Abstract

Position-referenced microscopy (PRM) is based on smart sample holders that integrate a position reference pattern (PRP) in their depth, allowing the determination of the lateral coordinates with respect to the sample-holder itself. Regions of interest can thus be retrieved easily after culture dish transfers from a cell incubator to the microscope stage. Images recorded at different instants in time are superimposed in a common coordinate system with subpixel accuracy. This paper presents such smart Petri culture dishes and their use for live cell culture monitoring. The impact of the PRP on the light budget is discussed and performances are demonstrated. First results on the application of PRM to the observation of apoptotic body internalization are reported.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. L. Wang and D. L. Taylor, Fluorescence Microscopy of Living Cells in Culture (Academic Press, 1989).
  2. T. W. J. Gadella, T. M. Jovin, and R. M. Clegg, “Fluorescence lifetime imaging microscopy (FLIM): spatial resolution of microstructures on the nanosecond time scale,” Biophys. Chem. 48, 221–239 (1993).
    [CrossRef]
  3. M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J. Invest. Dermatol. 104, 946–952 (1995).
    [CrossRef] [PubMed]
  4. J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21, 1361–1367 (2003).
    [CrossRef] [PubMed]
  5. B. Feldman, “Microscope slide,” U.S. Patent 4,183,614 (15January1980).
  6. P. Lin and F. Ruddle, “Photoengraving of coverslips and slides to facilitate monitoring of micromanipulated cells or chromosome spreads,” Exp. Cell Res. 134, 485–488 (1981).
    [CrossRef] [PubMed]
  7. K. M. Saleh, P. G. Toner, K. E. Carr, and H. E. Hughes, “An improved method for sequential light and scanning electron microscopy of the same cell using localising microcoverslips,” J. Clin. Pathol. 35, 576–580 (1982).
    [CrossRef] [PubMed]
  8. F. Ruddle and P. Lin, “Method for engraving a grid pattern on microscope slides and slips,” U.S. Patent 4,415,405 (15November1983).
  9. G. Dimou and T. Pang, “Process for manufacturing a cover glass with a viewing field,” U.S. Patent 5,766,677 (16June1998).
  10. L. Hause and D. Jeutter, “Mapping method for a microscope slide,” U.S. Patent 5,786,130 (28July1998).
  11. D. St-Jacques, S. Martel, and T. B. FitzGerald, “Nanoscale grid based positioning system for miniature instrumented robots,” Proceedings of IEEE Canadian Conference on Electrical and Computer Engineering (IEEE2003) 31831–1834.
  12. P. Sandoz, R. Zeggari, L. Froelhy, J. L. Prétet, and C. Mougin, “Position referencing in optical microscopy thanks to sample holders with out-of-focus encoded patterns,” J. Microsc. 255, 293–303 (2007).
    [CrossRef]
  13. J. A. Galeano-Zea, P. Sandoz, E. Gaiffe, J. L. Prétet, and C. Mougin, “Pseudo-periodic encryption of extended 2-D surfaces for high accurate recovery of any random zone by vision,” Int. J. Optomechatron. 4, 65–82 (2010).
    [CrossRef]
  14. J. W. Goodman, Introduction to Fourier Optics (McGraw Hill, 1996).
  15. K. Matsushima, H. Schimmel, and F. Wyrowski, “Fast calculation method for optical diffraction on tilted planes by use of the angular spectrum of plane waves,” J. Opt. Soc. Am. A 20, 1755–1762 (2003).
    [CrossRef]
  16. A. Marian, F. Charrière, T. Colomb, F. Montfort, J. Kühn, P. Marquet, and C. Depeursinge, “On the complex three-dimensional amplitude point spread function of lenses and microscope objectives: theoretical aspects, simulations and measurements by digital holography,” J. Microsc. 225, 156–169 (2007).
    [CrossRef] [PubMed]
  17. J. A. Galeano Z., Position referenced microscopy: microfabricated pseudo-periodic patterns for absolute positionning of specimens with sub-micrometer accuracy , PhD dissert., Universtié de Franche-Comté (2010).
  18. J. Galeano Zea, P. Sandoz, and L. Robert, “Position encryption of extended surfaces for subpixel localization of small-sized fields of observation,” in Proceedings of IEEE Conference ISOT 2009 on Intern. Symp. on Optomechatr. Tech. (IEEE, 2009) pp. 21–27.
  19. R. J. Hansman, “Characteristics of instrumentation,” in The Measurement, Instrumentation, and Sensors Handbook , ed. by J. G. Webster (Springer-Verlag, 1999).
  20. B. Fadeel and S. Orrenius, “Apoptosis: a basic biological phenomenon with wide-ranging implications in human disease,” J. Int. Med. 258, 479–517 (2005).
    [CrossRef]
  21. H. zur Hausen, “Papillomaviruses in the causation of human cancers: a brief historical account,” Virology 384, 260–265 (2009).
    [CrossRef] [PubMed]
  22. E. Gaiffe, M. Saunier, S. Launay, P. Oudet, J. L. Prétet, and C. Mougin, “Horizontal transfer of viral oncogenes: An alternative pathway of carcinogenesis,” Presented at 25th International Papillomavirus Conference, Malmo, Sweden, 9–14 May 2009.

