Abstract

We use a spatial light modulator (SLM) to diffract a single UV laser pulse to ablate multiple points on a Drosophila embryo. This system dynamically generates a phase hologram for ablating a user-defined pattern fast enough to be used with living, and thus moving, tissue. We demonstrate the ability of this single-pulse multi-point system to perform two experiments that are very difficult for conventional microsurgery—isolating single cells in vivo and measuring fast retractions from large incisions.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Toyama, X. G. Peralta, A. R. Wells, D. P. Kiehart, and G. S. Edwards, “Apoptotic force and tissue dynamics during Drosophila embryogenesis,” Science 321(5896), 1683–1686 (2008).
    [CrossRef] [PubMed]
  2. M. S. Hutson, Y. Tokutake, M. S. Chang, J. W. Bloor, S. Venakides, D. P. Kiehart, and G. S. Edwards, “Forces for morphogenesis investigated with laser microsurgery and quantitative modeling,” Science 300(5616), 145–149 (2003).
    [CrossRef] [PubMed]
  3. X. Ma, H. E. Lynch, P. C. Scully, and M. S. Hutson, “Probing embryonic tissue mechanics with laser hole drilling,” Phys. Biol. 6(3), 036004 (2009).
    [CrossRef] [PubMed]
  4. D. P. Kiehart, C. G. Galbraith, K. A. Edwards, W. L. Rickoll, and R. A. Montague, “Multiple forces contribute to cell sheet morphogenesis for dorsal closure in Drosophila,” J. Cell Biol. 149(2), 471–490 (2000).
    [CrossRef] [PubMed]
  5. X. G. Peralta, Y. Toyama, M. S. Hutson, R. Montague, S. Venakides, D. P. Kiehart, and G. S. Edwards, “Upregulation of forces and morphogenic asymmetries in dorsal closure during Drosophila development,” Biophys. J. 92(7), 2583–2596 (2007).
    [CrossRef] [PubMed]
  6. E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72(3), 1810 (2001).
    [CrossRef]
  7. E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69(5), 1974 (1998).
    [CrossRef]
  8. J. Colombelli, E. G. Reynaud, and E. H. K. Stelzer, “Investigating relaxation processes in cells and developing organisms: from cell ablation to cytoskeleton nanosurgery,” Methods Cell Biol. 82, 267–291 (2007).
    [CrossRef] [PubMed]
  9. M. S. Hutson and X. Ma, “Plasma and cavitation dynamics during pulsed laser microsurgery in vivo,” Phys. Rev. Lett. 99(15), 158104 (2007).
    [CrossRef] [PubMed]
  10. A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
    [CrossRef] [PubMed]
  11. V. Venugopalan, A. Guerra, K. Nahen, and A. Vogel, “Role of laser-induced plasma formation in pulsed cellular microsurgery and micromanipulation,” Phys. Rev. Lett. 88(7), 078103 (2002).
    [CrossRef] [PubMed]
  12. A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
    [CrossRef]
  13. K. Y. Lim, P. A. Quinto-Su, E. Klaseboer, B. C. Khoo, V. Venugopalan, and C.-D. Ohl, “Nonspherical laser-induced cavitation bubbles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(1), 016308 (2010).
    [CrossRef] [PubMed]
  14. P. A. Quinto-Su, V. Venugopalan, and C.-D. Ohl, “Generation of laser-induced cavitation bubbles with a digital hologram,” Opt. Express 16(23), 18964–18969 (2008).
    [CrossRef] [PubMed]
  15. A. Mao, “Holographic modulation of a pulsed UV laser microbeam for biophysical investigations of tissue dynamics,” Senior Thesis (Free Electron Laser Laboratory, Duke University, 2004).
  16. E. Fällman and O. Axner, “Design for fully steerable dual-trap optical tweezers,” Appl. Opt. 36(10), 2107–2113 (1997).
    [CrossRef] [PubMed]
  17. D. P. Kiehart, Y. Tokutake, M. S. Chang, M. S. Hutson, J. Wiemann, X. G. Peralta, Y. Toyama, A. R. Wells, A. Rodriguez, and G. S. Edwards, “Ultraviolet laser microbeam for dissection of Drosophila embryos,” in Cell Biology: A Laboratory Handbook, 3rd ed., J. E. Celis, ed. (Elsevier Academic, 2006), pp. 87–103.
  18. Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N. Mukohzaka, Y. Kobayashi, and T. Hara, “High efficiency electrically-addressable phase-only spatial light modulator,” Opt. Rev. 6(4), 339–344 (1999).
    [CrossRef]
  19. E. Martín-Badosa, M. Montes-Usategui, A. Carnicer, J. Andilla, E. Pleguezuelos, and I. Juvells, “Design strategies for optimizing holographic optical tweezers set-ups,” J. Opt. A, Pure Appl. Opt. 9(8), S267–S277 (2007).
    [CrossRef]
  20. G. C. Spalding, J. Courtial, and R. Di Leonardo, “Holographic optical tweezers,” in Structured Light and Its Applications an Introduction to Phase-Structured Beams and Nanoscale Optical Forces, D. Andrews, ed. (Academic Press, 2008), pp. 139–157.
  21. R. Di Leonardo, F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express 15(4), 1913–1922 (2007).
    [CrossRef] [PubMed]
  22. M. Montes-Usategui, E. Pleguezuelos, J. Andilla, and E. Martín-Badosa, “Fast generation of holographic optical tweezers by random mask encoding of Fourier components,” Opt. Express 14(6), 2101–2107 (2006).
    [CrossRef] [PubMed]
  23. H. Oda and S. Tsukita, “Real-time imaging of cell-cell adherens junctions reveals that Drosophila mesoderm invagination begins with two phases of apical constriction of cells,” J. Cell Sci. 114(Pt 3), 493–501 (2001).
    [PubMed]
  24. LordRayleigh, “On the pressure developed in a liquid during the collapse of a spherical cavity,” Philos. Mag. 1917, 34 (1917).
  25. J. Campos-Ortega, The Embryonic Development of Drosophila melanogaster, 2nd ed. (Springer, 1997).
  26. M. S. Hutson, J. Veldhuis, X. Ma, H. E. Lynch, P. G. Cranston, and G. W. Brodland, “Combining laser microsurgery and finite element modeling to assess cell-level epithelial mechanics,” Biophys. J. 97(12), 3075–3085 (2009).
    [CrossRef] [PubMed]
  27. J. Colombelli, E. G. Reynaud, J. Rietdorf, R. Pepperkok, and E. H. K. Stelzer, “In vivo selective cytoskeleton dynamics quantification in interphase cells induced by pulsed ultraviolet laser nanosurgery,” Traffic 6(12), 1093–1102 (2005).
    [CrossRef] [PubMed]
  28. J. Colombelli, S. W. Grill, and E. H. K. Stelzer, “Ultraviolet diffraction limited nanosurgery of live biological tissues,” Rev. Sci. Instrum. 75(2), 472 (2004).
    [CrossRef]
  29. J. Solon, A. Kaya-Copur, J. Colombelli, and D. Brunner, “Pulsed forces timed by a ratchet-like mechanism drive directed tissue movement during dorsal closure,” Cell 137(7), 1331–1342 (2009).
    [CrossRef] [PubMed]
  30. M. Rauzi, P. Verant, T. Lecuit, and P.-F. Lenne, “Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis,” Nat. Cell Biol. 10(12), 1401–1410 (2008).
    [CrossRef] [PubMed]
  31. R. Farhadifar, J.-C. Röper, B. Aigouy, S. Eaton, and F. Jülicher, “The influence of cell mechanics, cell-cell interactions, and proliferation on epithelial packing,” Curr. Biol. 17(24), 2095–2104 (2007).
    [CrossRef] [PubMed]
  32. S. Kumar, I. Z. Maxwell, A. Heisterkamp, T. R. Polte, T. P. Lele, M. Salanga, E. Mazur, and D. E. Ingber, “Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics,” Biophys. J. 90(10), 3762–3773 (2006).
    [CrossRef] [PubMed]
  33. I. Toytman, A. Silbergleit, D. Simanovski, and D. Palanker, “Multifocal laser surgery: cutting enhancement by hydrodynamic interactions between cavitation bubbles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 82(4), 046313 (2010).
    [CrossRef] [PubMed]
  34. Y. Tomita, A. Shima, and K. Sato, “Dynamic behavior of two-laser-induced bubbles in water,” Appl. Phys. Lett. 57(3), 234 (1990).
    [CrossRef]
  35. P. A. Quinto-Su and C.-D. Ohl, “Interaction between two laser-induced cavitation bubbles in a quasi-two-dimensional geometry,” J. Fluid Mech. 633, 425 (2009).
    [CrossRef]

