz, and M. W. Dewhirst, “Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma,” Cancer Res.56(5), 941–943 (1996).
[PubMed]

Lebedev, A. Y.

A. Y. Lebedev, A. V. Cheprakov, S. Sakadzić, D. A. Boas, D. F. Wilson, and S. A. Vinogradov, “Dendritic phosphorescent probes for oxygen imaging in biological systems,” ACS Appl. Mater. Interfaces1(6), 1292–1304 (2009).
[CrossRef] [PubMed]

Lee, W. M. F.

D. F. Wilson, W. M. F. Lee, S. Makonnen, O. Finikova, S. Apreleva, and S. A. Vinogradov, “Oxygen pressures in the interstitial space and their relationship to those in the blood plasma in resting skeletal muscle,” J. Appl. Physiol.101(6), 1648–1656 (2006).
[CrossRef] [PubMed]

L. S. Ziemer, W. M. F. Lee, S. A. Vinogradov, C. Sehgal, and D. F. Wilson, “Oxygen distribution in murine tumors: characterization using oxygen-dependent quenching of phosphorescence,” J. Appl. Physiol.98(4), 1503–1510 (2005).
[CrossRef] [PubMed]

Lewis, J. S.

A. Ruggiero, J. P. Holland, J. S. Lewis, and J. Grimm, “Cerenkov luminescence imaging of medical isotopes,” J. Nucl. Med.51(7), 1123–1130 (2010).
[CrossRef] [PubMed]

Li, C.

Li, X.

Liang, J.

Lindegaard, J. C.

M. Nordsmark, J. Loncaster, C. Aquino-Parsons, S. C. Chou, M. Ladekarl, H. Havsteen, J. C. Lindegaard, S. E. Davidson, M. Varia, C. West, R. Hunter, J. Overgaard, and J. A. Raleigh, “Measurements of hypoxia using pimonidazole and polarographic oxygen-sensitive electrodes in human cervix carcinomas,” Radiother. Oncol.67(1), 35–44 (2003).
[CrossRef] [PubMed]

Liu, H.

Y. Xu, E. Chang, H. Liu, H. Jiang, S. S. Gambhir, and Z. Cheng, “Proof-of-concept study of monitoring cancer drug therapy with cerenkov luminescence imaging,” J. Nucl. Med.53(2), 312–317 (2012).
[CrossRef] [PubMed]

Loncaster, J.

M. Nordsmark, J. Loncaster, C. Aquino-Parsons, S. C. Chou, M. Ladekarl, H. Havsteen, J. C. Lindegaard, S. E. Davidson, M. Varia, C. West, R. Hunter, J. Overgaard, and J. A. Raleigh, “Measurements of hypoxia using pimonidazole and polarographic oxygen-sensitive electrodes in human cervix carcinomas,” Radiother. Oncol.67(1), 35–44 (2003).
[CrossRef] [PubMed]

Ma, X.

Maire, M.

K. Amako, S. Guatelli, V. N. Ivanchenko, M. Maire, B. Mascialino, K. Murakami, P. Nieminen, L. Pandola, S. Parlati, M. G. Pia, M. Piergentili, T. Sasaki, and L. Urban, “Comparison of Geant4 electromagnetic physics models against the NIST reference data,” IEEE Trans. Nucl. Sci.52(4), 910–918 (2005).
[CrossRef]

Makonnen, S.

D. F. Wilson, W. M. F. Lee, S. Makonnen, O. Finikova, S. Apreleva, and S. A. Vinogradov, “Oxygen pressures in the interstitial space and their relationship to those in the blood plasma in resting skeletal muscle,” J. Appl. Physiol.101(6), 1648–1656 (2006).
[CrossRef] [PubMed]

Maniara, G.

J. M. Vanderkooi, G. Maniara, T. J. Green, and D. F. Wilson, “An optical method for measurement of dioxygen concentration based upon quenching of phosphorescence,” J. Biol. Chem.262(12), 5476–5482 (1987).
[PubMed]

Marengo, M.

F. Boschi, L. Calderan, D. D’Ambrosio, M. Marengo, A. Fenzi, R. Calandrino, A. Sbarbati, and A. E. Spinelli, “In vivo ¹⁸F-FDG tumour uptake measurements in small animals using Cerenkov radiation,” Eur. J. Nucl. Med. Mol. Imaging38(1), 120–127 (2011).
[CrossRef] [PubMed]

A. E. Spinelli, D. D’Ambrosio, L. Calderan, M. Marengo, A. Sbarbati, and F. Boschi, “Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers,” Phys. Med. Biol.55(2), 483–495 (2010).
[CrossRef] [PubMed]

Marzola, P.

Mascialino, B.

K. Amako, S. Guatelli, V. N. Ivanchenko, M. Maire, B. Mascialino, K. Murakami, P. Nieminen, L. Pandola, S. Parlati, M. G. Pia, M. Piergentili, T. Sasaki, and L. Urban, “Comparison of Geant4 electromagnetic physics models against the NIST reference data,” IEEE Trans. Nucl. Sci.52(4), 910–918 (2005).
[CrossRef]

Mayer, A.

