Abstract

We present a method for high-resolution reconstruction of fluorescent images of the mouse thorax. It features an anatomically guided sampling method to retrospectively eliminate problematic data and a parallel Monte Carlo software package to compute the Jacobian matrix for the inverse problem. The proposed method was capable of resolving microliter-sized femtomole amount of quantum dot inclusions closely located in the middle of the mouse thorax. The reconstruction was verified against co-registered micro-CT data. Using the proposed method, the new system achieved significantly higher resolution and sensitivity compared to our previous system consisting of the same hardware. This method can be applied to any system utilizing similar imaging principles to improve imaging performance.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Montet, V. Ntziachristos, J. Grimm, and R. Weissleder, “Tomographic fluorescence mapping of tumor targets,” Cancer Res. 65(14), 6330–6336 (2005).
    [CrossRef] [PubMed]
  2. S. Bloch, F. Lesage, L. McIntosh, A. Gandjbakhche, K. Liang, and S. Achilefu, “Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice,” J. Biomed. Opt. 10(5), 054003 (2005).
    [CrossRef] [PubMed]
  3. A. Koenig, L. Hervé, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J. M. Dinten, P. Peltié, J. L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13(1), 011008 (2008).
    [CrossRef] [PubMed]
  4. V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett. 26(12), 893–895 (2001).
    [CrossRef] [PubMed]
  5. M. Chu, K. Vishwanath, A. D. Klose, and H. Dehghani, “Light transport in biological tissue using three-dimensional frequency-domain simplified spherical harmonics equations,” Phys. Med. Biol. 54(8), 2493–2509 (2009).
    [CrossRef] [PubMed]
  6. A. Zhang, D. Piao, C. F. Bunting, and B. W. Pogue, “Photon diffusion in a homogeneous medium bounded externally or internally by an infinitely long circular cylindrical applicator. I. Steady-state theory,” J. Opt. Soc. Am. A 27(3), 648–662 (2010).
    [CrossRef] [PubMed]
  7. R. B. Schulz, J. Ripoll, and V. Ntziachristos, “Noncontact optical tomography of turbid media,” Opt. Lett. 28(18), 1701–1703 (2003).
    [CrossRef] [PubMed]
  8. G. M. Turner, G. Zacharakis, A. Soubret, J. Ripoll, and V. Ntziachristos, “Complete-angle projection diffuse optical tomography by use of early photons,” Opt. Lett. 30(4), 409–411 (2005).
    [CrossRef] [PubMed]
  9. S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42(5), 841–853 (1997).
    [CrossRef] [PubMed]
  10. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
    [CrossRef] [PubMed]
  11. D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23(Suppl 1), S275–S288 (2004).
    [CrossRef] [PubMed]
  12. D. Boas, J. Culver, J. Stott, and A. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10(3), 159–170 (2002).
    [PubMed]
  13. G. M. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt. 45(5), 1062–1071 (2006).
    [CrossRef] [PubMed]
  14. T. Pan, J. C. Rasmussen, J. H. Lee, and E. M. Sevick-Muraca, “Monte Carlo simulation of time-dependent, transport-limited fluorescent boundary measurements in frequency domain,” Med. Phys. 34(4), 1298–1311 (2007).
    [CrossRef] [PubMed]
  15. X. Zhang, V. Toronov, and A. Webb, “Simultaneous integrated diffuse optical tomography and functional magnetic resonance imaging of the human brain,” Opt. Express 13(14), 5513–5521 (2005).
    [CrossRef] [PubMed]
  16. N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, “Free-space fluorescence molecular tomography utilizing 360° geometry projections,” Opt. Lett. 32(4), 382–384 (2007).
    [CrossRef] [PubMed]
  17. Z. M. Wang, G. Y. Panasyuk, V. A. Markel, and J. C. Schotland, “Experimental demonstration of an analytic method for image reconstruction in optical diffusion tomography with large data sets,” Opt. Lett. 30(24), 3338–3340 (2005).
    [CrossRef] [PubMed]
  18. G. Y. Panasyuk, Z. M. Wang, J. C. Schotland, and V. A. Markel, “Fluorescent optical tomography with large data sets,” Opt. Lett. 33(15), 1744–1746 (2008).
    [CrossRef] [PubMed]
  19. J. P. Culver, V. Ntziachristos, M. J. Holboke, and A. G. Yodh, “Optimization of optode arrangements for diffuse optical tomography: A singular-value analysis,” Opt. Lett. 26(10), 701–703 (2001).
    [CrossRef] [PubMed]
  20. H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, and J. F. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8(1), 102–110 (2003).
    [CrossRef] [PubMed]
  21. X. Zhang and C. Badea, “Effects of sampling strategy on image quality in noncontact panoramic fluorescence diffuse optical tomography for small animal imaging,” Opt. Express 17(7), 5125–5138 (2009).
    [CrossRef] [PubMed]
  22. B. W. Pogue and K. D. Paulsen, “High-resolution near-infrared tomographic imaging simulations of the rat cranium by use of a priori magnetic resonance imaging structural information,” Opt. Lett. 23(21), 1716–1718 (1998).
    [CrossRef] [PubMed]
  23. X. Intes, C. Maloux, M. Guven, B. Yazici, and B. Chance, “Diffuse optical tomography with physiological and spatial a priori constraints,” Phys. Med. Biol. 49(12), N155–N163 (2004).
    [CrossRef] [PubMed]
  24. Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, “Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study,” Phys. Med. Biol. 52(18), 5569–5585 (2007).
    [CrossRef] [PubMed]
  25. X. Zhang, C. T. Badea, and G. A. Johnson, “Three-dimensional reconstruction in free-space whole-body fluorescence tomography of mice using optically reconstructed surface and atlas anatomy,” J. Biomed. Opt. 14(6), 064010 (2009).
    [CrossRef] [PubMed]
  26. D. Hyde, R. Schulz, D. Brooks, E. Miller, and V. Ntziachristos, “Performance dependence of hybrid x-ray computed tomography/fluorescence molecular tomography on the optical forward problem,” J. Opt. Soc. Am. A 26(4), 919–923 (2009).
    [CrossRef] [PubMed]
  27. B. Ballou, B. C. Lagerholm, L. A. Ernst, M. P. Bruchez, and A. S. Waggoner, “Noninvasive imaging of quantum dots in mice,” Bioconjug. Chem. 15(1), 79–86 (2004).
    [CrossRef] [PubMed]
  28. N. Y. Morgan, S. English, W. Chen, V. Chernomordik, A. Russo, P. D. Smith, and A. Gandjbakhche, “Real time in vivo non-invasive optical imaging using near-infrared fluorescent quantum dots,” Acad. Radiol. 12(3), 313–323 (2005).
    [CrossRef] [PubMed]
  29. I. Texier and V. Josser, “In vivo imaging of quantum dots,” Methods Mol. Biol. 544, 393–406 (2009).
    [CrossRef] [PubMed]
  30. C. Badea, S. Johnston, B. Johnson, M. Lin, L. Hedlund, and G. Johnson, “Dual micro-CT system for small animal imaging,” Proc. SPIE 6913, 691342 (2008).
  31. L. Feldkamp, L. Davis, and J. Kress, “Practical cone-beam algorithm,” J. Opt. Soc. Am. 1(6), 612–619 (1984).
    [CrossRef]
  32. S. M. Johnston, G. A. Johnson, and C. T. Badea, “Geometric calibration for a dual tube/detector micro-CT system,” Med. Phys. 35(5), 1820–1829 (2008).
    [CrossRef] [PubMed]
  33. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50(17), 4225–4241 (2005).
    [CrossRef] [PubMed]
  34. X. Zhang, V. Y. Toronov, and A. G. Webb, “An integrated measurement system for simultaneous functional magnetic resonance imaging and diffuse optical tomography in human brain mapping,” Rev. Sci. Instrum. 77(11), 114301 (2006).
    [CrossRef] [PubMed]
  35. L. Hervé, A. Koenig, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, P. Peltié, and P. Rizo, “Noncontact fluorescence diffuse optical tomography of heterogeneous media,” Appl. Opt. 46(22), 4896–4906 (2007).
    [CrossRef] [PubMed]
  36. Y. Lin, H. Yan, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography with functional and structural a priori information,” Appl. Opt. 48(7), 1328–1336 (2009).
    [CrossRef] [PubMed]
  37. Y. Tan and H. Jiang, “DOT guided fluorescence molecular tomography of arbitrarily shaped objects,” Med. Phys. 35(12), 5703–5707 (2008).
    [CrossRef] [PubMed]
  38. Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express 17(22), 20178–20190 (2009).
    [CrossRef] [PubMed]
  39. E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration,” J. Biomed. Opt. 13(6), 060504 (2008).
    [CrossRef] [PubMed]
  40. D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Subsurface diffuse optical tomography can localize absorber and fluorescent objects but recovered image sensitivity is nonlinear with depth,” Appl. Opt. 46(10), 1669–1678 (2007).
    [CrossRef] [PubMed]