2010

K. Y. Lim, P. A. Quinto-Su, E. Klaseboer, B. C. Khoo, V. Venugopalan, and C.-D. Ohl, “Nonspherical laser-induced cavitation bubbles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(1), 016308 (2010).
[CrossRef] [PubMed]

I. Toytman, A. Silbergleit, D. Simanovski, and D. Palanker, “Multifocal laser surgery: cutting enhancement by hydrodynamic interactions between cavitation bubbles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 82(4), 046313 (2010).
[CrossRef] [PubMed]

2009

M. S. Hutson, J. Veldhuis, X. Ma, H. E. Lynch, P. G. Cranston, and G. W. Brodland, “Combining laser microsurgery and finite element modeling to assess cell-level epithelial mechanics,” Biophys. J. 97(12), 3075–3085 (2009).
[CrossRef] [PubMed]

P. A. Quinto-Su and C.-D. Ohl, “Interaction between two laser-induced cavitation bubbles in a quasi-two-dimensional geometry,” J. Fluid Mech. 633, 425 (2009).
[CrossRef]

J. Solon, A. Kaya-Copur, J. Colombelli, and D. Brunner, “Pulsed forces timed by a ratchet-like mechanism drive directed tissue movement during dorsal closure,” Cell 137(7), 1331–1342 (2009).
[CrossRef] [PubMed]

X. Ma, H. E. Lynch, P. C. Scully, and M. S. Hutson, “Probing embryonic tissue mechanics with laser hole drilling,” Phys. Biol. 6(3), 036004 (2009).
[CrossRef] [PubMed]

2008

Y. Toyama, X. G. Peralta, A. R. Wells, D. P. Kiehart, and G. S. Edwards, “Apoptotic force and tissue dynamics during Drosophila embryogenesis,” Science 321(5896), 1683–1686 (2008).
[CrossRef] [PubMed]

M. Rauzi, P. Verant, T. Lecuit, and P.-F. Lenne, “Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis,” Nat. Cell Biol. 10(12), 1401–1410 (2008).
[CrossRef] [PubMed]

P. A. Quinto-Su, V. Venugopalan, and C.-D. Ohl, “Generation of laser-induced cavitation bubbles with a digital hologram,” Opt. Express 16(23), 18964–18969 (2008).
[CrossRef] [PubMed]

2007

R. Di Leonardo, F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express 15(4), 1913–1922 (2007).
[CrossRef] [PubMed]

E. Martín-Badosa, M. Montes-Usategui, A. Carnicer, J. Andilla, E. Pleguezuelos, and I. Juvells, “Design strategies for optimizing holographic optical tweezers set-ups,” J. Opt. A, Pure Appl. Opt. 9(8), S267–S277 (2007).
[CrossRef]

R. Farhadifar, J.-C. Röper, B. Aigouy, S. Eaton, and F. Jülicher, “The influence of cell mechanics, cell-cell interactions, and proliferation on epithelial packing,” Curr. Biol. 17(24), 2095–2104 (2007).
[CrossRef] [PubMed]

X. G. Peralta, Y. Toyama, M. S. Hutson, R. Montague, S. Venakides, D. P. Kiehart, and G. S. Edwards, “Upregulation of forces and morphogenic asymmetries in dorsal closure during Drosophila development,” Biophys. J. 92(7), 2583–2596 (2007).
[CrossRef] [PubMed]

J. Colombelli, E. G. Reynaud, and E. H. K. Stelzer, “Investigating relaxation processes in cells and developing organisms: from cell ablation to cytoskeleton nanosurgery,” Methods Cell Biol. 82, 267–291 (2007).
[CrossRef] [PubMed]

M. S. Hutson and X. Ma, “Plasma and cavitation dynamics during pulsed laser microsurgery in vivo,” Phys. Rev. Lett. 99(15), 158104 (2007).
[CrossRef] [PubMed]

2006

S. Kumar, I. Z. Maxwell, A. Heisterkamp, T. R. Polte, T. P. Lele, M. Salanga, E. Mazur, and D. E. Ingber, “Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics,” Biophys. J. 90(10), 3762–3773 (2006).
[CrossRef] [PubMed]

M. Montes-Usategui, E. Pleguezuelos, J. Andilla, and E. Martín-Badosa, “Fast generation of holographic optical tweezers by random mask encoding of Fourier components,” Opt. Express 14(6), 2101–2107 (2006).
[CrossRef] [PubMed]

2005

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

J. Colombelli, E. G. Reynaud, J. Rietdorf, R. Pepperkok, and E. H. K. Stelzer, “In vivo selective cytoskeleton dynamics quantification in interphase cells induced by pulsed ultraviolet laser nanosurgery,” Traffic 6(12), 1093–1102 (2005).
[CrossRef] [PubMed]

2004

J. Colombelli, S. W. Grill, and E. H. K. Stelzer, “Ultraviolet diffraction limited nanosurgery of live biological tissues,” Rev. Sci. Instrum. 75(2), 472 (2004).
[CrossRef]

2003

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[CrossRef] [PubMed]

M. S. Hutson, Y. Tokutake, M. S. Chang, J. W. Bloor, S. Venakides, D. P. Kiehart, and G. S. Edwards, “Forces for morphogenesis investigated with laser microsurgery and quantitative modeling,” Science 300(5616), 145–149 (2003).
[CrossRef] [PubMed]

2002

V. Venugopalan, A. Guerra, K. Nahen, and A. Vogel, “Role of laser-induced plasma formation in pulsed cellular microsurgery and micromanipulation,” Phys. Rev. Lett. 88(7), 078103 (2002).
[CrossRef] [PubMed]

2001

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72(3), 1810 (2001).
[CrossRef]

H. Oda and S. Tsukita, “Real-time imaging of cell-cell adherens junctions reveals that Drosophila mesoderm invagination begins with two phases of apical constriction of cells,” J. Cell Sci. 114(Pt 3), 493–501 (2001).
[PubMed]

2000

D. P. Kiehart, C. G. Galbraith, K. A. Edwards, W. L. Rickoll, and R. A. Montague, “Multiple forces contribute to cell sheet morphogenesis for dorsal closure in Drosophila,” J. Cell Biol. 149(2), 471–490 (2000).
[CrossRef] [PubMed]

1999

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N. Mukohzaka, Y. Kobayashi, and T. Hara, “High efficiency electrically-addressable phase-only spatial light modulator,” Opt. Rev. 6(4), 339–344 (1999).
[CrossRef]

1998

E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69(5), 1974 (1998).
[CrossRef]

1997

1990

Y. Tomita, A. Shima, and K. Sato, “Dynamic behavior of two-laser-induced bubbles in water,” Appl. Phys. Lett. 57(3), 234 (1990).
[CrossRef]

1917

LordRayleigh, “On the pressure developed in a liquid during the collapse of a spherical cavity,” Philos. Mag. 1917, 34 (1917).