P. Vaupel, A. Mayer, and M. Höckel, “Einfluss des Hämoglobingehalts auf die Tumoroxygenierung: je höher, desto besser? [Impact of hemoglobin levels on tumor oxygenation: the higher, the better?]” Strahlenther. Onkol.182(2), 63–71 (2006).
[CrossRef] [PubMed]

Mik, E. G.

E. G. Mik, T. Johannes, and C. Ince, “Monitoring of renal venous PO2 and kidney oxygen consumption in rats by a near-infrared phosphorescence lifetime technique,” Am. J. Physiol. Renal Physiol.294(3), F676–F681 (2008).
[CrossRef] [PubMed]

Miller, J.

T. V. Esipova, A. Karagodov, J. Miller, D. F. Wilson, T. M. Busch, and S. A. Vinogradov, “Two new “protected” oxyphors for biological oximetry: properties and application in tumor imaging,” Anal. Chem.83(22), 8756–8765 (2011).
[CrossRef] [PubMed]

Mitchell, G. S.

C. Li, G. S. Mitchell, and S. R. Cherry, “Cerenkov luminescence tomography for small-animal imaging,” Opt. Lett.35(7), 1109–1111 (2010).
[CrossRef] [PubMed]

R. Robertson, M. S. Germanos, C. Li, G. S. Mitchell, S. R. Cherry, and M. D. Silva, “Optical imaging of Cerenkov light generation from positron-emitting radiotracers,” Phys. Med. Biol.54(16), N355–N365 (2009).
[CrossRef] [PubMed]

Moes, C. J.

Murakami, K.

K. Amako, S. Guatelli, V. N. Ivanchenko, M. Maire, B. Mascialino, K. Murakami, P. Nieminen, L. Pandola, S. Parlati, M. G. Pia, M. Piergentili, T. Sasaki, and L. Urban, “Comparison of Geant4 electromagnetic physics models against the NIST reference data,” IEEE Trans. Nucl. Sci.52(4), 910–918 (2005).
[CrossRef]

Nieminen, P.

K. Amako, S. Guatelli, V. N. Ivanchenko, M. Maire, B. Mascialino, K. Murakami, P. Nieminen, L. Pandola, S. Parlati, M. G. Pia, M. Piergentili, T. Sasaki, and L. Urban, “Comparison of Geant4 electromagnetic physics models against the NIST reference data,” IEEE Trans. Nucl. Sci.52(4), 910–918 (2005).
[CrossRef]

Nordsmark, M.

M. Nordsmark, J. Loncaster, C. Aquino-Parsons, S. C. Chou, M. Ladekarl, H. Havsteen, J. C. Lindegaard, S. E. Davidson, M. Varia, C. West, R. Hunter, J. Overgaard, and J. A. Raleigh, “Measurements of hypoxia using pimonidazole and polarographic oxygen-sensitive electrodes in human cervix carcinomas,” Radiother. Oncol.67(1), 35–44 (2003).
[CrossRef] [PubMed]

Overgaard, J.

M. Nordsmark, J. Loncaster, C. Aquino-Parsons, S. C. Chou, M. Ladekarl, H. Havsteen, J. C. Lindegaard, S. E. Davidson, M. Varia, C. West, R. Hunter, J. Overgaard, and J. A. Raleigh, “Measurements of hypoxia using pimonidazole and polarographic oxygen-sensitive electrodes in human cervix carcinomas,” Radiother. Oncol.67(1), 35–44 (2003).
[CrossRef] [PubMed]

Pandola, L.

K. Amako, S. Guatelli, V. N. Ivanchenko, M. Maire, B. Mascialino, K. Murakami, P. Nieminen, L. Pandola, S. Parlati, M. G. Pia, M. Piergentili, T. Sasaki, and L. Urban, “Comparison of Geant4 electromagnetic physics models against the NIST reference data,” IEEE Trans. Nucl. Sci.52(4), 910–918 (2005).
[CrossRef]

Parlati, S.

K. Amako, S. Guatelli, V. N. Ivanchenko, M. Maire, B. Mascialino, K. Murakami, P. Nieminen, L. Pandola, S. Parlati, M. G. Pia, M. Piergentili, T. Sasaki, and L. Urban, “Comparison of Geant4 electromagnetic physics models against the NIST reference data,” IEEE Trans. Nucl. Sci.52(4), 910–918 (2005).
[CrossRef]

Pia, M. G.

K. Amako, S. Guatelli, V. N. Ivanchenko, M. Maire, B. Mascialino, K. Murakami, P. Nieminen, L. Pandola, S. Parlati, M. G. Pia, M. Piergentili, T. Sasaki, and L. Urban, “Comparison of Geant4 electromagnetic physics models against the NIST reference data,” IEEE Trans. Nucl. Sci.52(4), 910–918 (2005).
[CrossRef]

Piergentili, M.

K. Amako, S. Guatelli, V. N. Ivanchenko, M. Maire, B. Mascialino, K. Murakami, P. Nieminen, L. Pandola, S. Parlati, M. G. Pia, M. Piergentili, T. Sasaki, and L. Urban, “Comparison of Geant4 electromagnetic physics models against the NIST reference data,” IEEE Trans. Nucl. Sci.52(4), 910–918 (2005).
[CrossRef]

Piwnica-Worms, D.

