Abstract

Swept-source optical coherence tomography (SSOCT) provides a substantial sensitivity advantage over its time-domain counterpart, but suffers from a reduced imaging depth range due to sensitivity falloff and complex conjugate ambiguity. Heterodyne complex conjugate-resolved SSOCT (HCCR-SSOCT) has been previously demonstrated as a technique to completely resolve the complex conjugate ambiguity, effectively doubling the falloff limited imaging depth, without the reduction in imaging speed associated with other CCR techniques. However, previous implementations of this technique have employed expensive and lossy optical modulators to provide the required differential phase modulation. In this paper, we demonstrate the use of a dispersive optical delay line (D-ODL) as the reference arm of an OCT system to realize HCCR-SSOCT. This technique maintains the existing advantages of HCCR-SSOCT in that it completely resolves the complex conjugate artifact and does not reduce imaging speed, while conferring the additional advantages of being low cost, maintaining system sensitivity and resolution, not requiring any additional signal processing, and working at all wavelengths and imaging speeds. The D-ODL also allows for hardware correction of unbalanced dispersion in the reference and sample arm, adding further flexibility to system design. We demonstrate the technique using an SSOCT system operating at 100kHz with a central wavelength of 1040nm. Falloff measurements performed using a standard OCT configuration and the proposed D-ODL demonstrate a doubling of the effective imaging range with no sensitivity or resolution penalty. Feasibility of the technique for in vivo imaging was demonstrated by imaging the ocular anterior segments of healthy human volunteers.

© 2011 OSA

Full Article  |  PDF Article

Corrections

Al-Hafeez Dhalla and Joseph A. Izatt, "Complete complex conjugate resolved heterodyne swept source optical coherence tomography using a dispersive optical delay line: erratum," Biomed. Opt. Express 3, 630-632 (2012)
https://www.osapublishing.org/boe/abstract.cfm?uri=boe-3-3-630