Aigouy, B.

R. Farhadifar, J.-C. Röper, B. Aigouy, S. Eaton, and F. Jülicher, “The influence of cell mechanics, cell-cell interactions, and proliferation on epithelial packing,” Curr. Biol. 17(24), 2095–2104 (2007).
[CrossRef] [PubMed]

Andilla, J.

E. Martín-Badosa, M. Montes-Usategui, A. Carnicer, J. Andilla, E. Pleguezuelos, and I. Juvells, “Design strategies for optimizing holographic optical tweezers set-ups,” J. Opt. A, Pure Appl. Opt. 9(8), S267–S277 (2007).
[CrossRef]

M. Montes-Usategui, E. Pleguezuelos, J. Andilla, and E. Martín-Badosa, “Fast generation of holographic optical tweezers by random mask encoding of Fourier components,” Opt. Express 14(6), 2101–2107 (2006).
[CrossRef] [PubMed]

Axner, O.

Bloor, J. W.

M. S. Hutson, Y. Tokutake, M. S. Chang, J. W. Bloor, S. Venakides, D. P. Kiehart, and G. S. Edwards, “Forces for morphogenesis investigated with laser microsurgery and quantitative modeling,” Science 300(5616), 145–149 (2003).
[CrossRef] [PubMed]

Brodland, G. W.

M. S. Hutson, J. Veldhuis, X. Ma, H. E. Lynch, P. G. Cranston, and G. W. Brodland, “Combining laser microsurgery and finite element modeling to assess cell-level epithelial mechanics,” Biophys. J. 97(12), 3075–3085 (2009).
[CrossRef] [PubMed]

Brunner, D.

J. Solon, A. Kaya-Copur, J. Colombelli, and D. Brunner, “Pulsed forces timed by a ratchet-like mechanism drive directed tissue movement during dorsal closure,” Cell 137(7), 1331–1342 (2009).
[CrossRef] [PubMed]

Carnicer, A.

E. Martín-Badosa, M. Montes-Usategui, A. Carnicer, J. Andilla, E. Pleguezuelos, and I. Juvells, “Design strategies for optimizing holographic optical tweezers set-ups,” J. Opt. A, Pure Appl. Opt. 9(8), S267–S277 (2007).
[CrossRef]

Chang, M. S.

M. S. Hutson, Y. Tokutake, M. S. Chang, J. W. Bloor, S. Venakides, D. P. Kiehart, and G. S. Edwards, “Forces for morphogenesis investigated with laser microsurgery and quantitative modeling,” Science 300(5616), 145–149 (2003).
[CrossRef] [PubMed]

Colombelli, J.

J. Solon, A. Kaya-Copur, J. Colombelli, and D. Brunner, “Pulsed forces timed by a ratchet-like mechanism drive directed tissue movement during dorsal closure,” Cell 137(7), 1331–1342 (2009).
[CrossRef] [PubMed]

J. Colombelli, E. G. Reynaud, and E. H. K. Stelzer, “Investigating relaxation processes in cells and developing organisms: from cell ablation to cytoskeleton nanosurgery,” Methods Cell Biol. 82, 267–291 (2007).
[CrossRef] [PubMed]

J. Colombelli, E. G. Reynaud, J. Rietdorf, R. Pepperkok, and E. H. K. Stelzer, “In vivo selective cytoskeleton dynamics quantification in interphase cells induced by pulsed ultraviolet laser nanosurgery,” Traffic 6(12), 1093–1102 (2005).
[CrossRef] [PubMed]

J. Colombelli, S. W. Grill, and E. H. K. Stelzer, “Ultraviolet diffraction limited nanosurgery of live biological tissues,” Rev. Sci. Instrum. 75(2), 472 (2004).
[CrossRef]

Cranston, P. G.

M. S. Hutson, J. Veldhuis, X. Ma, H. E. Lynch, P. G. Cranston, and G. W. Brodland, “Combining laser microsurgery and finite element modeling to assess cell-level epithelial mechanics,” Biophys. J. 97(12), 3075–3085 (2009).
[CrossRef] [PubMed]

Dearing, M. T.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72(3), 1810 (2001).
[CrossRef]

Di Leonardo, R.

Dufresne, E. R.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72(3), 1810 (2001).
[CrossRef]

E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69(5), 1974 (1998).
[CrossRef]

Eaton, S.

R. Farhadifar, J.-C. Röper, B. Aigouy, S. Eaton, and F. Jülicher, “The influence of cell mechanics, cell-cell interactions, and proliferation on epithelial packing,” Curr. Biol. 17(24), 2095–2104 (2007).
[CrossRef] [PubMed]

Edwards, G. S.

Y. Toyama, X. G. Peralta, A. R. Wells, D. P. Kiehart, and G. S. Edwards, “Apoptotic force and tissue dynamics during Drosophila embryogenesis,” Science 321(5896), 1683–1686 (2008).
[CrossRef] [PubMed]

X. G. Peralta, Y. Toyama, M. S. Hutson, R. Montague, S. Venakides, D. P. Kiehart, and G. S. Edwards, “Upregulation of forces and morphogenic asymmetries in dorsal closure during Drosophila development,” Biophys. J. 92(7), 2583–2596 (2007).
[CrossRef] [PubMed]

M. S. Hutson, Y. Tokutake, M. S. Chang, J. W. Bloor, S. Venakides, D. P. Kiehart, and G. S. Edwards, “Forces for morphogenesis investigated with laser microsurgery and quantitative modeling,” Science 300(5616), 145–149 (2003).
[CrossRef] [PubMed]

Edwards, K. A.

D. P. Kiehart, C. G. Galbraith, K. A. Edwards, W. L. Rickoll, and R. A. Montague, “Multiple forces contribute to cell sheet morphogenesis for dorsal closure in Drosophila,” J. Cell Biol. 149(2), 471–490 (2000).
[CrossRef] [PubMed]

Fällman, E.

Farhadifar, R.

R. Farhadifar, J.-C. Röper, B. Aigouy, S. Eaton, and F. Jülicher, “The influence of cell mechanics, cell-cell interactions, and proliferation on epithelial packing,” Curr. Biol. 17(24), 2095–2104 (2007).
[CrossRef] [PubMed]

Galbraith, C. G.

