W. C. Tay, D. Y. Heh, and E. L. Tan, “GPU-accelerated fundamental ADI-FDTD with complex frequency shifted convolutional perfectly matched layer,” PIER M 14, 177–192 (2010).
[Crossref]
D. Y. Heh and E. L. Tan, “Corrected impulse invariance method in z-transform theory for frequency-dependent FDTD methods,” IEEE Trans. Antennas Propag. 57, 2683–2690 (2009).
[Crossref]
E. L. Tan, “Fundamental schemes for efficient unconditionally stable implicit finite-difference time-domain methods,” IEEE Trans. Antennas Propag. 56, 170–177 (2008).
[Crossref]
E. L. Tan, “Concise current source implementation for efficient 3-D ADI-FDTD method,” IEEE Microw. Wireless Comp. Lett. 17, 748–750 (2007).
[Crossref]
E. L. Tan, “Efficient algorithm for the unconditionally stable 3-D ADI-FDTD method,” IEEE Microw. Wireless Comp. Lett. 17, 7–9 (2007).
[Crossref]
J. G. Kim and H. Liu, “Variation of haemoglobin extinction coefficients can cause errors in the determination of haemoglobin concentration measured by near-infrared spectroscopy,” Phys. Med. Biol. 52, 6295–6332 (2007).
[Crossref]
[PubMed]
S. G. Garcez, C. F. Galan, L. H. Bonani, and V. Baranauskas, “Estimating the electromagnetic field effects in biological tissues through the finite-difference time-domain method,” SBMO/IEEE MTT-S Int. Microw. and Optoelectronics Conf. Proc., 43, 58–62 (2007).
M. Meinke and M. Friebel, “Complex refractive index of hemoglobin in the wavelength range from 250 to 1100 nm,” Proc. SPIE 5862, 1–7 (2005).
M. Meinke and M. Friebel, “Determination of the complex refractive index of highly concentrated hemoglobin solutions using transmittance and reflectance measurements,” J. Biomed. Opt. 10, 064019 (2005).
[Crossref]
J. G. Kim, M. Xia, and H. Liu, “Extinction coefficients of hemoglobin for near-infrared spectroscopy of tissue,” IEEE Eng. Med. Biol. Mag. 24, 118–121 (2005).
[Crossref]
[PubMed]
K. Boryczko, W. Dzewinel, and D. A. Yuen, “Modeling fibrin aggregation in blood flow with discrete particles,” Comput. Methods Prog. Biomed. 75, 181–194 (2004).
[Crossref]
F. Zheng, Z. Chen, and J. Zhang, “Toward the development of a three-dimensional unconditionally stable finite-difference time-domain method,” IEEE Trans. Microw. Theory Tech. 48, 1550–1558 (2000).
[Crossref]
T. Namiki, “3-D ADI-FDTD method-Unconditionally stable time domain algorithm for solving full vector Maxwell’s equations,” IEEE Trans. Microw. Theory Tech. 48, 1743–1748 (2000).
[Crossref]
B. Gustavsen and A. Semlyen, “Rational approximation of frequency domain responses by vector fitting,” IEEE Trans. Power Delivery 14, 1052–1061 (1999).
[Crossref]
S. Paker and L. Sevgi, “FDTD evaluation of the SAR distribution in a human head near a mobile cellular phone,” Elektrik 6, 227–242 (1998).
C. M. Furse and O. P. Gahdhi, “A memory efficient method of calculating specific absorption rate in CW FDTD simulations,” IEEE Trans. Biomed. Eng. 43, 558–560 (1996).
[Crossref]
[PubMed]
W. G. Zijlstra, A. Buursma, H. E. Falke, and J. F. Catsburg, “Spectrophotometry of hemoglobin: absorption spectra of rat oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Comput. Biochem. Physiol. 107B, 161–166 (1994).
[Crossref]
W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37, 1633–1668 (1991).
A. Taflove and M. E. Brodwin, “Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations,” IEEE Trans. Microw. Theory Tech. 23, 623–630 (1975).
[Crossref]
K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equation in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
[Crossref]
S. G. Garcez, C. F. Galan, L. H. Bonani, and V. Baranauskas, “Estimating the electromagnetic field effects in biological tissues through the finite-difference time-domain method,” SBMO/IEEE MTT-S Int. Microw. and Optoelectronics Conf. Proc., 43, 58–62 (2007).
S. G. Garcez, C. F. Galan, L. H. Bonani, and V. Baranauskas, “Estimating the electromagnetic field effects in biological tissues through the finite-difference time-domain method,” SBMO/IEEE MTT-S Int. Microw. and Optoelectronics Conf. Proc., 43, 58–62 (2007).