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113(3), 325–332 (1995).
    [PubMed]
  3. J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, C. Pitris, and M. E. Brezinski, “High resolution in vivo intra-arterial imaging with optical coherence tomography,” Heart 82(2), 128–133 (1999).
    [PubMed]
  4. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
    [CrossRef] [PubMed]
  5. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
    [CrossRef] [PubMed]
  6. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
    [CrossRef] [PubMed]
  7. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27(16), 1415–1417 (2002).
    [CrossRef] [PubMed]
  8. E. Götzinger, M. Pircher, R. Leitgeb, and C. Hitzenberger, “High speed full range complex spectral domain optical coherence tomography,” Opt. Express 13(2), 583–594 (2005).
    [CrossRef] [PubMed]
  9. S. Yun, G. Tearney, J. de Boer, and B. Bouma, “Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting,” Opt. Express 12(20), 4822–4828 (2004).
    [CrossRef] [PubMed]
  10. A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J. Biomed. Opt. 10(6), 064005–064006 (2005).
    [CrossRef] [PubMed]
  11. J. Zhang, J. S. Nelson, and Z. Chen, “Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator,” Opt. Lett. 30(2), 147–149 (2005).
    [CrossRef] [PubMed]
  12. A. Bachmann, R. Leitgeb, and T. Lasser, “Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution,” Opt. Express 14(4), 1487–1496 (2006).
    [CrossRef] [PubMed]
  13. M. V. Sarunic, B. E. Applegate, and J. A. Izatt, “Real-time quadrature projection complex conjugate resolved Fourier domain optical coherence tomography,” Opt. Lett. 31(16), 2426–2428 (2006).
    [CrossRef] [PubMed]
  14. B. J. Vakoc, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Elimination of depth degeneracy in optical frequency-domain imaging through polarization-based optical demodulation,” Opt. Lett. 31(3), 362–364 (2006).
    [CrossRef] [PubMed]
  15. A. B. Vakhtin, K. A. Peterson, and D. J. Kane, “Resolving the complex conjugate ambiguity in Fourier-domain OCT by harmonic lock-in detection of the spectral interferogram,” Opt. Lett. 31(9), 1271–1273 (2006).
    [CrossRef] [PubMed]
  16. Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, and T. Yatagai, “Simultaneous B-M-mode scanning method for real-time full-range Fourier domain optical coherence tomography,” Appl. Opt. 45(8), 1861–1865 (2006).
    [CrossRef] [PubMed]
  17. L. An and R. K. Wang, “Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography,” Opt. Lett. 32(23), 3423–3425 (2007).
    [CrossRef] [PubMed]
  18. R. A. Leitgeb, R. Michaely, T. Lasser, and S. C. Sekhar, “Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning,” Opt. Lett. 32(23), 3453–3455 (2007).
    [CrossRef] [PubMed]
  19. R. K. K. Wang, “In vivo full range complex Fourier domain optical coherence tomography,” Appl. Phys. Lett. 90(5), 054103 (2007).
    [CrossRef]
  20. Y. K. Tao, M. Zhao, and J. A. Izatt, “High-speed complex conjugate resolved retinal spectral domain optical coherence tomography using sinusoidal phase modulation,” Opt. Lett. 32(20), 2918–2920 (2007).
    [CrossRef] [PubMed]
  21. H. Wang, Y. Pan, and A. M. Rollins, “Extending the effective imaging range of Fourier-domain optical coherence tomography using a fiber optic switch,” Opt. Lett. 33(22), 2632–2634 (2008).
    [CrossRef] [PubMed]
  22. B. Hofer, B. Povazay, B. Hermann, A. Unterhuber, G. Matz, and W. Drexler, “Dispersion encoded full range frequency domain optical coherence tomography,” Opt. Express 17(1), 7–24 (2009).
    [CrossRef] [PubMed]
  23. J. A. Izatt and M. A. Choma, “Theory of optical coherence tomography,” in Optical Coherence Tomography: Technology and Applications, W. Drexler and J. Fujimoto, eds. (Springer, New York, 2008), pp. 47–72.
  24. G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22(23), 1811–1813 (1997).
    [CrossRef] [PubMed]
  25. A. Rollins, S. Yazdanfar, M. Kulkarni, R. Ung-Arunyawee, and J. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express 3(6), 219–229 (1998).
    [CrossRef] [PubMed]
  26. O. Martinez, “3000 times grating compressor with positive group velocity dispersion: application to fiber compensation in 1.3-1.6 µm region,” IEEE J. Quantum Electron. 23(1), 59–64 (1987).
    [CrossRef]
  27. A. M. Rollins and J. A. Izatt, “Optimal interferometer designs for optical coherence tomography,” Opt. Lett. 24(21), 1484–1486 (1999).
    [CrossRef] [PubMed]
  28. Y. Chen, D. M. de Bruin, C. Kerbage, and J. F. de Boer, “Spectrally balanced detection for optical frequency domain imaging,” Opt. Express 15(25), 16390–16399 (2007).
    [CrossRef] [PubMed]
  29. M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
    [CrossRef] [PubMed]
  30. R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31(20), 2975–2977 (2006).
    [CrossRef] [PubMed]
  31. B. D. Goldberg, B. J. Vakoc, W.-Y. Oh, M. J. Suter, S. Waxman, M. I. Freilich, B. E. Bouma, and G. J. Tearney, “Performance of reduced bit-depth acquisition for optical frequency domain imaging,” Opt. Express 17(19), 16957–16968 (2009).
    [CrossRef] [PubMed]
  32. W. Wieser, B. R. Biedermann, C. M. Eigenwillig, T. Klein, and R. A. Huber, “FDML based multi-spot OCT at 4,100,000 A-scans and 4 Gvoxels per second,” presented at SPIE Photonics West, San Francisco, CA, Jan. 23–28, 2010.
  33. T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express 19(4), 3044–3062 (2011).
    [CrossRef] [PubMed]

2011 (1)

2009 (2)

2008 (1)

2007 (5)

2006 (6)

2005 (3)

2004 (2)

2003 (3)

2002 (1)

1999 (2)

A. M. Rollins and J. A. Izatt, “Optimal interferometer designs for optical coherence tomography,” Opt. Lett. 24(21), 1484–1486 (1999).
[CrossRef] [PubMed]

J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, C. Pitris, and M. E. Brezinski, “High resolution in vivo intra-arterial imaging with optical coherence tomography,” Heart 82(2), 128–133 (1999).
[PubMed]

1998 (1)

1997 (1)

1995 (1)

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113(3), 325–332 (1995).
[PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

1987 (1)

O. Martinez, “3000 times grating compressor with positive group velocity dispersion: application to fiber compensation in 1.3-1.6 µm region,” IEEE J. Quantum Electron. 23(1), 59–64 (1987).
[CrossRef]

Adler, D. C.

An, L.

Aoki, G.

Applegate, B. E.

Bachmann, A.

Biedermann, B. R.

Boppart, S. A.

J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, C. Pitris, and M. E. Brezinski, “High resolution in vivo intra-arterial imaging with optical coherence tomography,” Heart 82(2), 128–133 (1999).
[PubMed]

Bouma, B.

