Abstract

Abstract: In this paper we discuss results based on using instrumental motion as a signal rather than treating it as noise in Near Infra-Red (NIR) imaging. As a practical application to demonstrate this approach we show the design of a novel NIR hematoma detection device. The proposed device is based on a simplified single source configuration with a dual separation detector array and uses motion as a signal for detecting changes in blood volume in the dural regions of the head. The rapid triage of hematomas in the emergency room will lead to improved use of more sophisticated/expensive imaging facilities such as CT/MRI units. We present simulation results demonstrating the viability of such a device and initial phantom results from a proof of principle device. The results demonstrate excellent localization of inclusions as well as good quantitative comparisons.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. M. Kooijman, M. T. Hopman, W. N. Colier, J. A. van der Vliet, and B. Oeseburg, “Near infrared spectroscopy for noninvasive assessment of claudication,” J. Surg. Res.72(1), 1–7 (1997).
    [CrossRef] [PubMed]
  2. E. M. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J. Biomed. Opt.12(5), 051402 (2007).
    [CrossRef] [PubMed]
  3. B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A.104(29), 12169–12174 (2007).
    [CrossRef] [PubMed]
  4. F. Abdelnour, B. Schmidt, and T. J. Huppert, “Topographic localization of brain activation in diffuse optical imaging using spherical wavelets,” Phys. Med. Biol.54(20), 6383–6413 (2009).
    [CrossRef] [PubMed]
  5. A. Custo, D. A. Boas, D. Tsuzuki, I. Dan, R. Mesquita, B. Fischl, W. E. L. Grimson, and W. Wells, “Anatomical atlas-guided diffuse optical tomography of brain activation,” Neuroimage49(1), 561–567 (2010).
    [CrossRef] [PubMed]
  6. G. Strangman, J. P. Culver, J. H. Thompson, and D. A. Boas, “A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation,” Neuroimage17(2), 719–731 (2002).
    [CrossRef] [PubMed]
  7. A. V. Medvedev, J. M. Kainerstorfer, S. V. Borisov, and J. VanMeter, “Functional connectivity in the prefrontal cortex measured by near-infrared spectroscopy during ultrarapid object recognition,” J. Biomed. Opt.16(1), 016008 (2011).
    [CrossRef] [PubMed]
  8. C. E. Cooper, C. E. Elwell, J. H. Meek, S. J. Matcher, J. S. Wyatt, M. Cope, and D. T. Delpy, “The noninvasive measurement of absolute cerebral deoxyhemoglobin concentration and mean optical path length in the neonatal brain by second derivative near infrared spectroscopy,” Pediatr. Res.39(1), 32–38 (1996).
    [CrossRef] [PubMed]
  9. M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res.61(5 Pt 1), 546–551 (2007).
    [PubMed]
  10. J. Riley, E. M. C. Hillman, J. Hebden, and S. R. Arridge, “Light transport in scattering domains containing non-scattering spaces,” in International Workshop—Comptational Problems of Electrical Engineering (2002), pp. 215–218.
  11. T. Durduran, C. Zhou, B. L. Edlow, G. Yu, R. Choe, M. N. Kim, B. L. Cucchiara, M. E. Putt, Q. Shah, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Transcranial optical monitoring of cerebrovascular hemodynamics in acute stroke patients,” Opt. Express17(5), 3884–3902 (2009).
    [CrossRef] [PubMed]
  12. C. Zweifel, G. Castellani, M. Czosnyka, E. Carrera, K. M. Brady, P. J. Kirkpatrick, J. D. Pickard, and P. Smielewski, “Continuous assessment of cerebral autoregulation with near-infrared spectroscopy in adults after subarachnoid hemorrhage,” Stroke41(9), 1963–1968 (2010).
    [CrossRef] [PubMed]
  13. C. Zweifel, G. Castellani, M. Czosnyka, A. Helmy, A. Manktelow, E. Carrera, K. M. Brady, P. J. A. Hutchinson, D. K. Menon, J. D. Pickard, and P. Smielewski, “Noninvasive monitoring of cerebrovascular reactivity with near infrared spectroscopy in head-injured patients,” J. Neurotrauma27(11), 1951–1958 (2010).
    [CrossRef] [PubMed]
  14. M. Schweiger, I. Nissilä, D. A. Boas, and S. R. Arridge, “Image reconstruction in optical tomography in the presence of coupling errors,” Appl. Opt.46(14), 2743–2756 (2007).
    [CrossRef] [PubMed]
  15. A. V. Medvedev, J. Kainerstorfer, S. V. Borisov, R. L. Barbour, and J. VanMeter, “Event-related fast optical signal in a rapid object recognition task: improving detection by the independent component analysis,” Brain Res.1236, 145–158 (2008).
    [CrossRef] [PubMed]
  16. R. Ferguson, D. Hammer, A. Elsner, R. Webb, S. Burns, and J. Weiter, “Wide-field retinal hemodynamic imaging with the tracking scanning laser ophthalmoscope,” Opt. Express12(21), 5198–5208 (2004).
    [CrossRef] [PubMed]
  17. Q. Zhang, H. Ma, S. Nioka, and B. Chance, “Study of near infrared technology for intracranial hematoma detection,” J. Biomed. Opt.5(2), 206–213 (2000).
    [CrossRef] [PubMed]
  18. J. Leon-Carrion, J. M. Dominguez-Roldan, U. Leon-Dominguez, and F. Murillo-Cabezas, “The Infrascanner, a handheld device for screening in situ for the presence of brain haematomas,” Brain Inj.24(10), 1193–1201 (2010).
    [CrossRef] [PubMed]
  19. S. I. Turovets, P. S. Lovely, and D. M. Tucker, “Intracranial hematoma detection using near infrared light and local reference method,” in Biomedical Optics, Technical Digest (CD) (Optical Society of America, 2006), paper ME26.
  20. S. J. Erickson, S. L. Martinez, J. Gonzalez, L. Caldera, and A. Godavarty, “Improved detection limits using a hand-held optical imager with coregistration capabilities,” Biomed. Opt. Express1(1), 126–134 (2010).
    [CrossRef] [PubMed]
  21. C. Zhou, R. Choe, N. Shah, T. Durduran, G. Yu, A. Durkin, D. Hsiang, R. Mehta, J. Butler, A. Cerussi, B. J. Tromberg, and A. G. Yodh, “Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy,” J. Biomed. Opt.12(5), 051903 (2007).
    [CrossRef] [PubMed]
  22. D. D. Price and S. R. Wilson, “Epidural hematoma,” eMedicine Trauma (Jan 31, 2008).
  23. R. J. Meagher and W. F. Young, “Subdural hematoma,” eMedicine Neurology (2009).
  24. A. Torricelli, A. Pifferi, P. Taroni, E. Giambattistelli, and R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy,” Phys. Med. Biol.46(8), 2227–2237 (2001).
    [CrossRef] [PubMed]
  25. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl.15(2), R41–R93 (1999).
    [CrossRef]
  26. J. Riley, “The radiosity-diffusion model in 3D,” Proc. SPIE4431, 153–164 (2001).
    [CrossRef]
  27. J. Riley, “Light transport in diffusing domains containing non-scattering spaces,” PhD thesis (University College London, 2005).
  28. M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys.22(11), 1779–1792 (1995).
    [CrossRef] [PubMed]
  29. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys.20(2), 299–309 (1993).
    [CrossRef] [PubMed]
  30. J. M. Kainerstorfer, L. Najafizadeh, J. D. Riley, M. Ehler, F. Amyot, P. D. Smith, A. V. Medvedev, and A. H. Gandjbakhche, “Principal component wavelength optimization for hemoglobin reconstruction in near infrared diffuse optical imaging” (in preparation).
  31. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11(4), 041102 (2006).
    [CrossRef] [PubMed]
  32. J. C. Hebden, “Tissue-equivalent phantoms” (2011), http://www.medphys.ucl.ac.uk/research/borl/research/NIR_topics/phantoms.htm .
  33. F. E. Schmidt, J. C. Hebden, E. M. Hillman, M. E. Fry, M. Schweiger, H. Dehghani, D. T. Delpy, and S. R. Arridge, “Multiple-slice imaging of a tissue-equivalent phantom by use of time-resolved optical tomography,” Appl. Opt.39(19), 3380–3387 (2000).
    [CrossRef] [PubMed]
  34. A. H. Gandjbakhche and G. H. Weiss, “Descriptive parameter for photon trajectories in a turbid medium,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics61(6Pt B), 6958–6962 (2000).
    [CrossRef] [PubMed]
  35. M. Izzetoglu, S. C. Bunce, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional brain imaging using near-infrared technology,” IEEE Eng. Med. Biol. Mag.26(4), 38–46 (2007).
    [CrossRef] [PubMed]