2010 (1)

2009 (7)

M. Chu, K. Vishwanath, A. D. Klose, and H. Dehghani, “Light transport in biological tissue using three-dimensional frequency-domain simplified spherical harmonics equations,” Phys. Med. Biol. 54(8), 2493–2509 (2009).
[CrossRef] [PubMed]

X. Zhang and C. Badea, “Effects of sampling strategy on image quality in noncontact panoramic fluorescence diffuse optical tomography for small animal imaging,” Opt. Express 17(7), 5125–5138 (2009).
[CrossRef] [PubMed]

X. Zhang, C. T. Badea, and G. A. Johnson, “Three-dimensional reconstruction in free-space whole-body fluorescence tomography of mice using optically reconstructed surface and atlas anatomy,” J. Biomed. Opt. 14(6), 064010 (2009).
[CrossRef] [PubMed]

D. Hyde, R. Schulz, D. Brooks, E. Miller, and V. Ntziachristos, “Performance dependence of hybrid x-ray computed tomography/fluorescence molecular tomography on the optical forward problem,” J. Opt. Soc. Am. A 26(4), 919–923 (2009).
[CrossRef] [PubMed]

I. Texier and V. Josser, “In vivo imaging of quantum dots,” Methods Mol. Biol. 544, 393–406 (2009).
[CrossRef] [PubMed]

Y. Lin, H. Yan, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography with functional and structural a priori information,” Appl. Opt. 48(7), 1328–1336 (2009).
[CrossRef] [PubMed]

Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express 17(22), 20178–20190 (2009).
[CrossRef] [PubMed]

2008 (6)

E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration,” J. Biomed. Opt. 13(6), 060504 (2008).
[CrossRef] [PubMed]

Y. Tan and H. Jiang, “DOT guided fluorescence molecular tomography of arbitrarily shaped objects,” Med. Phys. 35(12), 5703–5707 (2008).
[CrossRef] [PubMed]

C. Badea, S. Johnston, B. Johnson, M. Lin, L. Hedlund, and G. Johnson, “Dual micro-CT system for small animal imaging,” Proc. SPIE 6913, 691342 (2008).