2010 (1)

J. A. Galeano-Zea, P. Sandoz, E. Gaiffe, J. L. Prétet, and C. Mougin, “Pseudo-periodic encryption of extended 2-D surfaces for high accurate recovery of any random zone by vision,” Int. J. Optomechatron. 4, 65–82 (2010).
[CrossRef]

2009 (2)

J. Galeano Zea, P. Sandoz, and L. Robert, “Position encryption of extended surfaces for subpixel localization of small-sized fields of observation,” in Proceedings of IEEE Conference ISOT 2009 on Intern. Symp. on Optomechatr. Tech. (IEEE, 2009) pp. 21–27.

H. zur Hausen, “Papillomaviruses in the causation of human cancers: a brief historical account,” Virology 384, 260–265 (2009).
[CrossRef] [PubMed]

2007 (2)

A. Marian, F. Charrière, T. Colomb, F. Montfort, J. Kühn, P. Marquet, and C. Depeursinge, “On the complex three-dimensional amplitude point spread function of lenses and microscope objectives: theoretical aspects, simulations and measurements by digital holography,” J. Microsc. 225, 156–169 (2007).
[CrossRef] [PubMed]

P. Sandoz, R. Zeggari, L. Froelhy, J. L. Prétet, and C. Mougin, “Position referencing in optical microscopy thanks to sample holders with out-of-focus encoded patterns,” J. Microsc. 255, 293–303 (2007).
[CrossRef]

2005 (1)

B. Fadeel and S. Orrenius, “Apoptosis: a basic biological phenomenon with wide-ranging implications in human disease,” J. Int. Med. 258, 479–517 (2005).
[CrossRef]

2003 (3)

K. Matsushima, H. Schimmel, and F. Wyrowski, “Fast calculation method for optical diffraction on tilted planes by use of the angular spectrum of plane waves,” J. Opt. Soc. Am. A 20, 1755–1762 (2003).
[CrossRef]

D. St-Jacques, S. Martel, and T. B. FitzGerald, “Nanoscale grid based positioning system for miniature instrumented robots,” Proceedings of IEEE Canadian Conference on Electrical and Computer Engineering (IEEE2003) 31831–1834.

J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21, 1361–1367 (2003).
[CrossRef] [PubMed]

1999 (1)

R. J. Hansman, “Characteristics of instrumentation,” in The Measurement, Instrumentation, and Sensors Handbook , ed. by J. G. Webster (Springer-Verlag, 1999).