K. Boryczko, W. Dzewinel, and D. A. Yuen, “Modeling fibrin aggregation in blood flow with discrete particles,” Comput. Methods Prog. Biomed. 75, 181–194 (2004).
[Crossref]
A. Taflove and M. E. Brodwin, “Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations,” IEEE Trans. Microw. Theory Tech. 23, 623–630 (1975).
[Crossref]
W. G. Zijlstra, A. Buursma, H. E. Falke, and J. F. Catsburg, “Spectrophotometry of hemoglobin: absorption spectra of rat oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Comput. Biochem. Physiol. 107B, 161–166 (1994).
[Crossref]
W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37, 1633–1668 (1991).
W. G. Zijlstra, A. Buursma, and O. W. van Assendelft, Visible and Near Infrared Absorption Spectra of Human and Animal Haemoglobin: Determination and Application, (VSP, Zeist, 2000).
W. G. Zijlstra, A. Buursma, H. E. Falke, and J. F. Catsburg, “Spectrophotometry of hemoglobin: absorption spectra of rat oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Comput. Biochem. Physiol. 107B, 161–166 (1994).
[Crossref]
F. Zheng, Z. Chen, and J. Zhang, “Toward the development of a three-dimensional unconditionally stable finite-difference time-domain method,” IEEE Trans. Microw. Theory Tech. 48, 1550–1558 (2000).
[Crossref]
M. Cope, “The application of near infrared spectroscopy to non invasive monitoring of cerebral oxygenation in the newborn infant,” PhD Dissertation, (1991).
K. Boryczko, W. Dzewinel, and D. A. Yuen, “Modeling fibrin aggregation in blood flow with discrete particles,” Comput. Methods Prog. Biomed. 75, 181–194 (2004).
[Crossref]
W. G. Zijlstra, A. Buursma, H. E. Falke, and J. F. Catsburg, “Spectrophotometry of hemoglobin: absorption spectra of rat oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Comput. Biochem. Physiol. 107B, 161–166 (1994).
[Crossref]
C. M. Furse and O. P. Gahdhi, “A memory efficient method of calculating specific absorption rate in CW FDTD simulations,” IEEE Trans. Biomed. Eng. 43, 558–560 (1996).
[Crossref]
[PubMed]
C. M. Furse and O. P. Gahdhi, “A memory efficient method of calculating specific absorption rate in CW FDTD simulations,” IEEE Trans. Biomed. Eng. 43, 558–560 (1996).
[Crossref]
[PubMed]
S. G. Garcez, C. F. Galan, L. H. Bonani, and V. Baranauskas, “Estimating the electromagnetic field effects in biological tissues through the finite-difference time-domain method,” SBMO/IEEE MTT-S Int. Microw. and Optoelectronics Conf. Proc., 43, 58–62 (2007).
S. G. Garcez, C. F. Galan, L. H. Bonani, and V. Baranauskas, “Estimating the electromagnetic field effects in biological tissues through the finite-difference time-domain method,” SBMO/IEEE MTT-S Int. Microw. and Optoelectronics Conf. Proc., 43, 58–62 (2007).
B. Gustavsen and A. Semlyen, “Rational approximation of frequency domain responses by vector fitting,” IEEE Trans. Power Delivery 14, 1052–1061 (1999).
[Crossref]
A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, (Artech House, 2005).
W. C. Tay, D. Y. Heh, and E. L. Tan, “GPU-accelerated fundamental ADI-FDTD with complex frequency shifted convolutional perfectly matched layer,” PIER M 14, 177–192 (2010).
[Crossref]
D. Y. Heh and E. L. Tan, “Corrected impulse invariance method in z-transform theory for frequency-dependent FDTD methods,” IEEE Trans. Antennas Propag. 57, 2683–2690 (2009).
[Crossref]
J. D. Jackson, Classical Electrodynamics, 3rd ed. (John Wiley & Sons, 1998).
J. G. Kim and H. Liu, “Variation of haemoglobin extinction coefficients can cause errors in the determination of haemoglobin concentration measured by near-infrared spectroscopy,” Phys. Med. Biol. 52, 6295–6332 (2007).
[Crossref]
[PubMed]
J. G. Kim, M. Xia, and H. Liu, “Extinction coefficients of hemoglobin for near-infrared spectroscopy of tissue,” IEEE Eng. Med. Biol. Mag. 24, 118–121 (2005).
[Crossref]
[PubMed]
I. Laakso, “FDTD method in assessment of human exposure to base station radiation,” Masters Dissertation, (2007).
J. G. Kim and H. Liu, “Variation of haemoglobin extinction coefficients can cause errors in the determination of haemoglobin concentration measured by near-infrared spectroscopy,” Phys. Med. Biol. 52, 6295–6332 (2007).