D. P. Kiehart, C. G. Galbraith, K. A. Edwards, W. L. Rickoll, and R. A. Montague, “Multiple forces contribute to cell sheet morphogenesis for dorsal closure in Drosophila,” J. Cell Biol. 149(2), 471–490 (2000).
[CrossRef] [PubMed]

Grier, D. G.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72(3), 1810 (2001).
[CrossRef]

E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69(5), 1974 (1998).
[CrossRef]

Grill, S. W.

J. Colombelli, S. W. Grill, and E. H. K. Stelzer, “Ultraviolet diffraction limited nanosurgery of live biological tissues,” Rev. Sci. Instrum. 75(2), 472 (2004).
[CrossRef]

Guerra, A.

V. Venugopalan, A. Guerra, K. Nahen, and A. Vogel, “Role of laser-induced plasma formation in pulsed cellular microsurgery and micromanipulation,” Phys. Rev. Lett. 88(7), 078103 (2002).
[CrossRef] [PubMed]

Hara, T.

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N. Mukohzaka, Y. Kobayashi, and T. Hara, “High efficiency electrically-addressable phase-only spatial light modulator,” Opt. Rev. 6(4), 339–344 (1999).
[CrossRef]

Heisterkamp, A.

S. Kumar, I. Z. Maxwell, A. Heisterkamp, T. R. Polte, T. P. Lele, M. Salanga, E. Mazur, and D. E. Ingber, “Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics,” Biophys. J. 90(10), 3762–3773 (2006).
[CrossRef] [PubMed]

Hutson, M. S.

X. Ma, H. E. Lynch, P. C. Scully, and M. S. Hutson, “Probing embryonic tissue mechanics with laser hole drilling,” Phys. Biol. 6(3), 036004 (2009).
[CrossRef] [PubMed]

M. S. Hutson, J. Veldhuis, X. Ma, H. E. Lynch, P. G. Cranston, and G. W. Brodland, “Combining laser microsurgery and finite element modeling to assess cell-level epithelial mechanics,” Biophys. J. 97(12), 3075–3085 (2009).
[CrossRef] [PubMed]

X. G. Peralta, Y. Toyama, M. S. Hutson, R. Montague, S. Venakides, D. P. Kiehart, and G. S. Edwards, “Upregulation of forces and morphogenic asymmetries in dorsal closure during Drosophila development,” Biophys. J. 92(7), 2583–2596 (2007).
[CrossRef] [PubMed]

M. S. Hutson and X. Ma, “Plasma and cavitation dynamics during pulsed laser microsurgery in vivo,” Phys. Rev. Lett. 99(15), 158104 (2007).
[CrossRef] [PubMed]

M. S. Hutson, Y. Tokutake, M. S. Chang, J. W. Bloor, S. Venakides, D. P. Kiehart, and G. S. Edwards, “Forces for morphogenesis investigated with laser microsurgery and quantitative modeling,” Science 300(5616), 145–149 (2003).
[CrossRef] [PubMed]

Hüttman, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Ianni, F.

Igasaki, Y.

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N. Mukohzaka, Y. Kobayashi, and T. Hara, “High efficiency electrically-addressable phase-only spatial light modulator,” Opt. Rev. 6(4), 339–344 (1999).
[CrossRef]

Ingber, D. E.

S. Kumar, I. Z. Maxwell, A. Heisterkamp, T. R. Polte, T. P. Lele, M. Salanga, E. Mazur, and D. E. Ingber, “Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics,” Biophys. J. 90(10), 3762–3773 (2006).
[CrossRef] [PubMed]

Inoue, T.

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N. Mukohzaka, Y. Kobayashi, and T. Hara, “High efficiency electrically-addressable phase-only spatial light modulator,” Opt. Rev. 6(4), 339–344 (1999).
[CrossRef]

Jülicher, F.

R. Farhadifar, J.-C. Röper, B. Aigouy, S. Eaton, and F. Jülicher, “The influence of cell mechanics, cell-cell interactions, and proliferation on epithelial packing,” Curr. Biol. 17(24), 2095–2104 (2007).
[CrossRef] [PubMed]

Juvells, I.

E. Martín-Badosa, M. Montes-Usategui, A. Carnicer, J. Andilla, E. Pleguezuelos, and I. Juvells, “Design strategies for optimizing holographic optical tweezers set-ups,” J. Opt. A, Pure Appl. Opt. 9(8), S267–S277 (2007).
[CrossRef]

Kaya-Copur, A.

J. Solon, A. Kaya-Copur, J. Colombelli, and D. Brunner, “Pulsed forces timed by a ratchet-like mechanism drive directed tissue movement during dorsal closure,” Cell 137(7), 1331–1342 (2009).
[CrossRef] [PubMed]

Khoo, B. C.

K. Y. Lim, P. A. Quinto-Su, E. Klaseboer, B. C. Khoo, V. Venugopalan, and C.-D. Ohl, “Nonspherical laser-induced cavitation bubbles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(1), 016308 (2010).
[CrossRef] [PubMed]

Kiehart, D. P.

Y. Toyama, X. G. Peralta, A. R. Wells, D. P. Kiehart, and G. S. Edwards, “Apoptotic force and tissue dynamics during Drosophila embryogenesis,” Science 321(5896), 1683–1686 (2008).
[CrossRef] [PubMed]

X. G. Peralta, Y. Toyama, M. S. Hutson, R. Montague, S. Venakides, D. P. Kiehart, and G. S. Edwards, “Upregulation of forces and morphogenic asymmetries in dorsal closure during Drosophila development,” Biophys. J. 92(7), 2583–2596 (2007).
[CrossRef] [PubMed]

M. S. Hutson, Y. Tokutake, M. S. Chang, J. W. Bloor, S. Venakides, D. P. Kiehart, and G. S. Edwards, “Forces for morphogenesis investigated with laser microsurgery and quantitative modeling,” Science 300(5616), 145–149 (2003).
[CrossRef] [PubMed]

D. P. Kiehart, C. G. Galbraith, K. A. Edwards, W. L. Rickoll, and R. A. Montague, “Multiple forces contribute to cell sheet morphogenesis for dorsal closure in Drosophila,” J. Cell Biol. 149(2), 471–490 (2000).
[CrossRef] [PubMed]

Klaseboer, E.

K. Y. Lim, P. A. Quinto-Su, E. Klaseboer, B. C. Khoo, V. Venugopalan, and C.-D. Ohl, “Nonspherical laser-induced cavitation bubbles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(1), 016308 (2010).
[CrossRef] [PubMed]

Kobayashi, Y.

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N. Mukohzaka, Y. Kobayashi, and T. Hara, “High efficiency electrically-addressable phase-only spatial light modulator,” Opt. Rev. 6(4), 339–344 (1999).
[CrossRef]

Kumar, S.

S. Kumar, I. Z. Maxwell, A. Heisterkamp, T. R. Polte, T. P. Lele, M. Salanga, E. Mazur, and D. E. Ingber, “Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics,” Biophys. J. 90(10), 3762–3773 (2006).
[CrossRef] [PubMed]

Lecuit, T.

M. Rauzi, P. Verant, T. Lecuit, and P.-F. Lenne, “Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis,” Nat. Cell Biol. 10(12), 1401–1410 (2008).
[CrossRef] [PubMed]

Lele, T. P.

S. Kumar, I. Z. Maxwell, A. Heisterkamp, T. R. Polte, T. P. Lele, M. Salanga, E. Mazur, and D. E. Ingber, “Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics,” Biophys. J. 90(10), 3762–3773 (2006).
[CrossRef] [PubMed]

Lenne, P.-F.