1996 (1)

J. W. Goodman, Introduction to Fourier Optics (McGraw Hill, 1996).

1995 (1)

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J. Invest. Dermatol. 104, 946–952 (1995).
[CrossRef] [PubMed]

1993 (1)

T. W. J. Gadella, T. M. Jovin, and R. M. Clegg, “Fluorescence lifetime imaging microscopy (FLIM): spatial resolution of microstructures on the nanosecond time scale,” Biophys. Chem. 48, 221–239 (1993).
[CrossRef]

1989 (1)

Y. L. Wang and D. L. Taylor, Fluorescence Microscopy of Living Cells in Culture (Academic Press, 1989).

1982 (1)

K. M. Saleh, P. G. Toner, K. E. Carr, and H. E. Hughes, “An improved method for sequential light and scanning electron microscopy of the same cell using localising microcoverslips,” J. Clin. Pathol. 35, 576–580 (1982).
[CrossRef] [PubMed]

1981 (1)

P. Lin and F. Ruddle, “Photoengraving of coverslips and slides to facilitate monitoring of micromanipulated cells or chromosome spreads,” Exp. Cell Res. 134, 485–488 (1981).
[CrossRef] [PubMed]

Anderson, R. R.

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J. Invest. Dermatol. 104, 946–952 (1995).
[CrossRef] [PubMed]

Carr, K. E.

K. M. Saleh, P. G. Toner, K. E. Carr, and H. E. Hughes, “An improved method for sequential light and scanning electron microscopy of the same cell using localising microcoverslips,” J. Clin. Pathol. 35, 576–580 (1982).
[CrossRef] [PubMed]

Charrière, F.

A. Marian, F. Charrière, T. Colomb, F. Montfort, J. Kühn, P. Marquet, and C. Depeursinge, “On the complex three-dimensional amplitude point spread function of lenses and microscope objectives: theoretical aspects, simulations and measurements by digital holography,” J. Microsc. 225, 156–169 (2007).
[CrossRef] [PubMed]

Clegg, R. M.

T. W. J. Gadella, T. M. Jovin, and R. M. Clegg, “Fluorescence lifetime imaging microscopy (FLIM): spatial resolution of microstructures on the nanosecond time scale,” Biophys. Chem. 48, 221–239 (1993).
[CrossRef]

Colomb, T.

A. Marian, F. Charrière, T. Colomb, F. Montfort, J. Kühn, P. Marquet, and C. Depeursinge, “On the complex three-dimensional amplitude point spread function of lenses and microscope objectives: theoretical aspects, simulations and measurements by digital holography,” J. Microsc. 225, 156–169 (2007).
[CrossRef] [PubMed]

Depeursinge, C.

A. Marian, F. Charrière, T. Colomb, F. Montfort, J. Kühn, P. Marquet, and C. Depeursinge, “On the complex three-dimensional amplitude point spread function of lenses and microscope objectives: theoretical aspects, simulations and measurements by digital holography,” J. Microsc. 225, 156–169 (2007).
[CrossRef] [PubMed]

Esterowitz, D.

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J. Invest. Dermatol. 104, 946–952 (1995).
[CrossRef] [PubMed]

Fadeel, B.

B. Fadeel and S. Orrenius, “Apoptosis: a basic biological phenomenon with wide-ranging implications in human disease,” J. Int. Med. 258, 479–517 (2005).
[CrossRef]

FitzGerald, T. B.

D. St-Jacques, S. Martel, and T. B. FitzGerald, “Nanoscale grid based positioning system for miniature instrumented robots,” Proceedings of IEEE Canadian Conference on Electrical and Computer Engineering (IEEE2003) 31831–1834.

Froelhy, L.

P. Sandoz, R. Zeggari, L. Froelhy, J. L. Prétet, and C. Mougin, “Position referencing in optical microscopy thanks to sample holders with out-of-focus encoded patterns,” J. Microsc. 255, 293–303 (2007).
[CrossRef]

Fujimoto, J. G.

J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21, 1361–1367 (2003).
[CrossRef] [PubMed]

Gadella, T. W. J.