R. S. Dothager, R. J. Goiffon, E. Jackson, S. Harpstrite, and D. Piwnica-Worms, “Cerenkov radiation energy transfer (CRET) imaging: a novel method for optical imaging of PET isotopes in biological systems,” PLoS ONE5(10), e13300 (2010).
[CrossRef] [PubMed]

Pogue, B. W.

Prahl, S. A.

Prosnitz, L. R.

D. M. Brizel, S. P. Scully, J. M. Harrelson, L. J. Layfield, J. M. Bean, L. R. Prosnitz, and M. W. Dewhirst, “Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma,” Cancer Res.56(5), 941–943 (1996).
[PubMed]

Qin, C.

J. Zhong, C. Qin, X. Yang, Z. Chen, X. Yang, and J. Tian, “Fast-specific tomography imaging via Cerenkov emission,” Mol. Imaging Biol.14(3), 286–292 (2012).
[CrossRef] [PubMed]

J. Zhong, C. Qin, X. Yang, S. Zhu, X. Zhang, and J. Tian, “Cerenkov luminescence tomography for in vivo radiopharmaceutical imaging,” Int. J. Biomed. Imaging2011, 641618 (2011).
[CrossRef] [PubMed]

Qu, X.

Raleigh, J. A.

M. Nordsmark, J. Loncaster, C. Aquino-Parsons, S. C. Chou, M. Ladekarl, H. Havsteen, J. C. Lindegaard, S. E. Davidson, M. Varia, C. West, R. Hunter, J. Overgaard, and J. A. Raleigh, “Measurements of hypoxia using pimonidazole and polarographic oxygen-sensitive electrodes in human cervix carcinomas,” Radiother. Oncol.67(1), 35–44 (2003).
[CrossRef] [PubMed]

Ramanujam, N.

K. Vishwanath, D. Klein, K. Chang, T. Schroeder, M. W. Dewhirst, and N. Ramanujam, “Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine head and neck xenografts,” J. Biomed. Opt.14(5), 054051 (2009).
[CrossRef] [PubMed]

Rice, B. W.

Robertson, R.

R. Robertson, M. S. Germanos, C. Li, G. S. Mitchell, S. R. Cherry, and M. D. Silva, “Optical imaging of Cerenkov light generation from positron-emitting radiotracers,” Phys. Med. Biol.54(16), N355–N365 (2009).
[CrossRef] [PubMed]

Ruggiero, A.

A. Ruggiero, J. P. Holland, J. S. Lewis, and J. Grimm, “Cerenkov luminescence imaging of medical isotopes,” J. Nucl. Med.51(7), 1123–1130 (2010).
[CrossRef] [PubMed]

Sakadzic, S.

A. Y. Lebedev, A. V. Cheprakov, S. Sakadzić, D. A. Boas, D. F. Wilson, and S. A. Vinogradov, “Dendritic phosphorescent probes for oxygen imaging in biological systems,” ACS Appl. Mater. Interfaces1(6), 1292–1304 (2009).
[CrossRef] [PubMed]

Sasaki, T.

K. Amako, S. Guatelli, V. N. Ivanchenko, M. Maire, B. Mascialino, K. Murakami, P. Nieminen, L. Pandola, S. Parlati, M. G. Pia, M. Piergentili, T. Sasaki, and L. Urban, “Comparison of Geant4 electromagnetic physics models against the NIST reference data,” IEEE Trans. Nucl. Sci.52(4), 910–918 (2005).
[CrossRef]

Sbarbati, A.

F. Boschi, L. Calderan, D. D’Ambrosio, M. Marengo, A. Fenzi, R. Calandrino, A. Sbarbati, and A. E. Spinelli, “In vivo ¹⁸F-FDG tumour uptake measurements in small animals using Cerenkov radiation,” Eur. J. Nucl. Med. Mol. Imaging38(1), 120–127 (2011).
[CrossRef] [PubMed]

A. E. Spinelli, C. Kuo, B. W. Rice, R. Calandrino, P. Marzola, A. Sbarbati, and F. Boschi, “Multispectral Cerenkov luminescence tomography for small animal optical imaging,” Opt. Express19(13), 12605–12618 (2011).
[CrossRef] [PubMed]

A. E. Spinelli, D. D’Ambrosio, L. Calderan, M. Marengo, A. Sbarbati, and F. Boschi, “Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers,” Phys. Med. Biol.55(2), 483–495 (2010).
[CrossRef] [PubMed]

Schroeder, T.

K. Vishwanath, D. Klein, K. Chang, T. Schroeder, M. W. Dewhirst, and N. Ramanujam, “Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine head and neck xenografts,” J. Biomed. Opt.14(5), 054051 (2009).
[CrossRef] [PubMed]

Scully, S. P.

D. M. Brizel, S. P. Scully, J. M. Harrelson, L. J. Layfield, J. M. Bean, L. R. Prosnitz, and M. W. Dewhirst, “Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma,” Cancer Res.56(5), 941–943 (1996).
[PubMed]

Sehgal, C.