S. M. Johnston, G. A. Johnson, and C. T. Badea, “Geometric calibration for a dual tube/detector micro-CT system,” Med. Phys. 35(5), 1820–1829 (2008).
[CrossRef] [PubMed]

G. Y. Panasyuk, Z. M. Wang, J. C. Schotland, and V. A. Markel, “Fluorescent optical tomography with large data sets,” Opt. Lett. 33(15), 1744–1746 (2008).
[CrossRef] [PubMed]

A. Koenig, L. Hervé, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J. M. Dinten, P. Peltié, J. L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13(1), 011008 (2008).
[CrossRef] [PubMed]

2007 (5)

2006 (2)

X. Zhang, V. Y. Toronov, and A. G. Webb, “An integrated measurement system for simultaneous functional magnetic resonance imaging and diffuse optical tomography in human brain mapping,” Rev. Sci. Instrum. 77(11), 114301 (2006).
[CrossRef] [PubMed]

G. M. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt. 45(5), 1062–1071 (2006).
[CrossRef] [PubMed]

2005 (8)

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
[CrossRef] [PubMed]

Z. M. Wang, G. Y. Panasyuk, V. A. Markel, and J. C. Schotland, “Experimental demonstration of an analytic method for image reconstruction in optical diffusion tomography with large data sets,” Opt. Lett. 30(24), 3338–3340 (2005).
[CrossRef] [PubMed]

X. Zhang, V. Toronov, and A. Webb, “Simultaneous integrated diffuse optical tomography and functional magnetic resonance imaging of the human brain,” Opt. Express 13(14), 5513–5521 (2005).
[CrossRef] [PubMed]

X. Montet, V. Ntziachristos, J. Grimm, and R. Weissleder, “Tomographic fluorescence mapping of tumor targets,” Cancer Res. 65(14), 6330–6336 (2005).
[CrossRef] [PubMed]

S. Bloch, F. Lesage, L. McIntosh, A. Gandjbakhche, K. Liang, and S. Achilefu, “Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice,” J. Biomed. Opt. 10(5), 054003 (2005).
[CrossRef] [PubMed]

G. M. Turner, G. Zacharakis, A. Soubret, J. Ripoll, and V. Ntziachristos, “Complete-angle projection diffuse optical tomography by use of early photons,” Opt. Lett. 30(4), 409–411 (2005).
[CrossRef] [PubMed]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50(17), 4225–4241 (2005).
[CrossRef] [PubMed]

N. Y. Morgan, S. English, W. Chen, V. Chernomordik, A. Russo, P. D. Smith, and A. Gandjbakhche, “Real time in vivo non-invasive optical imaging using near-infrared fluorescent quantum dots,” Acad. Radiol. 12(3), 313–323 (2005).
[CrossRef] [PubMed]

2004 (3)

B. Ballou, B. C. Lagerholm, L. A. Ernst, M. P. Bruchez, and A. S. Waggoner, “Noninvasive imaging of quantum dots in mice,” Bioconjug. Chem. 15(1), 79–86 (2004).
[CrossRef] [PubMed]

X. Intes, C. Maloux, M. Guven, B. Yazici, and B. Chance, “Diffuse optical tomography with physiological and spatial a priori constraints,” Phys. Med. Biol. 49(12), N155–N163 (2004).
[CrossRef] [PubMed]

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23(Suppl 1), S275–S288 (2004).
[CrossRef] [PubMed]

2003 (2)

R. B. Schulz, J. Ripoll, and V. Ntziachristos, “Noncontact optical tomography of turbid media,” Opt. Lett. 28(18), 1701–1703 (2003).
[CrossRef] [PubMed]

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, and J. F. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8(1), 102–110 (2003).
[CrossRef] [PubMed]

2002 (1)

2001 (2)

1998 (1)

1997 (1)

S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42(5), 841–853 (1997).
[CrossRef] [PubMed]

1984 (1)

L. Feldkamp, L. Davis, and J. Kress, “Practical cone-beam algorithm,” J. Opt. Soc. Am. 1(6), 612–619 (1984).
[CrossRef]

Achilefu, S.

S. Bloch, F. Lesage, L. McIntosh, A. Gandjbakhche, K. Liang, and S. Achilefu, “Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice,” J. Biomed. Opt. 10(5), 054003 (2005).
[CrossRef] [PubMed]

Alerstam, E.

E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration,” J. Biomed. Opt. 13(6), 060504 (2008).
[CrossRef] [PubMed]

Alexandrakis, G.

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50(17), 4225–4241 (2005).
[CrossRef] [PubMed]

Andersson-Engels, S.

E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration,” J. Biomed. Opt. 13(6), 060504 (2008).
[CrossRef] [PubMed]

Arridge, S. R.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
[CrossRef] [PubMed]

S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42(5), 841–853 (1997).
[CrossRef] [PubMed]

Badea, C.

X. Zhang and C. Badea, “Effects of sampling strategy on image quality in noncontact panoramic fluorescence diffuse optical tomography for small animal imaging,” Opt. Express 17(7), 5125–5138 (2009).
[CrossRef] [PubMed]

C. Badea, S. Johnston, B. Johnson, M. Lin, L. Hedlund, and G. Johnson, “Dual micro-CT system for small animal imaging,” Proc. SPIE 6913, 691342 (2008).

Badea, C. T.

X. Zhang, C. T. Badea, and G. A. Johnson, “Three-dimensional reconstruction in free-space whole-body fluorescence tomography of mice using optically reconstructed surface and atlas anatomy,” J. Biomed. Opt. 14(6), 064010 (2009).
[CrossRef] [PubMed]

S. M. Johnston, G. A. Johnson, and C. T. Badea, “Geometric calibration for a dual tube/detector micro-CT system,” Med. Phys. 35(5), 1820–1829 (2008).
[CrossRef] [PubMed]

Ballou, B.

B. Ballou, B. C. Lagerholm, L. A. Ernst, M. P. Bruchez, and A. S. Waggoner, “Noninvasive imaging of quantum dots in mice,” Bioconjug. Chem. 15(1), 79–86 (2004).
[CrossRef] [PubMed]

Berger, M.

A. Koenig, L. Hervé, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J. M. Dinten, P. Peltié, J. L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13(1), 011008 (2008).
[CrossRef] [PubMed]

L. Hervé, A. Koenig, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, P. Peltié, and P. Rizo, “Noncontact fluorescence diffuse optical tomography of heterogeneous media,” Appl. Opt. 46(22), 4896–4906 (2007).
[CrossRef] [PubMed]

Bloch, S.