T. W. J. Gadella, T. M. Jovin, and R. M. Clegg, “Fluorescence lifetime imaging microscopy (FLIM): spatial resolution of microstructures on the nanosecond time scale,” Biophys. Chem. 48, 221–239 (1993).
[CrossRef]

Gaiffe, E.

J. A. Galeano-Zea, P. Sandoz, E. Gaiffe, J. L. Prétet, and C. Mougin, “Pseudo-periodic encryption of extended 2-D surfaces for high accurate recovery of any random zone by vision,” Int. J. Optomechatron. 4, 65–82 (2010).
[CrossRef]

Galeano Zea, J.

J. Galeano Zea, P. Sandoz, and L. Robert, “Position encryption of extended surfaces for subpixel localization of small-sized fields of observation,” in Proceedings of IEEE Conference ISOT 2009 on Intern. Symp. on Optomechatr. Tech. (IEEE, 2009) pp. 21–27.

Galeano-Zea, J. A.

J. A. Galeano-Zea, P. Sandoz, E. Gaiffe, J. L. Prétet, and C. Mougin, “Pseudo-periodic encryption of extended 2-D surfaces for high accurate recovery of any random zone by vision,” Int. J. Optomechatron. 4, 65–82 (2010).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw Hill, 1996).

Grossman, M.

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J. Invest. Dermatol. 104, 946–952 (1995).
[CrossRef] [PubMed]

Hansman, R. J.

R. J. Hansman, “Characteristics of instrumentation,” in The Measurement, Instrumentation, and Sensors Handbook , ed. by J. G. Webster (Springer-Verlag, 1999).

Hughes, H. E.

K. M. Saleh, P. G. Toner, K. E. Carr, and H. E. Hughes, “An improved method for sequential light and scanning electron microscopy of the same cell using localising microcoverslips,” J. Clin. Pathol. 35, 576–580 (1982).
[CrossRef] [PubMed]

Jovin, T. M.

T. W. J. Gadella, T. M. Jovin, and R. M. Clegg, “Fluorescence lifetime imaging microscopy (FLIM): spatial resolution of microstructures on the nanosecond time scale,” Biophys. Chem. 48, 221–239 (1993).
[CrossRef]

Kühn, J.

A. Marian, F. Charrière, T. Colomb, F. Montfort, J. Kühn, P. Marquet, and C. Depeursinge, “On the complex three-dimensional amplitude point spread function of lenses and microscope objectives: theoretical aspects, simulations and measurements by digital holography,” J. Microsc. 225, 156–169 (2007).
[CrossRef] [PubMed]

Lin, P.

P. Lin and F. Ruddle, “Photoengraving of coverslips and slides to facilitate monitoring of micromanipulated cells or chromosome spreads,” Exp. Cell Res. 134, 485–488 (1981).
[CrossRef] [PubMed]

Marian, A.

A. Marian, F. Charrière, T. Colomb, F. Montfort, J. Kühn, P. Marquet, and C. Depeursinge, “On the complex three-dimensional amplitude point spread function of lenses and microscope objectives: theoretical aspects, simulations and measurements by digital holography,” J. Microsc. 225, 156–169 (2007).
[CrossRef] [PubMed]

Marquet, P.

A. Marian, F. Charrière, T. Colomb, F. Montfort, J. Kühn, P. Marquet, and C. Depeursinge, “On the complex three-dimensional amplitude point spread function of lenses and microscope objectives: theoretical aspects, simulations and measurements by digital holography,” J. Microsc. 225, 156–169 (2007).
[CrossRef] [PubMed]

Martel, S.

D. St-Jacques, S. Martel, and T. B. FitzGerald, “Nanoscale grid based positioning system for miniature instrumented robots,” Proceedings of IEEE Canadian Conference on Electrical and Computer Engineering (IEEE2003) 31831–1834.

Matsushima, K.

Montfort, F.

