Abstract

Nerves of the peripheral nervous system have, to some extent, the ability to regenerate after injury, particularly in instances of crush or contusion injuries. After a controlled crush injury of the rat sciatic nerve, demyelination and remyelination are followed with functional assessments and imaged both ex vivo and in vivo over the course of 4 weeks with video-rate coherent anti-Stokes Raman scattering (CARS) microscopy. A new procedure compatible with live animal imaging is developed for performing histomorphometry of myelinated axons. This allows quantification of demyelination proximal and remyelination distal to the crush site ex vivo and in vivo respectively.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. D. Duncan, J. Reintjes, and T. J. Manuccia, “Scanning coherent anti-Stokes Raman microscope,” Opt. Lett. 7, 350–352 (1982).
    [CrossRef] [PubMed]
  2. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
    [CrossRef]
  3. C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102, 16807–16812 (2005).
    [CrossRef] [PubMed]
  4. T. B. Huff and J.-X. Cheng, “In vivo coherent anti-Stokes Raman scattering imaging of sciatic nerve tissue,” J. Microsc. 225(2), 175–82 (2007).
    [CrossRef] [PubMed]
  5. F. P. Henry, D. Côté, M. A. Randolph, E. A. Z. Rust, R. W. Redmond, I. E. Kochevar, C. P. Lin, and J. M. Winograd, “Real-time in vivo assessment of the nerve microenvironment with coherent anti-Stokes Raman scattering microscopy,” Plast. Reconstr. Surg. 123(2S), 123S–130S (2009).
    [CrossRef] [PubMed]
  6. H. Wang, Y. Fu, P. Zickmund, R. Shi, and J.-X. Cheng, “Coherent anti-stokes Raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89, 581–591 (2005).
    [CrossRef] [PubMed]
  7. E. Bélanger, S. Bégin, S. Laffray, Y. De Koninck, R. Vallée, and D. Côté, “Quantitative myelin imaging with coherent anti-Stokes Raman scattering microscopy: alleviating the excitation polarization dependence with circularly polarized laser beams,” Opt. Express 17(21), 18419–18432 (2009).
    [CrossRef]
  8. J. Imitola, D. Côté, S. Rasmussen, X. S. Xie, Y. Liu, T. Chitnis, R. L. Sidman, C. P. Lin, and S. J. Khoury, “Multimodal coherent anti-Stokes Raman scattering microscopy reveals microglia-associated myelin and axonal dysfunction in multiple sclerosis-like lesions in mice,” J. Biomed. Opt. 16(2), 021,109 (2011).
    [CrossRef]
  9. C. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008).
    [CrossRef]
  10. S. Bégin, E. Bélanger, S. Laffray, R. Vallée, and D. Côté, “In vivo optical monitoring of tissue pathologies and diseases with vibrational contrast,” J. Biophoton. 2(11), 632–642 (2009).
    [CrossRef]
  11. T. T. Le, S. Yue, and J.-X. Cheng, “Shedding new light on lipid biology with coherent anti-Stokes Raman scattering microscopy,” J. Lipid. Res. 51(11), 3091–3102 (2010).
    [CrossRef] [PubMed]
  12. J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011).
    [CrossRef] [PubMed]
  13. J. R. Bain, S. E. Mackinnon, and D. A. Hunter, “Functional evaluation of complete sciatic, peroneal, and posterior tibial nerve lesions in the rat,” Plast. Reconstr. Surg. 83(1), 129–138 (1989).
    [CrossRef] [PubMed]
  14. I. Veilleux, J. A. Spencer, D. P. Biss, D. Côté, and C. P. Lin, “In vivo cell tracking with video rate multimodality laser scanning microscopy,” IEEE J. Sel. Top. Quantum Electron. 14, 10–18 (2008).
    [CrossRef]
  15. J. S. O’Brien and E. L. Sampson, “Lipid composition of the normal human brain: gray matter, white matter, and myelin,” J. Lipid. Res. 6(4), 537–544 (1965).
  16. M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient subpixel image registration algorithms,” Opt. Lett. 33(2), 156–158 (2008).
    [CrossRef] [PubMed]
  17. W. Niblack, An Introduction to Digital Image Processing (Prentice-Hall International, 1986).
  18. G. Veshapidze, M. L. Trachy, M. H. Shah, and B. D. DePaola, “Reducing the uncertainty in laser beam size measurement with a scanning edge method,” Appl. Opt. 45(32), 8197–8199 (2006).
    [CrossRef] [PubMed]
  19. M. Coleman, “Axon degeneration mechanisms: commonality amid diversity,” Nat. Rev. Neurosci. 6(11), 889–898 (2005).
    [CrossRef] [PubMed]
  20. K. Hirata and M. Kawabuchi, “Myelin phagocytosis by macrophages and nonmacrophages during Wallerian degeneration,” Microsc. Res. Tech. 57(6), 541–547 (2002).
    [CrossRef] [PubMed]
  21. J. Knöferle, J. C. Koch, T. Ostendorf, U. Michel, V. Planchamp, P. Vutova, L. Tönges, C. Stadelmann, W. Brück, M. Bähr, and P. Lingor, “Mechanisms of acute axonal degeneration in the optic nerve in vivo,” Proc. Natl. Acad. Sci. U.S.A. 107(13), 6064–6069 (2010).
    [CrossRef] [PubMed]
  22. R. Haralick, K. Shanmuga, and I. Dinstein, “Textural Features For Image Classification,” IEEE Trans. Syst. Man Cyb. SMC3(6), 610–621 (1973).
    [CrossRef]
  23. M. Balu, G. Liu, Z. Chen, B. J. Tromberg, and E. O. Potma, “Fiber delivered probe for efficient CARS imaging of tissues,” Opt. Express 18(3), 2380–2388 (2010).
    [CrossRef] [PubMed]
  24. S. Murugkar, B. Smith, P. Srivastava, A. Moica, M. Naji, C. Brideau, P. K. Stys, and H. Anis, “Miniaturized multimodal CARS microscope based on MEMS scanning and a single laser source,” Opt. Express 18(23), 23796–23804 (2010).
    [CrossRef] [PubMed]

