Abstract

Dual-beam-scan Doppler optical coherence angiography (DB-OCA) with a 1-μm-wavelength probe is demonstrated for improved in vivo choroidal angiograms of the human eye. This method utilizes two scanning beams with spatial and temporal separation on the retina, and provides two measurable velocity ranges. The method achieves higher sensitivity to very low velocity flows than conventional Doppler optical coherence tomography. Moreover, longer wavelengths allowing greater penetration, enhanced visualization of choroidal vessels is verified with en-face projection images of the Doppler shift squared. Specifically, better choroidal vasculature visibility is achieved at a wavelength of 1 μm than at 840 nm.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Grunwald, T. I. Metelitsina, J. C. Dupont, G. S. Ying, and M. G. Maguire, “Reduced foveolar choroidal blood flow in eyes with increasing AMD severity,” Invest. Ophthalmol. Vis. Sci. 46(3), 1033–1038 (2005).
    [CrossRef] [PubMed]
  2. L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology 93(5), 611–617 (1986).
    [PubMed]
  3. U. Karhunen, C. Raitta, and R. Kala, “Adverse reactions to fluorescein angiography,” Acta Ophthalmol. (Copenh.) 64(3), 282–286 (1986).
    [CrossRef] [PubMed]
  4. C. Riva, B. Ross, and G. B. Benedek, “Laser Doppler measurements of blood flow in capillary tubes and retinal arteries,” Invest. Ophthalmol. 11(11), 936–944 (1972).
    [PubMed]
  5. M. D. Stern, D. L. Lappe, P. D. Bowen, J. E. Chimosky, G. A. Holloway, H. R. Keiser, and R. L. Bowman, “Continuous measurement of tissue blood flow by laser-Doppler spectroscopy,” Am. J. Physiol. 232(4), H441–H448 (1977).
    [PubMed]
  6. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  7. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
    [CrossRef]
  8. X. J. Wang, T. E. Milner, and J. S. Nelson, “Characterization of fluid flow velocity by optical Doppler tomography,” Opt. Lett. 20(11), 1337–1339 (1995).
    [CrossRef] [PubMed]
  9. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22(18), 1439–1441 (1997).
    [CrossRef] [PubMed]
  10. Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett. 22(1), 64–66 (1997).
    [CrossRef] [PubMed]
  11. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25(2), 114–116 (2000).
    [CrossRef] [PubMed]
  12. R. A. Leitgeb, L. Schmetterer, C. K. Hitzenberger, A. F. Fercher, F. Berisha, M. Wojtkowski, and T. Bajraszewski, “Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography,” Opt. Lett. 29(2), 171–173 (2004).
    [CrossRef] [PubMed]
  13. R. M. Werkmeister, N. Dragostinoff, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. A. Leitgeb, and L. Schmetterer, “Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels,” Opt. Lett. 33(24), 2967–2969 (2008).
    [CrossRef] [PubMed]
  14. L. Yu and Z. Chen, “Doppler variance imaging for three-dimensional retina and choroid angiography,” J. Biomed. Opt. 15(1), 016029 (2010).
    [CrossRef] [PubMed]
  15. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006).
    [CrossRef] [PubMed]
  16. Y. Hong, S. Makita, M. Yamanari, M. Miura, S. Kim, T. Yatagai, and Y. Yasuno, “Three-dimensional visualization of choroidal vessels by using standard and ultra-high resolution scattering optical coherence angiography,” Opt. Express 15(12), 7538–7550 (2007).
    [CrossRef] [PubMed]
  17. Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15(10), 6121–6139 (2007).
    [CrossRef] [PubMed]
  18. A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Resonant Doppler flow imaging and optical vivisection of retinal blood vessels,” Opt. Express 15(2), 408–422 (2007).
    [CrossRef] [PubMed]
  19. J. Fingler, R. J. Zawadzki, J. S. Werner, D. Schwartz, and S. E. Fraser, “Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique,” Opt. Express 17(24), 22190–22200 (2009).
    [CrossRef] [PubMed]
  20. L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16(15), 11438–11452 (2008).
    [CrossRef] [PubMed]
  21. T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, “Ultra-high-speed volumetric tomography of human retinal blood flow,” Opt. Express 17(5), 4166–4176 (2009).
    [CrossRef] [PubMed]
  22. Y. K. Tao, K. M. Kennedy, and J. A. Izatt, “Velocity-resolved 3D retinal microvessel imaging using single-pass flow imaging spectral domain optical coherence tomography,” Opt. Express 17(5), 4177–4188 (2009).
    [CrossRef] [PubMed]
  23. A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 17(13), 10584–10598 (2009).
    [CrossRef] [PubMed]
  24. I. Gorczynska, D. Szlag, M Szkulmowski, D. Bukowska, I. Grulkowski, A.A. Kowalczyk, and M. Wojtkowski, “Velocity ranging in joint spectral and time domain OCT imaging with resonant scanner,” presented at Photonics West, San Francisco, USA, Jan. 22–27, 2011.
  25. P. Meemon and J. P. Rolland, “Swept-source based, single-shot, multi-detectable velocity range Doppler optical coherence tomography,” Biomed. Opt. Express 1(3), 955–966 (2010).
    [CrossRef] [PubMed]
  26. S. Makita, F. Jaillon, M. Yamanari, M. Miura, and Y. Yasuno, “Comprehensive in vivo micro-vascular imaging of the human eye by dual-beam-scan Doppler optical coherence angiography,” Opt. Express 19(2), 1271–1283 (2011).
    [CrossRef] [PubMed]
  27. S. Makita, M. Yamanari, and Y. Yasuno, “High-speed and high-sensitive optical coherence angiography,” Proc. SPIE 7372, 73721M, 73721M-6 (2009).
    [CrossRef]
  28. S. Zotter, M. Pircher, T. Torzicky, M. Bonesi, E. Götzinger, R. A. Leitgeb, and C. K. Hitzenberger, “Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography,” Opt. Express 19(2), 1217–1227 (2011).
    [CrossRef] [PubMed]
  29. E. C. W. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, “In vivo optical frequency domain imaging of human retina and choroid,” Opt. Express 14(10), 4403–4411 (2006).
    [CrossRef] [PubMed]
  30. B. Povãzay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. Fercher, W. Drexler, C. Schubert, P. Ahnelt, M. Mei, R. Holzwarth, W. Wadsworth, J. Knight, and P. S. J. Russell, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,” Opt. Express 11(17), 1980–1986 (2003).
    [CrossRef] [PubMed]
  31. B. H. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 microm,” Opt. Express 13(11), 3931–3944 (2005).
    [CrossRef] [PubMed]
  32. C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, “Real-time two-dimensional blood flow imaging using an autocorrelation technique,” IEEE Trans. Sonics Ultrason. SU-32, 458–464 (1985).
  33. V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and A. Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4-6), 209–214 (2002).
    [CrossRef]
  34. S. Jiao and L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt. 7(3), 350–358 (2002).
    [CrossRef] [PubMed]
  35. M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method,” Opt. Express 14(14), 6502–6515 (2006).
    [CrossRef] [PubMed]