L. S. Ziemer, W. M. F. Lee, S. A. Vinogradov, C. Sehgal, and D. F. Wilson, “Oxygen distribution in murine tumors: characterization using oxygen-dependent quenching of phosphorescence,” J. Appl. Physiol.98(4), 1503–1510 (2005).
[CrossRef] [PubMed]

Silva, M. D.

R. Robertson, M. S. Germanos, C. Li, G. S. Mitchell, S. R. Cherry, and M. D. Silva, “Optical imaging of Cerenkov light generation from positron-emitting radiotracers,” Phys. Med. Biol.54(16), N355–N365 (2009).
[CrossRef] [PubMed]

Spinelli, A. E.

F. Boschi, L. Calderan, D. D’Ambrosio, M. Marengo, A. Fenzi, R. Calandrino, A. Sbarbati, and A. E. Spinelli, “In vivo ¹⁸F-FDG tumour uptake measurements in small animals using Cerenkov radiation,” Eur. J. Nucl. Med. Mol. Imaging38(1), 120–127 (2011).
[CrossRef] [PubMed]

A. E. Spinelli, C. Kuo, B. W. Rice, R. Calandrino, P. Marzola, A. Sbarbati, and F. Boschi, “Multispectral Cerenkov luminescence tomography for small animal optical imaging,” Opt. Express19(13), 12605–12618 (2011).
[CrossRef] [PubMed]

A. E. Spinelli, D. D’Ambrosio, L. Calderan, M. Marengo, A. Sbarbati, and F. Boschi, “Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers,” Phys. Med. Biol.55(2), 483–495 (2010).
[CrossRef] [PubMed]

Star, W. M.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med.12(5), 510–519 (1992).
[CrossRef] [PubMed]

Tian, J.

J. Zhong, C. Qin, X. Yang, Z. Chen, X. Yang, and J. Tian, “Fast-specific tomography imaging via Cerenkov emission,” Mol. Imaging Biol.14(3), 286–292 (2012).
[CrossRef] [PubMed]

J. Zhong, C. Qin, X. Yang, S. Zhu, X. Zhang, and J. Tian, “Cerenkov luminescence tomography for in vivo radiopharmaceutical imaging,” Int. J. Biomed. Imaging2011, 641618 (2011).
[CrossRef] [PubMed]

Z. Hu, J. Liang, W. Yang, W. Fan, C. Li, X. Ma, X. Chen, X. Ma, X. Li, X. Qu, J. Wang, F. Cao, and J. Tian, “Experimental Cerenkov luminescence tomography of the mouse model with SPECT imaging validation,” Opt. Express18(24), 24441–24450 (2010).
[CrossRef] [PubMed]

Urban, L.

K. Amako, S. Guatelli, V. N. Ivanchenko, M. Maire, B. Mascialino, K. Murakami, P. Nieminen, L. Pandola, S. Parlati, M. G. Pia, M. Piergentili, T. Sasaki, and L. Urban, “Comparison of Geant4 electromagnetic physics models against the NIST reference data,” IEEE Trans. Nucl. Sci.52(4), 910–918 (2005).
[CrossRef]

van Gemert, M. J.

van Gemert, M. J. C.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med.12(5), 510–519 (1992).
[CrossRef] [PubMed]

van Marie, J.

van Staveren, H. J.

Vanderkooi, J. M.

J. M. Vanderkooi, G. Maniara, T. J. Green, and D. F. Wilson, “An optical method for measurement of dioxygen concentration based upon quenching of phosphorescence,” J. Biol. Chem.262(12), 5476–5482 (1987).
[PubMed]

Varia, M.

M. Nordsmark, J. Loncaster, C. Aquino-Parsons, S. C. Chou, M. Ladekarl, H. Havsteen, J. C. Lindegaard, S. E. Davidson, M. Varia, C. West, R. Hunter, J. Overgaard, and J. A. Raleigh, “Measurements of hypoxia using pimonidazole and polarographic oxygen-sensitive electrodes in human cervix carcinomas,” Radiother. Oncol.67(1), 35–44 (2003).
[CrossRef] [PubMed]

Vaupel, P.

P. Vaupel, “Prognostic potential of the pre-therapeutic tumor oxygenation status,” Adv. Exp. Med. Biol.645, 241–246 (2009).
[CrossRef] [PubMed]

P. Vaupel, A. Mayer, and M. Höckel, “Einfluss des Hämoglobingehalts auf die Tumoroxygenierung: je höher, desto besser? [Impact of hemoglobin levels on tumor oxygenation: the higher, the better?]” Strahlenther. Onkol.182(2), 63–71 (2006).
[CrossRef] [PubMed]

Vinogradov, S. A.