S. Bloch, F. Lesage, L. McIntosh, A. Gandjbakhche, K. Liang, and S. Achilefu, “Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice,” J. Biomed. Opt. 10(5), 054003 (2005).
[CrossRef] [PubMed]

Boas, D.

Boas, D. A.

Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express 17(22), 20178–20190 (2009).
[CrossRef] [PubMed]

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23(Suppl 1), S275–S288 (2004).
[CrossRef] [PubMed]

Boutet, J.

A. Koenig, L. Hervé, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J. M. Dinten, P. Peltié, J. L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13(1), 011008 (2008).
[CrossRef] [PubMed]

L. Hervé, A. Koenig, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, P. Peltié, and P. Rizo, “Noncontact fluorescence diffuse optical tomography of heterogeneous media,” Appl. Opt. 46(22), 4896–4906 (2007).
[CrossRef] [PubMed]

Brooks, D.

Bruchez, M. P.

B. Ballou, B. C. Lagerholm, L. A. Ernst, M. P. Bruchez, and A. S. Waggoner, “Noninvasive imaging of quantum dots in mice,” Bioconjug. Chem. 15(1), 79–86 (2004).
[CrossRef] [PubMed]

Bunting, C. F.

Chance, B.

X. Intes, C. Maloux, M. Guven, B. Yazici, and B. Chance, “Diffuse optical tomography with physiological and spatial a priori constraints,” Phys. Med. Biol. 49(12), N155–N163 (2004).
[CrossRef] [PubMed]

Chatziioannou, A. F.

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50(17), 4225–4241 (2005).
[CrossRef] [PubMed]

Chen, W.

N. Y. Morgan, S. English, W. Chen, V. Chernomordik, A. Russo, P. D. Smith, and A. Gandjbakhche, “Real time in vivo non-invasive optical imaging using near-infrared fluorescent quantum dots,” Acad. Radiol. 12(3), 313–323 (2005).
[CrossRef] [PubMed]

Chernomordik, V.

N. Y. Morgan, S. English, W. Chen, V. Chernomordik, A. Russo, P. D. Smith, and A. Gandjbakhche, “Real time in vivo non-invasive optical imaging using near-infrared fluorescent quantum dots,” Acad. Radiol. 12(3), 313–323 (2005).
[CrossRef] [PubMed]

Chu, M.

M. Chu, K. Vishwanath, A. D. Klose, and H. Dehghani, “Light transport in biological tissue using three-dimensional frequency-domain simplified spherical harmonics equations,” Phys. Med. Biol. 54(8), 2493–2509 (2009).
[CrossRef] [PubMed]

Coll, J. L.

A. Koenig, L. Hervé, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J. M. Dinten, P. Peltié, J. L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13(1), 011008 (2008).
[CrossRef] [PubMed]

Culver, J.

Culver, J. P.

Da Silva, A.

A. Koenig, L. Hervé, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J. M. Dinten, P. Peltié, J. L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13(1), 011008 (2008).
[CrossRef] [PubMed]

L. Hervé, A. Koenig, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, P. Peltié, and P. Rizo, “Noncontact fluorescence diffuse optical tomography of heterogeneous media,” Appl. Opt. 46(22), 4896–4906 (2007).
[CrossRef] [PubMed]

Dale, A. M.

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23(Suppl 1), S275–S288 (2004).
[CrossRef] [PubMed]

Davis, L.

L. Feldkamp, L. Davis, and J. Kress, “Practical cone-beam algorithm,” J. Opt. Soc. Am. 1(6), 612–619 (1984).
[CrossRef]

Davis, S. C.

Dehghani, H.

M. Chu, K. Vishwanath, A. D. Klose, and H. Dehghani, “Light transport in biological tissue using three-dimensional frequency-domain simplified spherical harmonics equations,” Phys. Med. Biol. 54(8), 2493–2509 (2009).
[CrossRef] [PubMed]

D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Subsurface diffuse optical tomography can localize absorber and fluorescent objects but recovered image sensitivity is nonlinear with depth,” Appl. Opt. 46(10), 1669–1678 (2007).
[CrossRef] [PubMed]

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, and J. F. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8(1), 102–110 (2003).
[CrossRef] [PubMed]

Deliolanis, N.

Dinten, J. M.

A. Koenig, L. Hervé, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J. M. Dinten, P. Peltié, J. L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13(1), 011008 (2008).
[CrossRef] [PubMed]

L. Hervé, A. Koenig, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, P. Peltié, and P. Rizo, “Noncontact fluorescence diffuse optical tomography of heterogeneous media,” Appl. Opt. 46(22), 4896–4906 (2007).
[CrossRef] [PubMed]

Dunn, A.

Dunn, J. F.

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, and J. F. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8(1), 102–110 (2003).
[CrossRef] [PubMed]

English, S.

N. Y. Morgan, S. English, W. Chen, V. Chernomordik, A. Russo, P. D. Smith, and A. Gandjbakhche, “Real time in vivo non-invasive optical imaging using near-infrared fluorescent quantum dots,” Acad. Radiol. 12(3), 313–323 (2005).
[CrossRef] [PubMed]

Ernst, L. A.

B. Ballou, B. C. Lagerholm, L. A. Ernst, M. P. Bruchez, and A. S. Waggoner, “Noninvasive imaging of quantum dots in mice,” Bioconjug. Chem. 15(1), 79–86 (2004).
[CrossRef] [PubMed]

Fang, Q.

Feldkamp, L.

L. Feldkamp, L. Davis, and J. Kress, “Practical cone-beam algorithm,” J. Opt. Soc. Am. 1(6), 612–619 (1984).
[CrossRef]

Franceschini, M. A.

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23(Suppl 1), S275–S288 (2004).
[CrossRef] [PubMed]

Gandjbakhche, A.