2011

J. Imitola, D. Côté, S. Rasmussen, X. S. Xie, Y. Liu, T. Chitnis, R. L. Sidman, C. P. Lin, and S. J. Khoury, “Multimodal coherent anti-Stokes Raman scattering microscopy reveals microglia-associated myelin and axonal dysfunction in multiple sclerosis-like lesions in mice,” J. Biomed. Opt. 16(2), 021,109 (2011).
[CrossRef]

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011).
[CrossRef] [PubMed]

2010

T. T. Le, S. Yue, and J.-X. Cheng, “Shedding new light on lipid biology with coherent anti-Stokes Raman scattering microscopy,” J. Lipid. Res. 51(11), 3091–3102 (2010).
[CrossRef] [PubMed]

J. Knöferle, J. C. Koch, T. Ostendorf, U. Michel, V. Planchamp, P. Vutova, L. Tönges, C. Stadelmann, W. Brück, M. Bähr, and P. Lingor, “Mechanisms of acute axonal degeneration in the optic nerve in vivo,” Proc. Natl. Acad. Sci. U.S.A. 107(13), 6064–6069 (2010).
[CrossRef] [PubMed]

M. Balu, G. Liu, Z. Chen, B. J. Tromberg, and E. O. Potma, “Fiber delivered probe for efficient CARS imaging of tissues,” Opt. Express 18(3), 2380–2388 (2010).
[CrossRef] [PubMed]

S. Murugkar, B. Smith, P. Srivastava, A. Moica, M. Naji, C. Brideau, P. K. Stys, and H. Anis, “Miniaturized multimodal CARS microscope based on MEMS scanning and a single laser source,” Opt. Express 18(23), 23796–23804 (2010).
[CrossRef] [PubMed]

2009

E. Bélanger, S. Bégin, S. Laffray, Y. De Koninck, R. Vallée, and D. Côté, “Quantitative myelin imaging with coherent anti-Stokes Raman scattering microscopy: alleviating the excitation polarization dependence with circularly polarized laser beams,” Opt. Express 17(21), 18419–18432 (2009).
[CrossRef]

F. P. Henry, D. Côté, M. A. Randolph, E. A. Z. Rust, R. W. Redmond, I. E. Kochevar, C. P. Lin, and J. M. Winograd, “Real-time in vivo assessment of the nerve microenvironment with coherent anti-Stokes Raman scattering microscopy,” Plast. Reconstr. Surg. 123(2S), 123S–130S (2009).
[CrossRef] [PubMed]

S. Bégin, E. Bélanger, S. Laffray, R. Vallée, and D. Côté, “In vivo optical monitoring of tissue pathologies and diseases with vibrational contrast,” J. Biophoton. 2(11), 632–642 (2009).
[CrossRef]

2008

C. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008).
[CrossRef]

I. Veilleux, J. A. Spencer, D. P. Biss, D. Côté, and C. P. Lin, “In vivo cell tracking with video rate multimodality laser scanning microscopy,” IEEE J. Sel. Top. Quantum Electron. 14, 10–18 (2008).
[CrossRef]

M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient subpixel image registration algorithms,” Opt. Lett. 33(2), 156–158 (2008).
[CrossRef] [PubMed]

2007

T. B. Huff and J.-X. Cheng, “In vivo coherent anti-Stokes Raman scattering imaging of sciatic nerve tissue,” J. Microsc. 225(2), 175–82 (2007).
[CrossRef] [PubMed]