T. V. Esipova, A. Karagodov, J. Miller, D. F. Wilson, T. M. Busch, and S. A. Vinogradov, “Two new “protected” oxyphors for biological oximetry: properties and application in tumor imaging,” Anal. Chem.83(22), 8756–8765 (2011).
[CrossRef] [PubMed]

A. Y. Lebedev, A. V. Cheprakov, S. Sakadzić, D. A. Boas, D. F. Wilson, and S. A. Vinogradov, “Dendritic phosphorescent probes for oxygen imaging in biological systems,” ACS Appl. Mater. Interfaces1(6), 1292–1304 (2009).
[CrossRef] [PubMed]

D. F. Wilson, W. M. F. Lee, S. Makonnen, O. Finikova, S. Apreleva, and S. A. Vinogradov, “Oxygen pressures in the interstitial space and their relationship to those in the blood plasma in resting skeletal muscle,” J. Appl. Physiol.101(6), 1648–1656 (2006).
[CrossRef] [PubMed]

L. S. Ziemer, W. M. F. Lee, S. A. Vinogradov, C. Sehgal, and D. F. Wilson, “Oxygen distribution in murine tumors: characterization using oxygen-dependent quenching of phosphorescence,” J. Appl. Physiol.98(4), 1503–1510 (2005).
[CrossRef] [PubMed]

S. A. Vinogradov, M. A. Fernandez-Seara, B. W. Dupan, and D. F. Wilson, “A method for measuring oxygen distributions in tissue using frequency domain phosphorometry,” Comp. Biochem. Physiol. A Mol. Integr. Physiol.132(1), 147–152 (2002).
[CrossRef] [PubMed]

S. A. Vinogradov, M. A. Fernandez-Searra, B. W. Dugan, and D. F. Wilson, “Frequency domain instrument for measuring phosphorescence lifetime distributions in heterogeneous samples,” Rev. Sci. Instrum.72(8), 3396–3406 (2001).
[CrossRef]

Vishwanath, K.

K. Vishwanath, D. Klein, K. Chang, T. Schroeder, M. W. Dewhirst, and N. Ramanujam, “Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine head and neck xenografts,” J. Biomed. Opt.14(5), 054051 (2009).
[CrossRef] [PubMed]

Wang, J.

West, C.

M. Nordsmark, J. Loncaster, C. Aquino-Parsons, S. C. Chou, M. Ladekarl, H. Havsteen, J. C. Lindegaard, S. E. Davidson, M. Varia, C. West, R. Hunter, J. Overgaard, and J. A. Raleigh, “Measurements of hypoxia using pimonidazole and polarographic oxygen-sensitive electrodes in human cervix carcinomas,” Radiother. Oncol.67(1), 35–44 (2003).
[CrossRef] [PubMed]

Wilson, B. C.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med.12(5), 510–519 (1992).
[CrossRef] [PubMed]

Wilson, D. F.

T. V. Esipova, A. Karagodov, J. Miller, D. F. Wilson, T. M. Busch, and S. A. Vinogradov, “Two new “protected” oxyphors for biological oximetry: properties and application in tumor imaging,” Anal. Chem.83(22), 8756–8765 (2011).
[CrossRef] [PubMed]

A. Y. Lebedev, A. V. Cheprakov, S. Sakadzić, D. A. Boas, D. F. Wilson, and S. A. Vinogradov, “Dendritic phosphorescent probes for oxygen imaging in biological systems,” ACS Appl. Mater. Interfaces1(6), 1292–1304 (2009).
[CrossRef] [PubMed]

D. F. Wilson, W. M. F. Lee, S. Makonnen, O. Finikova, S. Apreleva, and S. A. Vinogradov, “Oxygen pressures in the interstitial space and their relationship to those in the blood plasma in resting skeletal muscle,” J. Appl. Physiol.101(6), 1648–1656 (2006).
[CrossRef] [PubMed]

L. S. Ziemer, W. M. F. Lee, S. A. Vinogradov, C. Sehgal, and D. F. Wilson, “Oxygen distribution in murine tumors: characterization using oxygen-dependent quenching of phosphorescence,” J. Appl. Physiol.98(4), 1503–1510 (2005).
[CrossRef] [PubMed]

S. A. Vinogradov, M. A. Fernandez-Seara, B. W. Dupan, and D. F. Wilson, “A method for measuring oxygen distributions in tissue using frequency domain phosphorometry,” Comp. Biochem. Physiol. A Mol. Integr. Physiol.132(1), 147–152 (2002).
[CrossRef] [PubMed]

S. A. Vinogradov, M. A. Fernandez-Searra, B. W. Dugan, and D. F. Wilson, “Frequency domain instrument for measuring phosphorescence lifetime distributions in heterogeneous samples,” Rev. Sci. Instrum.72(8), 3396–3406 (2001).
[CrossRef]

J. M. Vanderkooi, G. Maniara, T. J. Green, and D. F. Wilson, “An optical method for measurement of dioxygen concentration based upon quenching of phosphorescence,” J. Biol. Chem.262(12), 5476–5482 (1987).
[PubMed]

Xu, Y.

Y. Xu, E. Chang, H. Liu, H. Jiang, S. S. Gambhir, and Z. Cheng, “Proof-of-concept study of monitoring cancer drug therapy with cerenkov luminescence imaging,” J. Nucl. Med.53(2), 312–317 (2012).
[CrossRef] [PubMed]

Yang, W.