2011 (2)

2010 (2)

2009 (5)

2008 (2)

2007 (3)

2006 (3)

2005 (2)

B. H. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 microm,” Opt. Express 13(11), 3931–3944 (2005).
[CrossRef] [PubMed]

J. E. Grunwald, T. I. Metelitsina, J. C. Dupont, G. S. Ying, and M. G. Maguire, “Reduced foveolar choroidal blood flow in eyes with increasing AMD severity,” Invest. Ophthalmol. Vis. Sci. 46(3), 1033–1038 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (1)

2002 (2)

V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and A. Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4-6), 209–214 (2002).
[CrossRef]

S. Jiao and L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt. 7(3), 350–358 (2002).
[CrossRef] [PubMed]

2000 (1)

1997 (2)

1995 (2)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

X. J. Wang, T. E. Milner, and J. S. Nelson, “Characterization of fluid flow velocity by optical Doppler tomography,” Opt. Lett. 20(11), 1337–1339 (1995).
[CrossRef] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

1986 (2)

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology 93(5), 611–617 (1986).
[PubMed]

U. Karhunen, C. Raitta, and R. Kala, “Adverse reactions to fluorescein angiography,” Acta Ophthalmol. (Copenh.) 64(3), 282–286 (1986).
[CrossRef] [PubMed]

1985 (1)

C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, “Real-time two-dimensional blood flow imaging using an autocorrelation technique,” IEEE Trans. Sonics Ultrason. SU-32, 458–464 (1985).