2006

2005

H. Wang, Y. Fu, P. Zickmund, R. Shi, and J.-X. Cheng, “Coherent anti-stokes Raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89, 581–591 (2005).
[CrossRef] [PubMed]

M. Coleman, “Axon degeneration mechanisms: commonality amid diversity,” Nat. Rev. Neurosci. 6(11), 889–898 (2005).
[CrossRef] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102, 16807–16812 (2005).
[CrossRef] [PubMed]

2002

K. Hirata and M. Kawabuchi, “Myelin phagocytosis by macrophages and nonmacrophages during Wallerian degeneration,” Microsc. Res. Tech. 57(6), 541–547 (2002).
[CrossRef] [PubMed]

1999

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[CrossRef]

1989

J. R. Bain, S. E. Mackinnon, and D. A. Hunter, “Functional evaluation of complete sciatic, peroneal, and posterior tibial nerve lesions in the rat,” Plast. Reconstr. Surg. 83(1), 129–138 (1989).
[CrossRef] [PubMed]

1982

1973

R. Haralick, K. Shanmuga, and I. Dinstein, “Textural Features For Image Classification,” IEEE Trans. Syst. Man Cyb. SMC3(6), 610–621 (1973).
[CrossRef]

1965

J. S. O’Brien and E. L. Sampson, “Lipid composition of the normal human brain: gray matter, white matter, and myelin,” J. Lipid. Res. 6(4), 537–544 (1965).

Anis, H.

Bähr, M.

J. Knöferle, J. C. Koch, T. Ostendorf, U. Michel, V. Planchamp, P. Vutova, L. Tönges, C. Stadelmann, W. Brück, M. Bähr, and P. Lingor, “Mechanisms of acute axonal degeneration in the optic nerve in vivo,” Proc. Natl. Acad. Sci. U.S.A. 107(13), 6064–6069 (2010).
[CrossRef] [PubMed]

Bain, J. R.

J. R. Bain, S. E. Mackinnon, and D. A. Hunter, “Functional evaluation of complete sciatic, peroneal, and posterior tibial nerve lesions in the rat,” Plast. Reconstr. Surg. 83(1), 129–138 (1989).
[CrossRef] [PubMed]

Balu, M.

Bégin, S.

Bélanger, E.

Biss, D. P.

I. Veilleux, J. A. Spencer, D. P. Biss, D. Côté, and C. P. Lin, “In vivo cell tracking with video rate multimodality laser scanning microscopy,” IEEE J. Sel. Top. Quantum Electron. 14, 10–18 (2008).
[CrossRef]

Blake, J. A.

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011).
[CrossRef] [PubMed]

Brideau, C.

Brück, W.

J. Knöferle, J. C. Koch, T. Ostendorf, U. Michel, V. Planchamp, P. Vutova, L. Tönges, C. Stadelmann, W. Brück, M. Bähr, and P. Lingor, “Mechanisms of acute axonal degeneration in the optic nerve in vivo,” Proc. Natl. Acad. Sci. U.S.A. 107(13), 6064–6069 (2010).
[CrossRef] [PubMed]

Chen, Z.

Cheng, J.-X.

T. T. Le, S. Yue, and J.-X. Cheng, “Shedding new light on lipid biology with coherent anti-Stokes Raman scattering microscopy,” J. Lipid. Res. 51(11), 3091–3102 (2010).
[CrossRef] [PubMed]

T. B. Huff and J.-X. Cheng, “In vivo coherent anti-Stokes Raman scattering imaging of sciatic nerve tissue,” J. Microsc. 225(2), 175–82 (2007).
[CrossRef] [PubMed]

H. Wang, Y. Fu, P. Zickmund, R. Shi, and J.-X. Cheng, “Coherent anti-stokes Raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89, 581–591 (2005).
[CrossRef] [PubMed]

Chitnis, T.

J. Imitola, D. Côté, S. Rasmussen, X. S. Xie, Y. Liu, T. Chitnis, R. L. Sidman, C. P. Lin, and S. J. Khoury, “Multimodal coherent anti-Stokes Raman scattering microscopy reveals microglia-associated myelin and axonal dysfunction in multiple sclerosis-like lesions in mice,” J. Biomed. Opt. 16(2), 021,109 (2011).
[CrossRef]

Coleman, M.

M. Coleman, “Axon degeneration mechanisms: commonality amid diversity,” Nat. Rev. Neurosci. 6(11), 889–898 (2005).
[CrossRef] [PubMed]

Côté, D.