M. Rauzi, P. Verant, T. Lecuit, and P.-F. Lenne, “Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis,” Nat. Cell Biol. 10(12), 1401–1410 (2008).
[CrossRef] [PubMed]

Li, F.

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N. Mukohzaka, Y. Kobayashi, and T. Hara, “High efficiency electrically-addressable phase-only spatial light modulator,” Opt. Rev. 6(4), 339–344 (1999).
[CrossRef]

Lim, K. Y.

K. Y. Lim, P. A. Quinto-Su, E. Klaseboer, B. C. Khoo, V. Venugopalan, and C.-D. Ohl, “Nonspherical laser-induced cavitation bubbles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(1), 016308 (2010).
[CrossRef] [PubMed]

Lynch, H. E.

X. Ma, H. E. Lynch, P. C. Scully, and M. S. Hutson, “Probing embryonic tissue mechanics with laser hole drilling,” Phys. Biol. 6(3), 036004 (2009).
[CrossRef] [PubMed]

M. S. Hutson, J. Veldhuis, X. Ma, H. E. Lynch, P. G. Cranston, and G. W. Brodland, “Combining laser microsurgery and finite element modeling to assess cell-level epithelial mechanics,” Biophys. J. 97(12), 3075–3085 (2009).
[CrossRef] [PubMed]

Ma, X.

M. S. Hutson, J. Veldhuis, X. Ma, H. E. Lynch, P. G. Cranston, and G. W. Brodland, “Combining laser microsurgery and finite element modeling to assess cell-level epithelial mechanics,” Biophys. J. 97(12), 3075–3085 (2009).
[CrossRef] [PubMed]

X. Ma, H. E. Lynch, P. C. Scully, and M. S. Hutson, “Probing embryonic tissue mechanics with laser hole drilling,” Phys. Biol. 6(3), 036004 (2009).
[CrossRef] [PubMed]

M. S. Hutson and X. Ma, “Plasma and cavitation dynamics during pulsed laser microsurgery in vivo,” Phys. Rev. Lett. 99(15), 158104 (2007).
[CrossRef] [PubMed]

Martín-Badosa, E.

E. Martín-Badosa, M. Montes-Usategui, A. Carnicer, J. Andilla, E. Pleguezuelos, and I. Juvells, “Design strategies for optimizing holographic optical tweezers set-ups,” J. Opt. A, Pure Appl. Opt. 9(8), S267–S277 (2007).
[CrossRef]

M. Montes-Usategui, E. Pleguezuelos, J. Andilla, and E. Martín-Badosa, “Fast generation of holographic optical tweezers by random mask encoding of Fourier components,” Opt. Express 14(6), 2101–2107 (2006).
[CrossRef] [PubMed]

Maxwell, I. Z.

S. Kumar, I. Z. Maxwell, A. Heisterkamp, T. R. Polte, T. P. Lele, M. Salanga, E. Mazur, and D. E. Ingber, “Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics,” Biophys. J. 90(10), 3762–3773 (2006).
[CrossRef] [PubMed]

Mazur, E.

S. Kumar, I. Z. Maxwell, A. Heisterkamp, T. R. Polte, T. P. Lele, M. Salanga, E. Mazur, and D. E. Ingber, “Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics,” Biophys. J. 90(10), 3762–3773 (2006).
[CrossRef] [PubMed]

Montague, R.

X. G. Peralta, Y. Toyama, M. S. Hutson, R. Montague, S. Venakides, D. P. Kiehart, and G. S. Edwards, “Upregulation of forces and morphogenic asymmetries in dorsal closure during Drosophila development,” Biophys. J. 92(7), 2583–2596 (2007).
[CrossRef] [PubMed]

Montague, R. A.

D. P. Kiehart, C. G. Galbraith, K. A. Edwards, W. L. Rickoll, and R. A. Montague, “Multiple forces contribute to cell sheet morphogenesis for dorsal closure in Drosophila,” J. Cell Biol. 149(2), 471–490 (2000).
[CrossRef] [PubMed]

Montes-Usategui, M.

E. Martín-Badosa, M. Montes-Usategui, A. Carnicer, J. Andilla, E. Pleguezuelos, and I. Juvells, “Design strategies for optimizing holographic optical tweezers set-ups,” J. Opt. A, Pure Appl. Opt. 9(8), S267–S277 (2007).
[CrossRef]

M. Montes-Usategui, E. Pleguezuelos, J. Andilla, and E. Martín-Badosa, “Fast generation of holographic optical tweezers by random mask encoding of Fourier components,” Opt. Express 14(6), 2101–2107 (2006).
[CrossRef] [PubMed]

Mukohzaka, N.

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N. Mukohzaka, Y. Kobayashi, and T. Hara, “High efficiency electrically-addressable phase-only spatial light modulator,” Opt. Rev. 6(4), 339–344 (1999).
[CrossRef]

Nahen, K.

V. Venugopalan, A. Guerra, K. Nahen, and A. Vogel, “Role of laser-induced plasma formation in pulsed cellular microsurgery and micromanipulation,” Phys. Rev. Lett. 88(7), 078103 (2002).
[CrossRef] [PubMed]

Noack, J.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Oda, H.

H. Oda and S. Tsukita, “Real-time imaging of cell-cell adherens junctions reveals that Drosophila mesoderm invagination begins with two phases of apical constriction of cells,” J. Cell Sci. 114(Pt 3), 493–501 (2001).
[PubMed]

Ohl, C.-D.

K. Y. Lim, P. A. Quinto-Su, E. Klaseboer, B. C. Khoo, V. Venugopalan, and C.-D. Ohl, “Nonspherical laser-induced cavitation bubbles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(1), 016308 (2010).
[CrossRef] [PubMed]

P. A. Quinto-Su and C.-D. Ohl, “Interaction between two laser-induced cavitation bubbles in a quasi-two-dimensional geometry,” J. Fluid Mech. 633, 425 (2009).
[CrossRef]

P. A. Quinto-Su, V. Venugopalan, and C.-D. Ohl, “Generation of laser-induced cavitation bubbles with a digital hologram,” Opt. Express 16(23), 18964–18969 (2008).
[CrossRef] [PubMed]

Palanker, D.

I. Toytman, A. Silbergleit, D. Simanovski, and D. Palanker, “Multifocal laser surgery: cutting enhancement by hydrodynamic interactions between cavitation bubbles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 82(4), 046313 (2010).
[CrossRef] [PubMed]

Paltauf, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Pepperkok, R.

J. Colombelli, E. G. Reynaud, J. Rietdorf, R. Pepperkok, and E. H. K. Stelzer, “In vivo selective cytoskeleton dynamics quantification in interphase cells induced by pulsed ultraviolet laser nanosurgery,” Traffic 6(12), 1093–1102 (2005).
[CrossRef] [PubMed]

Peralta, X. G.

Y. Toyama, X. G. Peralta, A. R. Wells, D. P. Kiehart, and G. S. Edwards, “Apoptotic force and tissue dynamics during Drosophila embryogenesis,” Science 321(5896), 1683–1686 (2008).
[CrossRef] [PubMed]

X. G. Peralta, Y. Toyama, M. S. Hutson, R. Montague, S. Venakides, D. P. Kiehart, and G. S. Edwards, “Upregulation of forces and morphogenic asymmetries in dorsal closure during Drosophila development,” Biophys. J. 92(7), 2583–2596 (2007).
[CrossRef] [PubMed]

Pleguezuelos, E.