Yang, X.

J. Zhong, C. Qin, X. Yang, Z. Chen, X. Yang, and J. Tian, “Fast-specific tomography imaging via Cerenkov emission,” Mol. Imaging Biol.14(3), 286–292 (2012).
[CrossRef] [PubMed]

J. Zhong, C. Qin, X. Yang, Z. Chen, X. Yang, and J. Tian, “Fast-specific tomography imaging via Cerenkov emission,” Mol. Imaging Biol.14(3), 286–292 (2012).
[CrossRef] [PubMed]

J. Zhong, C. Qin, X. Yang, S. Zhu, X. Zhang, and J. Tian, “Cerenkov luminescence tomography for in vivo radiopharmaceutical imaging,” Int. J. Biomed. Imaging2011, 641618 (2011).
[CrossRef] [PubMed]

Zhang, R.

Zhang, X.

J. Zhong, C. Qin, X. Yang, S. Zhu, X. Zhang, and J. Tian, “Cerenkov luminescence tomography for in vivo radiopharmaceutical imaging,” Int. J. Biomed. Imaging2011, 641618 (2011).
[CrossRef] [PubMed]

Zhong, J.

J. Zhong, C. Qin, X. Yang, Z. Chen, X. Yang, and J. Tian, “Fast-specific tomography imaging via Cerenkov emission,” Mol. Imaging Biol.14(3), 286–292 (2012).
[CrossRef] [PubMed]

J. Zhong, C. Qin, X. Yang, S. Zhu, X. Zhang, and J. Tian, “Cerenkov luminescence tomography for in vivo radiopharmaceutical imaging,” Int. J. Biomed. Imaging2011, 641618 (2011).
[CrossRef] [PubMed]

Zhu, S.

J. Zhong, C. Qin, X. Yang, S. Zhu, X. Zhang, and J. Tian, “Cerenkov luminescence tomography for in vivo radiopharmaceutical imaging,” Int. J. Biomed. Imaging2011, 641618 (2011).
[CrossRef] [PubMed]

Ziemer, L. S.

L. S. Ziemer, W. M. F. Lee, S. A. Vinogradov, C. Sehgal, and D. F. Wilson, “Oxygen distribution in murine tumors: characterization using oxygen-dependent quenching of phosphorescence,” J. Appl. Physiol.98(4), 1503–1510 (2005).
[CrossRef] [PubMed]

ACS Appl. Mater. Interfaces

A. Y. Lebedev, A. V. Cheprakov, S. Sakadzić, D. A. Boas, D. F. Wilson, and S. A. Vinogradov, “Dendritic phosphorescent probes for oxygen imaging in biological systems,” ACS Appl. Mater. Interfaces1(6), 1292–1304 (2009).
[CrossRef] [PubMed]

Adv. Exp. Med. Biol.

P. Vaupel, “Prognostic potential of the pre-therapeutic tumor oxygenation status,” Adv. Exp. Med. Biol.645, 241–246 (2009).
[CrossRef] [PubMed]

Am. J. Physiol. Renal Physiol.

E. G. Mik, T. Johannes, and C. Ince, “Monitoring of renal venous PO2 and kidney oxygen consumption in rats by a near-infrared phosphorescence lifetime technique,” Am. J. Physiol. Renal Physiol.294(3), F676–F681 (2008).
[CrossRef] [PubMed]

Anal. Chem.

T. V. Esipova, A. Karagodov, J. Miller, D. F. Wilson, T. M. Busch, and S. A. Vinogradov, “Two new “protected” oxyphors for biological oximetry: properties and application in tumor imaging,” Anal. Chem.83(22), 8756–8765 (2011).
[CrossRef] [PubMed]

Appl. Opt.

Br. J. Appl. Phys.

J. V. Jelley, “Cerenkov Radiation and Its Applications,” Br. J. Appl. Phys.6(7), 227–232 (1955).
[CrossRef]

C. R. Acad. Sci. URSS

P. A. Cherenkov, “The spectrum of visible radiation produced by fast electrons,” C. R. Acad. Sci. URSS20, 651–655 (1938).

Cancer Lett.

S. M. Evans and C. J. Koch, “Prognostic significance of tumor oxygenation in humans,” Cancer Lett.195(1), 1–16 (2003).
[CrossRef] [PubMed]

Cancer Res.

D. M. Brizel, S. P. Scully, J. M. Harrelson, L. J. Layfield, J. M. Bean, L. R. Prosnitz, and M. W. Dewhirst, “Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma,” Cancer Res.56(5), 941–943 (1996).
[PubMed]

Comp. Biochem. Physiol. A Mol. Integr. Physiol.

S. A. Vinogradov, M. A. Fernandez-Seara, B. W. Dupan, and D. F. Wilson, “A method for measuring oxygen distributions in tissue using frequency domain phosphorometry,” Comp. Biochem. Physiol. A Mol. Integr. Physiol.132(1), 147–152 (2002).
[CrossRef] [PubMed]

Eur. J. Nucl. Med. Mol. Imaging

F. Boschi, L. Calderan, D. D’Ambrosio, M. Marengo, A. Fenzi, R. Calandrino, A. Sbarbati, and A. E. Spinelli, “In vivo ¹⁸F-FDG tumour uptake measurements in small animals using Cerenkov radiation,” Eur. J. Nucl. Med. Mol. Imaging38(1), 120–127 (2011).
[CrossRef] [PubMed]

IEEE Trans. Nucl. Sci.