2011

A. V. Medvedev, J. M. Kainerstorfer, S. V. Borisov, and J. VanMeter, “Functional connectivity in the prefrontal cortex measured by near-infrared spectroscopy during ultrarapid object recognition,” J. Biomed. Opt.16(1), 016008 (2011).
[CrossRef] [PubMed]

2010

A. Custo, D. A. Boas, D. Tsuzuki, I. Dan, R. Mesquita, B. Fischl, W. E. L. Grimson, and W. Wells, “Anatomical atlas-guided diffuse optical tomography of brain activation,” Neuroimage49(1), 561–567 (2010).
[CrossRef] [PubMed]

C. Zweifel, G. Castellani, M. Czosnyka, E. Carrera, K. M. Brady, P. J. Kirkpatrick, J. D. Pickard, and P. Smielewski, “Continuous assessment of cerebral autoregulation with near-infrared spectroscopy in adults after subarachnoid hemorrhage,” Stroke41(9), 1963–1968 (2010).
[CrossRef] [PubMed]

C. Zweifel, G. Castellani, M. Czosnyka, A. Helmy, A. Manktelow, E. Carrera, K. M. Brady, P. J. A. Hutchinson, D. K. Menon, J. D. Pickard, and P. Smielewski, “Noninvasive monitoring of cerebrovascular reactivity with near infrared spectroscopy in head-injured patients,” J. Neurotrauma27(11), 1951–1958 (2010).
[CrossRef] [PubMed]

J. Leon-Carrion, J. M. Dominguez-Roldan, U. Leon-Dominguez, and F. Murillo-Cabezas, “The Infrascanner, a handheld device for screening in situ for the presence of brain haematomas,” Brain Inj.24(10), 1193–1201 (2010).
[CrossRef] [PubMed]

S. J. Erickson, S. L. Martinez, J. Gonzalez, L. Caldera, and A. Godavarty, “Improved detection limits using a hand-held optical imager with coregistration capabilities,” Biomed. Opt. Express1(1), 126–134 (2010).
[CrossRef] [PubMed]

2009

2008

A. V. Medvedev, J. Kainerstorfer, S. V. Borisov, R. L. Barbour, and J. VanMeter, “Event-related fast optical signal in a rapid object recognition task: improving detection by the independent component analysis,” Brain Res.1236, 145–158 (2008).
[CrossRef] [PubMed]

2007

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res.61(5 Pt 1), 546–551 (2007).
[PubMed]

C. Zhou, R. Choe, N. Shah, T. Durduran, G. Yu, A. Durkin, D. Hsiang, R. Mehta, J. Butler, A. Cerussi, B. J. Tromberg, and A. G. Yodh, “Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy,” J. Biomed. Opt.12(5), 051903 (2007).
[CrossRef] [PubMed]

E. M. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J. Biomed. Opt.12(5), 051402 (2007).
[CrossRef] [PubMed]

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A.104(29), 12169–12174 (2007).
[CrossRef] [PubMed]

M. Schweiger, I. Nissilä, D. A. Boas, and S. R. Arridge, “Image reconstruction in optical tomography in the presence of coupling errors,” Appl. Opt.46(14), 2743–2756 (2007).
[CrossRef] [PubMed]

M. Izzetoglu, S. C. Bunce, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional brain imaging using near-infrared technology,” IEEE Eng. Med. Biol. Mag.26(4), 38–46 (2007).
[CrossRef] [PubMed]

2006

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11(4), 041102 (2006).
[CrossRef] [PubMed]

2004

2002

G. Strangman, J. P. Culver, J. H. Thompson, and D. A. Boas, “A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation,” Neuroimage17(2), 719–731 (2002).
[CrossRef] [PubMed]

2001

A. Torricelli, A. Pifferi, P. Taroni, E. Giambattistelli, and R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy,” Phys. Med. Biol.46(8), 2227–2237 (2001).
[CrossRef] [PubMed]

J. Riley, “The radiosity-diffusion model in 3D,” Proc. SPIE4431, 153–164 (2001).
[CrossRef]

2000

A. H. Gandjbakhche and G. H. Weiss, “Descriptive parameter for photon trajectories in a turbid medium,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics61(6Pt B), 6958–6962 (2000).
[CrossRef] [PubMed]

F. E. Schmidt, J. C. Hebden, E. M. Hillman, M. E. Fry, M. Schweiger, H. Dehghani, D. T. Delpy, and S. R. Arridge, “Multiple-slice imaging of a tissue-equivalent phantom by use of time-resolved optical tomography,” Appl. Opt.39(19), 3380–3387 (2000).
[CrossRef] [PubMed]

Q. Zhang, H. Ma, S. Nioka, and B. Chance, “Study of near infrared technology for intracranial hematoma detection,” J. Biomed. Opt.5(2), 206–213 (2000).
[CrossRef] [PubMed]

1999

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl.15(2), R41–R93 (1999).
[CrossRef]

1997

H. M. Kooijman, M. T. Hopman, W. N. Colier, J. A. van der Vliet, and B. Oeseburg, “Near infrared spectroscopy for noninvasive assessment of claudication,” J. Surg. Res.72(1), 1–7 (1997).
[CrossRef] [PubMed]

1996

C. E. Cooper, C. E. Elwell, J. H. Meek, S. J. Matcher, J. S. Wyatt, M. Cope, and D. T. Delpy, “The noninvasive measurement of absolute cerebral deoxyhemoglobin concentration and mean optical path length in the neonatal brain by second derivative near infrared spectroscopy,” Pediatr. Res.39(1), 32–38 (1996).
[CrossRef] [PubMed]

1995

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys.22(11), 1779–1792 (1995).
[CrossRef] [PubMed]

1993

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys.20(2), 299–309 (1993).
[CrossRef] [PubMed]

Abdelnour, F.

F. Abdelnour, B. Schmidt, and T. J. Huppert, “Topographic localization of brain activation in diffuse optical imaging using spherical wavelets,” Phys. Med. Biol.54(20), 6383–6413 (2009).
[CrossRef] [PubMed]

Arridge, S. R.