A. Marian, F. Charrière, T. Colomb, F. Montfort, J. Kühn, P. Marquet, and C. Depeursinge, “On the complex three-dimensional amplitude point spread function of lenses and microscope objectives: theoretical aspects, simulations and measurements by digital holography,” J. Microsc. 225, 156–169 (2007).
[CrossRef] [PubMed]

Mougin, C.

J. A. Galeano-Zea, P. Sandoz, E. Gaiffe, J. L. Prétet, and C. Mougin, “Pseudo-periodic encryption of extended 2-D surfaces for high accurate recovery of any random zone by vision,” Int. J. Optomechatron. 4, 65–82 (2010).
[CrossRef]

P. Sandoz, R. Zeggari, L. Froelhy, J. L. Prétet, and C. Mougin, “Position referencing in optical microscopy thanks to sample holders with out-of-focus encoded patterns,” J. Microsc. 255, 293–303 (2007).
[CrossRef]

Orrenius, S.

B. Fadeel and S. Orrenius, “Apoptosis: a basic biological phenomenon with wide-ranging implications in human disease,” J. Int. Med. 258, 479–517 (2005).
[CrossRef]

Prétet, J. L.

J. A. Galeano-Zea, P. Sandoz, E. Gaiffe, J. L. Prétet, and C. Mougin, “Pseudo-periodic encryption of extended 2-D surfaces for high accurate recovery of any random zone by vision,” Int. J. Optomechatron. 4, 65–82 (2010).
[CrossRef]

P. Sandoz, R. Zeggari, L. Froelhy, J. L. Prétet, and C. Mougin, “Position referencing in optical microscopy thanks to sample holders with out-of-focus encoded patterns,” J. Microsc. 255, 293–303 (2007).
[CrossRef]

Rajadhyaksha, M.

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J. Invest. Dermatol. 104, 946–952 (1995).
[CrossRef] [PubMed]

Robert, L.

J. Galeano Zea, P. Sandoz, and L. Robert, “Position encryption of extended surfaces for subpixel localization of small-sized fields of observation,” in Proceedings of IEEE Conference ISOT 2009 on Intern. Symp. on Optomechatr. Tech. (IEEE, 2009) pp. 21–27.

Ruddle, F.

P. Lin and F. Ruddle, “Photoengraving of coverslips and slides to facilitate monitoring of micromanipulated cells or chromosome spreads,” Exp. Cell Res. 134, 485–488 (1981).
[CrossRef] [PubMed]

Saleh, K. M.

K. M. Saleh, P. G. Toner, K. E. Carr, and H. E. Hughes, “An improved method for sequential light and scanning electron microscopy of the same cell using localising microcoverslips,” J. Clin. Pathol. 35, 576–580 (1982).
[CrossRef] [PubMed]

Sandoz, P.

J. A. Galeano-Zea, P. Sandoz, E. Gaiffe, J. L. Prétet, and C. Mougin, “Pseudo-periodic encryption of extended 2-D surfaces for high accurate recovery of any random zone by vision,” Int. J. Optomechatron. 4, 65–82 (2010).
[CrossRef]

J. Galeano Zea, P. Sandoz, and L. Robert, “Position encryption of extended surfaces for subpixel localization of small-sized fields of observation,” in Proceedings of IEEE Conference ISOT 2009 on Intern. Symp. on Optomechatr. Tech. (IEEE, 2009) pp. 21–27.

P. Sandoz, R. Zeggari, L. Froelhy, J. L. Prétet, and C. Mougin, “Position referencing in optical microscopy thanks to sample holders with out-of-focus encoded patterns,” J. Microsc. 255, 293–303 (2007).
[CrossRef]

Schimmel, H.

St-Jacques, D.

D. St-Jacques, S. Martel, and T. B. FitzGerald, “Nanoscale grid based positioning system for miniature instrumented robots,” Proceedings of IEEE Canadian Conference on Electrical and Computer Engineering (IEEE2003) 31831–1834.

Taylor, D. L.

Y. L. Wang and D. L. Taylor, Fluorescence Microscopy of Living Cells in Culture (Academic Press, 1989).

Toner, P. G.