S. Bloch, F. Lesage, L. McIntosh, A. Gandjbakhche, K. Liang, and S. Achilefu, “Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice,” J. Biomed. Opt. 10(5), 054003 (2005).
[CrossRef] [PubMed]

N. Y. Morgan, S. English, W. Chen, V. Chernomordik, A. Russo, P. D. Smith, and A. Gandjbakhche, “Real time in vivo non-invasive optical imaging using near-infrared fluorescent quantum dots,” Acad. Radiol. 12(3), 313–323 (2005).
[CrossRef] [PubMed]

Gao, H.

Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, “Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study,” Phys. Med. Biol. 52(18), 5569–5585 (2007).
[CrossRef] [PubMed]

Gibson, A. P.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
[CrossRef] [PubMed]

Grimm, J.

X. Montet, V. Ntziachristos, J. Grimm, and R. Weissleder, “Tomographic fluorescence mapping of tumor targets,” Cancer Res. 65(14), 6330–6336 (2005).
[CrossRef] [PubMed]

Gulsen, G.

Y. Lin, H. Yan, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography with functional and structural a priori information,” Appl. Opt. 48(7), 1328–1336 (2009).
[CrossRef] [PubMed]

Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, “Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study,” Phys. Med. Biol. 52(18), 5569–5585 (2007).
[CrossRef] [PubMed]

Guven, M.

X. Intes, C. Maloux, M. Guven, B. Yazici, and B. Chance, “Diffuse optical tomography with physiological and spatial a priori constraints,” Phys. Med. Biol. 49(12), N155–N163 (2004).
[CrossRef] [PubMed]

Hebden, J. C.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
[CrossRef] [PubMed]

S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42(5), 841–853 (1997).
[CrossRef] [PubMed]

Hedlund, L.

C. Badea, S. Johnston, B. Johnson, M. Lin, L. Hedlund, and G. Johnson, “Dual micro-CT system for small animal imaging,” Proc. SPIE 6913, 691342 (2008).

Hervé, L.

A. Koenig, L. Hervé, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J. M. Dinten, P. Peltié, J. L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13(1), 011008 (2008).
[CrossRef] [PubMed]

L. Hervé, A. Koenig, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, P. Peltié, and P. Rizo, “Noncontact fluorescence diffuse optical tomography of heterogeneous media,” Appl. Opt. 46(22), 4896–4906 (2007).
[CrossRef] [PubMed]

Holboke, M. J.

Hyde, D.

Intes, X.

X. Intes, C. Maloux, M. Guven, B. Yazici, and B. Chance, “Diffuse optical tomography with physiological and spatial a priori constraints,” Phys. Med. Biol. 49(12), N155–N163 (2004).
[CrossRef] [PubMed]

Jiang, H.

Y. Tan and H. Jiang, “DOT guided fluorescence molecular tomography of arbitrarily shaped objects,” Med. Phys. 35(12), 5703–5707 (2008).
[CrossRef] [PubMed]

Johnson, B.

C. Badea, S. Johnston, B. Johnson, M. Lin, L. Hedlund, and G. Johnson, “Dual micro-CT system for small animal imaging,” Proc. SPIE 6913, 691342 (2008).

Johnson, G.

C. Badea, S. Johnston, B. Johnson, M. Lin, L. Hedlund, and G. Johnson, “Dual micro-CT system for small animal imaging,” Proc. SPIE 6913, 691342 (2008).

Johnson, G. A.

X. Zhang, C. T. Badea, and G. A. Johnson, “Three-dimensional reconstruction in free-space whole-body fluorescence tomography of mice using optically reconstructed surface and atlas anatomy,” J. Biomed. Opt. 14(6), 064010 (2009).
[CrossRef] [PubMed]

S. M. Johnston, G. A. Johnson, and C. T. Badea, “Geometric calibration for a dual tube/detector micro-CT system,” Med. Phys. 35(5), 1820–1829 (2008).
[CrossRef] [PubMed]

Johnston, S.

C. Badea, S. Johnston, B. Johnson, M. Lin, L. Hedlund, and G. Johnson, “Dual micro-CT system for small animal imaging,” Proc. SPIE 6913, 691342 (2008).

Johnston, S. M.

S. M. Johnston, G. A. Johnson, and C. T. Badea, “Geometric calibration for a dual tube/detector micro-CT system,” Med. Phys. 35(5), 1820–1829 (2008).
[CrossRef] [PubMed]

Josser, V.

I. Texier and V. Josser, “In vivo imaging of quantum dots,” Methods Mol. Biol. 544, 393–406 (2009).
[CrossRef] [PubMed]

Josserand, V.

A. Koenig, L. Hervé, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J. M. Dinten, P. Peltié, J. L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13(1), 011008 (2008).
[CrossRef] [PubMed]

Kepshire, D. S.

Klose, A. D.

M. Chu, K. Vishwanath, A. D. Klose, and H. Dehghani, “Light transport in biological tissue using three-dimensional frequency-domain simplified spherical harmonics equations,” Phys. Med. Biol. 54(8), 2493–2509 (2009).
[CrossRef] [PubMed]

Koenig, A.

A. Koenig, L. Hervé, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J. M. Dinten, P. Peltié, J. L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13(1), 011008 (2008).
[CrossRef] [PubMed]

L. Hervé, A. Koenig, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, P. Peltié, and P. Rizo, “Noncontact fluorescence diffuse optical tomography of heterogeneous media,” Appl. Opt. 46(22), 4896–4906 (2007).
[CrossRef] [PubMed]

Kress, J.

L. Feldkamp, L. Davis, and J. Kress, “Practical cone-beam algorithm,” J. Opt. Soc. Am. 1(6), 612–619 (1984).
[CrossRef]

Lagerholm, B. C.

B. Ballou, B. C. Lagerholm, L. A. Ernst, M. P. Bruchez, and A. S. Waggoner, “Noninvasive imaging of quantum dots in mice,” Bioconjug. Chem. 15(1), 79–86 (2004).
[CrossRef] [PubMed]

Lasser, T.