Bouma, B. E.

Brezinski, M. E.

J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, C. Pitris, and M. E. Brezinski, “High resolution in vivo intra-arterial imaging with optical coherence tomography,” Heart 82(2), 128–133 (1999).
[PubMed]

Cense, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, Y.

Chen, Z.

Choma, M. A.

A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J. Biomed. Opt. 10(6), 064005–064006 (2005).
[CrossRef] [PubMed]

M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
[CrossRef] [PubMed]

Davis, A. M.

A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J. Biomed. Opt. 10(6), 064005–064006 (2005).
[CrossRef] [PubMed]

de Boer, J.

de Boer, J. F.

de Bruin, D. M.

Drexler, W.

Duker, J.

Eigenwillig, C. M.

Endo, T.

Fercher, A. F.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Freilich, M. I.

Fujimoto, J.

Fujimoto, J. G.

R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31(20), 2975–2977 (2006).
[CrossRef] [PubMed]

J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, C. Pitris, and M. E. Brezinski, “High resolution in vivo intra-arterial imaging with optical coherence tomography,” Heart 82(2), 128–133 (1999).
[PubMed]

G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22(23), 1811–1813 (1997).
[CrossRef] [PubMed]

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113(3), 325–332 (1995).
[PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Goldberg, B. D.

Götzinger, E.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hee, M. R.

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113(3), 325–332 (1995).
[PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hermann, B.

Hitzenberger, C.

Hitzenberger, C. K.

Hofer, B.

Huang, D.

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113(3), 325–332 (1995).
[PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Huber, R.

Itoh, M.

Izatt, J.

Izatt, J. A.

Kane, D. J.

Kerbage, C.

Klein, T.

Ko, T.

Kowalczyk, A.

Kulkarni, M.

Lasser, T.

Leitgeb, R.

Leitgeb, R. A.

Lin, C. P.

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113(3), 325–332 (1995).
[PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Makita, S.

Martinez, O.

O. Martinez, “3000 times grating compressor with positive group velocity dispersion: application to fiber compensation in 1.3-1.6 µm region,” IEEE J. Quantum Electron. 23(1), 59–64 (1987).
[CrossRef]

Matz, G.

Michaely, R.

Nelson, J. S.

Oh, W.-Y.

Pan, Y.

Park, B. H.

Peterson, K. A.

Pierce, M. C.

Pircher, M.

Pitris, C.

J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, C. Pitris, and M. E. Brezinski, “High resolution in vivo intra-arterial imaging with optical coherence tomography,” Heart 82(2), 128–133 (1999).
[PubMed]

Povazay, B.

Puliafito, C. A.

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113(3), 325–332 (1995).
[PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Rollins, A.

Rollins, A. M.

Sarunic, M. V.

Schuman, J. S.

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113(3), 325–332 (1995).
[PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Sekhar, S. C.

Srinivasan, V.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Suter, M. J.

Swanson, E. A.

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113(3), 325–332 (1995).
[PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Tao, Y. K.

Tearney, G.

Tearney, G. J.

Ung-Arunyawee, R.

Unterhuber, A.

Vakhtin, A. B.

Vakoc, B. J.

Wang, H.

Wang, R. K.

Wang, R. K. K.

R. K. K. Wang, “In vivo full range complex Fourier domain optical coherence tomography,” Appl. Phys. Lett. 90(5), 054103 (2007).
[CrossRef]

Waxman, S.

Wieser, W.

Wojtkowski, M.

Yang, C. H.

Yasuno, Y.

Yatagai, T.

Yazdanfar, S.

Yun, S.

Yun, S. H.

Zhang, J.

Zhao, M.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

R. K. K. Wang, “In vivo full range complex Fourier domain optical coherence tomography,” Appl. Phys. Lett. 90(5), 054103 (2007).
[CrossRef]

Arch. Ophthalmol. (1)

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113(3), 325–332 (1995).
[PubMed]

Heart (1)

J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, C. Pitris, and M. E. Brezinski, “High resolution in vivo intra-arterial imaging with optical coherence tomography,” Heart 82(2), 128–133 (1999).
[PubMed]

IEEE J. Quantum Electron. (1)

O. Martinez, “3000 times grating compressor with positive group velocity dispersion: application to fiber compensation in 1.3-1.6 µm region,” IEEE J. Quantum Electron. 23(1), 59–64 (1987).
[CrossRef]

J. Biomed. Opt. (1)

A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J. Biomed. Opt. 10(6), 064005–064006 (2005).
[CrossRef] [PubMed]