J. Imitola, D. Côté, S. Rasmussen, X. S. Xie, Y. Liu, T. Chitnis, R. L. Sidman, C. P. Lin, and S. J. Khoury, “Multimodal coherent anti-Stokes Raman scattering microscopy reveals microglia-associated myelin and axonal dysfunction in multiple sclerosis-like lesions in mice,” J. Biomed. Opt. 16(2), 021,109 (2011).
[CrossRef]

S. Bégin, E. Bélanger, S. Laffray, R. Vallée, and D. Côté, “In vivo optical monitoring of tissue pathologies and diseases with vibrational contrast,” J. Biophoton. 2(11), 632–642 (2009).
[CrossRef]

E. Bélanger, S. Bégin, S. Laffray, Y. De Koninck, R. Vallée, and D. Côté, “Quantitative myelin imaging with coherent anti-Stokes Raman scattering microscopy: alleviating the excitation polarization dependence with circularly polarized laser beams,” Opt. Express 17(21), 18419–18432 (2009).
[CrossRef]

F. P. Henry, D. Côté, M. A. Randolph, E. A. Z. Rust, R. W. Redmond, I. E. Kochevar, C. P. Lin, and J. M. Winograd, “Real-time in vivo assessment of the nerve microenvironment with coherent anti-Stokes Raman scattering microscopy,” Plast. Reconstr. Surg. 123(2S), 123S–130S (2009).
[CrossRef] [PubMed]

I. Veilleux, J. A. Spencer, D. P. Biss, D. Côté, and C. P. Lin, “In vivo cell tracking with video rate multimodality laser scanning microscopy,” IEEE J. Sel. Top. Quantum Electron. 14, 10–18 (2008).
[CrossRef]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102, 16807–16812 (2005).
[CrossRef] [PubMed]

Danielson, D. C.

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011).
[CrossRef] [PubMed]

De Koninck, Y.

DePaola, B. D.

Dinstein, I.

R. Haralick, K. Shanmuga, and I. Dinstein, “Textural Features For Image Classification,” IEEE Trans. Syst. Man Cyb. SMC3(6), 610–621 (1973).
[CrossRef]

Duncan, M. D.

Evans, C.

C. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008).
[CrossRef]

Evans, C. L.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102, 16807–16812 (2005).
[CrossRef] [PubMed]

Fienup, J. R.

Fu, Y.

H. Wang, Y. Fu, P. Zickmund, R. Shi, and J.-X. Cheng, “Coherent anti-stokes Raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89, 581–591 (2005).
[CrossRef] [PubMed]

Guizar-Sicairos, M.

Haralick, R.

R. Haralick, K. Shanmuga, and I. Dinstein, “Textural Features For Image Classification,” IEEE Trans. Syst. Man Cyb. SMC3(6), 610–621 (1973).
[CrossRef]

Henry, F. P.

F. P. Henry, D. Côté, M. A. Randolph, E. A. Z. Rust, R. W. Redmond, I. E. Kochevar, C. P. Lin, and J. M. Winograd, “Real-time in vivo assessment of the nerve microenvironment with coherent anti-Stokes Raman scattering microscopy,” Plast. Reconstr. Surg. 123(2S), 123S–130S (2009).
[CrossRef] [PubMed]

Hirata, K.

K. Hirata and M. Kawabuchi, “Myelin phagocytosis by macrophages and nonmacrophages during Wallerian degeneration,” Microsc. Res. Tech. 57(6), 541–547 (2002).
[CrossRef] [PubMed]

Holtom, G. R.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[CrossRef]

Huff, T. B.

T. B. Huff and J.-X. Cheng, “In vivo coherent anti-Stokes Raman scattering imaging of sciatic nerve tissue,” J. Microsc. 225(2), 175–82 (2007).
[CrossRef] [PubMed]

Hunter, D. A.

J. R. Bain, S. E. Mackinnon, and D. A. Hunter, “Functional evaluation of complete sciatic, peroneal, and posterior tibial nerve lesions in the rat,” Plast. Reconstr. Surg. 83(1), 129–138 (1989).
[CrossRef] [PubMed]

Imitola, J.

J. Imitola, D. Côté, S. Rasmussen, X. S. Xie, Y. Liu, T. Chitnis, R. L. Sidman, C. P. Lin, and S. J. Khoury, “Multimodal coherent anti-Stokes Raman scattering microscopy reveals microglia-associated myelin and axonal dysfunction in multiple sclerosis-like lesions in mice,” J. Biomed. Opt. 16(2), 021,109 (2011).
[CrossRef]

Kawabuchi, M.

K. Hirata and M. Kawabuchi, “Myelin phagocytosis by macrophages and nonmacrophages during Wallerian degeneration,” Microsc. Res. Tech. 57(6), 541–547 (2002).
[CrossRef] [PubMed]

Kennedy, D. C.

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011).
[CrossRef] [PubMed]

Khoury, S. J.

J. Imitola, D. Côté, S. Rasmussen, X. S. Xie, Y. Liu, T. Chitnis, R. L. Sidman, C. P. Lin, and S. J. Khoury, “Multimodal coherent anti-Stokes Raman scattering microscopy reveals microglia-associated myelin and axonal dysfunction in multiple sclerosis-like lesions in mice,” J. Biomed. Opt. 16(2), 021,109 (2011).
[CrossRef]

Knöferle, J.