Lee, J. H.

T. Pan, J. C. Rasmussen, J. H. Lee, and E. M. Sevick-Muraca, “Monte Carlo simulation of time-dependent, transport-limited fluorescent boundary measurements in frequency domain,” Med. Phys. 34(4), 1298–1311 (2007).
[CrossRef] [PubMed]

Lesage, F.

S. Bloch, F. Lesage, L. McIntosh, A. Gandjbakhche, K. Liang, and S. Achilefu, “Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice,” J. Biomed. Opt. 10(5), 054003 (2005).
[CrossRef] [PubMed]

Liang, K.

S. Bloch, F. Lesage, L. McIntosh, A. Gandjbakhche, K. Liang, and S. Achilefu, “Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice,” J. Biomed. Opt. 10(5), 054003 (2005).
[CrossRef] [PubMed]

Lin, M.

C. Badea, S. Johnston, B. Johnson, M. Lin, L. Hedlund, and G. Johnson, “Dual micro-CT system for small animal imaging,” Proc. SPIE 6913, 691342 (2008).

Lin, Y.

Y. Lin, H. Yan, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography with functional and structural a priori information,” Appl. Opt. 48(7), 1328–1336 (2009).
[CrossRef] [PubMed]

Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, “Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study,” Phys. Med. Biol. 52(18), 5569–5585 (2007).
[CrossRef] [PubMed]

Maloux, C.

X. Intes, C. Maloux, M. Guven, B. Yazici, and B. Chance, “Diffuse optical tomography with physiological and spatial a priori constraints,” Phys. Med. Biol. 49(12), N155–N163 (2004).
[CrossRef] [PubMed]

Markel, V. A.

McIntosh, L.

S. Bloch, F. Lesage, L. McIntosh, A. Gandjbakhche, K. Liang, and S. Achilefu, “Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice,” J. Biomed. Opt. 10(5), 054003 (2005).
[CrossRef] [PubMed]

Miller, E.

Montet, X.

X. Montet, V. Ntziachristos, J. Grimm, and R. Weissleder, “Tomographic fluorescence mapping of tumor targets,” Cancer Res. 65(14), 6330–6336 (2005).
[CrossRef] [PubMed]

Morgan, N. Y.

N. Y. Morgan, S. English, W. Chen, V. Chernomordik, A. Russo, P. D. Smith, and A. Gandjbakhche, “Real time in vivo non-invasive optical imaging using near-infrared fluorescent quantum dots,” Acad. Radiol. 12(3), 313–323 (2005).
[CrossRef] [PubMed]

Nalcioglu, O.

Y. Lin, H. Yan, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography with functional and structural a priori information,” Appl. Opt. 48(7), 1328–1336 (2009).
[CrossRef] [PubMed]

Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, “Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study,” Phys. Med. Biol. 52(18), 5569–5585 (2007).
[CrossRef] [PubMed]

Ntziachristos, V.

Palmer, G. M.

Pan, T.

T. Pan, J. C. Rasmussen, J. H. Lee, and E. M. Sevick-Muraca, “Monte Carlo simulation of time-dependent, transport-limited fluorescent boundary measurements in frequency domain,” Med. Phys. 34(4), 1298–1311 (2007).
[CrossRef] [PubMed]

Panasyuk, G. Y.

Paulsen, K. D.

Peltié, P.

A. Koenig, L. Hervé, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J. M. Dinten, P. Peltié, J. L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13(1), 011008 (2008).
[CrossRef] [PubMed]

L. Hervé, A. Koenig, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, P. Peltié, and P. Rizo, “Noncontact fluorescence diffuse optical tomography of heterogeneous media,” Appl. Opt. 46(22), 4896–4906 (2007).
[CrossRef] [PubMed]

Piao, D.

Pogue, B. W.

Ramanujam, N.

Rannou, F. R.

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50(17), 4225–4241 (2005).
[CrossRef] [PubMed]

Rasmussen, J. C.

T. Pan, J. C. Rasmussen, J. H. Lee, and E. M. Sevick-Muraca, “Monte Carlo simulation of time-dependent, transport-limited fluorescent boundary measurements in frequency domain,” Med. Phys. 34(4), 1298–1311 (2007).
[CrossRef] [PubMed]

Ripoll, J.

Rizo, P.

A. Koenig, L. Hervé, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J. M. Dinten, P. Peltié, J. L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13(1), 011008 (2008).
[CrossRef] [PubMed]

L. Hervé, A. Koenig, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, P. Peltié, and P. Rizo, “Noncontact fluorescence diffuse optical tomography of heterogeneous media,” Appl. Opt. 46(22), 4896–4906 (2007).
[CrossRef] [PubMed]

Russo, A.

N. Y. Morgan, S. English, W. Chen, V. Chernomordik, A. Russo, P. D. Smith, and A. Gandjbakhche, “Real time in vivo non-invasive optical imaging using near-infrared fluorescent quantum dots,” Acad. Radiol. 12(3), 313–323 (2005).
[CrossRef] [PubMed]

Schotland, J. C.

Schulz, R.

Schulz, R. B.

Sevick-Muraca, E. M.

T. Pan, J. C. Rasmussen, J. H. Lee, and E. M. Sevick-Muraca, “Monte Carlo simulation of time-dependent, transport-limited fluorescent boundary measurements in frequency domain,” Med. Phys. 34(4), 1298–1311 (2007).
[CrossRef] [PubMed]

Smith, P. D.

N. Y. Morgan, S. English, W. Chen, V. Chernomordik, A. Russo, P. D. Smith, and A. Gandjbakhche, “Real time in vivo non-invasive optical imaging using near-infrared fluorescent quantum dots,” Acad. Radiol. 12(3), 313–323 (2005).
[CrossRef] [PubMed]

Soubret, A.

Springett, R.

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, and J. F. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8(1), 102–110 (2003).
[CrossRef] [PubMed]

Stott, J.

Svensson, T.