1977 (1)

M. D. Stern, D. L. Lappe, P. D. Bowen, J. E. Chimosky, G. A. Holloway, H. R. Keiser, and R. L. Bowman, “Continuous measurement of tissue blood flow by laser-Doppler spectroscopy,” Am. J. Physiol. 232(4), H441–H448 (1977).
[PubMed]

1972 (1)

C. Riva, B. Ross, and G. B. Benedek, “Laser Doppler measurements of blood flow in capillary tubes and retinal arteries,” Invest. Ophthalmol. 11(11), 936–944 (1972).
[PubMed]

Ahnelt, P.

Akiba, M.

An, L.

Bachmann, A. H.

Bajraszewski, T.

Barton, J. K.

Benedek, G. B.

C. Riva, B. Ross, and G. B. Benedek, “Laser Doppler measurements of blood flow in capillary tubes and retinal arteries,” Invest. Ophthalmol. 11(11), 936–944 (1972).
[PubMed]

Berisha, F.

Bizheva, K.

Blatter, C.

Bonesi, M.

Bouma, B. E.

Bowen, P. D.

M. D. Stern, D. L. Lappe, P. D. Bowen, J. E. Chimosky, G. A. Holloway, H. R. Keiser, and R. L. Bowman, “Continuous measurement of tissue blood flow by laser-Doppler spectroscopy,” Am. J. Physiol. 232(4), H441–H448 (1977).
[PubMed]

Bowman, R. L.

M. D. Stern, D. L. Lappe, P. D. Bowen, J. E. Chimosky, G. A. Holloway, H. R. Keiser, and R. L. Bowman, “Continuous measurement of tissue blood flow by laser-Doppler spectroscopy,” Am. J. Physiol. 232(4), H441–H448 (1977).
[PubMed]

Cense, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, Z.

L. Yu and Z. Chen, “Doppler variance imaging for three-dimensional retina and choroid angiography,” J. Biomed. Opt. 15(1), 016029 (2010).
[CrossRef] [PubMed]

V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and A. Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4-6), 209–214 (2002).
[CrossRef]

Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25(2), 114–116 (2000).
[CrossRef] [PubMed]

Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett. 22(1), 64–66 (1997).
[CrossRef] [PubMed]

Chimosky, J. E.

M. D. Stern, D. L. Lappe, P. D. Bowen, J. E. Chimosky, G. A. Holloway, H. R. Keiser, and R. L. Bowman, “Continuous measurement of tissue blood flow by laser-Doppler spectroscopy,” Am. J. Physiol. 232(4), H441–H448 (1977).
[PubMed]

Cobbold, R. S. C.

V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and A. Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4-6), 209–214 (2002).
[CrossRef]

Costanza, M. A.

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology 93(5), 611–617 (1986).
[PubMed]

Dave, D.

de Boer, J. F.

Dragostinoff, N.

Drexler, W.

Dupont, J. C.

J. E. Grunwald, T. I. Metelitsina, J. C. Dupont, G. S. Ying, and M. G. Maguire, “Reduced foveolar choroidal blood flow in eyes with increasing AMD severity,” Invest. Ophthalmol. Vis. Sci. 46(3), 1033–1038 (2005).
[CrossRef] [PubMed]

El-Zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

Fercher, A.

Fercher, A. F.

Fingler, J.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fraser, S. E.

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Gordon, M. L.

V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and A. Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4-6), 209–214 (2002).
[CrossRef]

Götzinger, E.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Grunwald, J. E.