[Crossref]
[PubMed]
J. G. Kim, M. Xia, and H. Liu, “Extinction coefficients of hemoglobin for near-infrared spectroscopy of tissue,” IEEE Eng. Med. Biol. Mag. 24, 118–121 (2005).
[Crossref]
[PubMed]
W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37, 1633–1668 (1991).
T. Namiki, “3-D ADI-FDTD method-Unconditionally stable time domain algorithm for solving full vector Maxwell’s equations,” IEEE Trans. Microw. Theory Tech. 48, 1743–1748 (2000).
[Crossref]
S. Paker and L. Sevgi, “FDTD evaluation of the SAR distribution in a human head near a mobile cellular phone,” Elektrik 6, 227–242 (1998).
D. M. Pozar, Microwave Engineering, 3rd ed. (Wiley, 2005).
B. Gustavsen and A. Semlyen, “Rational approximation of frequency domain responses by vector fitting,” IEEE Trans. Power Delivery 14, 1052–1061 (1999).
[Crossref]
S. Paker and L. Sevgi, “FDTD evaluation of the SAR distribution in a human head near a mobile cellular phone,” Elektrik 6, 227–242 (1998).
A. Taflove and M. E. Brodwin, “Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations,” IEEE Trans. Microw. Theory Tech. 23, 623–630 (1975).
[Crossref]
A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, (Artech House, 2005).
W. C. Tay, D. Y. Heh, and E. L. Tan, “GPU-accelerated fundamental ADI-FDTD with complex frequency shifted convolutional perfectly matched layer,” PIER M 14, 177–192 (2010).
[Crossref]
D. Y. Heh and E. L. Tan, “Corrected impulse invariance method in z-transform theory for frequency-dependent FDTD methods,” IEEE Trans. Antennas Propag. 57, 2683–2690 (2009).
[Crossref]
E. L. Tan, “Fundamental schemes for efficient unconditionally stable implicit finite-difference time-domain methods,” IEEE Trans. Antennas Propag. 56, 170–177 (2008).
[Crossref]
E. L. Tan, “Concise current source implementation for efficient 3-D ADI-FDTD method,” IEEE Microw. Wireless Comp. Lett. 17, 748–750 (2007).
[Crossref]
E. L. Tan, “Efficient algorithm for the unconditionally stable 3-D ADI-FDTD method,” IEEE Microw. Wireless Comp. Lett. 17, 7–9 (2007).
[Crossref]
W. C. Tay, D. Y. Heh, and E. L. Tan, “GPU-accelerated fundamental ADI-FDTD with complex frequency shifted convolutional perfectly matched layer,” PIER M 14, 177–192 (2010).
[Crossref]
W. G. Zijlstra, A. Buursma, and O. W. van Assendelft, Visible and Near Infrared Absorption Spectra of Human and Animal Haemoglobin: Determination and Application, (VSP, Zeist, 2000).
J. G. Kim, M. Xia, and H. Liu, “Extinction coefficients of hemoglobin for near-infrared spectroscopy of tissue,” IEEE Eng. Med. Biol. Mag. 24, 118–121 (2005).
[Crossref]
[PubMed]
K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equation in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
[Crossref]
K. Boryczko, W. Dzewinel, and D. A. Yuen, “Modeling fibrin aggregation in blood flow with discrete particles,” Comput. Methods Prog. Biomed. 75, 181–194 (2004).
[Crossref]
F. Zheng, Z. Chen, and J. Zhang, “Toward the development of a three-dimensional unconditionally stable finite-difference time-domain method,” IEEE Trans. Microw. Theory Tech. 48, 1550–1558 (2000).
[Crossref]
F. Zheng, Z. Chen, and J. Zhang, “Toward the development of a three-dimensional unconditionally stable finite-difference time-domain method,” IEEE Trans. Microw. Theory Tech. 48, 1550–1558 (2000).
[Crossref]
W. G. Zijlstra, A. Buursma, H. E. Falke, and J. F. Catsburg, “Spectrophotometry of hemoglobin: absorption spectra of rat oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Comput. Biochem. Physiol. 107B, 161–166 (1994).
[Crossref]
W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37, 1633–1668 (1991).
W. G. Zijlstra, A. Buursma, and O. W. van Assendelft, Visible and Near Infrared Absorption Spectra of Human and Animal Haemoglobin: Determination and Application, (VSP, Zeist, 2000).
W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37, 1633–1668 (1991).
W. G. Zijlstra, A. Buursma, H. E. Falke, and J. F. Catsburg, “Spectrophotometry of hemoglobin: absorption spectra of rat oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Comput. Biochem. Physiol. 107B, 161–166 (1994).