E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration,” J. Biomed. Opt. 13(6), 060504 (2008).
[CrossRef] [PubMed]

Tan, Y.

Y. Tan and H. Jiang, “DOT guided fluorescence molecular tomography of arbitrarily shaped objects,” Med. Phys. 35(12), 5703–5707 (2008).
[CrossRef] [PubMed]

Texier, I.

I. Texier and V. Josser, “In vivo imaging of quantum dots,” Methods Mol. Biol. 544, 393–406 (2009).
[CrossRef] [PubMed]

Toronov, V.

Toronov, V. Y.

X. Zhang, V. Y. Toronov, and A. G. Webb, “An integrated measurement system for simultaneous functional magnetic resonance imaging and diffuse optical tomography in human brain mapping,” Rev. Sci. Instrum. 77(11), 114301 (2006).
[CrossRef] [PubMed]

Turner, G. M.

Vishwanath, K.

M. Chu, K. Vishwanath, A. D. Klose, and H. Dehghani, “Light transport in biological tissue using three-dimensional frequency-domain simplified spherical harmonics equations,” Phys. Med. Biol. 54(8), 2493–2509 (2009).
[CrossRef] [PubMed]

Waggoner, A. S.

B. Ballou, B. C. Lagerholm, L. A. Ernst, M. P. Bruchez, and A. S. Waggoner, “Noninvasive imaging of quantum dots in mice,” Bioconjug. Chem. 15(1), 79–86 (2004).
[CrossRef] [PubMed]

Wang, Z. M.

Webb, A.

Webb, A. G.

X. Zhang, V. Y. Toronov, and A. G. Webb, “An integrated measurement system for simultaneous functional magnetic resonance imaging and diffuse optical tomography in human brain mapping,” Rev. Sci. Instrum. 77(11), 114301 (2006).
[CrossRef] [PubMed]

Weissleder, R.

Xu, H.

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, and J. F. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8(1), 102–110 (2003).
[CrossRef] [PubMed]

Yan, H.

Yazici, B.

X. Intes, C. Maloux, M. Guven, B. Yazici, and B. Chance, “Diffuse optical tomography with physiological and spatial a priori constraints,” Phys. Med. Biol. 49(12), N155–N163 (2004).
[CrossRef] [PubMed]

Yodh, A. G.

Zacharakis, G.

Zhang, A.

Zhang, X.

X. Zhang and C. Badea, “Effects of sampling strategy on image quality in noncontact panoramic fluorescence diffuse optical tomography for small animal imaging,” Opt. Express 17(7), 5125–5138 (2009).
[CrossRef] [PubMed]

X. Zhang, C. T. Badea, and G. A. Johnson, “Three-dimensional reconstruction in free-space whole-body fluorescence tomography of mice using optically reconstructed surface and atlas anatomy,” J. Biomed. Opt. 14(6), 064010 (2009).
[CrossRef] [PubMed]

X. Zhang, V. Y. Toronov, and A. G. Webb, “An integrated measurement system for simultaneous functional magnetic resonance imaging and diffuse optical tomography in human brain mapping,” Rev. Sci. Instrum. 77(11), 114301 (2006).
[CrossRef] [PubMed]

X. Zhang, V. Toronov, and A. Webb, “Simultaneous integrated diffuse optical tomography and functional magnetic resonance imaging of the human brain,” Opt. Express 13(14), 5513–5521 (2005).
[CrossRef] [PubMed]

Acad. Radiol. (1)

N. Y. Morgan, S. English, W. Chen, V. Chernomordik, A. Russo, P. D. Smith, and A. Gandjbakhche, “Real time in vivo non-invasive optical imaging using near-infrared fluorescent quantum dots,” Acad. Radiol. 12(3), 313–323 (2005).
[CrossRef] [PubMed]

Appl. Opt. (4)

Bioconjug. Chem. (1)

B. Ballou, B. C. Lagerholm, L. A. Ernst, M. P. Bruchez, and A. S. Waggoner, “Noninvasive imaging of quantum dots in mice,” Bioconjug. Chem. 15(1), 79–86 (2004).
[CrossRef] [PubMed]

Cancer Res. (1)

X. Montet, V. Ntziachristos, J. Grimm, and R. Weissleder, “Tomographic fluorescence mapping of tumor targets,” Cancer Res. 65(14), 6330–6336 (2005).
[CrossRef] [PubMed]

J. Biomed. Opt. (5)

S. Bloch, F. Lesage, L. McIntosh, A. Gandjbakhche, K. Liang, and S. Achilefu, “Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice,” J. Biomed. Opt. 10(5), 054003 (2005).
[CrossRef] [PubMed]

A. Koenig, L. Hervé, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J. M. Dinten, P. Peltié, J. L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13(1), 011008 (2008).
[CrossRef] [PubMed]

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, and J. F. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8(1), 102–110 (2003).
[CrossRef] [PubMed]

E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration,” J. Biomed. Opt. 13(6), 060504 (2008).
[CrossRef] [PubMed]

X. Zhang, C. T. Badea, and G. A. Johnson, “Three-dimensional reconstruction in free-space whole-body fluorescence tomography of mice using optically reconstructed surface and atlas anatomy,” J. Biomed. Opt. 14(6), 064010 (2009).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

L. Feldkamp, L. Davis, and J. Kress, “Practical cone-beam algorithm,” J. Opt. Soc. Am. 1(6), 612–619 (1984).
[CrossRef]

J. Opt. Soc. Am. A (2)

Med. Phys. (3)

T. Pan, J. C. Rasmussen, J. H. Lee, and E. M. Sevick-Muraca, “Monte Carlo simulation of time-dependent, transport-limited fluorescent boundary measurements in frequency domain,” Med. Phys. 34(4), 1298–1311 (2007).
[CrossRef] [PubMed]

S. M. Johnston, G. A. Johnson, and C. T. Badea, “Geometric calibration for a dual tube/detector micro-CT system,” Med. Phys. 35(5), 1820–1829 (2008).
[CrossRef] [PubMed]