E. Martín-Badosa, M. Montes-Usategui, A. Carnicer, J. Andilla, E. Pleguezuelos, and I. Juvells, “Design strategies for optimizing holographic optical tweezers set-ups,” J. Opt. A, Pure Appl. Opt. 9(8), S267–S277 (2007).
[CrossRef]

M. Montes-Usategui, E. Pleguezuelos, J. Andilla, and E. Martín-Badosa, “Fast generation of holographic optical tweezers by random mask encoding of Fourier components,” Opt. Express 14(6), 2101–2107 (2006).
[CrossRef] [PubMed]

Polte, T. R.

S. Kumar, I. Z. Maxwell, A. Heisterkamp, T. R. Polte, T. P. Lele, M. Salanga, E. Mazur, and D. E. Ingber, “Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics,” Biophys. J. 90(10), 3762–3773 (2006).
[CrossRef] [PubMed]

Quinto-Su, P. A.

K. Y. Lim, P. A. Quinto-Su, E. Klaseboer, B. C. Khoo, V. Venugopalan, and C.-D. Ohl, “Nonspherical laser-induced cavitation bubbles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(1), 016308 (2010).
[CrossRef] [PubMed]

P. A. Quinto-Su and C.-D. Ohl, “Interaction between two laser-induced cavitation bubbles in a quasi-two-dimensional geometry,” J. Fluid Mech. 633, 425 (2009).
[CrossRef]

P. A. Quinto-Su, V. Venugopalan, and C.-D. Ohl, “Generation of laser-induced cavitation bubbles with a digital hologram,” Opt. Express 16(23), 18964–18969 (2008).
[CrossRef] [PubMed]

Rauzi, M.

M. Rauzi, P. Verant, T. Lecuit, and P.-F. Lenne, “Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis,” Nat. Cell Biol. 10(12), 1401–1410 (2008).
[CrossRef] [PubMed]

Rayleigh,

LordRayleigh, “On the pressure developed in a liquid during the collapse of a spherical cavity,” Philos. Mag. 1917, 34 (1917).

Reynaud, E. G.

J. Colombelli, E. G. Reynaud, and E. H. K. Stelzer, “Investigating relaxation processes in cells and developing organisms: from cell ablation to cytoskeleton nanosurgery,” Methods Cell Biol. 82, 267–291 (2007).
[CrossRef] [PubMed]

J. Colombelli, E. G. Reynaud, J. Rietdorf, R. Pepperkok, and E. H. K. Stelzer, “In vivo selective cytoskeleton dynamics quantification in interphase cells induced by pulsed ultraviolet laser nanosurgery,” Traffic 6(12), 1093–1102 (2005).
[CrossRef] [PubMed]

Rickoll, W. L.

D. P. Kiehart, C. G. Galbraith, K. A. Edwards, W. L. Rickoll, and R. A. Montague, “Multiple forces contribute to cell sheet morphogenesis for dorsal closure in Drosophila,” J. Cell Biol. 149(2), 471–490 (2000).
[CrossRef] [PubMed]

Rietdorf, J.

J. Colombelli, E. G. Reynaud, J. Rietdorf, R. Pepperkok, and E. H. K. Stelzer, “In vivo selective cytoskeleton dynamics quantification in interphase cells induced by pulsed ultraviolet laser nanosurgery,” Traffic 6(12), 1093–1102 (2005).
[CrossRef] [PubMed]

Röper, J.-C.

R. Farhadifar, J.-C. Röper, B. Aigouy, S. Eaton, and F. Jülicher, “The influence of cell mechanics, cell-cell interactions, and proliferation on epithelial packing,” Curr. Biol. 17(24), 2095–2104 (2007).
[CrossRef] [PubMed]

Ruocco, G.

Salanga, M.

S. Kumar, I. Z. Maxwell, A. Heisterkamp, T. R. Polte, T. P. Lele, M. Salanga, E. Mazur, and D. E. Ingber, “Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics,” Biophys. J. 90(10), 3762–3773 (2006).
[CrossRef] [PubMed]

Sato, K.

Y. Tomita, A. Shima, and K. Sato, “Dynamic behavior of two-laser-induced bubbles in water,” Appl. Phys. Lett. 57(3), 234 (1990).
[CrossRef]

Scully, P. C.

X. Ma, H. E. Lynch, P. C. Scully, and M. S. Hutson, “Probing embryonic tissue mechanics with laser hole drilling,” Phys. Biol. 6(3), 036004 (2009).
[CrossRef] [PubMed]

Sheets, S. A.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72(3), 1810 (2001).
[CrossRef]

Shima, A.

Y. Tomita, A. Shima, and K. Sato, “Dynamic behavior of two-laser-induced bubbles in water,” Appl. Phys. Lett. 57(3), 234 (1990).
[CrossRef]

Silbergleit, A.

I. Toytman, A. Silbergleit, D. Simanovski, and D. Palanker, “Multifocal laser surgery: cutting enhancement by hydrodynamic interactions between cavitation bubbles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 82(4), 046313 (2010).
[CrossRef] [PubMed]

Simanovski, D.

I. Toytman, A. Silbergleit, D. Simanovski, and D. Palanker, “Multifocal laser surgery: cutting enhancement by hydrodynamic interactions between cavitation bubbles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 82(4), 046313 (2010).
[CrossRef] [PubMed]

Solon, J.

J. Solon, A. Kaya-Copur, J. Colombelli, and D. Brunner, “Pulsed forces timed by a ratchet-like mechanism drive directed tissue movement during dorsal closure,” Cell 137(7), 1331–1342 (2009).
[CrossRef] [PubMed]

Spalding, G. C.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72(3), 1810 (2001).
[CrossRef]

Stelzer, E. H. K.

J. Colombelli, E. G. Reynaud, and E. H. K. Stelzer, “Investigating relaxation processes in cells and developing organisms: from cell ablation to cytoskeleton nanosurgery,” Methods Cell Biol. 82, 267–291 (2007).
[CrossRef] [PubMed]

J. Colombelli, E. G. Reynaud, J. Rietdorf, R. Pepperkok, and E. H. K. Stelzer, “In vivo selective cytoskeleton dynamics quantification in interphase cells induced by pulsed ultraviolet laser nanosurgery,” Traffic 6(12), 1093–1102 (2005).
[CrossRef] [PubMed]

J. Colombelli, S. W. Grill, and E. H. K. Stelzer, “Ultraviolet diffraction limited nanosurgery of live biological tissues,” Rev. Sci. Instrum. 75(2), 472 (2004).
[CrossRef]

Tokutake, Y.

M. S. Hutson, Y. Tokutake, M. S. Chang, J. W. Bloor, S. Venakides, D. P. Kiehart, and G. S. Edwards, “Forces for morphogenesis investigated with laser microsurgery and quantitative modeling,” Science 300(5616), 145–149 (2003).
[CrossRef] [PubMed]

Tomita, Y.

Y. Tomita, A. Shima, and K. Sato, “Dynamic behavior of two-laser-induced bubbles in water,” Appl. Phys. Lett. 57(3), 234 (1990).
[CrossRef]

Toyama, Y.