J. Knöferle, J. C. Koch, T. Ostendorf, U. Michel, V. Planchamp, P. Vutova, L. Tönges, C. Stadelmann, W. Brück, M. Bähr, and P. Lingor, “Mechanisms of acute axonal degeneration in the optic nerve in vivo,” Proc. Natl. Acad. Sci. U.S.A. 107(13), 6064–6069 (2010).
[CrossRef] [PubMed]

Koch, J. C.

J. Knöferle, J. C. Koch, T. Ostendorf, U. Michel, V. Planchamp, P. Vutova, L. Tönges, C. Stadelmann, W. Brück, M. Bähr, and P. Lingor, “Mechanisms of acute axonal degeneration in the optic nerve in vivo,” Proc. Natl. Acad. Sci. U.S.A. 107(13), 6064–6069 (2010).
[CrossRef] [PubMed]

Kochevar, I. E.

F. P. Henry, D. Côté, M. A. Randolph, E. A. Z. Rust, R. W. Redmond, I. E. Kochevar, C. P. Lin, and J. M. Winograd, “Real-time in vivo assessment of the nerve microenvironment with coherent anti-Stokes Raman scattering microscopy,” Plast. Reconstr. Surg. 123(2S), 123S–130S (2009).
[CrossRef] [PubMed]

Laffray, S.

Le, T. T.

T. T. Le, S. Yue, and J.-X. Cheng, “Shedding new light on lipid biology with coherent anti-Stokes Raman scattering microscopy,” J. Lipid. Res. 51(11), 3091–3102 (2010).
[CrossRef] [PubMed]

Lin, C. P.

J. Imitola, D. Côté, S. Rasmussen, X. S. Xie, Y. Liu, T. Chitnis, R. L. Sidman, C. P. Lin, and S. J. Khoury, “Multimodal coherent anti-Stokes Raman scattering microscopy reveals microglia-associated myelin and axonal dysfunction in multiple sclerosis-like lesions in mice,” J. Biomed. Opt. 16(2), 021,109 (2011).
[CrossRef]

F. P. Henry, D. Côté, M. A. Randolph, E. A. Z. Rust, R. W. Redmond, I. E. Kochevar, C. P. Lin, and J. M. Winograd, “Real-time in vivo assessment of the nerve microenvironment with coherent anti-Stokes Raman scattering microscopy,” Plast. Reconstr. Surg. 123(2S), 123S–130S (2009).
[CrossRef] [PubMed]

I. Veilleux, J. A. Spencer, D. P. Biss, D. Côté, and C. P. Lin, “In vivo cell tracking with video rate multimodality laser scanning microscopy,” IEEE J. Sel. Top. Quantum Electron. 14, 10–18 (2008).
[CrossRef]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102, 16807–16812 (2005).
[CrossRef] [PubMed]

Lingor, P.

J. Knöferle, J. C. Koch, T. Ostendorf, U. Michel, V. Planchamp, P. Vutova, L. Tönges, C. Stadelmann, W. Brück, M. Bähr, and P. Lingor, “Mechanisms of acute axonal degeneration in the optic nerve in vivo,” Proc. Natl. Acad. Sci. U.S.A. 107(13), 6064–6069 (2010).
[CrossRef] [PubMed]

Liu, G.

Liu, Y.

J. Imitola, D. Côté, S. Rasmussen, X. S. Xie, Y. Liu, T. Chitnis, R. L. Sidman, C. P. Lin, and S. J. Khoury, “Multimodal coherent anti-Stokes Raman scattering microscopy reveals microglia-associated myelin and axonal dysfunction in multiple sclerosis-like lesions in mice,” J. Biomed. Opt. 16(2), 021,109 (2011).
[CrossRef]

Lyn, R. K.

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011).
[CrossRef] [PubMed]

Mackinnon, S. E.

J. R. Bain, S. E. Mackinnon, and D. A. Hunter, “Functional evaluation of complete sciatic, peroneal, and posterior tibial nerve lesions in the rat,” Plast. Reconstr. Surg. 83(1), 129–138 (1989).
[CrossRef] [PubMed]

Manuccia, T. J.

Michel, U.

J. Knöferle, J. C. Koch, T. Ostendorf, U. Michel, V. Planchamp, P. Vutova, L. Tönges, C. Stadelmann, W. Brück, M. Bähr, and P. Lingor, “Mechanisms of acute axonal degeneration in the optic nerve in vivo,” Proc. Natl. Acad. Sci. U.S.A. 107(13), 6064–6069 (2010).
[CrossRef] [PubMed]

Moica, A.

Murugkar, S.

Naji, M.

Niblack, W.

W. Niblack, An Introduction to Digital Image Processing (Prentice-Hall International, 1986).

O’Brien, J. S.