M. Schweiger, I. Nissilä, D. A. Boas, and S. R. Arridge, “Image reconstruction in optical tomography in the presence of coupling errors,” Appl. Opt.46(14), 2743–2756 (2007).
[CrossRef] [PubMed]

F. E. Schmidt, J. C. Hebden, E. M. Hillman, M. E. Fry, M. Schweiger, H. Dehghani, D. T. Delpy, and S. R. Arridge, “Multiple-slice imaging of a tissue-equivalent phantom by use of time-resolved optical tomography,” Appl. Opt.39(19), 3380–3387 (2000).
[CrossRef] [PubMed]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl.15(2), R41–R93 (1999).
[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys.22(11), 1779–1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys.20(2), 299–309 (1993).
[CrossRef] [PubMed]

Arvin, K.

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res.61(5 Pt 1), 546–551 (2007).
[PubMed]

Barbour, R. L.

A. V. Medvedev, J. Kainerstorfer, S. V. Borisov, R. L. Barbour, and J. VanMeter, “Event-related fast optical signal in a rapid object recognition task: improving detection by the independent component analysis,” Brain Res.1236, 145–158 (2008).
[CrossRef] [PubMed]

Boas, D. A.

A. Custo, D. A. Boas, D. Tsuzuki, I. Dan, R. Mesquita, B. Fischl, W. E. L. Grimson, and W. Wells, “Anatomical atlas-guided diffuse optical tomography of brain activation,” Neuroimage49(1), 561–567 (2010).
[CrossRef] [PubMed]

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res.61(5 Pt 1), 546–551 (2007).
[PubMed]

M. Schweiger, I. Nissilä, D. A. Boas, and S. R. Arridge, “Image reconstruction in optical tomography in the presence of coupling errors,” Appl. Opt.46(14), 2743–2756 (2007).
[CrossRef] [PubMed]

G. Strangman, J. P. Culver, J. H. Thompson, and D. A. Boas, “A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation,” Neuroimage17(2), 719–731 (2002).
[CrossRef] [PubMed]

Borisov, S. V.

A. V. Medvedev, J. M. Kainerstorfer, S. V. Borisov, and J. VanMeter, “Functional connectivity in the prefrontal cortex measured by near-infrared spectroscopy during ultrarapid object recognition,” J. Biomed. Opt.16(1), 016008 (2011).
[CrossRef] [PubMed]

A. V. Medvedev, J. Kainerstorfer, S. V. Borisov, R. L. Barbour, and J. VanMeter, “Event-related fast optical signal in a rapid object recognition task: improving detection by the independent component analysis,” Brain Res.1236, 145–158 (2008).
[CrossRef] [PubMed]

Bortfeld, H.

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res.61(5 Pt 1), 546–551 (2007).
[PubMed]

Brady, K. M.

C. Zweifel, G. Castellani, M. Czosnyka, A. Helmy, A. Manktelow, E. Carrera, K. M. Brady, P. J. A. Hutchinson, D. K. Menon, J. D. Pickard, and P. Smielewski, “Noninvasive monitoring of cerebrovascular reactivity with near infrared spectroscopy in head-injured patients,” J. Neurotrauma27(11), 1951–1958 (2010).
[CrossRef] [PubMed]

C. Zweifel, G. Castellani, M. Czosnyka, E. Carrera, K. M. Brady, P. J. Kirkpatrick, J. D. Pickard, and P. Smielewski, “Continuous assessment of cerebral autoregulation with near-infrared spectroscopy in adults after subarachnoid hemorrhage,” Stroke41(9), 1963–1968 (2010).
[CrossRef] [PubMed]

Bunce, S. C.

M. Izzetoglu, S. C. Bunce, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional brain imaging using near-infrared technology,” IEEE Eng. Med. Biol. Mag.26(4), 38–46 (2007).
[CrossRef] [PubMed]

Burns, S.

Butler, J.

C. Zhou, R. Choe, N. Shah, T. Durduran, G. Yu, A. Durkin, D. Hsiang, R. Mehta, J. Butler, A. Cerussi, B. J. Tromberg, and A. G. Yodh, “Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy,” J. Biomed. Opt.12(5), 051903 (2007).
[CrossRef] [PubMed]

Caldera, L.

Carrera, E.

C. Zweifel, G. Castellani, M. Czosnyka, E. Carrera, K. M. Brady, P. J. Kirkpatrick, J. D. Pickard, and P. Smielewski, “Continuous assessment of cerebral autoregulation with near-infrared spectroscopy in adults after subarachnoid hemorrhage,” Stroke41(9), 1963–1968 (2010).
[CrossRef] [PubMed]

C. Zweifel, G. Castellani, M. Czosnyka, A. Helmy, A. Manktelow, E. Carrera, K. M. Brady, P. J. A. Hutchinson, D. K. Menon, J. D. Pickard, and P. Smielewski, “Noninvasive monitoring of cerebrovascular reactivity with near infrared spectroscopy in head-injured patients,” J. Neurotrauma27(11), 1951–1958 (2010).
[CrossRef] [PubMed]

Castellani, G.

C. Zweifel, G. Castellani, M. Czosnyka, A. Helmy, A. Manktelow, E. Carrera, K. M. Brady, P. J. A. Hutchinson, D. K. Menon, J. D. Pickard, and P. Smielewski, “Noninvasive monitoring of cerebrovascular reactivity with near infrared spectroscopy in head-injured patients,” J. Neurotrauma27(11), 1951–1958 (2010).
[CrossRef] [PubMed]

C. Zweifel, G. Castellani, M. Czosnyka, E. Carrera, K. M. Brady, P. J. Kirkpatrick, J. D. Pickard, and P. Smielewski, “Continuous assessment of cerebral autoregulation with near-infrared spectroscopy in adults after subarachnoid hemorrhage,” Stroke41(9), 1963–1968 (2010).
[CrossRef] [PubMed]

Cerussi, A.

C. Zhou, R. Choe, N. Shah, T. Durduran, G. Yu, A. Durkin, D. Hsiang, R. Mehta, J. Butler, A. Cerussi, B. J. Tromberg, and A. G. Yodh, “Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy,” J. Biomed. Opt.12(5), 051903 (2007).
[CrossRef] [PubMed]

Chance, B.

Q. Zhang, H. Ma, S. Nioka, and B. Chance, “Study of near infrared technology for intracranial hematoma detection,” J. Biomed. Opt.5(2), 206–213 (2000).
[CrossRef] [PubMed]

Choe, R.

T. Durduran, C. Zhou, B. L. Edlow, G. Yu, R. Choe, M. N. Kim, B. L. Cucchiara, M. E. Putt, Q. Shah, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Transcranial optical monitoring of cerebrovascular hemodynamics in acute stroke patients,” Opt. Express17(5), 3884–3902 (2009).
[CrossRef] [PubMed]

C. Zhou, R. Choe, N. Shah, T. Durduran, G. Yu, A. Durkin, D. Hsiang, R. Mehta, J. Butler, A. Cerussi, B. J. Tromberg, and A. G. Yodh, “Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy,” J. Biomed. Opt.12(5), 051903 (2007).
[CrossRef] [PubMed]

Colier, W. N.

H. M. Kooijman, M. T. Hopman, W. N. Colier, J. A. van der Vliet, and B. Oeseburg, “Near infrared spectroscopy for noninvasive assessment of claudication,” J. Surg. Res.72(1), 1–7 (1997).
[CrossRef] [PubMed]

Cooper, C. E.

C. E. Cooper, C. E. Elwell, J. H. Meek, S. J. Matcher, J. S. Wyatt, M. Cope, and D. T. Delpy, “The noninvasive measurement of absolute cerebral deoxyhemoglobin concentration and mean optical path length in the neonatal brain by second derivative near infrared spectroscopy,” Pediatr. Res.39(1), 32–38 (1996).
[CrossRef] [PubMed]

Cope, M.