K. M. Saleh, P. G. Toner, K. E. Carr, and H. E. Hughes, “An improved method for sequential light and scanning electron microscopy of the same cell using localising microcoverslips,” J. Clin. Pathol. 35, 576–580 (1982).
[CrossRef] [PubMed]

Wang, Y. L.

Y. L. Wang and D. L. Taylor, Fluorescence Microscopy of Living Cells in Culture (Academic Press, 1989).

Webb, R. H.

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J. Invest. Dermatol. 104, 946–952 (1995).
[CrossRef] [PubMed]

Wyrowski, F.

Zeggari, R.

P. Sandoz, R. Zeggari, L. Froelhy, J. L. Prétet, and C. Mougin, “Position referencing in optical microscopy thanks to sample holders with out-of-focus encoded patterns,” J. Microsc. 255, 293–303 (2007).
[CrossRef]

zur Hausen, H.

H. zur Hausen, “Papillomaviruses in the causation of human cancers: a brief historical account,” Virology 384, 260–265 (2009).
[CrossRef] [PubMed]

Biophys. Chem. (1)

T. W. J. Gadella, T. M. Jovin, and R. M. Clegg, “Fluorescence lifetime imaging microscopy (FLIM): spatial resolution of microstructures on the nanosecond time scale,” Biophys. Chem. 48, 221–239 (1993).
[CrossRef]

Exp. Cell Res. (1)

P. Lin and F. Ruddle, “Photoengraving of coverslips and slides to facilitate monitoring of micromanipulated cells or chromosome spreads,” Exp. Cell Res. 134, 485–488 (1981).
[CrossRef] [PubMed]

Int. J. Optomechatron. (1)

J. A. Galeano-Zea, P. Sandoz, E. Gaiffe, J. L. Prétet, and C. Mougin, “Pseudo-periodic encryption of extended 2-D surfaces for high accurate recovery of any random zone by vision,” Int. J. Optomechatron. 4, 65–82 (2010).
[CrossRef]

J. Clin. Pathol. (1)

K. M. Saleh, P. G. Toner, K. E. Carr, and H. E. Hughes, “An improved method for sequential light and scanning electron microscopy of the same cell using localising microcoverslips,” J. Clin. Pathol. 35, 576–580 (1982).
[CrossRef] [PubMed]

J. Int. Med. (1)

B. Fadeel and S. Orrenius, “Apoptosis: a basic biological phenomenon with wide-ranging implications in human disease,” J. Int. Med. 258, 479–517 (2005).
[CrossRef]

J. Invest. Dermatol. (1)

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J. Invest. Dermatol. 104, 946–952 (1995).
[CrossRef] [PubMed]

J. Microsc. (2)

P. Sandoz, R. Zeggari, L. Froelhy, J. L. Prétet, and C. Mougin, “Position referencing in optical microscopy thanks to sample holders with out-of-focus encoded patterns,” J. Microsc. 255, 293–303 (2007).
[CrossRef]

A. Marian, F. Charrière, T. Colomb, F. Montfort, J. Kühn, P. Marquet, and C. Depeursinge, “On the complex three-dimensional amplitude point spread function of lenses and microscope objectives: theoretical aspects, simulations and measurements by digital holography,” J. Microsc. 225, 156–169 (2007).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Nat. Biotechnol. (1)

J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21, 1361–1367 (2003).
[CrossRef] [PubMed]

Virology (1)

H. zur Hausen, “Papillomaviruses in the causation of human cancers: a brief historical account,” Virology 384, 260–265 (2009).
[CrossRef] [PubMed]

Other (11)

E. Gaiffe, M. Saunier, S. Launay, P. Oudet, J. L. Prétet, and C. Mougin, “Horizontal transfer of viral oncogenes: An alternative pathway of carcinogenesis,” Presented at 25th International Papillomavirus Conference, Malmo, Sweden, 9–14 May 2009.