[Crossref]
K. Boryczko, W. Dzewinel, and D. A. Yuen, “Modeling fibrin aggregation in blood flow with discrete particles,” Comput. Methods Prog. Biomed. 75, 181–194 (2004).
[Crossref]
S. Paker and L. Sevgi, “FDTD evaluation of the SAR distribution in a human head near a mobile cellular phone,” Elektrik 6, 227–242 (1998).
J. G. Kim, M. Xia, and H. Liu, “Extinction coefficients of hemoglobin for near-infrared spectroscopy of tissue,” IEEE Eng. Med. Biol. Mag. 24, 118–121 (2005).
[Crossref]
[PubMed]
E. L. Tan, “Efficient algorithm for the unconditionally stable 3-D ADI-FDTD method,” IEEE Microw. Wireless Comp. Lett. 17, 7–9 (2007).
[Crossref]
E. L. Tan, “Concise current source implementation for efficient 3-D ADI-FDTD method,” IEEE Microw. Wireless Comp. Lett. 17, 748–750 (2007).
[Crossref]
D. Y. Heh and E. L. Tan, “Corrected impulse invariance method in z-transform theory for frequency-dependent FDTD methods,” IEEE Trans. Antennas Propag. 57, 2683–2690 (2009).
[Crossref]
E. L. Tan, “Fundamental schemes for efficient unconditionally stable implicit finite-difference time-domain methods,” IEEE Trans. Antennas Propag. 56, 170–177 (2008).
[Crossref]
K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equation in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
[Crossref]
C. M. Furse and O. P. Gahdhi, “A memory efficient method of calculating specific absorption rate in CW FDTD simulations,” IEEE Trans. Biomed. Eng. 43, 558–560 (1996).
[Crossref]
[PubMed]
A. Taflove and M. E. Brodwin, “Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations,” IEEE Trans. Microw. Theory Tech. 23, 623–630 (1975).
[Crossref]
F. Zheng, Z. Chen, and J. Zhang, “Toward the development of a three-dimensional unconditionally stable finite-difference time-domain method,” IEEE Trans. Microw. Theory Tech. 48, 1550–1558 (2000).
[Crossref]
T. Namiki, “3-D ADI-FDTD method-Unconditionally stable time domain algorithm for solving full vector Maxwell’s equations,” IEEE Trans. Microw. Theory Tech. 48, 1743–1748 (2000).
[Crossref]
B. Gustavsen and A. Semlyen, “Rational approximation of frequency domain responses by vector fitting,” IEEE Trans. Power Delivery 14, 1052–1061 (1999).
[Crossref]
M. Meinke and M. Friebel, “Determination of the complex refractive index of highly concentrated hemoglobin solutions using transmittance and reflectance measurements,” J. Biomed. Opt. 10, 064019 (2005).
[Crossref]
J. G. Kim and H. Liu, “Variation of haemoglobin extinction coefficients can cause errors in the determination of haemoglobin concentration measured by near-infrared spectroscopy,” Phys. Med. Biol. 52, 6295–6332 (2007).
[Crossref]
[PubMed]
W. C. Tay, D. Y. Heh, and E. L. Tan, “GPU-accelerated fundamental ADI-FDTD with complex frequency shifted convolutional perfectly matched layer,” PIER M 14, 177–192 (2010).
[Crossref]
M. Meinke and M. Friebel, “Complex refractive index of hemoglobin in the wavelength range from 250 to 1100 nm,” Proc. SPIE 5862, 1–7 (2005).
S. G. Garcez, C. F. Galan, L. H. Bonani, and V. Baranauskas, “Estimating the electromagnetic field effects in biological tissues through the finite-difference time-domain method,” SBMO/IEEE MTT-S Int. Microw. and Optoelectronics Conf. Proc., 43, 58–62 (2007).
J. D. Jackson, Classical Electrodynamics, 3rd ed. (John Wiley & Sons, 1998).
D. M. Pozar, Microwave Engineering, 3rd ed. (Wiley, 2005).
I. Laakso, “FDTD method in assessment of human exposure to base station radiation,” Masters Dissertation, (2007).
A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, (Artech House, 2005).
W. G. Zijlstra, A. Buursma, and O. W. van Assendelft, Visible and Near Infrared Absorption Spectra of Human and Animal Haemoglobin: Determination and Application, (VSP, Zeist, 2000).
M. Cope, “The application of near infrared spectroscopy to non invasive monitoring of cerebral oxygenation in the newborn infant,” PhD Dissertation, (1991).
S. A. Prahl, “Tabulated molar extinction coefficient for hemoglobin in water,” http://omlc.ogi.edu/spectra/hemoglobin/summary.html (1998).