C. E. Cooper, C. E. Elwell, J. H. Meek, S. J. Matcher, J. S. Wyatt, M. Cope, and D. T. Delpy, “The noninvasive measurement of absolute cerebral deoxyhemoglobin concentration and mean optical path length in the neonatal brain by second derivative near infrared spectroscopy,” Pediatr. Res.39(1), 32–38 (1996).
[CrossRef] [PubMed]

Cubeddu, R.

A. Torricelli, A. Pifferi, P. Taroni, E. Giambattistelli, and R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy,” Phys. Med. Biol.46(8), 2227–2237 (2001).
[CrossRef] [PubMed]

Cucchiara, B. L.

Culver, J. P.

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A.104(29), 12169–12174 (2007).
[CrossRef] [PubMed]

G. Strangman, J. P. Culver, J. H. Thompson, and D. A. Boas, “A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation,” Neuroimage17(2), 719–731 (2002).
[CrossRef] [PubMed]

Custo, A.

A. Custo, D. A. Boas, D. Tsuzuki, I. Dan, R. Mesquita, B. Fischl, W. E. L. Grimson, and W. Wells, “Anatomical atlas-guided diffuse optical tomography of brain activation,” Neuroimage49(1), 561–567 (2010).
[CrossRef] [PubMed]

Czosnyka, M.

C. Zweifel, G. Castellani, M. Czosnyka, A. Helmy, A. Manktelow, E. Carrera, K. M. Brady, P. J. A. Hutchinson, D. K. Menon, J. D. Pickard, and P. Smielewski, “Noninvasive monitoring of cerebrovascular reactivity with near infrared spectroscopy in head-injured patients,” J. Neurotrauma27(11), 1951–1958 (2010).
[CrossRef] [PubMed]

C. Zweifel, G. Castellani, M. Czosnyka, E. Carrera, K. M. Brady, P. J. Kirkpatrick, J. D. Pickard, and P. Smielewski, “Continuous assessment of cerebral autoregulation with near-infrared spectroscopy in adults after subarachnoid hemorrhage,” Stroke41(9), 1963–1968 (2010).
[CrossRef] [PubMed]

Dan, I.

A. Custo, D. A. Boas, D. Tsuzuki, I. Dan, R. Mesquita, B. Fischl, W. E. L. Grimson, and W. Wells, “Anatomical atlas-guided diffuse optical tomography of brain activation,” Neuroimage49(1), 561–567 (2010).
[CrossRef] [PubMed]

Dehghani, H.

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A.104(29), 12169–12174 (2007).
[CrossRef] [PubMed]

F. E. Schmidt, J. C. Hebden, E. M. Hillman, M. E. Fry, M. Schweiger, H. Dehghani, D. T. Delpy, and S. R. Arridge, “Multiple-slice imaging of a tissue-equivalent phantom by use of time-resolved optical tomography,” Appl. Opt.39(19), 3380–3387 (2000).
[CrossRef] [PubMed]

Delpy, D. T.

F. E. Schmidt, J. C. Hebden, E. M. Hillman, M. E. Fry, M. Schweiger, H. Dehghani, D. T. Delpy, and S. R. Arridge, “Multiple-slice imaging of a tissue-equivalent phantom by use of time-resolved optical tomography,” Appl. Opt.39(19), 3380–3387 (2000).
[CrossRef] [PubMed]

C. E. Cooper, C. E. Elwell, J. H. Meek, S. J. Matcher, J. S. Wyatt, M. Cope, and D. T. Delpy, “The noninvasive measurement of absolute cerebral deoxyhemoglobin concentration and mean optical path length in the neonatal brain by second derivative near infrared spectroscopy,” Pediatr. Res.39(1), 32–38 (1996).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys.22(11), 1779–1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys.20(2), 299–309 (1993).
[CrossRef] [PubMed]

Detre, J. A.

Diamond, S. G.

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res.61(5 Pt 1), 546–551 (2007).
[PubMed]

Dominguez-Roldan, J. M.

J. Leon-Carrion, J. M. Dominguez-Roldan, U. Leon-Dominguez, and F. Murillo-Cabezas, “The Infrascanner, a handheld device for screening in situ for the presence of brain haematomas,” Brain Inj.24(10), 1193–1201 (2010).
[CrossRef] [PubMed]

Durduran, T.

T. Durduran, C. Zhou, B. L. Edlow, G. Yu, R. Choe, M. N. Kim, B. L. Cucchiara, M. E. Putt, Q. Shah, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Transcranial optical monitoring of cerebrovascular hemodynamics in acute stroke patients,” Opt. Express17(5), 3884–3902 (2009).
[CrossRef] [PubMed]

C. Zhou, R. Choe, N. Shah, T. Durduran, G. Yu, A. Durkin, D. Hsiang, R. Mehta, J. Butler, A. Cerussi, B. J. Tromberg, and A. G. Yodh, “Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy,” J. Biomed. Opt.12(5), 051903 (2007).
[CrossRef] [PubMed]

Durkin, A.

C. Zhou, R. Choe, N. Shah, T. Durduran, G. Yu, A. Durkin, D. Hsiang, R. Mehta, J. Butler, A. Cerussi, B. J. Tromberg, and A. G. Yodh, “Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy,” J. Biomed. Opt.12(5), 051903 (2007).
[CrossRef] [PubMed]

Edlow, B. L.

Elsner, A.

Elwell, C. E.

C. E. Cooper, C. E. Elwell, J. H. Meek, S. J. Matcher, J. S. Wyatt, M. Cope, and D. T. Delpy, “The noninvasive measurement of absolute cerebral deoxyhemoglobin concentration and mean optical path length in the neonatal brain by second derivative near infrared spectroscopy,” Pediatr. Res.39(1), 32–38 (1996).
[CrossRef] [PubMed]

Erickson, S. J.

Ferguson, R.

Fischl, B.

A. Custo, D. A. Boas, D. Tsuzuki, I. Dan, R. Mesquita, B. Fischl, W. E. L. Grimson, and W. Wells, “Anatomical atlas-guided diffuse optical tomography of brain activation,” Neuroimage49(1), 561–567 (2010).
[CrossRef] [PubMed]

Franceschini, M. A.

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res.61(5 Pt 1), 546–551 (2007).
[PubMed]

Fry, M. E.

Gandjbakhche, A. H.

A. H. Gandjbakhche and G. H. Weiss, “Descriptive parameter for photon trajectories in a turbid medium,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics61(6Pt B), 6958–6962 (2000).
[CrossRef] [PubMed]

Giambattistelli, E.

A. Torricelli, A. Pifferi, P. Taroni, E. Giambattistelli, and R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy,” Phys. Med. Biol.46(8), 2227–2237 (2001).
[CrossRef] [PubMed]

Godavarty, A.

Gonzalez, J.

Grant, P. E.

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res.61(5 Pt 1), 546–551 (2007).
[PubMed]

Greenberg, J. H.

Grimson, W. E. L.

A. Custo, D. A. Boas, D. Tsuzuki, I. Dan, R. Mesquita, B. Fischl, W. E. L. Grimson, and W. Wells, “Anatomical atlas-guided diffuse optical tomography of brain activation,” Neuroimage49(1), 561–567 (2010).
[CrossRef] [PubMed]

Hammer, D.

Hebden, J. C.

Helmy, A.