J. E. Grunwald, T. I. Metelitsina, J. C. Dupont, G. S. Ying, and M. G. Maguire, “Reduced foveolar choroidal blood flow in eyes with increasing AMD severity,” Invest. Ophthalmol. Vis. Sci. 46(3), 1033–1038 (2005).
[CrossRef] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hermann, B.

Hitzenberger, C. K.

Holloway, G. A.

M. D. Stern, D. L. Lappe, P. D. Bowen, J. E. Chimosky, G. A. Holloway, H. R. Keiser, and R. L. Bowman, “Continuous measurement of tissue blood flow by laser-Doppler spectroscopy,” Am. J. Physiol. 232(4), H441–H448 (1977).
[PubMed]

Holzwarth, R.

Hong, Y.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Izatt, J. A.

Jaillon, F.

Jiao, S.

S. Jiao and L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt. 7(3), 350–358 (2002).
[CrossRef] [PubMed]

Kala, R.

U. Karhunen, C. Raitta, and R. Kala, “Adverse reactions to fluorescein angiography,” Acta Ophthalmol. (Copenh.) 64(3), 282–286 (1986).
[CrossRef] [PubMed]

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

Karhunen, U.

U. Karhunen, C. Raitta, and R. Kala, “Adverse reactions to fluorescein angiography,” Acta Ophthalmol. (Copenh.) 64(3), 282–286 (1986).
[CrossRef] [PubMed]

Kasai, C.

C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, “Real-time two-dimensional blood flow imaging using an autocorrelation technique,” IEEE Trans. Sonics Ultrason. SU-32, 458–464 (1985).

Keiser, H. R.

M. D. Stern, D. L. Lappe, P. D. Bowen, J. E. Chimosky, G. A. Holloway, H. R. Keiser, and R. L. Bowman, “Continuous measurement of tissue blood flow by laser-Doppler spectroscopy,” Am. J. Physiol. 232(4), H441–H448 (1977).
[PubMed]

Kennedy, K. M.

Kim, S.

Knight, J.

Kolbitsch, C.

Kowalczyk, A.

Koyano, A.

C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, “Real-time two-dimensional blood flow imaging using an autocorrelation technique,” IEEE Trans. Sonics Ultrason. SU-32, 458–464 (1985).

Kulkarni, M. D.

Lappe, D. L.

M. D. Stern, D. L. Lappe, P. D. Bowen, J. E. Chimosky, G. A. Holloway, H. R. Keiser, and R. L. Bowman, “Continuous measurement of tissue blood flow by laser-Doppler spectroscopy,” Am. J. Physiol. 232(4), H441–H448 (1977).
[PubMed]

Lasser, T.

Lee, E. C. W.

Leitgeb, R. A.

Lim, H.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Madjarova, V. D.

Maguire, M. G.

J. E. Grunwald, T. I. Metelitsina, J. C. Dupont, G. S. Ying, and M. G. Maguire, “Reduced foveolar choroidal blood flow in eyes with increasing AMD severity,” Invest. Ophthalmol. Vis. Sci. 46(3), 1033–1038 (2005).
[CrossRef] [PubMed]

Makita, S.

Meemon, P.

Mei, M.

Metelitsina, T. I.

J. E. Grunwald, T. I. Metelitsina, J. C. Dupont, G. S. Ying, and M. G. Maguire, “Reduced foveolar choroidal blood flow in eyes with increasing AMD severity,” Invest. Ophthalmol. Vis. Sci. 46(3), 1033–1038 (2005).
[CrossRef] [PubMed]

Milner, T. E.

Miura, M.

Mok, A.

V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and A. Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4-6), 209–214 (2002).
[CrossRef]

Mujat, M.

Namekawa, K.

C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, “Real-time two-dimensional blood flow imaging using an autocorrelation technique,” IEEE Trans. Sonics Ultrason. SU-32, 458–464 (1985).

Nelson, J. S.

Omoto, R.

C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, “Real-time two-dimensional blood flow imaging using an autocorrelation technique,” IEEE Trans. Sonics Ultrason. SU-32, 458–464 (1985).

Park, B. H.

Pierce, M. C.

Pircher, M.

Povãzay, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Raitta, C.