K. Amako, S. Guatelli, V. N. Ivanchenko, M. Maire, B. Mascialino, K. Murakami, P. Nieminen, L. Pandola, S. Parlati, M. G. Pia, M. Piergentili, T. Sasaki, and L. Urban, “Comparison of Geant4 electromagnetic physics models against the NIST reference data,” IEEE Trans. Nucl. Sci.52(4), 910–918 (2005).
[CrossRef]

Int. J. Biomed. Imaging

J. Zhong, C. Qin, X. Yang, S. Zhu, X. Zhang, and J. Tian, “Cerenkov luminescence tomography for in vivo radiopharmaceutical imaging,” Int. J. Biomed. Imaging2011, 641618 (2011).
[CrossRef] [PubMed]

J. Appl. Physiol.

D. F. Wilson, W. M. F. Lee, S. Makonnen, O. Finikova, S. Apreleva, and S. A. Vinogradov, “Oxygen pressures in the interstitial space and their relationship to those in the blood plasma in resting skeletal muscle,” J. Appl. Physiol.101(6), 1648–1656 (2006).
[CrossRef] [PubMed]

L. S. Ziemer, W. M. F. Lee, S. A. Vinogradov, C. Sehgal, and D. F. Wilson, “Oxygen distribution in murine tumors: characterization using oxygen-dependent quenching of phosphorescence,” J. Appl. Physiol.98(4), 1503–1510 (2005).
[CrossRef] [PubMed]

J. Bacteriol.

J. Fabian, “Simple method of anaerobic cultivation with removal of oxygen by a buffered glucose oxidase-catalase system,” J. Bacteriol.89, 921 (1965).
[PubMed]

J. Biol. Chem.

J. M. Vanderkooi, G. Maniara, T. J. Green, and D. F. Wilson, “An optical method for measurement of dioxygen concentration based upon quenching of phosphorescence,” J. Biol. Chem.262(12), 5476–5482 (1987).
[PubMed]

J. Biomed. Opt.

K. Vishwanath, D. Klein, K. Chang, T. Schroeder, M. W. Dewhirst, and N. Ramanujam, “Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine head and neck xenografts,” J. Biomed. Opt.14(5), 054051 (2009).
[CrossRef] [PubMed]

J. Nucl. Med.

Y. Xu, E. Chang, H. Liu, H. Jiang, S. S. Gambhir, and Z. Cheng, “Proof-of-concept study of monitoring cancer drug therapy with cerenkov luminescence imaging,” J. Nucl. Med.53(2), 312–317 (2012).
[CrossRef] [PubMed]

A. Ruggiero, J. P. Holland, J. S. Lewis, and J. Grimm, “Cerenkov luminescence imaging of medical isotopes,” J. Nucl. Med.51(7), 1123–1130 (2010).
[CrossRef] [PubMed]

Lasers Surg. Med.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med.12(5), 510–519 (1992).
[CrossRef] [PubMed]

Med. Phys.

J. Axelsson, S. C. Davis, D. J. Gladstone, and B. W. Pogue, “Cerenkov emission induced by external beam radiation stimulates molecular fluorescence,” Med. Phys.38(7), 4127–4132 (2011).
[CrossRef] [PubMed]

Mol. Imaging Biol.

J. Zhong, C. Qin, X. Yang, Z. Chen, X. Yang, and J. Tian, “Fast-specific tomography imaging via Cerenkov emission,” Mol. Imaging Biol.14(3), 286–292 (2012).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Med. Biol.

A. E. Spinelli, D. D’Ambrosio, L. Calderan, M. Marengo, A. Sbarbati, and F. Boschi, “Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers,” Phys. Med. Biol.55(2), 483–495 (2010).
[CrossRef] [PubMed]

R. Robertson, M. S. Germanos, C. Li, G. S. Mitchell, S. R. Cherry, and M. D. Silva, “Optical imaging of Cerenkov light generation from positron-emitting radiotracers,” Phys. Med. Biol.54(16), N355–N365 (2009).
[CrossRef] [PubMed]

PLoS ONE

R. S. Dothager, R. J. Goiffon, E. Jackson, S. Harpstrite, and D. Piwnica-Worms, “Cerenkov radiation energy transfer (CRET) imaging: a novel method for optical imaging of PET isotopes in biological systems,” PLoS ONE5(10), e13300 (2010).
[CrossRef] [PubMed]

Proc. SPIE

J. M. H. H. H. Buiteveld and M. Donze, “The optical properties of pure water,” Proc. SPIE2258, 174–183 (1994).
[CrossRef]

Radiother. Oncol.