C. Zweifel, G. Castellani, M. Czosnyka, A. Helmy, A. Manktelow, E. Carrera, K. M. Brady, P. J. A. Hutchinson, D. K. Menon, J. D. Pickard, and P. Smielewski, “Noninvasive monitoring of cerebrovascular reactivity with near infrared spectroscopy in head-injured patients,” J. Neurotrauma27(11), 1951–1958 (2010).
[CrossRef] [PubMed]

Hillman, E. M.

Hiraoka, M.

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys.22(11), 1779–1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys.20(2), 299–309 (1993).
[CrossRef] [PubMed]

Hopman, M. T.

H. M. Kooijman, M. T. Hopman, W. N. Colier, J. A. van der Vliet, and B. Oeseburg, “Near infrared spectroscopy for noninvasive assessment of claudication,” J. Surg. Res.72(1), 1–7 (1997).
[CrossRef] [PubMed]

Hsiang, D.

C. Zhou, R. Choe, N. Shah, T. Durduran, G. Yu, A. Durkin, D. Hsiang, R. Mehta, J. Butler, A. Cerussi, B. J. Tromberg, and A. G. Yodh, “Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy,” J. Biomed. Opt.12(5), 051903 (2007).
[CrossRef] [PubMed]

Huppert, T. J.

F. Abdelnour, B. Schmidt, and T. J. Huppert, “Topographic localization of brain activation in diffuse optical imaging using spherical wavelets,” Phys. Med. Biol.54(20), 6383–6413 (2009).
[CrossRef] [PubMed]

Hutchinson, P. J. A.

C. Zweifel, G. Castellani, M. Czosnyka, A. Helmy, A. Manktelow, E. Carrera, K. M. Brady, P. J. A. Hutchinson, D. K. Menon, J. D. Pickard, and P. Smielewski, “Noninvasive monitoring of cerebrovascular reactivity with near infrared spectroscopy in head-injured patients,” J. Neurotrauma27(11), 1951–1958 (2010).
[CrossRef] [PubMed]

Izzetoglu, K.

M. Izzetoglu, S. C. Bunce, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional brain imaging using near-infrared technology,” IEEE Eng. Med. Biol. Mag.26(4), 38–46 (2007).
[CrossRef] [PubMed]

Izzetoglu, M.

M. Izzetoglu, S. C. Bunce, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional brain imaging using near-infrared technology,” IEEE Eng. Med. Biol. Mag.26(4), 38–46 (2007).
[CrossRef] [PubMed]

Kainerstorfer, J.

A. V. Medvedev, J. Kainerstorfer, S. V. Borisov, R. L. Barbour, and J. VanMeter, “Event-related fast optical signal in a rapid object recognition task: improving detection by the independent component analysis,” Brain Res.1236, 145–158 (2008).
[CrossRef] [PubMed]

Kainerstorfer, J. M.

A. V. Medvedev, J. M. Kainerstorfer, S. V. Borisov, and J. VanMeter, “Functional connectivity in the prefrontal cortex measured by near-infrared spectroscopy during ultrarapid object recognition,” J. Biomed. Opt.16(1), 016008 (2011).
[CrossRef] [PubMed]

Kasner, S. E.

Kim, M. N.

Kirkpatrick, P. J.

C. Zweifel, G. Castellani, M. Czosnyka, E. Carrera, K. M. Brady, P. J. Kirkpatrick, J. D. Pickard, and P. Smielewski, “Continuous assessment of cerebral autoregulation with near-infrared spectroscopy in adults after subarachnoid hemorrhage,” Stroke41(9), 1963–1968 (2010).
[CrossRef] [PubMed]

Kooijman, H. M.

H. M. Kooijman, M. T. Hopman, W. N. Colier, J. A. van der Vliet, and B. Oeseburg, “Near infrared spectroscopy for noninvasive assessment of claudication,” J. Surg. Res.72(1), 1–7 (1997).
[CrossRef] [PubMed]

Krishnamoorthy, K. K.

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res.61(5 Pt 1), 546–551 (2007).
[PubMed]

Leon-Carrion, J.

J. Leon-Carrion, J. M. Dominguez-Roldan, U. Leon-Dominguez, and F. Murillo-Cabezas, “The Infrascanner, a handheld device for screening in situ for the presence of brain haematomas,” Brain Inj.24(10), 1193–1201 (2010).
[CrossRef] [PubMed]

Leon-Dominguez, U.

J. Leon-Carrion, J. M. Dominguez-Roldan, U. Leon-Dominguez, and F. Murillo-Cabezas, “The Infrascanner, a handheld device for screening in situ for the presence of brain haematomas,” Brain Inj.24(10), 1193–1201 (2010).
[CrossRef] [PubMed]

Ma, H.

Q. Zhang, H. Ma, S. Nioka, and B. Chance, “Study of near infrared technology for intracranial hematoma detection,” J. Biomed. Opt.5(2), 206–213 (2000).
[CrossRef] [PubMed]

Manktelow, A.

C. Zweifel, G. Castellani, M. Czosnyka, A. Helmy, A. Manktelow, E. Carrera, K. M. Brady, P. J. A. Hutchinson, D. K. Menon, J. D. Pickard, and P. Smielewski, “Noninvasive monitoring of cerebrovascular reactivity with near infrared spectroscopy in head-injured patients,” J. Neurotrauma27(11), 1951–1958 (2010).
[CrossRef] [PubMed]

Martinez, S. L.

Matcher, S. J.

C. E. Cooper, C. E. Elwell, J. H. Meek, S. J. Matcher, J. S. Wyatt, M. Cope, and D. T. Delpy, “The noninvasive measurement of absolute cerebral deoxyhemoglobin concentration and mean optical path length in the neonatal brain by second derivative near infrared spectroscopy,” Pediatr. Res.39(1), 32–38 (1996).
[CrossRef] [PubMed]

Medvedev, A. V.

A. V. Medvedev, J. M. Kainerstorfer, S. V. Borisov, and J. VanMeter, “Functional connectivity in the prefrontal cortex measured by near-infrared spectroscopy during ultrarapid object recognition,” J. Biomed. Opt.16(1), 016008 (2011).
[CrossRef] [PubMed]

A. V. Medvedev, J. Kainerstorfer, S. V. Borisov, R. L. Barbour, and J. VanMeter, “Event-related fast optical signal in a rapid object recognition task: improving detection by the independent component analysis,” Brain Res.1236, 145–158 (2008).
[CrossRef] [PubMed]

Meek, J. H.

C. E. Cooper, C. E. Elwell, J. H. Meek, S. J. Matcher, J. S. Wyatt, M. Cope, and D. T. Delpy, “The noninvasive measurement of absolute cerebral deoxyhemoglobin concentration and mean optical path length in the neonatal brain by second derivative near infrared spectroscopy,” Pediatr. Res.39(1), 32–38 (1996).
[CrossRef] [PubMed]

Mehta, R.

C. Zhou, R. Choe, N. Shah, T. Durduran, G. Yu, A. Durkin, D. Hsiang, R. Mehta, J. Butler, A. Cerussi, B. J. Tromberg, and A. G. Yodh, “Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy,” J. Biomed. Opt.12(5), 051903 (2007).
[CrossRef] [PubMed]

Menon, D. K.

C. Zweifel, G. Castellani, M. Czosnyka, A. Helmy, A. Manktelow, E. Carrera, K. M. Brady, P. J. A. Hutchinson, D. K. Menon, J. D. Pickard, and P. Smielewski, “Noninvasive monitoring of cerebrovascular reactivity with near infrared spectroscopy in head-injured patients,” J. Neurotrauma27(11), 1951–1958 (2010).
[CrossRef] [PubMed]

Mesquita, R.