Y. Tan and H. Jiang, “DOT guided fluorescence molecular tomography of arbitrarily shaped objects,” Med. Phys. 35(12), 5703–5707 (2008).
[CrossRef] [PubMed]

Methods Mol. Biol. (1)

I. Texier and V. Josser, “In vivo imaging of quantum dots,” Methods Mol. Biol. 544, 393–406 (2009).
[CrossRef] [PubMed]

Neuroimage (1)

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23(Suppl 1), S275–S288 (2004).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (8)

B. W. Pogue and K. D. Paulsen, “High-resolution near-infrared tomographic imaging simulations of the rat cranium by use of a priori magnetic resonance imaging structural information,” Opt. Lett. 23(21), 1716–1718 (1998).
[CrossRef] [PubMed]

N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, “Free-space fluorescence molecular tomography utilizing 360° geometry projections,” Opt. Lett. 32(4), 382–384 (2007).
[CrossRef] [PubMed]

Z. M. Wang, G. Y. Panasyuk, V. A. Markel, and J. C. Schotland, “Experimental demonstration of an analytic method for image reconstruction in optical diffusion tomography with large data sets,” Opt. Lett. 30(24), 3338–3340 (2005).
[CrossRef] [PubMed]

G. Y. Panasyuk, Z. M. Wang, J. C. Schotland, and V. A. Markel, “Fluorescent optical tomography with large data sets,” Opt. Lett. 33(15), 1744–1746 (2008).
[CrossRef] [PubMed]

J. P. Culver, V. Ntziachristos, M. J. Holboke, and A. G. Yodh, “Optimization of optode arrangements for diffuse optical tomography: A singular-value analysis,” Opt. Lett. 26(10), 701–703 (2001).
[CrossRef] [PubMed]

R. B. Schulz, J. Ripoll, and V. Ntziachristos, “Noncontact optical tomography of turbid media,” Opt. Lett. 28(18), 1701–1703 (2003).
[CrossRef] [PubMed]

G. M. Turner, G. Zacharakis, A. Soubret, J. Ripoll, and V. Ntziachristos, “Complete-angle projection diffuse optical tomography by use of early photons,” Opt. Lett. 30(4), 409–411 (2005).
[CrossRef] [PubMed]

V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett. 26(12), 893–895 (2001).
[CrossRef] [PubMed]

Phys. Med. Biol. (6)

M. Chu, K. Vishwanath, A. D. Klose, and H. Dehghani, “Light transport in biological tissue using three-dimensional frequency-domain simplified spherical harmonics equations,” Phys. Med. Biol. 54(8), 2493–2509 (2009).
[CrossRef] [PubMed]

S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42(5), 841–853 (1997).
[CrossRef] [PubMed]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
[CrossRef] [PubMed]

X. Intes, C. Maloux, M. Guven, B. Yazici, and B. Chance, “Diffuse optical tomography with physiological and spatial a priori constraints,” Phys. Med. Biol. 49(12), N155–N163 (2004).
[CrossRef] [PubMed]

Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, “Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study,” Phys. Med. Biol. 52(18), 5569–5585 (2007).
[CrossRef] [PubMed]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50(17), 4225–4241 (2005).
[CrossRef] [PubMed]

Proc. SPIE (1)

C. Badea, S. Johnston, B. Johnson, M. Lin, L. Hedlund, and G. Johnson, “Dual micro-CT system for small animal imaging,” Proc. SPIE 6913, 691342 (2008).

Rev. Sci. Instrum. (1)

X. Zhang, V. Y. Toronov, and A. G. Webb, “An integrated measurement system for simultaneous functional magnetic resonance imaging and diffuse optical tomography in human brain mapping,” Rev. Sci. Instrum. 77(11), 114301 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Source localization using the calibration target. The rotation axis of the animal, i.e., the blue dashed-line in the 3-D view (left) and the blue dot in the 2-D view (right), is co-planar with the calibration target. The intersection of the laser ray with the calibration target (point a in the 2-D view) is known from the calibration image, which in turn determines the intersection point of the laser with the surface of the animal (point b). Note that the position of the calibration target and the origin of the laser ray are known.

Fig. 2
Fig. 2

Anatomically guided spatial sampling strategy based on structural a priori information from x-ray micro-CT. A representative pattern of spatial sampling (a grid of green dots) is superimposed on the surface (left) and the skeletons (middle) of the animal (based on micro-CT). On the right, the constituents of the segmented animal image are: (1) muscle, (2) bones, (3) lungs, (4) heart, (5) liver, and (6) skin flaps, where were used as the a priori information in the forward model; the spatial relations of the excitation laser (red arrow) and the emission fluorescence (green) with respect to the animal is illustrated, in which any emission or excitation position may coincide with the skin flaps and results in difficulty in reconstruction.

Fig. 3
Fig. 3

FDOT reconstruction (the first and the third rows from the top) compared to the corresponding x-ray micro-CT slices (the second and the forth rows). The FDOT data was normalized to unity, in which the small negative values were due to reconstruction artifacts. The actual inclusions were visible in the micro-CT image (rendered in red). The inter-slice distance is 0.72 mm.

Tables (2)

Tables Icon

Table 1 Optical properties used in the Monte Carlo simulations: absorption coefficient (μa ), reduced scattering coefficient (μ′s ), and index of refraction (n)

Tables Icon

Table 2 Shape metrics of reconstructed QD inclusions

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

U f l ( r s , r d ) U e x ( r s , r d ) = γ N s p exp ( m K m L p , m ) r { x ( r ) [ p exp ( m K m L p , m ) ] r } r [ p exp ( m K m L p , m ) ] r
X = arg min X [ H ( X ) ]
H ( X ) = A X b 2 2 data consistency + α Ω X 2 2 d r intensity penalty + β Ω X 2 2 d r smoothness penalty

Metrics