U. Karhunen, C. Raitta, and R. Kala, “Adverse reactions to fluorescein angiography,” Acta Ophthalmol. (Copenh.) 64(3), 282–286 (1986).
[CrossRef] [PubMed]

Riva, C.

C. Riva, B. Ross, and G. B. Benedek, “Laser Doppler measurements of blood flow in capillary tubes and retinal arteries,” Invest. Ophthalmol. 11(11), 936–944 (1972).
[PubMed]

Rohrer, K. T.

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology 93(5), 611–617 (1986).
[PubMed]

Rolland, J. P.

Ross, B.

C. Riva, B. Ross, and G. B. Benedek, “Laser Doppler measurements of blood flow in capillary tubes and retinal arteries,” Invest. Ophthalmol. 11(11), 936–944 (1972).
[PubMed]

Russell, P. S. J.

Sattmann, H.

Saxer, C.

Schmetterer, L.

Schmoll, T.

Schubert, C.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Schwartz, D.

Shields, W.

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology 93(5), 611–617 (1986).
[PubMed]

Sobel, R. S.

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology 93(5), 611–617 (1986).
[PubMed]

Stern, M. D.

M. D. Stern, D. L. Lappe, P. D. Bowen, J. E. Chimosky, G. A. Holloway, H. R. Keiser, and R. L. Bowman, “Continuous measurement of tissue blood flow by laser-Doppler spectroscopy,” Am. J. Physiol. 232(4), H441–H448 (1977).
[PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Szkulmowska, A.

Szkulmowski, M.

Szlag, D.

Tao, Y. K.

Tearney, G. J.

Tindel, L. J.

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology 93(5), 611–617 (1986).
[PubMed]

Torzicky, T.

Unterhuber, A.

Villiger, M. L.

Vitkin, A.

V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and A. Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4-6), 209–214 (2002).
[CrossRef]

Wadsworth, W.

Wang, L. V.

S. Jiao and L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt. 7(3), 350–358 (2002).
[CrossRef] [PubMed]

Wang, R. K.

Wang, X. J.

Welch, A. J.

Werkmeister, R. M.

Werner, J. S.

Wilson, B. C.

V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and A. Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4-6), 209–214 (2002).
[CrossRef]

Wojtkowski, M.

Xiang, S.

Yamanari, M.

Yang, V. X. D.

V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and A. Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4-6), 209–214 (2002).
[CrossRef]

Yannuzzi, L. A.

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology 93(5), 611–617 (1986).
[PubMed]

Yasuno, Y.

Yatagai, T.

Yazdanfar, S.

Ying, G. S.

J. E. Grunwald, T. I. Metelitsina, J. C. Dupont, G. S. Ying, and M. G. Maguire, “Reduced foveolar choroidal blood flow in eyes with increasing AMD severity,” Invest. Ophthalmol. Vis. Sci. 46(3), 1033–1038 (2005).
[CrossRef] [PubMed]

Yu, L.

L. Yu and Z. Chen, “Doppler variance imaging for three-dimensional retina and choroid angiography,” J. Biomed. Opt. 15(1), 016029 (2010).
[CrossRef] [PubMed]

Yun, S. H.

Yun, S.-H.

Zang, E.

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology 93(5), 611–617 (1986).
[PubMed]

Zawadzki, R. J.

Zhao, Y.

V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and A. Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4-6), 209–214 (2002).
[CrossRef]

Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25(2), 114–116 (2000).
[CrossRef] [PubMed]

Zotter, S.

Acta Ophthalmol. (Copenh.) (1)

U. Karhunen, C. Raitta, and R. Kala, “Adverse reactions to fluorescein angiography,” Acta Ophthalmol. (Copenh.) 64(3), 282–286 (1986).
[CrossRef] [PubMed]

Am. J. Physiol. (1)

M. D. Stern, D. L. Lappe, P. D. Bowen, J. E. Chimosky, G. A. Holloway, H. R. Keiser, and R. L. Bowman, “Continuous measurement of tissue blood flow by laser-Doppler spectroscopy,” Am. J. Physiol. 232(4), H441–H448 (1977).
[PubMed]

Biomed. Opt. Express (1)

IEEE Trans. Sonics Ultrason. (1)

C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, “Real-time two-dimensional blood flow imaging using an autocorrelation technique,” IEEE Trans. Sonics Ultrason. SU-32, 458–464 (1985).