A. Custo, D. A. Boas, D. Tsuzuki, I. Dan, R. Mesquita, B. Fischl, W. E. L. Grimson, and W. Wells, “Anatomical atlas-guided diffuse optical tomography of brain activation,” Neuroimage49(1), 561–567 (2010).
[CrossRef] [PubMed]

Murillo-Cabezas, F.

J. Leon-Carrion, J. M. Dominguez-Roldan, U. Leon-Dominguez, and F. Murillo-Cabezas, “The Infrascanner, a handheld device for screening in situ for the presence of brain haematomas,” Brain Inj.24(10), 1193–1201 (2010).
[CrossRef] [PubMed]

Nioka, S.

Q. Zhang, H. Ma, S. Nioka, and B. Chance, “Study of near infrared technology for intracranial hematoma detection,” J. Biomed. Opt.5(2), 206–213 (2000).
[CrossRef] [PubMed]

Nissilä, I.

Oeseburg, B.

H. M. Kooijman, M. T. Hopman, W. N. Colier, J. A. van der Vliet, and B. Oeseburg, “Near infrared spectroscopy for noninvasive assessment of claudication,” J. Surg. Res.72(1), 1–7 (1997).
[CrossRef] [PubMed]

Onaral, B.

M. Izzetoglu, S. C. Bunce, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional brain imaging using near-infrared technology,” IEEE Eng. Med. Biol. Mag.26(4), 38–46 (2007).
[CrossRef] [PubMed]

Patterson, M. S.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11(4), 041102 (2006).
[CrossRef] [PubMed]

Pickard, J. D.

C. Zweifel, G. Castellani, M. Czosnyka, E. Carrera, K. M. Brady, P. J. Kirkpatrick, J. D. Pickard, and P. Smielewski, “Continuous assessment of cerebral autoregulation with near-infrared spectroscopy in adults after subarachnoid hemorrhage,” Stroke41(9), 1963–1968 (2010).
[CrossRef] [PubMed]

C. Zweifel, G. Castellani, M. Czosnyka, A. Helmy, A. Manktelow, E. Carrera, K. M. Brady, P. J. A. Hutchinson, D. K. Menon, J. D. Pickard, and P. Smielewski, “Noninvasive monitoring of cerebrovascular reactivity with near infrared spectroscopy in head-injured patients,” J. Neurotrauma27(11), 1951–1958 (2010).
[CrossRef] [PubMed]

Pifferi, A.

A. Torricelli, A. Pifferi, P. Taroni, E. Giambattistelli, and R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy,” Phys. Med. Biol.46(8), 2227–2237 (2001).
[CrossRef] [PubMed]

Pogue, B. W.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11(4), 041102 (2006).
[CrossRef] [PubMed]

Pourrezaei, K.

M. Izzetoglu, S. C. Bunce, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional brain imaging using near-infrared technology,” IEEE Eng. Med. Biol. Mag.26(4), 38–46 (2007).
[CrossRef] [PubMed]

Putt, M. E.

Riley, J.

J. Riley, “The radiosity-diffusion model in 3D,” Proc. SPIE4431, 153–164 (2001).
[CrossRef]

Schlaggar, B. L.

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A.104(29), 12169–12174 (2007).
[CrossRef] [PubMed]

Schmidt, B.

F. Abdelnour, B. Schmidt, and T. J. Huppert, “Topographic localization of brain activation in diffuse optical imaging using spherical wavelets,” Phys. Med. Biol.54(20), 6383–6413 (2009).
[CrossRef] [PubMed]

Schmidt, F. E.

Schweiger, M.

M. Schweiger, I. Nissilä, D. A. Boas, and S. R. Arridge, “Image reconstruction in optical tomography in the presence of coupling errors,” Appl. Opt.46(14), 2743–2756 (2007).
[CrossRef] [PubMed]

F. E. Schmidt, J. C. Hebden, E. M. Hillman, M. E. Fry, M. Schweiger, H. Dehghani, D. T. Delpy, and S. R. Arridge, “Multiple-slice imaging of a tissue-equivalent phantom by use of time-resolved optical tomography,” Appl. Opt.39(19), 3380–3387 (2000).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys.22(11), 1779–1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys.20(2), 299–309 (1993).
[CrossRef] [PubMed]

Shah, N.

C. Zhou, R. Choe, N. Shah, T. Durduran, G. Yu, A. Durkin, D. Hsiang, R. Mehta, J. Butler, A. Cerussi, B. J. Tromberg, and A. G. Yodh, “Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy,” J. Biomed. Opt.12(5), 051903 (2007).
[CrossRef] [PubMed]

Shah, Q.

Smielewski, P.

C. Zweifel, G. Castellani, M. Czosnyka, A. Helmy, A. Manktelow, E. Carrera, K. M. Brady, P. J. A. Hutchinson, D. K. Menon, J. D. Pickard, and P. Smielewski, “Noninvasive monitoring of cerebrovascular reactivity with near infrared spectroscopy in head-injured patients,” J. Neurotrauma27(11), 1951–1958 (2010).
[CrossRef] [PubMed]

C. Zweifel, G. Castellani, M. Czosnyka, E. Carrera, K. M. Brady, P. J. Kirkpatrick, J. D. Pickard, and P. Smielewski, “Continuous assessment of cerebral autoregulation with near-infrared spectroscopy in adults after subarachnoid hemorrhage,” Stroke41(9), 1963–1968 (2010).
[CrossRef] [PubMed]

Strangman, G.

G. Strangman, J. P. Culver, J. H. Thompson, and D. A. Boas, “A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation,” Neuroimage17(2), 719–731 (2002).
[CrossRef] [PubMed]

Taroni, P.

A. Torricelli, A. Pifferi, P. Taroni, E. Giambattistelli, and R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy,” Phys. Med. Biol.46(8), 2227–2237 (2001).
[CrossRef] [PubMed]

Thaker, S.

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res.61(5 Pt 1), 546–551 (2007).
[PubMed]

Themelis, G.

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res.61(5 Pt 1), 546–551 (2007).
[PubMed]

Thompson, J. H.

G. Strangman, J. P. Culver, J. H. Thompson, and D. A. Boas, “A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation,” Neuroimage17(2), 719–731 (2002).
[CrossRef] [PubMed]

Torricelli, A.

A. Torricelli, A. Pifferi, P. Taroni, E. Giambattistelli, and R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy,” Phys. Med. Biol.46(8), 2227–2237 (2001).
[CrossRef] [PubMed]

Tromberg, B. J.

C. Zhou, R. Choe, N. Shah, T. Durduran, G. Yu, A. Durkin, D. Hsiang, R. Mehta, J. Butler, A. Cerussi, B. J. Tromberg, and A. G. Yodh, “Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy,” J. Biomed. Opt.12(5), 051903 (2007).
[CrossRef] [PubMed]

Tsuzuki, D.

A. Custo, D. A. Boas, D. Tsuzuki, I. Dan, R. Mesquita, B. Fischl, W. E. L. Grimson, and W. Wells, “Anatomical atlas-guided diffuse optical tomography of brain activation,” Neuroimage49(1), 561–567 (2010).
[CrossRef] [PubMed]

van der Vliet, J. A.