Y. Toyama, X. G. Peralta, A. R. Wells, D. P. Kiehart, and G. S. Edwards, “Apoptotic force and tissue dynamics during Drosophila embryogenesis,” Science 321(5896), 1683–1686 (2008).
[CrossRef] [PubMed]

X. G. Peralta, Y. Toyama, M. S. Hutson, R. Montague, S. Venakides, D. P. Kiehart, and G. S. Edwards, “Upregulation of forces and morphogenic asymmetries in dorsal closure during Drosophila development,” Biophys. J. 92(7), 2583–2596 (2007).
[CrossRef] [PubMed]

Toyoda, H.

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N. Mukohzaka, Y. Kobayashi, and T. Hara, “High efficiency electrically-addressable phase-only spatial light modulator,” Opt. Rev. 6(4), 339–344 (1999).
[CrossRef]

Toytman, I.

I. Toytman, A. Silbergleit, D. Simanovski, and D. Palanker, “Multifocal laser surgery: cutting enhancement by hydrodynamic interactions between cavitation bubbles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 82(4), 046313 (2010).
[CrossRef] [PubMed]

Tsukita, S.

H. Oda and S. Tsukita, “Real-time imaging of cell-cell adherens junctions reveals that Drosophila mesoderm invagination begins with two phases of apical constriction of cells,” J. Cell Sci. 114(Pt 3), 493–501 (2001).
[PubMed]

Veldhuis, J.

M. S. Hutson, J. Veldhuis, X. Ma, H. E. Lynch, P. G. Cranston, and G. W. Brodland, “Combining laser microsurgery and finite element modeling to assess cell-level epithelial mechanics,” Biophys. J. 97(12), 3075–3085 (2009).
[CrossRef] [PubMed]

Venakides, S.

X. G. Peralta, Y. Toyama, M. S. Hutson, R. Montague, S. Venakides, D. P. Kiehart, and G. S. Edwards, “Upregulation of forces and morphogenic asymmetries in dorsal closure during Drosophila development,” Biophys. J. 92(7), 2583–2596 (2007).
[CrossRef] [PubMed]

M. S. Hutson, Y. Tokutake, M. S. Chang, J. W. Bloor, S. Venakides, D. P. Kiehart, and G. S. Edwards, “Forces for morphogenesis investigated with laser microsurgery and quantitative modeling,” Science 300(5616), 145–149 (2003).
[CrossRef] [PubMed]

Venugopalan, V.

K. Y. Lim, P. A. Quinto-Su, E. Klaseboer, B. C. Khoo, V. Venugopalan, and C.-D. Ohl, “Nonspherical laser-induced cavitation bubbles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(1), 016308 (2010).
[CrossRef] [PubMed]

P. A. Quinto-Su, V. Venugopalan, and C.-D. Ohl, “Generation of laser-induced cavitation bubbles with a digital hologram,” Opt. Express 16(23), 18964–18969 (2008).
[CrossRef] [PubMed]

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[CrossRef] [PubMed]

V. Venugopalan, A. Guerra, K. Nahen, and A. Vogel, “Role of laser-induced plasma formation in pulsed cellular microsurgery and micromanipulation,” Phys. Rev. Lett. 88(7), 078103 (2002).
[CrossRef] [PubMed]

Verant, P.

M. Rauzi, P. Verant, T. Lecuit, and P.-F. Lenne, “Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis,” Nat. Cell Biol. 10(12), 1401–1410 (2008).
[CrossRef] [PubMed]

Vogel, A.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[CrossRef] [PubMed]

V. Venugopalan, A. Guerra, K. Nahen, and A. Vogel, “Role of laser-induced plasma formation in pulsed cellular microsurgery and micromanipulation,” Phys. Rev. Lett. 88(7), 078103 (2002).
[CrossRef] [PubMed]

Wells, A. R.

Y. Toyama, X. G. Peralta, A. R. Wells, D. P. Kiehart, and G. S. Edwards, “Apoptotic force and tissue dynamics during Drosophila embryogenesis,” Science 321(5896), 1683–1686 (2008).
[CrossRef] [PubMed]

Yoshida, N.

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N. Mukohzaka, Y. Kobayashi, and T. Hara, “High efficiency electrically-addressable phase-only spatial light modulator,” Opt. Rev. 6(4), 339–344 (1999).
[CrossRef]

Appl. Opt.

Appl. Phys. B

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Appl. Phys. Lett.

Y. Tomita, A. Shima, and K. Sato, “Dynamic behavior of two-laser-induced bubbles in water,” Appl. Phys. Lett. 57(3), 234 (1990).
[CrossRef]

Biophys. J.

S. Kumar, I. Z. Maxwell, A. Heisterkamp, T. R. Polte, T. P. Lele, M. Salanga, E. Mazur, and D. E. Ingber, “Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics,” Biophys. J. 90(10), 3762–3773 (2006).
[CrossRef] [PubMed]

M. S. Hutson, J. Veldhuis, X. Ma, H. E. Lynch, P. G. Cranston, and G. W. Brodland, “Combining laser microsurgery and finite element modeling to assess cell-level epithelial mechanics,” Biophys. J. 97(12), 3075–3085 (2009).
[CrossRef] [PubMed]

X. G. Peralta, Y. Toyama, M. S. Hutson, R. Montague, S. Venakides, D. P. Kiehart, and G. S. Edwards, “Upregulation of forces and morphogenic asymmetries in dorsal closure during Drosophila development,” Biophys. J. 92(7), 2583–2596 (2007).
[CrossRef] [PubMed]

Cell

J. Solon, A. Kaya-Copur, J. Colombelli, and D. Brunner, “Pulsed forces timed by a ratchet-like mechanism drive directed tissue movement during dorsal closure,” Cell 137(7), 1331–1342 (2009).
[CrossRef] [PubMed]

Chem. Rev.

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[CrossRef] [PubMed]

Curr. Biol.

R. Farhadifar, J.-C. Röper, B. Aigouy, S. Eaton, and F. Jülicher, “The influence of cell mechanics, cell-cell interactions, and proliferation on epithelial packing,” Curr. Biol. 17(24), 2095–2104 (2007).
[CrossRef] [PubMed]

J. Cell Biol.

D. P. Kiehart, C. G. Galbraith, K. A. Edwards, W. L. Rickoll, and R. A. Montague, “Multiple forces contribute to cell sheet morphogenesis for dorsal closure in Drosophila,” J. Cell Biol. 149(2), 471–490 (2000).
[CrossRef] [PubMed]

J. Cell Sci.

H. Oda and S. Tsukita, “Real-time imaging of cell-cell adherens junctions reveals that Drosophila mesoderm invagination begins with two phases of apical constriction of cells,” J. Cell Sci. 114(Pt 3), 493–501 (2001).
[PubMed]

J. Fluid Mech.

P. A. Quinto-Su and C.-D. Ohl, “Interaction between two laser-induced cavitation bubbles in a quasi-two-dimensional geometry,” J. Fluid Mech. 633, 425 (2009).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

E. Martín-Badosa, M. Montes-Usategui, A. Carnicer, J. Andilla, E. Pleguezuelos, and I. Juvells, “Design strategies for optimizing holographic optical tweezers set-ups,” J. Opt. A, Pure Appl. Opt. 9(8), S267–S277 (2007).
[CrossRef]

Methods Cell Biol.