M. Nordsmark, J. Loncaster, C. Aquino-Parsons, S. C. Chou, M. Ladekarl, H. Havsteen, J. C. Lindegaard, S. E. Davidson, M. Varia, C. West, R. Hunter, J. Overgaard, and J. A. Raleigh, “Measurements of hypoxia using pimonidazole and polarographic oxygen-sensitive electrodes in human cervix carcinomas,” Radiother. Oncol.67(1), 35–44 (2003).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

S. A. Vinogradov, M. A. Fernandez-Searra, B. W. Dugan, and D. F. Wilson, “Frequency domain instrument for measuring phosphorescence lifetime distributions in heterogeneous samples,” Rev. Sci. Instrum.72(8), 3396–3406 (2001).
[CrossRef]

Strahlenther. Onkol.

P. Vaupel, A. Mayer, and M. Höckel, “Einfluss des Hämoglobingehalts auf die Tumoroxygenierung: je höher, desto besser? [Impact of hemoglobin levels on tumor oxygenation: the higher, the better?]” Strahlenther. Onkol.182(2), 63–71 (2006).
[CrossRef] [PubMed]

Other

D. J. Segelstein, “The complex refractive index of water,” M.S. thesis (University of Missouri—Kansas City, 1981).

W. B. Gratzer, “Human hemoglobin optical characteristics” (Medical Research Council Laboratories, Holly Hill, London).

N. Kollias, “Tabulated molar extinction coefficient for hemoglobin in water” (Wellman Laboratories, Harvard Medical School, Boston).

Geant4 User’s Guide for Application Developers (2009).

Physics Reference Manual [Geant4] (2008), http://nemu.web.psi.ch/doc/manuals/software_manuals/Geant4/Geant4_PhysicsReferenceManual.pdf .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The geometry of the measurement system and temporal acquisition process are shown with (A) the fast time gated spectrometer system, (B) the time line of how the linear accelerator works in pulsed mode and the way to measure decays of CREL. The data were acquired while choosing gate width (D to E) of 3 ms and a gate delay varying (A to D) starting with 10 μs and ending up with 200 μs.

Fig. 2
Fig. 2

The geometry of simulations and optical properties of phantom are shown with (A) a 60x60x100 mm cuboid container defined and voxelised into 0.5 mm cubes. The coordinate system was as indicated here, and a fiber with diameter 1.2 mm and numerical aperture 0.22 was posited right on the surface of the container at position (x = 30 mm, y = 0 mm, z = 75 mm). The external electron beam irradiated the phantom from the top surface. In (B) the intersections of a typical simulation to show how the sensitivity distribution appeared in 3D, and in (C) the optical properties are shown of the tissue mimicking phantom made of water, 1% Intralipid, 1% whole blood and PtG4 with a concentration of 5 μM.

Fig. 3
Fig. 3

Experimental measurements of CREL are shown for PtG4 in different pO2 levels. In (A) the Molar extinction coefficient of PtG4 is shown, with (B) the emission spectrum and (C) a gated spectrum measurement of CR shown from tissue mimicking phantoms with different StO2 (StO2 = 92% and StO2 = 5%). (D) A continuous wavelength and gated spectrum measurement of CREL shown from tissue mimicking phantoms with different pO2 levels (pO2 = 141.95 Torr and pO2 = 2.31 Torr). In (E) the lifetime fitting of the fast time gated CREL intensity data is shown.

Fig. 4
Fig. 4

Detective sensitivity distribution of Čerenkov radiation emission and sensitivity vs. depth profiles. In (A)-(D) the Detective sensitivity distribution of Čerenkov radiation emission is shown in y-z plane while x = 30 mm for broad electron beam with 18 MeV energy and fiber-beam distances = 0 mm, 10 mm, 20 mm and 30 mm. The coordinate system was the same shown in Fig. 2(A). The external radiotherapy beam propagated in –z direction initially and the fiber was put at (y = 0, z = 75), pointing +y direction. For each fiber-beam distance, wavelength from 300 nm to 1000 nm with 25 nm increment have been investigated and shown here (left to right, top to bottom). In (E)-(H) the sensitivity vs. depth profiles for broad 18 MeV electron beams are shown with fiber-beam distances of 0 mm, 10 mm, 20 mm and 30 mm and wavelength from 300 nm to 1000 nm with 100 nm increment.

Fig. 5
Fig. 5

In (A) the effective sampling depth vs. wavelength are shown for fiber-beam distances of 0 mm, 10 mm, 20 mm and 30 mm. In (B) the normalized intensity of Čerenkov radiation emission vs. wavelength is shown (i.e. simulated spectrum).

Fig. 6
Fig. 6

Calculated sensitivity distribution and sensitivity vs. depth profile of CREL are shown in (A)-(D) in the y-z plane while x = 30 mm for fiber-beam distances of 0 mm, 10 mm, 20 mm and 30 mm. In (E) the sensitivity vs. depth profiles for the same FBDs are shown.

Tables (2)

Tables Icon

Table 1 CREL lifetime values for different pO2 levels

Tables Icon

Table 2 Comparison of effective sampling depth of Čerenkov radiation emission and CREL for different fiber to beam distances (FBD)

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I t = I 0 exp( t τ ),

Metrics