H. M. Kooijman, M. T. Hopman, W. N. Colier, J. A. van der Vliet, and B. Oeseburg, “Near infrared spectroscopy for noninvasive assessment of claudication,” J. Surg. Res.72(1), 1–7 (1997).
[CrossRef] [PubMed]

VanMeter, J.

A. V. Medvedev, J. M. Kainerstorfer, S. V. Borisov, and J. VanMeter, “Functional connectivity in the prefrontal cortex measured by near-infrared spectroscopy during ultrarapid object recognition,” J. Biomed. Opt.16(1), 016008 (2011).
[CrossRef] [PubMed]

A. V. Medvedev, J. Kainerstorfer, S. V. Borisov, R. L. Barbour, and J. VanMeter, “Event-related fast optical signal in a rapid object recognition task: improving detection by the independent component analysis,” Brain Res.1236, 145–158 (2008).
[CrossRef] [PubMed]

Webb, R.

Weiss, G. H.

A. H. Gandjbakhche and G. H. Weiss, “Descriptive parameter for photon trajectories in a turbid medium,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics61(6Pt B), 6958–6962 (2000).
[CrossRef] [PubMed]

Weiter, J.

Wells, W.

A. Custo, D. A. Boas, D. Tsuzuki, I. Dan, R. Mesquita, B. Fischl, W. E. L. Grimson, and W. Wells, “Anatomical atlas-guided diffuse optical tomography of brain activation,” Neuroimage49(1), 561–567 (2010).
[CrossRef] [PubMed]

White, B. R.

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A.104(29), 12169–12174 (2007).
[CrossRef] [PubMed]

Wyatt, J. S.

C. E. Cooper, C. E. Elwell, J. H. Meek, S. J. Matcher, J. S. Wyatt, M. Cope, and D. T. Delpy, “The noninvasive measurement of absolute cerebral deoxyhemoglobin concentration and mean optical path length in the neonatal brain by second derivative near infrared spectroscopy,” Pediatr. Res.39(1), 32–38 (1996).
[CrossRef] [PubMed]

Yodh, A. G.

T. Durduran, C. Zhou, B. L. Edlow, G. Yu, R. Choe, M. N. Kim, B. L. Cucchiara, M. E. Putt, Q. Shah, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Transcranial optical monitoring of cerebrovascular hemodynamics in acute stroke patients,” Opt. Express17(5), 3884–3902 (2009).
[CrossRef] [PubMed]

C. Zhou, R. Choe, N. Shah, T. Durduran, G. Yu, A. Durkin, D. Hsiang, R. Mehta, J. Butler, A. Cerussi, B. J. Tromberg, and A. G. Yodh, “Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy,” J. Biomed. Opt.12(5), 051903 (2007).
[CrossRef] [PubMed]

Yu, G.

T. Durduran, C. Zhou, B. L. Edlow, G. Yu, R. Choe, M. N. Kim, B. L. Cucchiara, M. E. Putt, Q. Shah, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Transcranial optical monitoring of cerebrovascular hemodynamics in acute stroke patients,” Opt. Express17(5), 3884–3902 (2009).
[CrossRef] [PubMed]

C. Zhou, R. Choe, N. Shah, T. Durduran, G. Yu, A. Durkin, D. Hsiang, R. Mehta, J. Butler, A. Cerussi, B. J. Tromberg, and A. G. Yodh, “Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy,” J. Biomed. Opt.12(5), 051903 (2007).
[CrossRef] [PubMed]

Zeff, B. W.

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A.104(29), 12169–12174 (2007).
[CrossRef] [PubMed]

Zhang, Q.

Q. Zhang, H. Ma, S. Nioka, and B. Chance, “Study of near infrared technology for intracranial hematoma detection,” J. Biomed. Opt.5(2), 206–213 (2000).
[CrossRef] [PubMed]

Zhou, C.

T. Durduran, C. Zhou, B. L. Edlow, G. Yu, R. Choe, M. N. Kim, B. L. Cucchiara, M. E. Putt, Q. Shah, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Transcranial optical monitoring of cerebrovascular hemodynamics in acute stroke patients,” Opt. Express17(5), 3884–3902 (2009).
[CrossRef] [PubMed]

C. Zhou, R. Choe, N. Shah, T. Durduran, G. Yu, A. Durkin, D. Hsiang, R. Mehta, J. Butler, A. Cerussi, B. J. Tromberg, and A. G. Yodh, “Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy,” J. Biomed. Opt.12(5), 051903 (2007).
[CrossRef] [PubMed]

Zweifel, C.

C. Zweifel, G. Castellani, M. Czosnyka, E. Carrera, K. M. Brady, P. J. Kirkpatrick, J. D. Pickard, and P. Smielewski, “Continuous assessment of cerebral autoregulation with near-infrared spectroscopy in adults after subarachnoid hemorrhage,” Stroke41(9), 1963–1968 (2010).
[CrossRef] [PubMed]

C. Zweifel, G. Castellani, M. Czosnyka, A. Helmy, A. Manktelow, E. Carrera, K. M. Brady, P. J. A. Hutchinson, D. K. Menon, J. D. Pickard, and P. Smielewski, “Noninvasive monitoring of cerebrovascular reactivity with near infrared spectroscopy in head-injured patients,” J. Neurotrauma27(11), 1951–1958 (2010).
[CrossRef] [PubMed]

Appl. Opt.

Biomed. Opt. Express

Brain Inj.

J. Leon-Carrion, J. M. Dominguez-Roldan, U. Leon-Dominguez, and F. Murillo-Cabezas, “The Infrascanner, a handheld device for screening in situ for the presence of brain haematomas,” Brain Inj.24(10), 1193–1201 (2010).
[CrossRef] [PubMed]

Brain Res.

A. V. Medvedev, J. Kainerstorfer, S. V. Borisov, R. L. Barbour, and J. VanMeter, “Event-related fast optical signal in a rapid object recognition task: improving detection by the independent component analysis,” Brain Res.1236, 145–158 (2008).
[CrossRef] [PubMed]

IEEE Eng. Med. Biol. Mag.

M. Izzetoglu, S. C. Bunce, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional brain imaging using near-infrared technology,” IEEE Eng. Med. Biol. Mag.26(4), 38–46 (2007).
[CrossRef] [PubMed]

Inverse Probl.

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl.15(2), R41–R93 (1999).
[CrossRef]

J. Biomed. Opt.

C. Zhou, R. Choe, N. Shah, T. Durduran, G. Yu, A. Durkin, D. Hsiang, R. Mehta, J. Butler, A. Cerussi, B. J. Tromberg, and A. G. Yodh, “Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy,” J. Biomed. Opt.12(5), 051903 (2007).
[CrossRef] [PubMed]

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11(4), 041102 (2006).
[CrossRef] [PubMed]

Q. Zhang, H. Ma, S. Nioka, and B. Chance, “Study of near infrared technology for intracranial hematoma detection,” J. Biomed. Opt.5(2), 206–213 (2000).
[CrossRef] [PubMed]

E. M. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J. Biomed. Opt.12(5), 051402 (2007).
[CrossRef] [PubMed]

A. V. Medvedev, J. M. Kainerstorfer, S. V. Borisov, and J. VanMeter, “Functional connectivity in the prefrontal cortex measured by near-infrared spectroscopy during ultrarapid object recognition,” J. Biomed. Opt.16(1), 016008 (2011).
[CrossRef] [PubMed]

J. Neurotrauma

C. Zweifel, G. Castellani, M. Czosnyka, A. Helmy, A. Manktelow, E. Carrera, K. M. Brady, P. J. A. Hutchinson, D. K. Menon, J. D. Pickard, and P. Smielewski, “Noninvasive monitoring of cerebrovascular reactivity with near infrared spectroscopy in head-injured patients,” J. Neurotrauma27(11), 1951–1958 (2010).
[CrossRef] [PubMed]

J. Surg. Res.

H. M. Kooijman, M. T. Hopman, W. N. Colier, J. A. van der Vliet, and B. Oeseburg, “Near infrared spectroscopy for noninvasive assessment of claudication,” J. Surg. Res.72(1), 1–7 (1997).
[CrossRef] [PubMed]

Med. Phys.