Invest. Ophthalmol. (1)

C. Riva, B. Ross, and G. B. Benedek, “Laser Doppler measurements of blood flow in capillary tubes and retinal arteries,” Invest. Ophthalmol. 11(11), 936–944 (1972).
[PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

J. E. Grunwald, T. I. Metelitsina, J. C. Dupont, G. S. Ying, and M. G. Maguire, “Reduced foveolar choroidal blood flow in eyes with increasing AMD severity,” Invest. Ophthalmol. Vis. Sci. 46(3), 1033–1038 (2005).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

L. Yu and Z. Chen, “Doppler variance imaging for three-dimensional retina and choroid angiography,” J. Biomed. Opt. 15(1), 016029 (2010).
[CrossRef] [PubMed]

S. Jiao and L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt. 7(3), 350–358 (2002).
[CrossRef] [PubMed]

Ophthalmology (1)

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology 93(5), 611–617 (1986).
[PubMed]

Opt. Commun. (2)

V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and A. Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4-6), 209–214 (2002).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

Opt. Express (15)

S. Zotter, M. Pircher, T. Torzicky, M. Bonesi, E. Götzinger, R. A. Leitgeb, and C. K. Hitzenberger, “Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography,” Opt. Express 19(2), 1217–1227 (2011).
[CrossRef] [PubMed]

S. Makita, F. Jaillon, M. Yamanari, M. Miura, and Y. Yasuno, “Comprehensive in vivo micro-vascular imaging of the human eye by dual-beam-scan Doppler optical coherence angiography,” Opt. Express 19(2), 1271–1283 (2011).
[CrossRef] [PubMed]

B. Povãzay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. Fercher, W. Drexler, C. Schubert, P. Ahnelt, M. Mei, R. Holzwarth, W. Wadsworth, J. Knight, and P. S. J. Russell, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,” Opt. Express 11(17), 1980–1986 (2003).
[CrossRef] [PubMed]

T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, “Ultra-high-speed volumetric tomography of human retinal blood flow,” Opt. Express 17(5), 4166–4176 (2009).
[CrossRef] [PubMed]

Y. K. Tao, K. M. Kennedy, and J. A. Izatt, “Velocity-resolved 3D retinal microvessel imaging using single-pass flow imaging spectral domain optical coherence tomography,” Opt. Express 17(5), 4177–4188 (2009).
[CrossRef] [PubMed]

A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 17(13), 10584–10598 (2009).
[CrossRef] [PubMed]

J. Fingler, R. J. Zawadzki, J. S. Werner, D. Schwartz, and S. E. Fraser, “Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique,” Opt. Express 17(24), 22190–22200 (2009).
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 microm,” Opt. Express 13(11), 3931–3944 (2005).
[CrossRef] [PubMed]

E. C. W. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, “In vivo optical frequency domain imaging of human retina and choroid,” Opt. Express 14(10), 4403–4411 (2006).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method,” Opt. Express 14(14), 6502–6515 (2006).
[CrossRef] [PubMed]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006).
[CrossRef] [PubMed]

A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Resonant Doppler flow imaging and optical vivisection of retinal blood vessels,” Opt. Express 15(2), 408–422 (2007).
[CrossRef] [PubMed]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15(10), 6121–6139 (2007).
[CrossRef] [PubMed]

Y. Hong, S. Makita, M. Yamanari, M. Miura, S. Kim, T. Yatagai, and Y. Yasuno, “Three-dimensional visualization of choroidal vessels by using standard and ultra-high resolution scattering optical coherence angiography,” Opt. Express 15(12), 7538–7550 (2007).
[CrossRef] [PubMed]

L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16(15), 11438–11452 (2008).
[CrossRef] [PubMed]

Opt. Lett. (6)

R. M. Werkmeister, N. Dragostinoff, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. A. Leitgeb, and L. Schmetterer, “Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels,” Opt. Lett. 33(24), 2967–2969 (2008).
[CrossRef] [PubMed]