B. Feldman, “Microscope slide,” U.S. Patent 4,183,614 (15January1980).

F. Ruddle and P. Lin, “Method for engraving a grid pattern on microscope slides and slips,” U.S. Patent 4,415,405 (15November1983).

G. Dimou and T. Pang, “Process for manufacturing a cover glass with a viewing field,” U.S. Patent 5,766,677 (16June1998).

L. Hause and D. Jeutter, “Mapping method for a microscope slide,” U.S. Patent 5,786,130 (28July1998).

D. St-Jacques, S. Martel, and T. B. FitzGerald, “Nanoscale grid based positioning system for miniature instrumented robots,” Proceedings of IEEE Canadian Conference on Electrical and Computer Engineering (IEEE2003) 31831–1834.

J. A. Galeano Z., Position referenced microscopy: microfabricated pseudo-periodic patterns for absolute positionning of specimens with sub-micrometer accuracy , PhD dissert., Universtié de Franche-Comté (2010).

J. Galeano Zea, P. Sandoz, and L. Robert, “Position encryption of extended surfaces for subpixel localization of small-sized fields of observation,” in Proceedings of IEEE Conference ISOT 2009 on Intern. Symp. on Optomechatr. Tech. (IEEE, 2009) pp. 21–27.

R. J. Hansman, “Characteristics of instrumentation,” in The Measurement, Instrumentation, and Sensors Handbook , ed. by J. G. Webster (Springer-Verlag, 1999).

Y. L. Wang and D. L. Taylor, Fluorescence Microscopy of Living Cells in Culture (Academic Press, 1989).

J. W. Goodman, Introduction to Fourier Optics (McGraw Hill, 1996).

Supplementary Material (3)

» Media 1: AVI (2203 KB)     
» Media 2: AVI (3313 KB)     
» Media 3: AVI (13363 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

PRM principle. (a) Focusing on the biological material; (b) Biological image recorded (phase contrast plus confocal fluorescence, see Section 4.2); (c) Focusing on the PRP; (d) PRP image recorded (phase contrast).

Fig. 2
Fig. 2

Photograph of a position-referenced culture box; the patterned coverslip is stuck on the box aperture with bio-compatible polymer.

Fig. 3
Fig. 3

PRP impact on PSF: (a) converging wave after PRP crossing; (b) computed PSF in the focusing plane in logarithmic scale.

Fig. 4
Fig. 4

Deviation of reconstructed PRP positions from a straight line for a linear displacement of 500nm by the PZT. blue: PRP method; red: subpixel correlation method. Standard deviation between two curves: 2.5nm

Fig. 5
Fig. 5

Characterization of motorized microscope stage capabilities to retrieve a given position. (a) successive stage positions as reconstructed by PRP image processing. (b) same as (a) without reference position. (c) direct superimposition of reference image (red) with the second image (green). (d) same as (c) after image registration from PRP position.

Fig. 6
Fig. 6

Evolution of a fibroblast culture as observed by phase contrast microscopy. The chosen zone corresponds to a dust artefact around which cells are transforming. Sequence of images after digital registration by the PRM method. Image size: 120 × 120 pixels; 48 × 48 μm 2; 60 × oil lens N.A.=1.42.

Fig. 7
Fig. 7

( Media 1) Video of a fibroblast cell as observed by fluorescence confocal microscopy and after image registration by PRM. Image size: 200 × 200 pixels; 120 × 120μm 2; 20× dry N.A.=0.5.

Fig. 8
Fig. 8

( Media 2, Media 3) Video of the phagocytosis of an apoptotic body (green) by a fibroblast (red) as observed by fluorescence confocal microscopy and after image registration by PRM. Image size: 290 × 280 pixels; 116 × 112μm 2; 60× oil N.A.=1.42.

Tables (1)

Tables Icon

Table 1 Percentage of Incident Light Power Concentrated in the Central Peak of the Diffraction Pattern in the Focus Plane Versus the Dot Material Transparency and the Proportion of Absent Dots

Metrics