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys.22(11), 1779–1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys.20(2), 299–309 (1993).
[CrossRef] [PubMed]

Neuroimage

A. Custo, D. A. Boas, D. Tsuzuki, I. Dan, R. Mesquita, B. Fischl, W. E. L. Grimson, and W. Wells, “Anatomical atlas-guided diffuse optical tomography of brain activation,” Neuroimage49(1), 561–567 (2010).
[CrossRef] [PubMed]

G. Strangman, J. P. Culver, J. H. Thompson, and D. A. Boas, “A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation,” Neuroimage17(2), 719–731 (2002).
[CrossRef] [PubMed]

Opt. Express

Pediatr. Res.

C. E. Cooper, C. E. Elwell, J. H. Meek, S. J. Matcher, J. S. Wyatt, M. Cope, and D. T. Delpy, “The noninvasive measurement of absolute cerebral deoxyhemoglobin concentration and mean optical path length in the neonatal brain by second derivative near infrared spectroscopy,” Pediatr. Res.39(1), 32–38 (1996).
[CrossRef] [PubMed]

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res.61(5 Pt 1), 546–551 (2007).
[PubMed]

Phys. Med. Biol.

F. Abdelnour, B. Schmidt, and T. J. Huppert, “Topographic localization of brain activation in diffuse optical imaging using spherical wavelets,” Phys. Med. Biol.54(20), 6383–6413 (2009).
[CrossRef] [PubMed]

A. Torricelli, A. Pifferi, P. Taroni, E. Giambattistelli, and R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy,” Phys. Med. Biol.46(8), 2227–2237 (2001).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics

A. H. Gandjbakhche and G. H. Weiss, “Descriptive parameter for photon trajectories in a turbid medium,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics61(6Pt B), 6958–6962 (2000).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A.

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A.104(29), 12169–12174 (2007).
[CrossRef] [PubMed]

Proc. SPIE

J. Riley, “The radiosity-diffusion model in 3D,” Proc. SPIE4431, 153–164 (2001).
[CrossRef]

Stroke

C. Zweifel, G. Castellani, M. Czosnyka, E. Carrera, K. M. Brady, P. J. Kirkpatrick, J. D. Pickard, and P. Smielewski, “Continuous assessment of cerebral autoregulation with near-infrared spectroscopy in adults after subarachnoid hemorrhage,” Stroke41(9), 1963–1968 (2010).
[CrossRef] [PubMed]

Other

S. I. Turovets, P. S. Lovely, and D. M. Tucker, “Intracranial hematoma detection using near infrared light and local reference method,” in Biomedical Optics, Technical Digest (CD) (Optical Society of America, 2006), paper ME26.

J. Riley, E. M. C. Hillman, J. Hebden, and S. R. Arridge, “Light transport in scattering domains containing non-scattering spaces,” in International Workshop—Comptational Problems of Electrical Engineering (2002), pp. 215–218.

J. Riley, “Light transport in diffusing domains containing non-scattering spaces,” PhD thesis (University College London, 2005).

D. D. Price and S. R. Wilson, “Epidural hematoma,” eMedicine Trauma (Jan 31, 2008).

R. J. Meagher and W. F. Young, “Subdural hematoma,” eMedicine Neurology (2009).

J. M. Kainerstorfer, L. Najafizadeh, J. D. Riley, M. Ehler, F. Amyot, P. D. Smith, A. V. Medvedev, and A. H. Gandjbakhche, “Principal component wavelength optimization for hemoglobin reconstruction in near infrared diffuse optical imaging” (in preparation).

J. C. Hebden, “Tissue-equivalent phantoms” (2011), http://www.medphys.ucl.ac.uk/research/borl/research/NIR_topics/phantoms.htm .

Supplementary Material (1)

» Media 1: AVI (1600 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Typical hematomas: (a) unilateral and (b) bilateral.

Fig. 2
Fig. 2

(a) The design of the device and its use scanning over the head in (b) the absence and (c) presence of a hematoma in the field of view—where the green light on the device indicates presence of a hematoma (Media 1).

Fig. 3
Fig. 3

(a) An overall block diagram of the programmable ten-channel amplifier box showing computer control configuration and (b) a block diagram of a single channel amplifier unit with five control lines to set gain and minimize amplifier offset.

Fig. 4
Fig. 4

The instrument imaging head’s seven fibers (one source and six detectors) and a high resolution mouse sensor for positioning. Also present is a computer-controlled motorized stage to check positioning data.

Fig. 5
Fig. 5

The geometrical layout of the blobs in the cylindrical phantom. The blobs are located at 120 degrees to each other, centered at 17.5 mm from the center of the phantom at planes of 50, 75, and 100 mm.

Fig. 6
Fig. 6

A graph illustrating how the hematoma detector would be capable of detecting a hematological event in the dural/subarachnoid region of the head. a) Illustrates the geometry and the source detector configuration with direction of travel, b) shows the intensity ratio as the source detector combination moves along the indicated trajectory.

Fig. 7
Fig. 7

A set of graphs illustrating how the model can be used to identify the device’s ability to discriminate and detect hematomas based on size: a) smaller—50% size; b) larger—two radially aligned touching spheres of the same size, and on depth: c) at an extra 5 mm depth; d) at a further 5 mm depth.

Fig. 8
Fig. 8

A visualization of the intensity ratio data on the surface of the cylinder, position given by height in mm and degrees from a nominal point based on source to far fiber detector midpoint. Here showing the data with the blob outlines projected to the surface, from a) fibers 1 and 2 and b) fibers 1 and 5.

Fig. 9
Fig. 9

A plot of the intensity ratio data on the surface of the cylinder, position given in degrees from a nominal point based on source position. Here showing the data ratios from fiber 1 to all other fibers at the level, for a) the absorbing anomaly, b) the mixed anomaly, and c) the scattering anomaly.

Fig. 10
Fig. 10

A visualization of the thresholded intensity ratio data on the surface of the cylinder, position given by height in mm and degrees from a nominal point based on source to far fiber detector midpoint. Here showing the data with the blob outlines projected to the surface from a) fibers 1 and 2 and b) fibers 1 and 5

Fig. 11
Fig. 11

A visualization of the intensity ratio data on the surface of the cylinder, position given by height in mm and degrees from a nominal point based on source to far fiber detector midpoint. Here showing the data on the homogeneous phantom (color-scale matched to heterogeneous data) from a) fibers 1 and 2 and b) fibers 1 and 5.

Tables (1)

Tables Icon

Table 1 A table giving the peak ratios for each anomaly and each fiber pair

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

κ(r)Φ(r)+ μ a (r)Φ(r)=q(r)
(K(κ)+C( μ a )+ 1 2α A)Φ=Q
K ij = Ω k(r) u i (r). u j (r) dr C ij = Ω μ a (r) u i (r) u j (r) dr A ij = Ω u i (m) u j (m) dm Φ ij = Ω φ i u i (r) dr Q i = Ω q i u i (r) dr

Metrics