J. S. O’Brien and E. L. Sampson, “Lipid composition of the normal human brain: gray matter, white matter, and myelin,” J. Lipid. Res. 6(4), 537–544 (1965).

Ostendorf, T.

J. Knöferle, J. C. Koch, T. Ostendorf, U. Michel, V. Planchamp, P. Vutova, L. Tönges, C. Stadelmann, W. Brück, M. Bähr, and P. Lingor, “Mechanisms of acute axonal degeneration in the optic nerve in vivo,” Proc. Natl. Acad. Sci. U.S.A. 107(13), 6064–6069 (2010).
[CrossRef] [PubMed]

Pezacki, J. P.

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011).
[CrossRef] [PubMed]

Planchamp, V.

J. Knöferle, J. C. Koch, T. Ostendorf, U. Michel, V. Planchamp, P. Vutova, L. Tönges, C. Stadelmann, W. Brück, M. Bähr, and P. Lingor, “Mechanisms of acute axonal degeneration in the optic nerve in vivo,” Proc. Natl. Acad. Sci. U.S.A. 107(13), 6064–6069 (2010).
[CrossRef] [PubMed]

Potma, E. O.

M. Balu, G. Liu, Z. Chen, B. J. Tromberg, and E. O. Potma, “Fiber delivered probe for efficient CARS imaging of tissues,” Opt. Express 18(3), 2380–2388 (2010).
[CrossRef] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102, 16807–16812 (2005).
[CrossRef] [PubMed]

Puoris’haag, M.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102, 16807–16812 (2005).
[CrossRef] [PubMed]

Randolph, M. A.

F. P. Henry, D. Côté, M. A. Randolph, E. A. Z. Rust, R. W. Redmond, I. E. Kochevar, C. P. Lin, and J. M. Winograd, “Real-time in vivo assessment of the nerve microenvironment with coherent anti-Stokes Raman scattering microscopy,” Plast. Reconstr. Surg. 123(2S), 123S–130S (2009).
[CrossRef] [PubMed]

Rasmussen, S.

J. Imitola, D. Côté, S. Rasmussen, X. S. Xie, Y. Liu, T. Chitnis, R. L. Sidman, C. P. Lin, and S. J. Khoury, “Multimodal coherent anti-Stokes Raman scattering microscopy reveals microglia-associated myelin and axonal dysfunction in multiple sclerosis-like lesions in mice,” J. Biomed. Opt. 16(2), 021,109 (2011).
[CrossRef]

Redmond, R. W.

F. P. Henry, D. Côté, M. A. Randolph, E. A. Z. Rust, R. W. Redmond, I. E. Kochevar, C. P. Lin, and J. M. Winograd, “Real-time in vivo assessment of the nerve microenvironment with coherent anti-Stokes Raman scattering microscopy,” Plast. Reconstr. Surg. 123(2S), 123S–130S (2009).
[CrossRef] [PubMed]

Reintjes, J.

Rust, E. A. Z.

F. P. Henry, D. Côté, M. A. Randolph, E. A. Z. Rust, R. W. Redmond, I. E. Kochevar, C. P. Lin, and J. M. Winograd, “Real-time in vivo assessment of the nerve microenvironment with coherent anti-Stokes Raman scattering microscopy,” Plast. Reconstr. Surg. 123(2S), 123S–130S (2009).
[CrossRef] [PubMed]

Sampson, E. L.

J. S. O’Brien and E. L. Sampson, “Lipid composition of the normal human brain: gray matter, white matter, and myelin,” J. Lipid. Res. 6(4), 537–544 (1965).

Shah, M. H.

Shanmuga, K.

R. Haralick, K. Shanmuga, and I. Dinstein, “Textural Features For Image Classification,” IEEE Trans. Syst. Man Cyb. SMC3(6), 610–621 (1973).
[CrossRef]

Shi, R.

H. Wang, Y. Fu, P. Zickmund, R. Shi, and J.-X. Cheng, “Coherent anti-stokes Raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89, 581–591 (2005).
[CrossRef] [PubMed]

Sidman, R. L.

J. Imitola, D. Côté, S. Rasmussen, X. S. Xie, Y. Liu, T. Chitnis, R. L. Sidman, C. P. Lin, and S. J. Khoury, “Multimodal coherent anti-Stokes Raman scattering microscopy reveals microglia-associated myelin and axonal dysfunction in multiple sclerosis-like lesions in mice,” J. Biomed. Opt. 16(2), 021,109 (2011).
[CrossRef]

Singaravelu, R.

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011).
[CrossRef] [PubMed]

Smith, B.

Spencer, J. A.

I. Veilleux, J. A. Spencer, D. P. Biss, D. Côté, and C. P. Lin, “In vivo cell tracking with video rate multimodality laser scanning microscopy,” IEEE J. Sel. Top. Quantum Electron. 14, 10–18 (2008).
[CrossRef]

Srivastava, P.