Opt. Express (11)

E. Götzinger, M. Pircher, R. Leitgeb, and C. Hitzenberger, “High speed full range complex spectral domain optical coherence tomography,” Opt. Express 13(2), 583–594 (2005).
[CrossRef] [PubMed]

S. Yun, G. Tearney, J. de Boer, and B. Bouma, “Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting,” Opt. Express 12(20), 4822–4828 (2004).
[CrossRef] [PubMed]

M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
[CrossRef] [PubMed]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
[CrossRef] [PubMed]

A. Bachmann, R. Leitgeb, and T. Lasser, “Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution,” Opt. Express 14(4), 1487–1496 (2006).
[CrossRef] [PubMed]

Y. Chen, D. M. de Bruin, C. Kerbage, and J. F. de Boer, “Spectrally balanced detection for optical frequency domain imaging,” Opt. Express 15(25), 16390–16399 (2007).
[CrossRef] [PubMed]

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
[CrossRef] [PubMed]

B. Hofer, B. Povazay, B. Hermann, A. Unterhuber, G. Matz, and W. Drexler, “Dispersion encoded full range frequency domain optical coherence tomography,” Opt. Express 17(1), 7–24 (2009).
[CrossRef] [PubMed]

B. D. Goldberg, B. J. Vakoc, W.-Y. Oh, M. J. Suter, S. Waxman, M. I. Freilich, B. E. Bouma, and G. J. Tearney, “Performance of reduced bit-depth acquisition for optical frequency domain imaging,” Opt. Express 17(19), 16957–16968 (2009).
[CrossRef] [PubMed]

A. Rollins, S. Yazdanfar, M. Kulkarni, R. Ung-Arunyawee, and J. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express 3(6), 219–229 (1998).
[CrossRef] [PubMed]

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express 19(4), 3044–3062 (2011).
[CrossRef] [PubMed]

Opt. Lett. (13)

G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22(23), 1811–1813 (1997).
[CrossRef] [PubMed]

R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31(20), 2975–2977 (2006).
[CrossRef] [PubMed]

A. M. Rollins and J. A. Izatt, “Optimal interferometer designs for optical coherence tomography,” Opt. Lett. 24(21), 1484–1486 (1999).
[CrossRef] [PubMed]

M. V. Sarunic, B. E. Applegate, and J. A. Izatt, “Real-time quadrature projection complex conjugate resolved Fourier domain optical coherence tomography,” Opt. Lett. 31(16), 2426–2428 (2006).
[CrossRef] [PubMed]

B. J. Vakoc, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Elimination of depth degeneracy in optical frequency-domain imaging through polarization-based optical demodulation,” Opt. Lett. 31(3), 362–364 (2006).
[CrossRef] [PubMed]

A. B. Vakhtin, K. A. Peterson, and D. J. Kane, “Resolving the complex conjugate ambiguity in Fourier-domain OCT by harmonic lock-in detection of the spectral interferogram,” Opt. Lett. 31(9), 1271–1273 (2006).
[CrossRef] [PubMed]

Y. K. Tao, M. Zhao, and J. A. Izatt, “High-speed complex conjugate resolved retinal spectral domain optical coherence tomography using sinusoidal phase modulation,” Opt. Lett. 32(20), 2918–2920 (2007).
[CrossRef] [PubMed]

H. Wang, Y. Pan, and A. M. Rollins, “Extending the effective imaging range of Fourier-domain optical coherence tomography using a fiber optic switch,” Opt. Lett. 33(22), 2632–2634 (2008).
[CrossRef] [PubMed]

L. An and R. K. Wang, “Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography,” Opt. Lett. 32(23), 3423–3425 (2007).
[CrossRef] [PubMed]

R. A. Leitgeb, R. Michaely, T. Lasser, and S. C. Sekhar, “Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning,” Opt. Lett. 32(23), 3453–3455 (2007).
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
[CrossRef] [PubMed]

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27(16), 1415–1417 (2002).
[CrossRef] [PubMed]

J. Zhang, J. S. Nelson, and Z. Chen, “Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator,” Opt. Lett. 30(2), 147–149 (2005).
[CrossRef] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Other (2)

J. A. Izatt and M. A. Choma, “Theory of optical coherence tomography,” in Optical Coherence Tomography: Technology and Applications, W. Drexler and J. Fujimoto, eds. (Springer, New York, 2008), pp. 47–72.