R. A. Leitgeb, L. Schmetterer, C. K. Hitzenberger, A. F. Fercher, F. Berisha, M. Wojtkowski, and T. Bajraszewski, “Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography,” Opt. Lett. 29(2), 171–173 (2004).
[CrossRef] [PubMed]

Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25(2), 114–116 (2000).
[CrossRef] [PubMed]

X. J. Wang, T. E. Milner, and J. S. Nelson, “Characterization of fluid flow velocity by optical Doppler tomography,” Opt. Lett. 20(11), 1337–1339 (1995).
[CrossRef] [PubMed]

Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett. 22(1), 64–66 (1997).
[CrossRef] [PubMed]

J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22(18), 1439–1441 (1997).
[CrossRef] [PubMed]

Proc. SPIE (1)

S. Makita, M. Yamanari, and Y. Yasuno, “High-speed and high-sensitive optical coherence angiography,” Proc. SPIE 7372, 73721M, 73721M-6 (2009).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Other (1)

I. Gorczynska, D. Szlag, M Szkulmowski, D. Bukowska, I. Grulkowski, A.A. Kowalczyk, and M. Wojtkowski, “Velocity ranging in joint spectral and time domain OCT imaging with resonant scanner,” presented at Photonics West, San Francisco, USA, Jan. 22–27, 2011.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Dual-beam-scan Doppler OCA: two beams scan the sample with a constant spatial separation d.

Fig. 2
Fig. 2

Schematic diagram of the dual-beam-scan Doppler OCA setup. VNF: variable neutral density filter. Red lines are polarization-maintaining (PM) fibers. CCD: coupled charge device, PBS: polarization beam splitter.

Fig. 3
Fig. 3

, Scanning head: Two polarization states (red and blue) are separated by a Wollaston prism. After passing through relay lenses and galvanometers, the two polarization states reach the retina with a spatial separation d.

Fig. 4
Fig. 4

Mosaic of high-velocity (a) and low-velocity (b) en-face images of choroidal vasculature. Location: from macula to the ONH. Inverted grayscale. The scale is the same for (a) and (b). See text for details.

Fig. 5
Fig. 5

Mosaic of low-velocity en-face images of retinal vasculature obtained from Δ f S 2 volumes. Location: from macula to the ONH. Inverted grayscale.

Fig. 6
Fig. 6

Composite mosaic of low-velocity and high-velocity en-face images of retinal andchoroidal vasculature. Location: from macula to optic nerve head. Choroid low-velocity vasculature (inverted grayscale), choroid high-velocity vasculature (green), low-velocity retinal vasculature (red).

Fig. 7
Fig. 7

En-face Δ f S 2 projection image of ONH for (a) 840-nm and (b) 1020-nm light sources. Yellow boxes are zoomed areas. Inverted grayscale.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

v z =    λ 0 Δ ϕ ​​ 4 π  n t A ,
λ 0 ​​ 4 π n t A    1 S N R + σ Δ x | v z | λ 0 ​​ 4 n t A ,
σ Δ x = 4 π 3 ( 1 exp ( 1 2 ( Δ x r ) 2 ) ) ,
v z =    λ 0 [ ϕ 1 ( z , t ) ϕ 2 ( z , t + T ) ] ​​ 4 π  n T .
λ 0 ​​ 4 π n T    1 S N R | v z | λ 0 ​​ 4 n T    .
Δ ϕ i , j = A r g [ m = 0 M 1 n = 0 N 1 Γ 1 ( i + m , j + n ) Γ 2 * ( i + m , j + n + p ) ] ,
Δ f S = 1 2 π T Δ ϕ i , j .
Γ ( i , j ) = Γ 1 ( i , j ) Γ 1 * ( i , j + 1 ) + Γ 2 ( i , j + p ) Γ 2 * ( i , j + p + 1 ) .
Δ ϕ i , j = A r g [ m = 0 M 1 n = 0 N 1 Γ ( i + m , j + n ) ] ,
Δ f F = 1 2 π  t A Δ ϕ i , j    .

Metrics