J. Colombelli, E. G. Reynaud, and E. H. K. Stelzer, “Investigating relaxation processes in cells and developing organisms: from cell ablation to cytoskeleton nanosurgery,” Methods Cell Biol. 82, 267–291 (2007).
[CrossRef] [PubMed]

Nat. Cell Biol.

M. Rauzi, P. Verant, T. Lecuit, and P.-F. Lenne, “Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis,” Nat. Cell Biol. 10(12), 1401–1410 (2008).
[CrossRef] [PubMed]

Opt. Express

Opt. Rev.

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N. Mukohzaka, Y. Kobayashi, and T. Hara, “High efficiency electrically-addressable phase-only spatial light modulator,” Opt. Rev. 6(4), 339–344 (1999).
[CrossRef]

Philos. Mag.

LordRayleigh, “On the pressure developed in a liquid during the collapse of a spherical cavity,” Philos. Mag. 1917, 34 (1917).

Phys. Biol.

X. Ma, H. E. Lynch, P. C. Scully, and M. S. Hutson, “Probing embryonic tissue mechanics with laser hole drilling,” Phys. Biol. 6(3), 036004 (2009).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

K. Y. Lim, P. A. Quinto-Su, E. Klaseboer, B. C. Khoo, V. Venugopalan, and C.-D. Ohl, “Nonspherical laser-induced cavitation bubbles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(1), 016308 (2010).
[CrossRef] [PubMed]

I. Toytman, A. Silbergleit, D. Simanovski, and D. Palanker, “Multifocal laser surgery: cutting enhancement by hydrodynamic interactions between cavitation bubbles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 82(4), 046313 (2010).
[CrossRef] [PubMed]

Phys. Rev. Lett.

V. Venugopalan, A. Guerra, K. Nahen, and A. Vogel, “Role of laser-induced plasma formation in pulsed cellular microsurgery and micromanipulation,” Phys. Rev. Lett. 88(7), 078103 (2002).
[CrossRef] [PubMed]

M. S. Hutson and X. Ma, “Plasma and cavitation dynamics during pulsed laser microsurgery in vivo,” Phys. Rev. Lett. 99(15), 158104 (2007).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72(3), 1810 (2001).
[CrossRef]

E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69(5), 1974 (1998).
[CrossRef]

J. Colombelli, S. W. Grill, and E. H. K. Stelzer, “Ultraviolet diffraction limited nanosurgery of live biological tissues,” Rev. Sci. Instrum. 75(2), 472 (2004).
[CrossRef]

Science

Y. Toyama, X. G. Peralta, A. R. Wells, D. P. Kiehart, and G. S. Edwards, “Apoptotic force and tissue dynamics during Drosophila embryogenesis,” Science 321(5896), 1683–1686 (2008).
[CrossRef] [PubMed]

M. S. Hutson, Y. Tokutake, M. S. Chang, J. W. Bloor, S. Venakides, D. P. Kiehart, and G. S. Edwards, “Forces for morphogenesis investigated with laser microsurgery and quantitative modeling,” Science 300(5616), 145–149 (2003).
[CrossRef] [PubMed]

Traffic

J. Colombelli, E. G. Reynaud, J. Rietdorf, R. Pepperkok, and E. H. K. Stelzer, “In vivo selective cytoskeleton dynamics quantification in interphase cells induced by pulsed ultraviolet laser nanosurgery,” Traffic 6(12), 1093–1102 (2005).
[CrossRef] [PubMed]

Other

J. Campos-Ortega, The Embryonic Development of Drosophila melanogaster, 2nd ed. (Springer, 1997).

D. P. Kiehart, Y. Tokutake, M. S. Chang, M. S. Hutson, J. Wiemann, X. G. Peralta, Y. Toyama, A. R. Wells, A. Rodriguez, and G. S. Edwards, “Ultraviolet laser microbeam for dissection of Drosophila embryos,” in Cell Biology: A Laboratory Handbook, 3rd ed., J. E. Celis, ed. (Elsevier Academic, 2006), pp. 87–103.

G. C. Spalding, J. Courtial, and R. Di Leonardo, “Holographic optical tweezers,” in Structured Light and Its Applications an Introduction to Phase-Structured Beams and Nanoscale Optical Forces, D. Andrews, ed. (Academic Press, 2008), pp. 139–157.

A. Mao, “Holographic modulation of a pulsed UV laser microbeam for biophysical investigations of tissue dynamics,” Senior Thesis (Free Electron Laser Laboratory, Duke University, 2004).

Supplementary Material (3)

» Media 1: AVI (1294 KB)     
» Media 2: AVI (1424 KB)     
» Media 3: AVI (881 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Optical layout with paths for ablation, high-speed bright-field imaging and confocal fluorescence imaging shown in solid blue, dashed red and thick green lines, respectively.

Fig. 2
Fig. 2

Lifetime of laser-induced cavitation bubbles as a function of energy incident on the sample: red diamonds, solution of LD-390 in ethanol; gray squares, fruit fly embryos; blue circles, deionized water. Although the ablation thresholds differ by a factor of nearly 100, the bubble lifetime for a given pulse energy is consistent across all these samples.

Fig. 3
Fig. 3

Isolating a single cell from the amnioserosa using a conventional multi-pulse system (Media 1). The energy of each ablation pulse was 6.3 µJ at the mirror in front of the SLM—approximately 1.3 µJ at the sample, which is about 5× the ablation threshold. Each panel shows a confocal image of the tissue either (A) before or (B-H) during and after the sequence of ablations. Green overlays show the original outline of the cell to be isolated. Red crosshairs demarcate targets for the next ablation pulse. The static bright rings in the post-ablation images are holes in the embryo’s overlying vitelline membrane. The 20-µm scale bar is common to all images. The time stamp for each panel is relative to the first image.

Fig. 4
Fig. 4

Isolating a single cell from the amnioserosa using the single-pulse multi-point system (Media 2). The energy of the ablation pulse was 171 µJ at the surface of the SLM—approximately 10.3 µJ at the sample, which is about 4× the threshold expected for ten single-point ablations. (A) Confocal image of the tissue before ablation. Red crosshairs demarcate targets for ablation. (B-E) Confocal images after ablation. One can clearly see five holes in the overlying vitelline membrane. Green overlays show the original outline of the isolated cell. The time stamp for each panel is relative to the first image. (F) Comparison of the dynamic retraction of surrounding tissues (upper curve) and the collapse of the isolated cell (lower curve) as measured along a single line passing through the wound and isolated cell. (G-I) High-speed bright-field images of cavitation bubbles in solution. Images taken immediately post ablation, at maximum extent and at collapse with 10 ns exposures. Five pairs of cavitation bubbles can be seen in (G). The 20-µm scale bar is common to all images.

Fig. 5
Fig. 5

Multi-point ablation for linear incisions in the lateral epidermis (Media 3). The energy of the ablation pulse was 146 µJ at the surface of the SLM—approximately 8.7 µJ at the sample, which is approximately 3× the threshold for ten single-point ablations. (A) Confocal image of the tissue before ablation. Red lines demarcate the targeted incisions. (B-F) Confocal images after ablation. (G-I) Lines of cavitation bubbles generated by same pattern in laser dye. Images was taken immediately post ablation, at maximum extent and at collapse with a 10 ns exposure. The common scale bar is 20-µm long.

Metrics