Stadelmann, C.

J. Knöferle, J. C. Koch, T. Ostendorf, U. Michel, V. Planchamp, P. Vutova, L. Tönges, C. Stadelmann, W. Brück, M. Bähr, and P. Lingor, “Mechanisms of acute axonal degeneration in the optic nerve in vivo,” Proc. Natl. Acad. Sci. U.S.A. 107(13), 6064–6069 (2010).
[CrossRef] [PubMed]

Stys, P. K.

Thurman, S. T.

Tönges, L.

J. Knöferle, J. C. Koch, T. Ostendorf, U. Michel, V. Planchamp, P. Vutova, L. Tönges, C. Stadelmann, W. Brück, M. Bähr, and P. Lingor, “Mechanisms of acute axonal degeneration in the optic nerve in vivo,” Proc. Natl. Acad. Sci. U.S.A. 107(13), 6064–6069 (2010).
[CrossRef] [PubMed]

Trachy, M. L.

Tromberg, B. J.

Vallée, R.

Veilleux, I.

I. Veilleux, J. A. Spencer, D. P. Biss, D. Côté, and C. P. Lin, “In vivo cell tracking with video rate multimodality laser scanning microscopy,” IEEE J. Sel. Top. Quantum Electron. 14, 10–18 (2008).
[CrossRef]

Veshapidze, G.

Vutova, P.

J. Knöferle, J. C. Koch, T. Ostendorf, U. Michel, V. Planchamp, P. Vutova, L. Tönges, C. Stadelmann, W. Brück, M. Bähr, and P. Lingor, “Mechanisms of acute axonal degeneration in the optic nerve in vivo,” Proc. Natl. Acad. Sci. U.S.A. 107(13), 6064–6069 (2010).
[CrossRef] [PubMed]

Wang, H.

H. Wang, Y. Fu, P. Zickmund, R. Shi, and J.-X. Cheng, “Coherent anti-stokes Raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89, 581–591 (2005).
[CrossRef] [PubMed]

Winograd, J. M.

F. P. Henry, D. Côté, M. A. Randolph, E. A. Z. Rust, R. W. Redmond, I. E. Kochevar, C. P. Lin, and J. M. Winograd, “Real-time in vivo assessment of the nerve microenvironment with coherent anti-Stokes Raman scattering microscopy,” Plast. Reconstr. Surg. 123(2S), 123S–130S (2009).
[CrossRef] [PubMed]

Xie, X. S.

J. Imitola, D. Côté, S. Rasmussen, X. S. Xie, Y. Liu, T. Chitnis, R. L. Sidman, C. P. Lin, and S. J. Khoury, “Multimodal coherent anti-Stokes Raman scattering microscopy reveals microglia-associated myelin and axonal dysfunction in multiple sclerosis-like lesions in mice,” J. Biomed. Opt. 16(2), 021,109 (2011).
[CrossRef]

C. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008).
[CrossRef]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102, 16807–16812 (2005).
[CrossRef] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[CrossRef]

Yue, S.

T. T. Le, S. Yue, and J.-X. Cheng, “Shedding new light on lipid biology with coherent anti-Stokes Raman scattering microscopy,” J. Lipid. Res. 51(11), 3091–3102 (2010).
[CrossRef] [PubMed]

Zickmund, P.

H. Wang, Y. Fu, P. Zickmund, R. Shi, and J.-X. Cheng, “Coherent anti-stokes Raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89, 581–591 (2005).
[CrossRef] [PubMed]

Zumbusch, A.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[CrossRef]

Annu. Rev. Anal. Chem.

C. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008).
[CrossRef]

Appl. Opt.

Biophys. J.

H. Wang, Y. Fu, P. Zickmund, R. Shi, and J.-X. Cheng, “Coherent anti-stokes Raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89, 581–591 (2005).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron.

I. Veilleux, J. A. Spencer, D. P. Biss, D. Côté, and C. P. Lin, “In vivo cell tracking with video rate multimodality laser scanning microscopy,” IEEE J. Sel. Top. Quantum Electron. 14, 10–18 (2008).
[CrossRef]

IEEE Trans. Syst. Man Cyb.

R. Haralick, K. Shanmuga, and I. Dinstein, “Textural Features For Image Classification,” IEEE Trans. Syst. Man Cyb. SMC3(6), 610–621 (1973).
[CrossRef]

J. Biomed. Opt.

J. Imitola, D. Côté, S. Rasmussen, X. S. Xie, Y. Liu, T. Chitnis, R. L. Sidman, C. P. Lin, and S. J. Khoury, “Multimodal coherent anti-Stokes Raman scattering microscopy reveals microglia-associated myelin and axonal dysfunction in multiple sclerosis-like lesions in mice,” J. Biomed. Opt. 16(2), 021,109 (2011).
[CrossRef]

J. Biophoton.

S. Bégin, E. Bélanger, S. Laffray, R. Vallée, and D. Côté, “In vivo optical monitoring of tissue pathologies and diseases with vibrational contrast,” J. Biophoton. 2(11), 632–642 (2009).
[CrossRef]

J. Lipid. Res.

T. T. Le, S. Yue, and J.-X. Cheng, “Shedding new light on lipid biology with coherent anti-Stokes Raman scattering microscopy,” J. Lipid. Res. 51(11), 3091–3102 (2010).
[CrossRef] [PubMed]

J. S. O’Brien and E. L. Sampson, “Lipid composition of the normal human brain: gray matter, white matter, and myelin,” J. Lipid. Res. 6(4), 537–544 (1965).