W. Wieser, B. R. Biedermann, C. M. Eigenwillig, T. Klein, and R. A. Huber, “FDML based multi-spot OCT at 4,100,000 A-scans and 4 Gvoxels per second,” presented at SPIE Photonics West, San Francisco, CA, Jan. 23–28, 2010.

Supplementary Material (2)

» Media 1: MPG (2902 KB)     
» Media 2: MPG (2361 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Left: Schematic of the optical delay line. Lcol: Collimating lens, DG: Diffraction grating, LODL compound achromatic lens with focal length fODL, M: gold mirrors, θ, mirror angle. Red, green and blue lines represent ray traces at wavelengths of 1090nm, 1040nm, and 990nm respectively. Right: Plot of ray-tracing derived phase pathlength difference through the system as a function of wavelength demonstrating a nearly perfect linear relationship.

Fig. 3
Fig. 3

Sensitivity falloff measured using the SRA (top) and D-ODL (bottom). Red horizontal lines are drawn at a sensitivity level of −6dB from the peak. The 6dB imaging ranges were ~5.4mm with the SRA and ~10.1mm with the D-ODL.

Fig. 2
Fig. 2

SSOCT system schematic. Black lines represent optical fiber. Dashed lines and boxes represent the interchangeable standard reference arm (SRA) and optical delay line (D-ODL). Blue lines represent electrical connections. C: circulator, Lcol: collimating lens, G: galvanometer scanning mirrors, Lobj: Objective lenses, M: mirror, BR: balanced receiver, HP/AA: high-pass and anti-alias filter, RFA: RF amplifier, A2D: digitizer.

Fig. 4
Fig. 4

Average of 30 A-scans acquired with a reflector positioned approximately ~1.8mm from the ZPD position. The lack of any complex conjugate peak implies a complex conjugate suppression ratio (CSR) of at least the system dynamic range, computed to be 61.9dB for this measurement.

Fig. 5
Fig. 5

Top left. In vivo anterior segment b-scan showing contact lens, cornea, iris, and anterior crystalline lens surface. Bottom left: Enlargement of cornea demonstrating visualization of layered corneal structure. The volunteer’s contact lens, epithelium, Bowman’s layer, stroma, and endothelium can all be discerned. Right: In vivo anterior segment b-scan showing cornea, iris, anterior and posterior crystalline lens surfaces. Each image consists of 1000 (lateral) x 2304 (axial) x 10 (averages) samples and was acquired in 100ms.

Fig. 6
Fig. 6

Single frame excerpts from Media 1 (left) and Media 2 (right) depicting 3D data sets of in vivo anterior segment volumes. Each volume consisted of 1000 x 2304 x 150 samples and was acquired in 1.5s.

Fig. 7
Fig. 7

Projection views of in vivo anterior segment volumes acquired with standard (left) and low NA (right) objective lenses. Each volume consisted of 1000 x 2304 x 150 samples and was acquired in 1.5s.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

z 6 dB = ln ( 2 ) π λ 0 2 δ r λ
z max = λ 0 2 4 δ s λ
i ( k ) S ( k ) [ R r + n N R n + 2 R r n N R n cos ( 2 k [ z n z r ] ) +   2   n N m n N R n R m cos ( 2 k [ z n z m ] ) ]
i n ( k ) cos ( 2   k   [ z φ n     z φ r ( k ) ] )
  z φ r ( λ ) = z φ r 0 + M ( λ 0 λ )
  z φ r ( k ) =   z φ r 0 + M ( 2 π k 0   2 π k )
i n ( k ) cos ( 2 k ( z φ n z φ r 0   2 π M ( 1 k 0   1 k ) ) )
i n ( k ) cos ( 2 k ( z φ n z φ r 0 Δ z D ) + 4 π M )
ϕ ( λ ) = 4 π θ f O D L ( λ λ 0 ) p λ
θ d ( λ ) = arcsin ( λ λ 0 p ) λ λ 0 p
ϕ ( ω ) = 4 π θ f O D L ( ω 0 ω ) p ω 0
t ϕ = ϕ ( ω c ) ω c
t ϕ ( λ c ) = 2 θ f O D L ( λ c λ 0 ) p c
Δ l ϕ ( λ c ) = 2 θ f O D L ( λ c λ 0 ) p
M = d l ϕ ( λ c ) d λ c = 2   θ   f O D L   p
Δ z D = 0 = 2   θ   f O D L   λ 0 p
t g = ϕ ( ω c ) ω c
t g = 4 π θ f O D L p ω 0 = 2 θ f O D L λ 0 c p
Δ l ϕ ( λ c ) = M ( λ c λ 0 )
Δ l g = M λ 0

Metrics