J. Microsc.

T. B. Huff and J.-X. Cheng, “In vivo coherent anti-Stokes Raman scattering imaging of sciatic nerve tissue,” J. Microsc. 225(2), 175–82 (2007).
[CrossRef] [PubMed]

Microsc. Res. Tech.

K. Hirata and M. Kawabuchi, “Myelin phagocytosis by macrophages and nonmacrophages during Wallerian degeneration,” Microsc. Res. Tech. 57(6), 541–547 (2002).
[CrossRef] [PubMed]

Nat. Chem. Biol.

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011).
[CrossRef] [PubMed]

Nat. Rev. Neurosci.

M. Coleman, “Axon degeneration mechanisms: commonality amid diversity,” Nat. Rev. Neurosci. 6(11), 889–898 (2005).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[CrossRef]

Plast. Reconstr. Surg.

J. R. Bain, S. E. Mackinnon, and D. A. Hunter, “Functional evaluation of complete sciatic, peroneal, and posterior tibial nerve lesions in the rat,” Plast. Reconstr. Surg. 83(1), 129–138 (1989).
[CrossRef] [PubMed]

F. P. Henry, D. Côté, M. A. Randolph, E. A. Z. Rust, R. W. Redmond, I. E. Kochevar, C. P. Lin, and J. M. Winograd, “Real-time in vivo assessment of the nerve microenvironment with coherent anti-Stokes Raman scattering microscopy,” Plast. Reconstr. Surg. 123(2S), 123S–130S (2009).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A.

J. Knöferle, J. C. Koch, T. Ostendorf, U. Michel, V. Planchamp, P. Vutova, L. Tönges, C. Stadelmann, W. Brück, M. Bähr, and P. Lingor, “Mechanisms of acute axonal degeneration in the optic nerve in vivo,” Proc. Natl. Acad. Sci. U.S.A. 107(13), 6064–6069 (2010).
[CrossRef] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102, 16807–16812 (2005).
[CrossRef] [PubMed]

Other

W. Niblack, An Introduction to Digital Image Processing (Prentice-Hall International, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

CARS histomorphometry in transverse and coronal planes. Probability histogram of g-ratio measurements extracted from (a) reconstructed transverse planes and from (b) the z-stack of coronal planes. (a, inset) Typical CARS image in the transverse plane. (b, inset) Typical CARS image in the coronal plane. All scale bars are 25 μm.

Fig. 2
Fig. 2

(a) Scheme of the imaging plane relative the fiber and axon location (r a : axon radius, r f : fiber radius, r’ a : biased axon radius and r’ f : biased fiber radius). (b) Measured g-ratio versus the normalized displacement from the center of the axon (solid: experimental and dashed: simulated). (c) Leveled line profile (solid) overlaid with its cumulative integral (dashed) and the edges of the fiber and axon diameter (dotted). (d) Theoretical biased probability histogram of g-ratio measurements.

Fig. 3
Fig. 3

Large-scale and high-resolution CARS map of a crushed sciatic nerve at the millimeter scale at 1 week post-injury. Three ROIs depicting healthy, proximal and distal regions of the nerve are highlighted. Scale bar is 250 μm.

Fig. 4
Fig. 4

Histomorphometry on ex vivo crushed sciatic nerve 1 week post-injury. (a)–(c) Snapshots of the healthy, proximal and distal region of the lesion respectively, corresponding to the 3 ROIs of Fig. 3. (d) The g-ratio versus the position along the crushed sciatic nerve. All scale bars are 25 μm.

Fig. 5
Fig. 5

In vivo CARS images of crushed sciatic nerves at different time points of recovery. (a–c) Myelin sheaths proximal to the crush site at 2, 3 and 4 weeks post-injury respectively. (d) Myelin sheaths of a control sciatic nerve. (e) and (f) Myelin sheaths distal to the crush site at 2 and 4 weeks post-crush respectively. All scale bars are 25 μm.

Fig. 6
Fig. 6

Behavioural assessment and histomorphometry on in vivo CARS images of crushed sciatic nerves distal to the lesion at different time points. (a) SFI and (b) myelin thickness (circles) and the g-ratio (squares) versus time.

Metrics